
G2 GUIDE

User’s Guide
Version 2015

G2 GUIDE User’s Guide, Version 2015

March 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC022-1200

Contents Summary
Preface xvii

Part I Introduction 1

Chapter 1 Introduction to G2 GUIDE 3

Chapter 2 Getting Started 25

Part II Creating a User Interface 43

Chapter 3 Generating Master Dialogs 45

Chapter 4 Building Master Dialogs 63

Chapter 5 Using UIL Controls on a Workspace 93

Chapter 6 Customizing Dialogs 99

Chapter 7 Launching Dialogs 131

Chapter 8 System-Defined Dialogs 151

Part III Editing User Interface Components 159

Chapter 9 Push Buttons 161

Chapter 10 Radio Buttons 185

Chapter 11 Check Buttons 201

Chapter 12 Toggle Buttons 217

Chapter 13 Edit Boxes, Combo Boxes, and Spin Controls 227
iii

Chapter 14 Scroll Areas and Message Objects 257

Chapter 15 Sliders 291

Chapter 16 Text Objects 299

Chapter 17 Title Bars, Borders, and Separators 307

Chapter 18 Navigation Buttons and Other Tools 319

Part IV Advanced Features 327

Chapter 19 Formats and Validation Criteria 329

Chapter 20 Specifying Source and Target Objects 349

Chapter 21 Creating Temporary Storage Objects 365

Chapter 22 Methods, Actions, and Callbacks 379

Chapter 23 Help Dialog 393

Chapter 24 Creating Custom UIL Subclasses 405

Chapter 25 Specifying the Colors of UIL Objects 421

Chapter 26 Upgrading GUIDE Applications 429

Glossary 439

Index 449
iv

Contents
Preface xvii

About this Guide xvii

Audience xvii

Organization xviii

Conventions xxi

Related Documentation xxiii

Customer Support Services xxv

Part I Introduction 1

Chapter 1 Introduction to G2 GUIDE 3

Introduction 3
Dialogs for Viewing and Editing Attribute Values 4
User Interface Components on Workspaces 6
Online Examples and Tutorial: the Demo KB 6
Programmatic Support for GUIDE: GUIDE/UIL 7

Using a GUIDE User Interface 7
Launching Dialogs 8
Controlling Dialogs with Push Buttons 10
Selecting UIL Controls 10
Scrolling a Scroll Area 11

Creating a GUIDE User Interface 12
Generating Master Dialogs 12
Building Customized Master Dialogs 16
Editing UIL Controls 22

UIL Methods, Actions, and Callbacks 24

Chapter 2 Getting Started 25

Introduction 26

Installing GUIDE 26
Merging GUIDE into Your KB for the First Time 26
v

Merging GUIDE into a KB with an Earlier Version 27
Verifying Your Version of GUIDE 27
License Requirements 28

The GUIDE/UIL Module Hierarchy 28
Module Support for Navigation Buttons 31

Removing Unneeded GUIDE Modules from an Application 31

Setting G2 Minimum Scheduling Parameter 32

Starting GUIDE 32

Reinitializing GUIDE 32

Choosing a User Mode 32

Using the GUIDE Menu Bar 33
Removing g2cuidev.kb 33
Reusing the GUIDE Submenus 34

Resetting the GUIDE Editor 34

Enabling and Disabling GUIDE/UIL User Menu Choices 34
Enabling and Disabling User Menu Choices for All Objects 35
Enabling and Disabling User Menu Choices for Particular Modules 35

Using GFR Startup Objects 36

Making UIL Controls Permanent 36

Printing GUIDE Workspaces 37

Suggestions and Cautions 39

Part II Creating a User Interface 43

Chapter 3 Generating Master Dialogs 45

Introduction 45

Using the GUIDE Dialog Generator 46
Master Dialogs with Default UIL Controls 46
Master Dialogs with non-Default UIL Controls 47

Steps for Generating a Master Dialog 48
Generating a Master Dialog with Default UIL Controls 52
Generating a Master Dialog with Non-Default UIL Controls 54

Launching Generated Dialogs from Push Buttons 59
Updating UIL Controls from the Initiating Object When the Dialog is

Launched by a Push Button 60
Using an Action to Specify an Initiating Object 61
vi

Editing Generated Dialogs 61

Chapter 4 Building Master Dialogs 63

Introduction 64

Using the GUIDE Palette 64
Tools Provided by the GUIDE Palette 65

Steps for Building a Master Dialog 67
Adding a Dialog Title 73
Adding Radio Buttons and Check Buttons 73
Adding Scroll Areas and Message Objects 75
Changing the Size of a Dialog Subworkspace 77

Editing a Tab Dialog 78
Lifting a Tab Page to the Top of the Stack 78
Adding UIL Controls to a Tab Page 78
Changing the Size and Labels of Tab Buttons 79
Changing the Placement of Tab Buttons 80
Adding New Tab Pages 81
Deleting a Tab Page 82
Cloning a Tab Page 82
Reordering Tab Pages 82
Lifting and Dropping Tab Pages with non-UIL Objects 83
Moving the Stack of Tab Pages 83
Resizing the Stack of Tab Pages 83
Transferring Tab Pages 83

Manipulating UIL Controls through User Menu Choices 84

Moving UIL Controls 85
Moving UIL Controls by Dragging Them 85
Moving UIL Controls with Labels 85
Moving UIL Controls with Borders 85
Using the Move Menu Choice 86

Resizing UIL Controls 87

Transferring UIL Controls 87

Specifying Initial Contents of Text Objects, Message Objects, and Edit
Boxes 87

Specifying Initial Contents of an Array or List Attribute 88

Specifying Source and Target Attributes of UIL Controls 90

Closing a Finished Subworkspace 90

Creating a Customized Dialog Programmatically 91
vii

Chapter 5 Using UIL Controls on a Workspace 93

Introduction 93

Examples of UIL Controls Used on Workspaces 93
Invoking a Procedure from a Push Button on a Workspace 94
Using an Edit Box on a Workspace 94
Using a Scroll Area on a Workspace 96

Placing UIL Objects on Subworkspaces of G2 Items 98

Chapter 6 Customizing Dialogs 99

Introduction 99

Editing Master Dialogs 100
Edit Dialog Dialog 102
Dialog Options Dialog 108
Editor Behaviors Dialog 111

Controlling Dialogs with Actions 115
Specifying the Actions Run by a Push Button 116

Creating Systems of Cascaded Dialogs 118

Specifying a Default Button for a Dialog 120

Using Dialogs on Multiple Windows 120

Creating and Deleting Permanent Dialog Copies 121

Internationalization of Dialogs 121
GFR Objects that Support Internationalization 121
UIL Object Attributes that Support Internationalization 123
How the Translation Works 124
Creating GFR Objects to Support Internationalization 125

Summary of Dialog Menu Choices 129

Chapter 7 Launching Dialogs 131

Introduction 131

Pooling Reusable Dialogs for Quick Retrieval 132
Using Dialogs in the Dialog Bin 132
Releasing and Returning Dialogs 133
Creating and Deleting Permanent Copies 133

Procedures that Launch Dialogs 133

Launching a Dialog from an Action Button 140

Launching a Dialog from a User-Defined Procedure 142
Processing a Dialog Before Returning it to the Dialog Bin 144
viii

Launching a Dialog from a User Menu Choice 145

Launching a Dialog from a Push Button 147
Creating Push Buttons to Launch Dialogs 148
Specifying Source and Target Objects for UIL Controls on a Dialog

Launched from a Push Button 148

Launching a Dialog from a Rule 148

Chapter 8 System-Defined Dialogs 151

Introduction 151

Message, Query, Confirmation, and Notification Dialogs 151
Using uil-post-generic-dialog to Post Dialogs 152
Message Dialog 154
Query Dialog 154
Confirmation Dialog 155
Notification Dialog 156

Delay Notification 158

Part III Editing User Interface Components 159

Chapter 9 Push Buttons 161

Introduction 161
Adding Push Buttons to a Master Dialog 162
Using Push Buttons to Perform Operations on Dialogs 162
System-Defined Actions for Dialog Processing 164
Creating Actions 167
Setting a Target Object for a Push Button 167
Specifying Labels for Push Buttons 168

Editing Pushbuttons 169
Edit Pushbutton Dialog 170
Edit Dialog Actions Dialog 175
Customize Dialog Actions Dialog 177
Create New Action Dialog 180

Summary of Push Button Menu Choices 181

Chapter 10 Radio Buttons 185

Introduction 185
Selecting Motif or Windows Style Buttons 186
Adding Radio Buttons to a Master Dialog 186
Moving Radio Buttons 187
Resizing Radio Buttons 187
ix

Deleting Radio Buttons and Radio Boxes 187
Updating and Concluding Radio Buttons 187
Specifying Labels for Radio Buttons 188

Editing Radio Boxes 189

Editing Radio Buttons 192

Summary of Radio Box Menu Choices 196

Summary of Radio Button Menu Choices 198

Chapter 11 Check Buttons 201

Introduction 201
Selecting Motif or Windows Style Buttons 202
Adding Check Buttons to a Master Dialog 202
Moving Check Buttons 203
Resizing Check Buttons 203
Updating and Concluding Check Buttons 203
Specifying Labels for Check Buttons 204

Editing Check Boxes 205

Editing Check Buttons 208

Summary of Check Box Menu Choices 212

Summary of Check Button Menu Choices 214

Chapter 12 Toggle Buttons 217

Introduction 217
Selecting Motif or Windows Style Buttons 217
Adding Toggle Buttons to a Master Dialog 218
Updating and Concluding Toggle Buttons 218
Specifying Labels for Toggle Buttons 219

Editing Toggle Buttons 220
Edit Toggle Button Dialog 221

Summary of Toggle Button Menu Choices 225

Chapter 13 Edit Boxes, Combo Boxes, and Spin Controls 227

Introduction 227
Setting the Initial Contents of Edit Boxes 228
Edit Styles for Edit Boxes 229
Validating the Contents of Edit Boxes 229
Keyboard Navigation to Edit Boxes 231
Disabling Keyboard Navigation to an Edit Box 231
Customizing Before and After Method Processing (Optional) 231
x

Updating and Concluding Edit Boxes 232

Editing Edit Boxes 232
Edit Edit Box Dialog 233
Select Edit Style Dialog 240
Creating and Editing an Edit Field Edit Style 241
Specifying a Password-Style Block Font 246

Background Color and Text Color Dialogs 247

Combo Boxes 247
Editing Combo Boxes 248

Spin Control Boxes 250
Creating Spin Control Boxes 250
Editing Spin Control Boxes 250

Summary of Edit Box, Combo Box, and Spin Control Menu Choices 252

Summary of Spin Control Box Menu Choices 253

Summary of Combo Box Menu Choices 255

Chapter 14 Scroll Areas and Message Objects 257

Introduction 257
Adding Scroll Areas and Message Objects 258
Resizing Scroll Areas and Message Objects 259
Moving Scroll Areas and Message Objects 259
Updating and Concluding Scroll Areas 259
Specifying Formats for Message Objects 260
Specifying Configurations for Scroll Areas and Message Objects 260
Specifying Selection and Unselection Methods for Scroll Areas 262
Managing Message Size in Scroll Areas 262
Specifying User-Defined Methods for Message Objects 262
Appending Items to Message Objects 263

Editing Scroll Areas 264
Edit Scroll Area Dialog 265
Scroll Area Options Dialog 270

Edit Message Dialog 273

Multiple Column Scroll Areas 276
Creating a Multiple-Column Scroll Area 277
Creating Methods Required by Multiple-Column Scroll Areas 280

Summary of Scroll Area Menu Choices 288

Summary of Message Object Menu Choices 289
xi

Chapter 15 Sliders 291

Introduction 291
Using Sliders 292
Creating Sliders 293
Editing Sliders 294

Summary of Slider Menu Choices 296

Chapter 16 Text Objects 299

Introduction 299

Setting the Initial Contents of Text Objects 300

Updating the Contents of Text Objects 300

Specifying Formats for Text Objects 300

Editing Text Objects 301
Edit Text Dialog 301

Summary of Text Object Menu Choices 304

Chapter 17 Title Bars, Borders, and Separators 307

Introduction 307

Title Bars 307
Using the Hide Button on Title Bars 308

Borders 309
Adding Borders 309
Deleting Borders 310
Moving Objects with Borders 311
Resizing Borders 311
Edit Border Dialog 311
Edit Border Margins Dialog 312

Separators 313

Summary of Title Bar Menu Choices 314

Summary of Border Menu Choices 315

Summary of Separator Menu Choices 317

Chapter 18 Navigation Buttons and Other Tools 319

Introduction 320

Navigation Buttons 320
Classes of Navigation Buttons 321
Modules Supporting Navigation Buttons 321
xii

Edit Navigation Button Dialog 322

The Print Workspace Button 324

The GUIDE Garbage Pail 324

Summary of Navigation Button Menu Choices 325

Part IV Advanced Features 327

Chapter 19 Formats and Validation Criteria 329

Introduction 329
Formatting Rules for Edit Boxes, Message Objects, and Text

Objects 329
Validation Criteria for Edit Boxes 330
Creating Customized Validation Procedures or Functions 330

Creating Formats 331

Applying and Editing Formats 333
Select Format Dialog 333
Edit Format Specification Dialog 335
Float Formatting Options Dialog 342
Text Formatting Options Dialog 343
Edit Legal Values Dialog 345
Date & Time Options Dialog 346

Chapter 20 Specifying Source and Target Objects 349

Introduction 349
Specifying Source and Target Objects 350
Source and Target Objects of Different UIL Controls 351

Edit Source Object & Attribute Dialog 352

Edit Target Object & Attribute Dialog 355

Updating from and Concluding to Embedded Objects 359

Chapter 21 Creating Temporary Storage Objects 365

Introduction 365

How Temporary Storage Objects Work 366
How Temporary Storage Objects Are Created 367
Steps for Defining a Temporary Storage Object for a Dialog 367
Creating this Example 369
xiii

Chapter 22 Methods, Actions, and Callbacks 379

Introduction 379

UIL Methods 380
UIL Methods for Application Development 381
UIL Methods for Runtime Operations 381

How UIL Methods Work 382
Object Attributes that Reference UIL Methods 384

UIL Actions 386

UIL Callbacks 386
Callbacks on Push Buttons and Other Kinds of Buttons 386
Callbacks in GUIDE 3.0 and GUIDE 4.0 387

Creating Methods, Actions, and Callbacks 387
Creating UIL Methods Using the Edit Method Dialog 387
Creating Callbacks, Methods, Procedures, Functions, and Actions Using

the GUIDE Method Help Dialog 390

Chapter 23 Help Dialog 393

Introduction 393
Opening the GUIDE Help Dialog 394

Displaying Argument Signatures of UIL Methods, Callbacks, and Actions 395

Displaying Help for UIL Methods 397
Finding the UIL Help System File 398

Generating Master Dialogs 399

Using UIL Examples 400

Using the GUIDE Online Tutorial 402

Using the GUIDE Debugging Utility 402

Chapter 24 Creating Custom UIL Subclasses 405

Introduction 405

Creating and Using Customized Subclasses 406
Choosing a Parent Class for a Customized Subclass 406
Customizing the Behavior and Appearance of Subclasses of uil-grobj or

uil-grmes 410

Creating a Customized Object Definition 411

Creating a Customized Message Definition 414
xiv

Creating Instances of Customized Subclasses and Adding them to Master
Dialogs 417

Creating Subclasses of uil-object and uil-message 417
Deciding What Attributes to Add to a Subclass of uil-object or uil-

message 418

Chapter 25 Specifying the Colors of UIL Objects 421

Introduction 421

Creating Configurations 422

Using The GUIDE Configuration Editor 422
Deleting Configurations 424
Copying Configurations 424
Editing Configurations 426
Applying Configuration Edits to All Buttons in a Group 428

Chapter 26 Upgrading GUIDE Applications 429

Introduction 429

Upgrading 5.0 KBs 430

4.0 and 5.0 Conversion Tools 430

Editing the Label Text of Generic Dialogs 430

Extending Context-Sensitive Help 436
How to Extend Context-Sensitive Help for Dialogs and Items on

Dialogs 436
Steps for Extending Help 436

Glossary 439

Index 449
xv

xvi

Preface
Describes this document and the conventions that it uses.

About this Guide xvii

Audience xvii

Organization xviii

Conventions xxi

Related Documentation xxiii

Customer Support Services xxv

About this Guide
This guide describes the G2 Graphical User Interface Development Environment
(GUIDE), a development tool that enables you to create graphical user interfaces
for G2 applications.

Users of this guide also need the G2 GUIDE/UIL Procedures Reference Manual,
which describes the G2 GUIDE User Interface Library (GUIDE/UIL).
GUIDE/UIL provides an application programmer’s interface (API) to procedures
that control dialogs and other elements of a graphical user interface.

Audience
This guide is written for GUIDE application developers. It addresses application
developers as “you,” and refers to end users of GUIDE applications as “the user”
or “users.”
xvii

Organization
This guide is divided into five parts and 26 chapters:

Title Description

Part I Introduction

1 Introduction to G2 GUIDE Summarizes how to create and
use a GUIDE user interface for a
G2 application.

2 Getting Started Describes preliminary steps for
starting and running GUIDE,
and explains how to avoid
problems that can prevent you
from running or saving your
GUIDE application.

Part II Creating a User Interface

3 Generating Master Dialogs Describes how to use the GUIDE
Dialog Generator to generate a
master dialog for viewing and
editing attributes of a particular
user-defined class.

4 Building Master Dialogs Describes how to use the G2
GUIDE Palette and other GUIDE
tools to build customized dialogs
for viewing and editing the class-
specific attributes of user-
defined classes.

5 Using UIL Controls on a Workspace Illustrates several ways to use
UIL controls on a workspace,
without incorporating them into
a dialog.

6 Customizing Dialogs Describes how to edit and
customize GUIDE dialogs.

7 Launching Dialogs Describes how to launch a dialog
from an action button, a user-
menu choice, a user-defined
procedure, a push button, or a
rule.
xviii

Organization
8 Building Master Dialogs Describes how to use the G2
GUIDE Palette and other GUIDE
tools to build customized dialogs
for viewing and editing the class-
specific attributes of user-
defined classes.

Part III Editing User Interface Components

9 Push Buttons Describes how you can create
and edit push buttons to run
specific sets of actions on
dialogs, such as opening and
closing them, or updating or
concluding their values.

10 Radio Buttons Describes how to create and edit
groups of radio buttons to
provide users with sets of
mutually exclusive choices.

11 Check Buttons Describes how to create and edit
groups of check buttons, in
which users can select any
number of choices.

12 Toggle Buttons Describes how to create and edit
toggle buttons, which represent
two mutually exclusive choices.

13 Edit Boxes, Combo Boxes, and Spin
Controls

Describes how to create and
customize edit boxes, combo
boxes, and spin controls.

14 Scroll Areas and Message Objects Describes how to create and edit
scroll areas and message objects.

15 Sliders Describes how to use and edit
Sliders.

16 Text Objects Describes how to create and edit
text objects, which display read-
only text.

Title Description
xix

17 Title Bars, Borders, and Separators Describes how to use title bars,
border, and separators to
provide your user interface with
visual definition.

18 Navigation Buttons and Other Tools Describes how to add navigation
buttons, help buttons, print
workspaces, and the GUIDE
garbage pail to workspaces.

Part IV Advanced Features

19 Formats and Validation Criteria Describes how to create and edit
reusable formats for edit boxes,
message objects, and text objects.

20 Specifying Source
and Target Objects

Describes how to specify the
objects from which the graphical
objects on a dialog are updated
and to which the graphical
objects conclude their values.

21 Creating Temporary Storage Objects Describes how to create and use
temporary storage objects, which
you can use when you process
data while it is being updated
into or concluded from a dialog.

22 Methods, Actions, and Callbacks Describes how to create and use
UIL methods, actions, and
callbacks.

23 Help Dialog Describes the GUIDE help
facility.

24 Creating Custom UIL Subclasses Describes how to create
customized subclasses of system-
defined UIL classes provided
with GUIDE.

Title Description
xx

Conventions
Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

25 Specifying the Colors of UIL Objects Describes how to create reusable
objects called configurations,
which specify the colors of the
different regions of the graphical
components in your user
interface.

26 Upgrading GUIDE Applications Describes how to modify dialogs
and other components of a user
interface created with earlier
versions of GUIDE, to take
advantages of the features
introduced in newer versions.

Title Description

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels
xxi

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xxii

Related Documentation
Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide
xxiii

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide
xxiv

Customer Support Services
G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxv

xxvi

Part I
Introduction
Chapter 1: Introduction to G2 GUIDE

Summarizes how to create and use a GUIDE user interface for a G2 application.

Chapter 2: Getting Started

Describes preliminary steps for starting and running GUIDE, and explains how to avoid
problems that can prevent you from running or saving your GUIDE application.
1

2

1

Introduction to
G2 GUIDE
Summarizes how to create and use a GUIDE user interface for a G2 application.

Introduction 3

Using a GUIDE User Interface 7

Creating a GUIDE User Interface 12

UIL Methods, Actions, and Callbacks 24

Introduction
The G2 Graphical User Interface Development Environment (GUIDE) enables
you to create graphical user interfaces (GUI’s) for G2 applications.

You construct a GUIDE user interface using graphical components called
UIL controls.

GUIDE supports different classes of UIL controls for different purposes:

• Some classes of UIL controls, such as edit boxes, buttons, and scroll areas,
enable users to view and edit the data stored in object attributes. The different
classes are suitable for viewing and editing different types of data.

• Other classes of UIL controls, such as borders and separators, enable you to
organize a user interface visually.

You can add UIL controls to interactive dialogs, which you design using GUIDE.
You can also add UIL controls to workspaces of your G2 application.
3

Dialogs for Viewing and Editing Attribute Values

GUIDE interactive dialogs can add structure and flexibility to your user interface.
Many of the more powerful features of GUIDE are available only through dialogs.

Useful Features of Dialogs Created with GUIDE

G2 applications store information that is valuable to users in class-specific
attributes of G2 objects. Users can edit these attribute values directly in the
attribute tables of G2 objects.

Through the user interface that you create using GUIDE, users can view and edit
the information stored in these attributes.

However, enabling users to view and edit attribute values through dialogs has
significant advantages over requiring them to view and edit attributes directly in
attribute tables:

• You can create dialogs that enable users to view and edit attribute values from
several different G2 objects.

• You can validate the changes that users make to attribute values, using criteria
that you specify.

• You can add push buttons to a dialog that enable users to perform operations
such as:

– Updating the display in the dialog with current attribute values

– Modifying attribute values using the contents of the dialog

– Opening or closing the dialog

– Opening another dialog

• You can specify the format used to display attribute values.

• You can process attribute values before you display them in a dialog. For
example, you can find the average value of a given attribute in several
different G2 objects and display this average in a dialog.

• You can take advantage of GUIDE/UIL features that enable you to specify
any number of different natural language versions of the text in labels of UII
controls on dialogs.

Representing Different Types of Data

UIL provides different classes of UIL controls that you can use to represent
attribute values in different ways. Each class is appropriate to a particular type of
data. For example, edit boxes are suitable for displaying and editing text values,
and scroll areas are suitable for displaying lists and arrays of values.
4

Introduction
The following figure illustrates a G2 object and the UIL controls used on a dialog
to view and edit the object’s attributes.

The dialog named Cars Information in the figure above illustrates how different
classes of UIL controls can be used to represent class-specific attributes of a G2
object:

• The attributes Make, Model, and Year contain text. They are represented on
the dialog by edit boxes. Each edit box displays the current value of the
corresponding attribute. A user can change the attribute value by editing the
contents of the edit box.

• The Used attribute can have one of two mutually exclusive values, true or
false. It is represented by a toggle button. The current state of the toggle
button indicates the current value of the used attribute. A user can change the
value of the used attribute by toggling the used button on or off.

• The Color attribute can have one of three mutually exclusive values, Brown,
Blue, or Green. It is represented by a group of three radio buttons. Each
button in the group represents one of the possible values of the Color
attribute. The current value of the Color attribute is indicated by the radio
button that is selected; only one button in a radio button group can be selected
at one time. A user can change the value of the Color attribute by selecting a
different radio button.

edit
boxes

toggle
button

radio
buttons

scroll
area

G2 object of
class cars

object definition
5

• The Extras attribute references an array of text elements. The text elements can
be used to specify features such as power steering, power brakes, air
conditioning, or radio.

On the dialog, the Extras attribute is represented by a scroll area. The scroll
area contains message objects representing the elements of the text array. The
figure above illustrates how the scroll area looks when the text array contains
the elements air-conditioning, power-steering, and radio.

User Interface Components on Workspaces

You can add any UIL control directly to a workspace of your application, where
you use it without the support of a GUIDE interactive dialog. However, you give
up much of the structure and flexibility provided by dialogs when you use UIL
controls on workspaces, for example, you cannot use push buttons to perform
operations on UIL controls that are not on a dialog.

For examples of how to use UIL controls on workspaces, see Using UIL Controls
on a Workspace.

Online Examples and Tutorial: the Demo KB

GUIDE is shipped with a demo knowledge base, guidemo.kb, that contains:

• Working examples of GUIDE dialogs, and other important features of a
GUIDE user interface.

You can look at these examples as illustrations of how a GUIDE user interface
can be designed. You can also copy and modify examples to use in your own
applications.

• An online tutorial that shows you how to use GUIDE to create a user interface.

To open the main workspace of the demo knowledge base:

1 Click the Help System navigation button in the GUIDE palette.

This button has a question mark (?) on it. The GUIDE Help dialog appears.

2 Click the navigation button labeled UIL Examples to display the main
workspace of the demo knowledge base.

Note If you have not loaded guidemo.kb, you see a message informing you that
guidemo.kb is not loaded. If you see this message, pause your KB, merge in
guidemo.kb (select the automatically resolve conflicts option when you
merge), and restart your knowledge base.
6

Using a GUIDE User Interface
Programmatic Support for GUIDE: GUIDE/UIL

GUIDE is supported by the G2 GUIDE User Interface Library (GUIDE/UIL).
GUIDE/UIL provides an application programmer’s interface (API) to procedures
that perform basic operations on dialogs and UIL controls.

You can create working dialogs without writing code or using UIL procedures
explicitly.

However, you can extend the basic capabilities of GUIDE by using UIL
procedures in customized methods, actions, callbacks, and procedures. For
information about how to create customized versions of these procedures, see
Methods, Actions, and Callbacks.

This guide contains examples of the use of UIL procedures in the following
chapters or sections:

• Launching Dialogs

• Multiple Column Scroll Areas

• System-Defined Dialogs

• Creating Temporary Storage Objects

The demo knowledge base also contains an extensive set of examples of the use of
UIL procedures. For information about how to access the demo knowledge base,
see Online Examples and Tutorial: the Demo KB.

For detailed information about GUIDE/UIL, see the G2 GUIDE/UIL Procedures
Reference Manual.

Using a GUIDE User Interface
Users of a GUIDE user interface need to be able to do the following things:

• Launch dialogs

• Update the values displayed in a dialog with current information

• Edit the values in a dialog

• Send the values in a dialog back to the application

• Close dialogs

GUIDE enables you to incorporate all of these features into the user interface that
you construct using GUIDE.
7

Launching Dialogs

Users of a GUIDE user interface can launch dialogs in the following ways:

• By selecting a user-menu choice from the menu of a G2 object whose
attributes they want to view or edit

• By clicking a G2 action button

• By clicking a UIL push button in a dialog that is already open

• By executing a procedure, action, or rule

The following figure illustrates some of the ways that users can launch dialogs in
a GUIDE user interface:
8

Using a GUIDE User Interface
In the figure above:

• The user menu choice edit cars on the menu of a G2 object named rambler
launches the dialog Cars Information.

The edit cars user menu choice starts a UIL procedure that launches the
dialog, as shown in the following table:

• The G2 action button labeled Rent a Car launches the dialog Cars
Information.

The Rent a Car button starts a UIL procedure that launches the dialog, as
shown in the following table:

• The More Options push button in the Cars Information dialog launches the
More Rental Options dialog.
9

Launching Dialogs from within Other Dialogs

As the example in the figure above indicates, users can open dialogs from within
other dialogs. Users can click a push button in one dialog, the parent dialog, to
open another dialog, the child dialog. Parent and child dialogs that you associate
in this way are called cascaded dialogs. For information about how to create
cascaded dialogs, see Creating Systems of Cascaded Dialogs.

Controlling Dialogs with Push Buttons

Push buttons enable users to perform a variety of operations on dialogs, such as
launching and closing them, or updating or concluding the values of the UIL
controls on the dialogs.

These operations are performed by procedures known as actions. When a user
clicks on a push button, a set of actions associated with that push button is run on
a specified dialog. This can be the dialog that contains the push button, or another
dialog. You can edit a push button to specify the actions that are run when a user
clicks on it, and the dialog on which the actions are run.

By default, each dialog that you create contains OK, Apply, and Cancel buttons
that run appropriate actions on the dialog:

• The OK button applies the changes that the user has made in the dialog and
closes the dialog.

• The Apply button applies the changes but leaves the dialog open.

• The Cancel button closes the dialog without applying the changes.

GUIDE provides an extensive set of system-defined actions that perform common
operations, such as opening and closing dialogs, and updating or concluding
their contents. You can also create customized actions to perform customized
operations.

You can edit any push button to make it run any system-defined or user-defined
action.

Selecting UIL Controls

Users can select any UIL control by clicking on it. Clicking on different UIL
controls has different effects:

• Clicking on a button selects that button. Clicking on a radio button also
deselects any other radio button in the same group.

• Clicking on a message object in a scroll area selects the message object.

• Clicking on a push button activates the push button, causing the callback
procedure associated with the button to run. The callback procedure can run a
10

Using a GUIDE User Interface
set of actions on a specified dialog, or it can run a procedure or procedures to
perform other operations required by your application.

• Clicking on an edit box starts an edit session on the contents of the edit box
and ends the edit session on any other edit box in the same dialog.

Users can navigate through the editable text fields (edit boxes) in a GUIDE dialog
using the Tab key or other key. You can edit the sequence in which the Tab key
navigates through edit boxes.

Scrolling a Scroll Area

You use the scroll bar on a scroll area to scroll its contents up or down. To do this,
you can click the following parts of a scroll bar: the scroll down arrow, the scroll
bar body, the scroll up arrow, or the scroll thumb.

The following figure illustrates the parts of a scroll bar:

Clicking on the parts of the scroll bar has the follow effects:

• Clicking on the scroll up arrow scrolls message objects down one line.

• Clicking on the scroll down arrow scrolls messages objects up one line.

• Clicking on the scroll bar body above the scroll thumb scrolls message objects
down one page.

• Clicking on the scroll bar body below the scroll thumb scrolls message objects
up one page.

• Dragging the scroll thumb up moves message objects down. Dragging the
scroll thumb down moves message objects up.

scroll up arrow

scroll bar body

scroll thumb

scroll down arrow
11

Creating a GUIDE User Interface
GUIDE provides all the tools you need to create a user interface that meets the
requirements of your G2 application.

Using GUIDE, you can:

• Generate master dialogs automatically.

A master dialog is a template for the dialogs that users see and use when they
run your G2 application. The dialogs that users see and user are called copy
dialogs. GUIDE creates copy dialogs by cloning master dialogs that you
create.

• Build customized master dialogs.

• Add UIL controls to workspaces.

• Edit the appearance and behavior of UIL controls.

• Write customized procedures for performing common operations such as
opening and closing dialogs, or updating and concluding the values that they
contain. You use your customized procedures in place of system-defined UIL
procedures that perform these operations by default.

• Access useful information about UIL procedures.

Generating Master Dialogs

The GUIDE Dialog Generator enables you to generate master dialogs for viewing
and editing the class-specific attributes of particular user-defined classes.

In the GUIDE Dialog Generator, you select the class-specific attributes that you
want users to be able to view and edit. In the generated master dialog, each of the
attributes that you select is represented by a UIL control through which users can
view and edit the value of that attribute.
12

Creating a GUIDE User Interface
For example, the following figure illustrates an automatically generated GUIDE
dialog that enables users to view and edit the class-specific attributes of an
instance of the user-defined class cars:

The dialog titled Cars Information contains a UIL control for each class-specific
attribute of objects of the class cars such as my-old-car.

To view attribute values of my-old-car, a user opens the dialog. When the dialog is
displayed, the edit boxes are updated with current values of the corresponding
attributes.

To edit attribute values of my-old-car, a user enters values into the edit boxes
associated with the attributes and clicks the OK or Apply button. This writes the
values in the edit boxes to the corresponding attributes.

Users can view and edit the attributes of any other G2 object of the class cars,
using the Cars Information dialog.

By default, the GUIDE Dialog Generator chooses an appropriate kind of UIL
control to represent each attribute, depending on the data type of the attribute.
For example, the GUIDE Dialog Generator uses edit boxes to represent text
attributes and scroll areas to represent attributes that reference lists or arrays. You
can override these defaults and choose other kinds of UIL controls to represent
particular attributes.

object definition

G2 object
of class cars
13

The following figure illustrates a GUIDE dialog that includes most UIL controls
provided by GUIDE:

The following table describes the UIL controls that you can use to create a user
interface:

text
object

scroll
area

message
object

radio
button

icon
toggle
button

icon
push
button

separator

title
bar

border

edit
box

check
button

text
toggle
button

text
push
button

UIL Controls

UIL Control Description

Title bar A label for the dialog that appears at
the top of the dialog subworkspace.

Push button Provides users with control over
dialogs. Push buttons can perform
operations such as updating or
concluding the values in a dialog,
closing a dialog, or opening another
dialog.

Edit Box, Spin Control
Entry Box, Combo Box

Displays values that users can edit.
Spin control entry boxes and combo
boxes were introduced in GUIDE 6.0
and are not shown above.
14

Creating a GUIDE User Interface
Check button Used in groups called check boxes.
Each check button has one value when
selected and a different value when
unselected. Users can select any
number of check buttons in a check
box.

Radio button Used in groups called radio boxes.
Each radio button has one value when
selected and a different value when
unselected. Users must select one and
only one radio button in a radio box.

Toggle button Used individually, rather than in
groups. Each toggle button has one
value when selected and another
value when unselected.

Text object Displays text. The text can be updated
by your application, but users cannot
edit it.

Scroll Area and
Message Object

A scrollable field containing one or
more message objects. Each message
object displays text. Your application
can update message objects. Users can
select message objects but cannot edit
their contents.

Sliders A graphical object with a pointer that
moves along a horizontal or vertical
track. The position of the pointer
indicates the current value of the
slider. Users can change the value by
dragging the pointer.

Border A box that surrounds a workspace,
edit box, or text object, providing
visual definition.

UIL Controls

UIL Control Description
15

Building Customized Master Dialogs

For some purposes an application can require dialogs that are more fully
customized than dialogs that you create using the GUIDE Dialog Generator. The
GUIDE palette is the tool that enables you to create fully customized master
dialogs. For detailed information about how to build a customized dialog, see
Building Master Dialogs.

Using the GUIDE palette, you can:

• Create master dialogs.

• Add UIL controls to existing master dialogs.

• Change the layout and appearance of master dialogs.

• Add UIL controls directly to a workspace, without incorporating them into
a dialog.

Separator A vertical or horizontal line, providing
visual definition.

Navigation button Buttons that users can click to move
from one workspace to another.

Note: Do not attempt to use
navigation buttons in dialogs that you
create using GUIDE.

UIL Controls

UIL Control Description
16

Creating a GUIDE User Interface
Features of the GUIDE Palette

The GUIDE palette is a workspace that includes basic tools for developing a
GUIDE user interface. The GUIDE palette looks like this:

Using Icons for Dialogs and UIL Controls

To create a master dialog:

1 Click the dialog icon in the GUIDE palette.

Clicking on the dialog icon clones a master dialog. You then click the
workspace where you want to put the master dialog. Clicking on the
workspace transfers the cloned dialog to that workspace.

2 Add UIL controls to the new master dialog. To do this, you first open the
subworkspace of the dialog. Then you add UIL controls to the subworkspace

Opens GUIDE
Control Panel

Opens GUIDE
Information
Dialog

Opens More
Options palette

Icons for
creating
master
dialogs and
UIL controls

Opens GUIDE
Help dialog

Navigation
buttons,
print icon,
trash can
17

by clicking on their icons on the GUIDE palette and then clicking on the
subworkspace.

The following figure illustrates how to create a master dialog and add a UIL
control to it using the GUIDE palette:

Note The title bar of every master dialog contains the word Master. If you do not see
Master in the title bar of a dialog subworkspace, that dialog is not a master and
you cannot edit it.

Using the GUIDE Control Panel

The GUIDE Control Panel enables you to select a user mode for running GUIDE,
and to specify the default window style and size of the UIL controls that you
create using the GUIDE palette.

You open the GUIDE Control Panel by clicking on the Mode button in the GUIDE
palette.

You can also open the GUIDE Control Panel by selecting the following choice
from the GUIDE menu bar:

Tools > GUIDE Control Panel
18

Creating a GUIDE User Interface
The GUIDE Control Panel looks like this:

Using the GUIDE Help Dialog

You access the GUIDE Help dialog by clicking on the question mark (?) icon in the
GUIDE palette. The main dialog of the GUIDE Help dialog looks like this:
19

You can click the buttons in the GUIDE Help dialog to:

• Display information about each system-defined UIL procedure. The
information includes a synopsis of the procedure’s arguments and return
values.

• Display information about UIL methods and invoke editors that help you
create customized methods and actions to use in place of the system defined
methods, actions, and callbacks.

• Invoke the GUIDE Dialog Generator.

• Open a workspace that contains working examples of dialogs and UIL
controls. This workspace contains the examples in guidemo.kb.

• Run the online GUIDE tutorial, which leads you through the basic steps of
creating a user interface with GUIDE.

• Start the GUIDE Debugging Utility, which enables you to display messages
that help you debug your GUIDE application.

Using More Options

Clicking on the More Options navigation button in the GUIDE palette opens the
More Options palette:

Help File
Location Icon

GFR Text Resource
Group Icon
20

Creating a GUIDE User Interface
The More Options palette contains icons that you can select and drop on a
workspace to create:

• A help file location icon that you can click to open a table listing the file name
and current pathname of the help system file, which lists the procedures in the
public API to UIL. For information about this file, see Finding the UIL Help
System File.

• A Print button. Users can click the Print button to open the Printer Setup
Dialog. In this dialog, users can specify options for printing the workspace
that contains the Print button.

• A reusable Format to specify aspects of format such as the use of quotation
marks, capitalization, and hyphens. You can apply formats to edit boxes, text
objects, and message objects. Formats can also specify validation criteria for
edit boxes. For information about formats, see Formats and
Validation Criteria.

• An action description array. An action description array is an array of
operations that can be run on a dialog. You can invoke an action description
array on a dialog by invoking the procedure uil-control-dialog-callback. For
information about action description arrays, see Controlling Dialogs with
Actions.

• A reusable field edit style that specifies the behavior of the editor for edit
boxes. You can apply field edit styles to individual edit boxes. For information
about field edit styles, see Edit Styles for Edit Boxes.

• A Configurations button that you can click to open the Create Configuration
dialog. For information about how to create and use configurations, see
Specifying the Colors of UIL Objects.

• A GFR Text Resource Group icon. The subworkspace of this icon contains a
default English GFR Local Text Resource. Generic dialogs derive the text of
their labels from GFR (Gensym Foundation Resources) local text resources.
For information about how to edit GFR Local Text Resources to specify
GUIDE label text, see Editing the Label Text of Generic Dialogs.

• An Enable User Menu Choices button, which you can click to enabled
GUIDE/UIL user menu choices.

GUIDE/UIL user menu choices end in a period (.), to distinguish them from
G2 user menu choices. Always use the GUIDE/UIL user menu choice, rather
than its G2 equivalent, to perform an operation on a UIL object. For example,
always use the menu choice clone. (rather than clone) to clone a dialog.
21

How to Find What Version of GUIDE You Are Using

To find out what version of GUIDE you are using, open the GUIDE Information
dialog:

You can open this dialog in either of two ways:

• Click the About navigation button in the GUIDE palette.

• Select Help/About GUIDE from the GUIDE menu bar.

Editing UIL Controls

GUIDE provides graphical editors that enable you to edit the appearance and
behavior of dialogs and of UIL controls, such as edit boxes, push buttons, and
scroll areas.

Note You can also edit the attributes of UIL controls directly, in their attribute tables.
You may find it convenient to edit UIL controls through their attribute tables
when you are debugging an application. However, using the graphical editors to
edit UIL controls reduces the possibility of error and is the recommended method
for most purposes.

Editing the Behavior and Appearance of Dialogs and UIL Controls

You can edit the appearance and run-time behavior of dialogs and UIL controls,
using specialized graphical editors. Each class of UIL control has its own
graphical editor, which is described in a separate chapter in this guide. For
example, the object editor for push buttons is described in Push Buttons.
22

Creating a GUIDE User Interface
Specifying Source and Target Attributes of UIL Controls

When you add UIL controls to a dialog by means of the GUIDE palette, you must
edit each UIL control to specify its source attribute and target attribute.

• The source attribute is the class-specific attribute of a G2 object (the source
object) whose value is reflected in the UIL control.

• The target attribute is the class-specific attribute of a G2 object (the target
object) to which the UIL control concludes its value.

GUIDE provides two graphical editors that enable you to specify source attributes
and target attributes: Edit Source Object & Attribute and Edit Target Object &
Attribute.

When you generate a dialog automatically, GUIDE automatically sets the source
and target attributes of the UIL controls on the dialog to the corresponding
attributes in the G2 class for which you are creating the dialog. If necessary, you
can change the defaults source and target attribute, using the Edit Source Object &
Attribute and Edit Target Object & Attribute editors.

Creating UIL Controls with Customized Appearance and Behavior

For some purposes, you may want to create UIL controls with a different
appearance or behavior from the UIL controls that you can create using the
GUIDE Dialog Generator or the GUIDE palette. For example, you may want to
customize the following aspects of UIL controls:

• Color

• Size

• Behavior

• User restrictions

You customize UIL controls by creating customized subclasses of controls, or by
creating customized configurations.

Creating Subclasses of UIL Controls

Every UIL control is an instance of a system-defined UIL class. For example, edit
boxes are instances of the class uil-edit-box, and scroll areas are instances of the
class uil-scroll-area.

To create a large number of UIL controls with a customized appearance and
behavior, you can:

• Create a subclass of the system-defined UIL class for that kind of control.

• Edit this subclass to specify the appearance and behavior that you want.

• Create UIL controls from this subclass. Each of these UIL controls will have
the customized appearance.
23

For information about how to create customized subclasses, see Creating Custom
UIL Subclasses.

Applying Customized Configurations to UIL Controls

The color or colors of a UIL control is specified by a G2 object known as a
configuration. Each class of UIL controls has a default configuration.

You can customize the colors of all UIL controls of a particular class by editing the
configuration that is applied to those controls. You can also create customized
configurations and apply them to individual UIL controls.

For information about how to create customized UIL controls, see Creating
Custom UIL Subclasses.

UIL Methods, Actions, and Callbacks
GUIDE uses three specialized kinds of procedures to perform operations required
for creating and using a GUIDE user interface. These procedures are called UIL
methods, actions, and callbacks. GUIDE/UIL provides an extensive set of
system-defined methods, actions, and callbacks.

When you create a user interface, GUIDE automatically ensures that the interface
references an appropriate system-defined procedure for every common
operation. You can create and use a GUIDE user interface without modifying the
set of system-defined methods, actions, and callbacks that the interface references
by default.

However, for some purposes, your application may need to use customized
methods, actions, or callbacks to perform specialized processing. For detailed
information about how to create and use customized methods, actions, and
callbacks, see Methods, Actions, and Callbacks.
24

2

Getting Started
Describes preliminary steps for starting and running GUIDE, and explains how
to avoid problems that can prevent you from running or saving your GUIDE
application.

Introduction 26

Installing GUIDE 26

The GUIDE/UIL Module Hierarchy 28

Removing Unneeded GUIDE Modules from an Application 31

Setting G2 Minimum Scheduling Parameter 32

Starting GUIDE 32

Reinitializing GUIDE 32

Choosing a User Mode 32

Using the GUIDE Menu Bar 33

Resetting the GUIDE Editor 34

Enabling and Disabling GUIDE/UIL User Menu Choices 34

Using GFR Startup Objects 36

Making UIL Controls Permanent 37

Printing GUIDE Workspaces 37

Suggestions and Cautions 39
25

Introduction
The G2 User Interface Developer’s Environment (GUIDE) is a knowledge base
(KB) module, whose name is guide. All components of GUIDE are identified by
either the public gui- prefix or private _gui- prefix.

Installing GUIDE
You install GUIDE by merging it into any modularized knowledge base. When
you merge GUIDE, its required modules are automatically loaded into G2.

The filename of GUIDE is guide.kb. The default location of this KB is the utils
subdirectory of the kbs directory under the g2 directory.

How you merge GUIDE into a KB depends on whether your KB already has a
version of GUIDE.

Merging GUIDE into Your KB for the First Time

To merge GUIDE into a knowledge base (KB) that has never included GUIDE:

1 Pause your KB.

2 Choose Main Menu > Merge KB to display the Load KB workspace.

The merge in this KB option is enabled on the workspace.

3 Specify the location of the guide.kb file and click End.

Tip When merging GXL, let G2 resolve conflicts by enabling the automatically
resolve conflicts option.

When you merge GUIDE into your KB, it is not a required module unless it is
specified in the Module Information table of your KB.

To make GUIDE a required module:

1 Choose Main Menu > System Tables > Module Information.

2 Specify GUIDE as a directly required module of either:

• The module for which you are creating a GUIDE interface, or

• The top-level module of your application.

For more information on merging KBs and making a KB a required module, see
the G2 Reference Manual.
26

Installing GUIDE
Merging GUIDE into a KB with an Earlier Version

To merge GUIDE into a KB that has a previous version of GUIDE:

1 Move your current GUIDE modules from the directory that contains your
application into a separate directory.

2 Place this version of the GUIDE modules into the directory that contains your
application.

3 Pause your KB.

4 Choose Main Menu > Merge KB to display the Load KB workspace.

The merge in this KB option is enabled on the workspace.

5 Specify the location of the guide.kb file and click End.

Tip When merging GXL, let G2 resolve conflicts by enabling the automatically
resolve conflicts option.

6 Restart the KB.

7 Choose Main Menu > Save KB to save your application modules.

The next time you load these modules, it will not be necessary to resolve conflicts.

For information on upgrading GUIDE applications, see Upgrading GUIDE
Applications.

Verifying Your Version of GUIDE

To verify that the version of GUIDE/UIL that you have merged is the one that
you want, you can open the Guide Version Information bin, which contains a
version information object specifying the version number of the currently loaded
GUIDE/UIL.

To open the Guide Version Information bin:

1 Choose Main Menu > Inspect and enter:

go to guide-storage-bins

The Guide Application Components bin appears.
27

2 Click the Guide Version Information button to display the Guide Version
Information bin. For example:

License Requirements

You can build and run a GUIDE user interface under any G2 license. GUIDE/UIL
also works with all licenses.

The GUIDE/UIL Module Hierarchy
When you merge GUIDE/UIL into your KB, its required modules are
automatically loaded into G2. The following table describes these modules:

Module File Name Contents

g2cuidev g2cuidev.kb Definitions and API support for the G2
Developer’s Interface tools. For
information about these tools, see the
G2 Developer’s Interface User’s Guide.

g2uiprnt g2uiprnt.kb The print workspace dialog. You can
customize printer selection, papersize,
orientation, margins, and other print
options. For information on using its
features, see Printing GUIDE
Workspaces.
28

The GUIDE/UIL Module Hierarchy
gfr gfr.kb Definitions and API support for the G2
Foundation Resources (GFR) utility.

gms gms.kb The G2 Menu System. For information
about GMS, see the G2 Menu System
User’s Guide.

gold gold.kb The G2 Online Documentation
(GOLD) system. For information
about GOLD, see G2 OnLine
Documentation User’s Guide.

guicolor guicolor.kb The color selection dialog.

guidata guidata.kb Support for editing attributes
configured as lists or arrays.

guide guide.kb A top-level module that requires
modules containing all GUIDE editors
and the front-end to all UIL objects.

guidelib guidlib.kb The standard dialogs for editing
attributes of UIL controls.

guidemo guidemo.kb Online examples and tutorial.

guidesa guidesa.kb class definitions for Scroll Areas.

guigfr guigfr.kb A graphical user interface and
supporting API for the
internationalization of dialogs.

guimove guimove.kb A move dialog, in which you can
make adjustments to the X and Y
positions of any G2 object.

guislide guidslide.kb Class definitions for Slider objects
(uilslide) and an API to these classes.

guitools guitools.kb Includes the modules guicolor,
guimove, guigfr, and guidata.

sys-mod sys-mod.kb The library of G2 system procedures.

uil uil.kb General API to all UIL objects. The
UIL module is required for use of a
GUIDE user interface.

Module File Name Contents
29

Note These module dependencies are subject to change in future versions of
GUIDE/UIL.

This is the module hierarchy:

uilcombo uilcombo.kb Class definitions for combo boxes and
an API to these classes.

uildefs uildefs.kb Definitions for UIL objects.

uillib uillib.kb The UIL machinery not contained in
uilsa or uilslide.

uillib depends upon the GFR KB for its
internationalization. For information
about internationalization, see the
G2 Foundation Resources Reference
Manual.

uilsa uilsa.kb Internal support for Scroll Areas.

uilslide uilslide.kb Internal support for Slider objects.

uiltdlg uiltdlg.kb Internal support for tab dialogs.

uilroot uilroot.kb Definitions and API support for
navigation buttons.

Module File Name Contents

guidemo

guide

uil

guidelib

guidesa

guislide guitools

gms

g2cuidev
30

Removing Unneeded GUIDE Modules from an Application
Module Support for Navigation Buttons

Support for navigation buttons is provided by the modules uil and uilroot.

The uil module supports full navigation button functionality.

The uilroot module supports the creation, configuration, activation and deletion of
navigation buttons, but does not support other features, such as labels. Your G2
application can use only uilroot if it does not require that navigation buttons have
labels.

When GUIDE is loaded, you can create navigation buttons by cloning them from
the G2 GUIDE palette. When GUIDE is not loaded, you can create navigation
buttons by selecting New Object from the KB Workspace menu.

Removing Unneeded GUIDE Modules from an
Application

GUIDE/UIL is highly modularized, enabling you to deliver your deployed
applications with only those parts of GUIDE/UIL that your applications require.

After you develop a user interface using GUIDE/UIL, you can remove the
GUIDE modules that your KB no longer needs by selecting the following from the
GUIDE menu bar:

Tools > Remove GUIDE Application

This command removes all modules used by GUIDE that are not directly required
by other modules in your KB. Thus, it is important that you correctly modularize
your KB before you select this menu choice.

For example, if your application makes use of dialogs and most of the other UIL
components, your module must list uil as one of its directly required modules.
However, if you application uses only scroll areas, then uilsa is the only module
that it requires.

Choosing Remove GUIDE Application invokes the procedure uil-remove-guide-
application(). This procedure is public, and you can invoke it directly from your
GUIDE/UIL application. For information about this procedure, see the
G2 GUIDE/UIL Procedures Reference Manual.

You can also remove unneeded GUIDE modules individually, using the G2
Delete Module command. However, if you change the directly required module
list of any GUIDE or UIL module, be sure to save that module before you load
your application again. If you do not save the module before you reload your
application, the module will reload the same modules that you removed from its
list of directly required modules.

You can merge GUIDE development modules back into an application whenever
you need to modify or add features to the GUIDE user interface.
31

Setting G2 Minimum Scheduling Parameter
For best performance of GUIDE/UIL, set the minimum-scheduling-interval in the
Timing Parameters system table to 0.25 or less.

For information about how to set this parameter, see the G2 Reference Manual.

Starting GUIDE
GUIDE is started when you start your knowledge base. You can start your
knowledge base by choosing Start or Restart from the G2 Main Menu.

When GUIDE is started, the G2 GUIDE/UIL initialization panel appears in the
lower left corner of the screen. The initialization panel includes the version
numbers for GUIDE and UIL and a changing display of status information about
the initialization process.

When the G2 GUIDE/UIL initialization panel disappears, initialization is
complete and you can use GUIDE.

Reinitializing GUIDE
You can reinitialize GUIDE by selecting the following from the GUIDe menu bar:

Tools > Reinitialize GUIDE

You can also use the UIL procedure uil-initialize-guide to initialize GUIDE.

Choosing a User Mode
Before you begin to use GUIDE to develop a user interface, change your user
mode to Build mode. You can do this in either of two ways:

• Choose G2 > Change Mode > uil-build from the GUIDE menu bar.

• Select Build Mode in the GUIDE Control Panel. For information about how to
do this, see Using the GUIDE Control Panel.

When you use GUIDE in Build mode, the run-time behavior of dialogs and UIL
controls is suspended so that you can edit them. In Build mode, you can access
menu choices on dialogs and UIL controls by clicking on them. These menu
choices enable you to perform operations on the dialogs and UIL controls such as
moving, cloning, and deleting them, and accessing graphical editors through
which you can edit their attributes.

You can also create a user interface in Administrator mode, which gives you the
same access to the menus of dialogs and UIL controls that Build mode gives you.
However, Administrator mode lacks restrictions that allow you to use the G2
32

Using the GUIDE Menu Bar
GUIDE palette normally. Use Build mode when you create a user interface unless
you have a specific reason to use Administrator mode.

You can simulate the run-time behavior of UIL controls by changing your user
mode to User mode. In User mode, you enter text into edit boxes, selected and
deselect buttons, and scroll up and down in scroll areas. You cannot edit dialogs
or UIL controls in User mode.

Using the GUIDE Menu Bar
You can perform many GUIDE operations, such as creating objects and
displaying dialogs, through the GUIDE menu bar displayed across the top of the
window where you are running G2.

To include all GUIDE-specific menu options in the GUIDE menu bar, click the
Gensym logo in the upper-left corner of the window and choose GUIDE from the
menu:

The menu bar and some new dialogs reached through the menu bar, depend on
the following G2 Developer’s Interface modules: g2uimenu, g2uifile, g2uiprint,
and g2uitree. these modules are required by the module g2cuidev. You may find
that you need to remove these KBs from GUIDE when you develop your
application.

Removing g2cuidev.kb

If you edit GUIDE’s module hierarchy not to include g2cuidev.kb, you should
also disable GUIDE’s menu bar to prevent startup errors. You can reach that
menu bar with this Inspect command:

go to guide-menu-resource
33

On this workspace, you will see a triangular template labeled k-guide. Disable
that item, and GUIDE will not attempt to show its menu bar upon startup.

Reusing the GUIDE Submenus

All of the GUIDE submenus are usable by other menus. The GUIDE menu bar
template can be reached by using this Inspect command:

go to guide-menu-resource

The resulting workspace contains a copy of the G2 menu bar, with new, extended
submenus in place of the ones used by the G2 menu bar (except for the File menu,
which is untouched). All these GUIDE-specific menus can be reused by
customers’ menu bars, just as the GUIDE menu bar itself reuses the File submenu.
For more information about copying and reusing menus, see the G2 Developer’s
Interface User’s Guide.

Resetting the GUIDE Editor
You may want to reset GUIDE if you encounter problems during an editing
session. Resetting GUIDE returns it to its initial state at the beginning of your
editing session.

To reset GUIDE, select the following choice from the GUIDE menu bar:

Tools > Reset Editor

Enabling and Disabling GUIDE/UIL User Menu
Choices

For certain basic operations, such as cloning or deleting, UIL objects have separate
versions of the G2 user menu choices.

The UIL user menu choices end in a period (.), to distinguish them from the
corresponding G2 user menu choices. For example, the UIL user menu choice for
cloning is clone., which except for the period is identical to the clone G2 user
menu choice for this operation.
34

Enabling and Disabling GUIDE/UIL User Menu Choices
If both the G2 and the UIL versions of a user menu choice are present in the menu
of a UIL object, always use the UIL version to perform the operation on the object.

Enabling and Disabling User Menu Choices for All
Objects

To enable user menu choices on UIL objects, toggle on the Enable User Menu
Choices toggle button in the More Options palette, which you can access through
the G2 GUIDE palette.

Enabling and Disabling User Menu Choices for
Particular Modules

You can enable or disable user menu choices for particular GUIDE/UIL modules
by setting the following logical parameters to true or false:

guide-user-menu-choices-active
g2uiprnt-user-menu-choices-active
guigfr-user-menu-choices-active
g2uifile-user-menu-choices-active
guidata-user-menu-choices-active
guimove-user-menu-choices-active
guislide-user-menu-choices-active
guidesa-user-menu-choices-active
uil-user-menu-choices-active
uilcombo-user-menu-choices-active
uilslide-user-menu-choices-active
uilsa-user-menu-choices-active
uiltdlg-user-menu-choices-active
uillib-user-menu-choices-for-non-uil-objects-active
uillib-user-menu-choices-for-uil-objects-active

By default, all these logical parameters are set to true. You disable user menu
choices for the objects in a particular module by setting the corresponding logical
parameter to false. For example, to disable user menu choices on Scroll Areas, set
uilsa-user-menu-choices-active to false.

Note that there are two logical parameters affecting user menu choices of the uillib
module:

• uillib-user-menu-choices-for-non-uil-objects-active true enables uillib user
menu choices on all objects; false disables uillib user menu choices for non-UIL
objects only.

• uillib-user-menu-choices-for-uil-objects-active true enables uillib user menu
choices on all objects; false disables uillib user menu choices for all objects.
35

You can set the values of these logical parameters in an initially rule, a startup
procedure, or any other method that is suitable for your requirements. For
information about how to set the values of parameters, see the G2 Reference
Manual.

Using GFR Startup Objects
Versions of GUIDE/UIL earlier than Version 4.1 depended upon initially rules to
initialize. This worked without problem unless other KBs loaded with
GUIDE/UIL had their own initialization procedures that could not run until
GUIDE/UIL finished initializing.

Because higher-level modules depend on the services of lower-level modules,
startup precedence becomes an issue in a multiple-module system. To ensure
correct operation, lower-level modules should be activated before higher-level
modules. GFR provides a startup facility that ensures that module initialization
activities proceed from low-level modules in an organized fashion up the module
hierarchy to higher-level modules. GFR also provides for organized dispatch to
multiple warmboot procedures following the loading of your KB from a snapshot
file.

The GFR KB provides a gfr-startup-object class to solve problems such as these.
Startup objects are assigned to modules (no more than one per module, though
some modules do not have any), and they contain references to procedures that
should be run when G2 is started. The order in which these procedures are run, if
there are multiple startup objects loaded at one time, is determined by the module
hierarchy: the lowest-level modules’ startup procedures are run first, on up the
hierarchy to the highest-level modules’ startup procedures last.

Startup objects can make it easier for KB developers to integrate GUIDE/UIL into
their KBs. A startup object can be created for the modules that depend on
GUIDE/UIL; the startup procedures specified in those startup objects are
guaranteed to run after the GUIDE/UIL initialization has finished, with no need
to check for its completion. For more information on GFR startup objects, see the
G2 Foundation Resources Reference Manual.

Note GUIDE’s startup object is in the uillib module, not in the guide module. It handles
initialization for all of GUIDE if the guide module is loaded.

Making UIL Controls Permanent
By default, UIL controls are transient, and do not persist if you reset or restart
your KB.

If you need to make a UIL control permanent, use the UIL procedure uil-make-
grobj-permanent(). For information about this procedure, see the G2 GUIDE/UIL
36

Printing GUIDE Workspaces
Procedures Reference Manual.

Caution Do not attempt to use the G2 action make permanent to make UIL controls
permanent.

Printing GUIDE Workspaces
You can print GUIDE workspaces by choosing KB Workspace > Print from the
menu of the workspace that you want to print. The following dialog appears:
37

To display additional print options, click the Options button in the Printer dialog.
The Print Options dialog appears:

To select the printer on which you want to print your workspace, click the button
to the right of the Name field in the Printer dialog. The Select Printer dialog
appears:

In the Select Printer dialog, a list of the currently configured printers appears in
the scroll area. Select the printer that you want to use and click the OK button.
38

Suggestions and Cautions
To select the server that you want to use, click the button to the right of the Server
Name field in the Printer dialog. The Select Server dialog appears:

In the Select Server dialog, a list of the currently connected servers appears in the
scroll area. Select the server that you want to use and click the OK button.

Suggestions and Cautions
This section lists easy ways to avoid problems that can prevent you from running
or saving your GUIDE application.

• Always use GUIDE in a modularized KB.

The GUIDE dialog system works only in modularized KBs. Do not attempt to
use GUIDE in an unmodularized KB. For information about modularizing
KBs, see the G2 Reference Manual.

• Always name the top-level module of the application that uses GUIDE.

GUIDE incorporates the name of the top-level module into class definitions
and IDs that it generates automatically for internal use. GUIDE cannot
generate these class names and IDs if the top-level module has no name.

• Always merge GUIDE.

Always Merge GUIDE or any module that requires GUIDE or UIL. Do not
Load these modules.
39

• Restart after pause to merge in GUIDE.

Always restart your application after you pause to merge in the GUIDE
module or any module requiring GUIDE or UIL.

Do not reset your application after you pause G2 if dialogs are displayed. This
causes you to lose the dialogs. You can recover the dialogs by merging your
GUIDE application into your KB again.

• Use GUIDE graphical editors to edit object attributes.

For most purposes, it is good practice to use GUIDE graphical editors to edit
the attribute values of dialogs or UIL controls.

It is possible to edit attribute values directly in the attribute tables. However,
if you edit the IDs or other attributes of dialogs and GUIDE controls directly
in attribute tables, you can introduce inconsistencies that prevent your
application from running properly.

• Use GUIDE clone. menu choice to copy workspaces.

Always use the GUIDE clone. menu choice to copy workspaces. Problems
occur when you use the G2 clone menu choice to clone workspaces, especially
workspaces that contain a combination of UIL objects and non-UIL objects.

• Do not use Operate On Area menu choice to clone or delete UIL objects.

Many UIL objects are composed of pieces held together by named relations or
internal lists. The Operate On Area menu choice is not designed to operate on
these features. Therefore, Do not use the Operate On Area menu choice to
clone or delete UIL objects.

Using Operate On Area to clone or delete objects produces UIL objects that do
not work properly. However, you can use Operate On Area to move and align
UIL objects.

• Always use the user menu choices of UIL objects.

User menu choices end with a period (.). For example, always clone and delete
UIL objects using the clone. and delete. menu choices.

• Close subworkspaces of dialogs before resetting GUIDE application.

Copy dialogs are lost if their subworkspaces are displayed when you reset
your application. To keep the copy dialogs, close them by clicking OK or
Cancel before you reset your application.
40

Suggestions and Cautions
• Remove all UIL objects from a workspace before cloning or deleting the
workspace.

GUIDE does not properly clone or delete the UIL objects on a workspace
when you clone or delete the workspace.

Before you delete dialogs, delete copies of the dialogs from the dialog bin by
choosing delete copies from the dialog menus. If you do not delete the copies,
the copies remain in the bins after you delete the dialogs from the workspace.

• Do not make master dialogs proprietary.

Master dialogs are templates that GUIDE clones to create the dialogs that
users see and use. Do not make master dialogs proprietary. Proprietary
dialogs cannot be cloned.

• Do not make workspaces with master dialogs proprietary.

Do not make workspaces proprietary if they contain master dialogs or other
UIL objects. Proprietary workspaces are restricted to prevent cloning,
deleting, and certain kinds of text access. GUIDE dialogs fail to function when
placed on proprietary workspaces, because they make extensive use of clone
and delete operations.

However, you can place navigation buttons on proprietary workspaces.

• Do not use clone workspace or delete workspace menu choices of a dialog
subworkspace.

Instead, use the menu choices for cloning or deleting the master dialog, not
the subworkspace of the master dialog.

Be careful not to delete the subworkspaces of master dialogs. Doing so makes
a master dialog unusable, because the subworkspace contains the dialog that
users see and use.

• Check the value of uil-initialization-status parameter.

When the initialization of GUIDE is complete, GUIDE sets the value of the
symbolic parameter uil-initialization-status to initialized. The initial value of
this symbolic parameter is uninitialized.

Applications build on GUIDE should verify that the value of uil-initialization-
status is set to initialized before attempting to use GUIDE.

• Do not use the string scroll-area in module names.

Module names that include the string scroll-area can conflict with names that
GUIDE generates automatically for internal use.

• Limit number of named UIL controls as required to conserve memory.

Names of UIL controls are stored as symbols, and G2 does not reclaim
symbols. For this reason, you may want to limit number of named UIL
controls that you add to your user interface. Names are optional for all UIL
41

controls except radio buttons and check buttons, which are automatically
named by the selection boxes that contain them. Thus, you may want to limit
the number of UIL controls to which you give optional names, or the number
of selection boxes that you add to your user interface.
42

Part II
Creating a
User Interface
Chapter 3: Generating Master Dialogs

Describes how to use the GUIDE Dialog Generator to generate a master dialog for viewing
and editing attributes of a particular user-defined class.

Chapter 4: Building Master Dialogs

Describes how to use the G2 GUIDE Palette and other GUIDE tools to build customized
dialogs for viewing and editing the class-specific attributes of user-defined classes.

Chapter 5: Using UIL Controls on a Workspace

Illustrates several ways to use UIL controls on a workspace, without incorporating them into
a dialog.

Chapter 6: Customizing Dialogs

Describes how to edit and customize GUIDE dialogs.

Chapter 7: Launching Dialogs

Describes how to launch a dialog from an action button, a user-menu choice, a user-defined
procedure, a push button, or a rule.

Chapter 8: System-Defined Dialogs

Describes the predefined message, confirmation, query, and notification dialogs and delay
notification icon.
43

44

3

Generating
Master Dialogs
Describes how to use the GUIDE Dialog Generator to generate a master dialog for
viewing and editing attributes of a particular user-defined class.

Introduction 45

Using the GUIDE Dialog Generator 46

Steps for Generating a Master Dialog 48

Launching Generated Dialogs from Push Buttons 59

Editing Generated Dialogs 61

Introduction
Master dialogs serve as templates for dialogs that users see and use when they
run a G2 application.

For information about how to build more fully customized master dialogs, using
the G2 GUIDE Palette, see Building Master Dialogs.

Note You cannot use the push buttons and other UIL controls on a master dialog. To
test a master dialog and the UIL controls that it contains, you must launch a copy
dialog of the master dialog. For information about how to do this, see Launching
Dialogs.
45

Using the GUIDE Dialog Generator
You can start the GUIDE Dialog Generator by choosing generate dialog from the
menu of the user-defined class for which you want to generate the dialog.

You can also start the GUIDE Dialog Generator by selecting Tools > Dialog
Generator from the GUIDE menu bar.

You can also start the GUIDE Dialog Generator by clicking on the question mark
(?) icon on the G2 GUIDE Palette. This opens the GUIDE Help dialog. In the
GUIDE Help dialog, click the button labeled GUIDE Dialog Generator.

When you generate a dialog, you can either allow GUIDE to choose, by default,
the classes of UIL controls that best represent the different class-specific
attributes, or you can override GUIDE’s default choices and use non-default
classes of UIL controls to represent some or all of the attributes.

Master Dialogs with Default UIL Controls

When you generate a master dialog with default UIL controls, you select the class-
specific attributes for which you want to add UIL controls to the dialog. To
represent each attribute, GUIDE uses a UIL control of the class that is best suited
for representing data of the type associated with that attribute.

The following table summarizes the kinds of UIL controls that GUIDE uses by
default to represent attributes with different data types.

Default UIL Controls for Attribute Data Types

Data Type of
Class-specific
Attribute

Example of Class-
specific Attribute
Definition

Default UIL Control for an
Attribute of this Data Type

untyped color
color initially is red

Edit box

truth value color is a truth-value,
initially is true

Icon toggle button. The
button’s default toggle
state reflects initially is
value in attribute
declaration.

symbol (with
two possible
values)

color is a symbol, has
values red or white,
initially is red

Icon toggle button. The
button’s default toggle
state reflects initially is
value in attribute
declaration.
46

Using the GUIDE Dialog Generator
The GUIDE Dialog Generator also automatically generates a user menu choice for
launching the master dialog. The user menu choice is added to every object of the
class for which you generated the master dialog.

Master Dialogs with non-Default UIL Controls

Generating a master dialog with non-default UIL controls is similar to generating
a dialog with default UIL controls. You select the class-specific attributes for
which you want to add UIL controls to the dialog, and GUIDE adds UIL controls
to represent these attributes.

symbol (with
more than two
possible values)

color is a symbol, has
values red, white, or
blue, initially is red

Radio box. By default, the
radio button representing
the initially is value in an
attribute declaration is
selected.

list, array color is an instance of a
text-array

Scroll area. Elements of the
list or array are
represented by message
objects in the scroll area.

embedded
object

color is an instance of a
my-user-defined-class

Push button. You can edit
this push button to make it
open a dialog for editing
the attributes of the
embedded object, if such a
dialog exists.

other data types color is a text, initially is
"red"

Edit box

Default UIL Controls for Attribute Data Types

Data Type of
Class-specific
Attribute

Example of Class-
specific Attribute
Definition

Default UIL Control for an
Attribute of this Data Type
47

However, you can override GUIDE’s default choices of UIL classes and use UIL
controls of other classes to represent some or all of the attributes. When you
generate a master dialog with non-default UIL controls, you can also:

• Generate user menu choices and push buttons for launching the dialog.

• Generate rules for updating the UIL controls on the dialog. You can generate
two kinds of rules:

– Rules for updating the display of an individual UIL control on the dialog
when its corresponding attribute receives a value.

– A rule for updating all UIL controls on a dialog when a user moves the
initiating object of the dialog. This rule can be useful for tracking the X and
Y coordinates of the initiating object.

Steps for Generating a Master Dialog
To generate a master dialog (with default or non-default UIL controls):

1 Change your user mode to either Build mode or Administrator mode.

Build mode is the recommended mode for constructing a user interface.
However, you can use all the features of GUIDE in either Build mode or
Administrator mode.

Note You may find it necessary to change to Administrator mode if certain modules
in your application can be accessed only by users who are running GUIDE in
Administrator mode.
48

Steps for Generating a Master Dialog
To change your mode, click the Mode button in the G2 GUIDE Palette.
Clicking the Mode button opens the GUIDE Control Panel:

In the GUIDE Control Panel, select Build Mode or Administrator Mode, and
click OK.

Note If you are currently running GUIDE in Administrator mode, you can open the
GUIDE Control Panel dialog by clicking the Mode button and choosing select
from the Mode button’s menu.
49

2 Open the attribute table of the user-defined class to make sure that it has
values for:

• Class-name

• Direct-superior-classes

• Class-specific-attributes (This slot defines the attributes for which GUIDE
can add a UIL control to the dialog.)

If any of these slots are empty, fill them with appropriate values.

3 Choose generate dialog from the menu of the user-defined class.

The GUIDE Dialog Generator appears.

For example, suppose that you choose generate dialog from the menu of a
user-defined class named cars, which has the class-specific attributes make,
model, year, color, and extras. The GUIDE Dialog Generator looks like this:

4 In the User Defined Classes column, select the name of the user-defined class
for which you want to generate a dialog.

If you start the GUIDE Dialog Generator by choosing generate dialog from the
menu of a user-defined class, the name of the user-defined class appears
selected in the User Defined Classes column, as in the figure above.

If you start the GUIDE Dialog Generator from the GUIDE Help dialog, the
User Defined Classes column appears empty. You can select the class for
which you want to generate a dialog by entering its name in the Add Class
field and then clicking the up arrow. The name of the class appears selected in
the User Defined Classes column.
50

Steps for Generating a Master Dialog
You can also click the Include All User Defined Classes button to display the
names of all user-defined classes in the User Defined Classes column. You can
then select the name of the class for which you want to generate a dialog.

When a class in the User Defined Classes column is selected, the class-specific
attributes of that class are displayed in the Attributes column.

5 In the Attributes column, select the class-specific attributes that you want
users to be able to view and edit through the generated dialog. GUIDE adds a
UIL control to the dialog for each attribute that you select.

You can select individual attributes by clicking on them. You can select all
attributes by clicking on the Select All Attributes button.

The order of the selected attributes in the Attributes column determines the
order in which the UIL controls appear in the generated dialog. You can
change the order of the attribute in the Attributes column by dragging them
up or down.

When you select attributes, buttons labeled Customize Dialog and Generate
Dialog become enabled:

At this point, you choose to generate either a master dialog with default UIL
controls or with non-default UIL controls:

• Click Customize Dialog to generate a master dialog with non-default UIL
controls.

• Click Generate Dialog to generate a master dialog with default UIL
controls.

The following sections explain how to generate each kind of dialog.
51

Generating a Master Dialog with Default UIL
Controls

To generate a master dialog with default UIL controls:

1 Click the Generate Dialog button in the GUIDE Dialog Generator.

GUIDE creates a dialog and user menu choice, and places them on a
workspace. GUIDE creates a navigation button that you can click to go to this
workspace.

The navigation button is labeled class information. The dialog is named class
Information. The user menu choice is named edit class. In each of these names,
class is the name of the user-defined class for which you generated the dialog.

2 To see the dialog and user menu choice, open the workspace.

To open the workspace, click the class information navigation button.

The following figure illustrates the navigation button, dialog, and user menu
choice generated for the user-defined cars class:

3 Launch the dialog to verify that it has the features you want.

To launch the dialog, select edit class on an object of the user-defined class for
which you generated the dialog.

Workspace containing
master dialog and
user menu choice

Master dialog

User menu choice
52

Steps for Generating a Master Dialog
For example, if you select edit cars from the menu of an object of the cars
class, you launch the Cars Information dialog:

When the dialog is launched, each UIL control on the dialog is updated with
the current value of the corresponding attribute of the G2 object for which the
dialog is displayed.

Users can edit the values of the UIL controls and use standard OK, Apply, and
Cancel buttons on the dialog to apply or discard their edits. When a conclude
method is run on the dialog, each UIL control concludes its value to its
corresponding attribute of that G2 object.

User-defined class

G2 object of class cars
53

Generating a Master Dialog with Non-Default UIL
Controls

You can create a master dialog with non-default UIL controls. You can optionally
create a user menu choice push button, and/or rule for launching the dialog.

To create a master dialog with non-default UIL controls:

1 Click the Customize Dialog button in the GUIDE Dialog Generator.

A second GUIDE Dialog Generator window appears. You specify options for
the customized dialog in this window.

The following figure illustrates the GUIDE Dialog Generator when it has been
opened to create a customized dialog for the user-defined cars class:
54

Steps for Generating a Master Dialog
2 In the Title field, specify a name for the new dialog.

By default, the name of the dialog is class information, where class is the name
of the user-defined class for which you are generating the dialog.

3 Choose the optional features that you want to generate.

To do this, select any combination of the following check buttons in the
Options group:

• Generate user-menu choice for launching dialog

• Generate push button for launching dialog

If you choose to launch a generated dialog from a push button, you must
specify the source and target objects and attributes for the UIL controls on
the dialog. For information about how to do this, see Launching
Generated Dialogs from Push Buttons.

• Generate rules for updating dialog

If you select Generate rules for updating dialog, a dialog named Generate
Update Rules appears when you click OK in the GUIDE Dialog Generator
dialog. The Generate Update Rules dialog enables you to specify the
particular rules that you want to generate. For information about how to
use the Generate Update Rules dialog, see step 7.

4 Specify the source object whose attribute values are updated into the UIL
controls on this dialog. To do this, select one of the following radio buttons in
the Update From group:

• Initiating object

The initiating object is a G2 object that launches the dialog.

Specify Initiating object as the source object when you use a user-menu
choice to launch the dialog. In this case, the source object is the object from
whose menu a user selects edit class-name to launch the dialog, where
class-name is the name of the user-defined class.

It is possible to specify Initiating object as the source object when you use a
push button to launch the dialog. For information about how to do this,
see Launching Generated Dialogs from Push Buttons.

• Temporary storage object

For information about how to use temporary storage objects, see Creating
Temporary Storage Objects.

• Named object

This object can be any named G2 object.
55

If you select Initiating object, the initiating object is also, by default, the target
object to which the UIL controls on the dialog conclude their values. You can
edit the UIL controls to specify different target objects.

If you select Temporary storage object or Named object, you must edit each
UIL control to specify its target object.

For information about how to specify the source and target objects of UIL
controls, see Specifying Source and Target Objects.

5 Select the kind of UIL control that you want to use in the dialog to represent
each class specific attribute of the G2 object, as follows:

a Select an attribute in the column labeled Attribute Fields.

b Select a UIL control in the column labeled UIL Control. A UIL control of
this class will be added to the dialog to represent the selected attribute.

For example, the following figure shows how to specify that the color
attribute is represented in the generated dialog by a scroll area:

c To change the kind of UIL control used to represent an attribute, first
select that attribute in the Attribute Fields column. The UIL control
currently associated with that attribute is automatically selected in the UIL
Control column. Then, in the UIL control column, select the UIL control
that you want to use in place of the currently selected one.

6 When you finish selecting options in the GUIDE Dialog Generator dialog,
click OK.
56

Steps for Generating a Master Dialog
7 If you chose to generate update rules, the Generate Update Rules dialog
appears when you click OK in the GUIDE Dialog Generator:

The Generate Update Rules dialog enables you to generate two kinds of rules:

• Rules that update the state or value of individual UIL controls on the
dialog whenever the corresponding attributes in the source object receive
values.

• A rule that updates the state or value of every UIL control on the dialog
whenever a user moves the initiating object of the dialog.

To specify which rules you want to generate, follow these steps:

a In the scroll area labeled Attribute to Generate Rules For, select each
attribute for which you want to generate a rule. To select all attributes,
click the Select All Attributes button.

b Select the toggle button labeled When initiating object is moved by user to
generate a rule that updates all UIL controls on the dialog whenever a user
moves the initiating object.

c Click the OK button.

8 Close the GUIDE Dialog Generator dialog by clicking on the OK button.

GUIDE generates the customized dialog and (optionally) a user menu choice,
push button, and update rules. It places these objects on a workspace.

GUIDE creates a navigation button that you can click to go to the workspace.
57

9 Look at the workspace to make sure that it contains the dialog and any
optional features that you chose to generate.

For example, the following figure illustrates a workspace containing a
customized dialog, user menu choice, push button, and update rules, and the
navigation button generated to open this workspace.

10 Launch the customized dialog to make sure that it contains all the features
that you want.

To do this, select the user menu choice edit class from a G2 object of the class
for which you generated the customized dialog.

Update all UIL
controls on dialog
whenever user
moves initiating
object.

Update UIL control
on dialog for Make
attribute whenever
Make attribute
receives a value.

Push button

User menu
choice

Master
dialog
58

Launching Generated Dialogs from Push Buttons
The following figure illustrates the customized dialog for the cars class:

Launching Generated Dialogs from Push
Buttons

When you generate a dialog using the GUIDE Dialog Generator, you can also
generate a push button to launch the dialog.

When you use a push button to launch a dialog, you must designate specific
objects as the source objects for UIL controls on the dialog. In the GUIDE Dialog
Generator, you designate a default source object for all UIL controls on the
generated dialog. You do this by selecting Temporary storage object, Named
object, or Initiating object under the label Update from.

The object used as the source object must have class-specific attributes from
which the UIL controls on the dialog can be updated.
59

Updating UIL Controls from the Initiating Object
When the Dialog is Launched by a Push Button

When you launch a dialog by a push button, that push button is the default
initiating object of the dialog.

When you use to a push button to launch a dialog, updating the UIL controls on
the dialog from a Temporary storage object or Named object presents no special
problems. However, updating the UIL controls from the Initiating object, in this
case, the push button itself, is not possible. A push button does not have class-
specific attributes from which the UIL controls can be updated.

For example, if you choose Initiating object under Update from when you generate
the Cars Information dialog in the example above, the source object and source
attribute of the Make edit box are defined as follows:

A push button cannot be used as the source object of the Make edit box because it
does not have a make attribute (or any other class-specific attribute) from which
the Make edit box can be updated.

The GUIDE Dialog Generator reminds you that you cannot use a push button as a
source object. If you select the Generate pushbutton for launching dialog option
and you also specify Initiating object under Update From, you see the following
message when you click OK in the GUIDE Dialog Generator:

In order to use the push button to launch a generated dialog that is updated from
its initiating object, you must specify an object other than the push button itself to
use as the initiating object. The object that you specify as the initiating object must
have class-specific attributes from which UIL controls on the generated dialog can
be updated.

To designate a object other than the push button as the initiating object, you can
create a customized action that designates a new initiating object.
60

Editing Generated Dialogs
Using an Action to Specify an Initiating Object

You can create an action that designates an object other than the push button itself
as the initiating object. You then add this action to the list of actions that are run
when a user clicks on the push button.

A user-defined action can designate an initiating object in two ways:

• The action can call the UIL procedure uil-override-initiating-object-for-dialog to
specify some object other than the push button as the initiating object of the
dialog. In the action, specify:

call uil-override-initiating-object-for-dialog(object, dialog)

where object is the object to use as the initiating object, and dialog is the
generated dialog that the push button launches.

• The action can use the following conclude statement to specify some object
other than the push button as the initiating object of the dialog:

conclude that the-object-initiating-dialog-activity-for dialog is object

where dialog is the generated dialog that the push button launches and object
is the object to use as the initiating object.

For information about how to add an action to the list of actions run by a push
button, see Push Buttons.

Note In a push button’s list of actions, you must include the action that designates a
new initiating object before uil-call-update-method action or any other action that
you use to update the dialog.

Editing Generated Dialogs
For many purposes, your application can use generated dialogs without
modification. However, GUIDE enables you to edit generated dialogs to change
their appearance, contents, and behavior. The following table lists the chapters in
this guide that describe how to edit dialogs and UIL controls:

References to Information about Editing Dialogs

Editing Operation Reference

Allow more than one copy of the
generated dialog to be used on the
same G2 window.

Dialog Options Dialog

Change the contents, layout, or
appearance of a dialog.

Building Master Dialogs
61

Edit the appearance or behavior of a
UIL control.

The chapter that describes
UIL controls of that class.
For example, see Push
Buttons, for information
about how to edit a push
button.

Edit the value of a class-specific
attribute that is declared as an array
or a list.

Specifying Initial Contents
of an Array or List
Attribute

Specify the G2 object from which a
UIL control is updated or to which it
concludes its value.

Specifying Source
and Target Objects

Specify formats and validation
criteria for UIL controls.

Formats and
Validation Criteria

Specify edit styles for edit boxes. Edit Boxes, Combo Boxes,
and Spin Controls

References to Information about Editing Dialogs

Editing Operation Reference
62

4

Building
Master Dialogs
Describes how to use the G2 GUIDE Palette and other GUIDE tools to build
customized dialogs for viewing and editing the class-specific attributes of user-
defined classes.

Introduction 64

Using the GUIDE Palette 64

Steps for Building a Master Dialog 67

Editing a Tab Dialog 77

Manipulating UIL Controls through User Menu Choices 82

Moving UIL Controls 84

Resizing UIL Controls 86

Transferring UIL Controls 86

Specifying Initial Contents of Text Objects, Message Objects, and Edit Boxes 86

Specifying Initial Contents of an Array or List Attribute 87

Specifying Source and Target Attributes of UIL Controls 89

Closing a Finished Subworkspace 89

Creating a Customized Dialog Programmatically 90
63

Introduction
You can use the GUIDE palette and other GUIDE tools to build customized
master dialogs for viewing and editing the class-specific attributes of user-defined
classes.

The tools described in this chapter enable you to:

• Create a master dialog and add UIL controls to it.

• Create and edit a master tab dialog.

• Add UIL controls to an existing master dialog.

• Customize the layout and appearance of a master dialog.

Using the GUIDE Palette
The GUIDE palette is your basic tool for building a customized master dialog.
Through the GUIDE palette, you can access the tools that you need to create a
master dialog and add UIL controls to it.

If the GUIDE palette is not visible, you can open it by selecting the following
choice from the GUIDE menu bar:

View > Palettes > GUIDE Palette
64

Using the GUIDE Palette
Tools Provided by the GUIDE Palette

The following figure illustrates the GUIDE palette and the tools that you can
access through it:

The GUIDE palette includes the following tools:

• Icons representing dialogs and the other classes of UIL controls. You use these
icons to create a master dialog and add UIL controls to it.

• A Mode button, which opens the GUIDE Control Panel. You can use the
GUIDE Control Panel to select a user mode in which to run GUIDE, and to
specify defaults for the window style and size of objects created from the
GUIDE palette.

GUIDE Palette and Tools
65

Note Only one copy of the GUIDE Control Panel dialog can be opened and used in
each G2 window. However, users on different G2 windows can open and use
different copies of the GUIDE Control Panel dialog.

• An About button, which opens the GUIDE Information dialog. This dialog
tells you which versions of GUIDE and UIL are currently running.

• A Help button, which opens the GUIDE Help dialog. The GUIDE Help dialog
enables you to:

– Display argument signatures and return values of UIL procedures

– Open dialogs for creating customized methods, actions, and callbacks

– Start the GUIDE Dialog Generator

– Go to a workspace that contains working GUIDE examples from the
GUIDE Demo KB (guidemo.kb)

– Start the GUIDE Tutorial, which leads you through the steps for creating a
GUIDE user interface.

For information about the GUIDE Help dialog, see Help Dialog.

• A More Options navigation button. Clicking on this button opens the More
Options palette, which contains icons that you can select and drop to create
the following resources:

– A Print button. Users can click the Print button to open the Printer Setup
Dialog. In this dialog, users can specify options for printing the workspace
that contains the Print button.

– A reusable Format that specifies aspects of format such as the use of
quotation marks, capitalization, and hyphens. You can apply Formats to
edit boxes, text objects, and message objects. Formats can also specify
validation criteria for edit boxes. For information about formats, see
Formats and Validation Criteria..

– An action description array. An action description array is a list of
procedures that perform operations on a dialog. You can invoke an action
description array on a dialog by invoking the procedure uil-control-dialog-
callback. For information about action description arrays, see Controlling
Dialogs with Actions.

– A reusable field edit style that specifies the behavior of the editor for edit
boxes. You can apply field edit styles to individual edit boxes. For
information about field edit styles, see Edit Styles for Edit Boxes.
66

Steps for Building a Master Dialog
Steps for Building a Master Dialog
The following sections describe the steps that you must follow to build a master
dialog using the GUIDE palette and other tools.

Note You cannot use the push buttons and other UIL controls on a master dialog. To
test a master dialog and the UIL controls that it contains, you must launch a copy
dialog of the master dialog. For information about how to do this, see Launching
Dialogs.

1 Change your user mode to Build Mode.

To change your mode, click the Mode button in the GUIDE palette. Clicking
Mode opens the GUIDE Control Panel:

In the GUIDE Control Panel, select Build Mode and click OK.

If you are currently running GUIDE in Administrator Mode, you can open the
GUIDE Control Panel dialog by clicking on the Mode button and choosing
select from the Mode button’s menu.

You can also use all the features of GUIDE in Administrator Mode. However,
Build Mode is the recommended mode for constructing a GUIDE user
interface.

2 Set defaults for the size (small, medium, or large) and window style (MotifTM
or WindowsTM) of UIL controls that you subsequently add to the master
dialog. The default size and style do not apply to UIL controls already on the
master dialog.
67

You set the default size and window style In the GUIDE Control Panel.

Select Motif or Windows in the group of buttons under the label Select Style.
The following figure illustrates several buttons in each of these styles:

Select Small, Medium, or Large in the group of buttons under the label Size.
The following figure illustrates a push button in each of these sizes:

You can change the size of a UIL control after you have created it using the
GUIDE editor for that UIL control, or by selecting the G2 change size or
change min size menu choices.

The window style and size that you select in a GUIDE Control Panel apply
globally throughout the G2 knowledge base that you are using.

Note Labels of Motif-style buttons are contained in icons of these buttons. Labels of
Windows-style buttons are contained in separate UIL label objects. However,
any UIL procedure that operates on button labels has the same effect on both
Motif and Windows style buttons.

3 Click OK to apply the changes that you make in the GUIDE Control Panel.

Motif

Windows
68

Steps for Building a Master Dialog
4 Create a master dialog using the GUIDE palette. You can do this in either of
two ways:

• Select the dialog icon in the GUIDE palette for the style of master dialog
that you want to create (with or without tab pages) and drop it on a
workspace:

• From the GUIDE menu bar, select one of the following:

Item > GUIDE Objects > Dialogs > uil-tailored-dialog
Item > GUIDE Objects > Dialogs > uil-tab-dialog

Selecting this menu choice causes a master dialog icon to be attached to
your cursor. You can drop this icon on any workspace.
69

5 Open the subworkspace of the new master dialog so that you can add UIL
controls to it.

To open the subworkspace, select go to subworkspace or show dialog from the
menu of the new dialog:

As shown in the figure above, the subworkspace of the new master dialog has
a title bar and three push buttons: OK, Apply, and Cancel. These push buttons
have appropriate default actions.

However, the subworkspace does not contain any of the UIL controls that
enable users to view and edit attributes of G2 objects. You must add these
components to the subworkspace, using the GUIDE palette.

Subworkspace of
master dialog
70

Steps for Building a Master Dialog
Note The title bar of every master dialog contains the word Master. If you do not
see Master in the title bar of a dialog subworkspace, that dialog is not a master
and you cannot edit it.

6 Add UIL controls to the master dialog.

To add a UIL control to a master dialog, select the icon on the GUIDE palette
that represents the UIL control that you want to add and drop it on to the
subworkspace of the dialog.

The following figure illustrates the icons on the GUIDE palette:

Selection box
of radio buttons

Individual
radio button

Selection box
of check
buttons

Individual check
button

Icon toggle
button

Text toggle
button

Icon push
button

Text push
button

Single-line edit
box

Text object

Message
object

Scroll area
containing
message objects

Empty scroll
area

Dialog

Dialog title

Borders Separators

Navigation
buttons

Garbage pail

Print button

Tab
Dialog

Tab Page

Sliders

Spin control box

Combo box

Multiple-line
edit box
71

The following figure illustrates how to add an edit box to a dialog:

You can add most classes of UIL controls to a master dialog simply by selecting
their icons and dropping them on the subworkspace of the master dialog. Before
you add UIL controls to a tab dialog, first select the tab page to which you want to
add the control. For information about how to do this, see Editing a Tab Dialog.

You must follow special steps to add dialog titles, selection buttons, and scroll
areas to master dialogs. The following sections describe how to add selection
buttons and scroll areas to master dialogs.
72

Steps for Building a Master Dialog
Adding a Dialog Title

You can add dialog titles to master dialogs that do not have titles. To do this, you
select the Title icon and drop it on the subworkspace of the master dialog.

You cannot add a dialog title to a master dialog that has a title. However, you can
add them to master dialogs whose titles have been deleted.

Adding Radio Buttons and Check Buttons

Radio buttons and check buttons can be used only in selection boxes. To add
radio buttons or check buttons to a master dialog, you must first add a selection
box for radio buttons or check buttons. By default, selection boxes contain three
buttons.

You can then add radio buttons or check buttons to the existing selection box on
the master dialog. You cannot use radio buttons and check buttons in the same
selection box.

The following figure illustrates the icons on the GUIDE palette that represent
selection boxes, radio buttons, and check buttons:

Radio button
selection box

Individual radio
button

Check button
selection box

Individual check
buttons
73

The following figure illustrates how to add a selection box of radio buttons to a
master dialog:

To add a radio button or check button to a selection box, click the radio button or
check button icon on the GUIDE palette and drop it on or near the selection box.
The new radio button or check button is added at the bottom of the selection box.
74

Steps for Building a Master Dialog
Adding Scroll Areas and Message Objects

You can add message objects only to existing scroll areas on a master dialog.
Message objects can be used only in scroll areas.

The following figure illustrates the icons on the GUIDE palette that represent
scroll areas that contain message objects by default, and scroll area that contain no
message objects:

Scroll area
containing
message
objects

Empty scroll
area
75

The following figure illustrates how to add an empty scroll area to a master
dialog:
76

Steps for Building a Master Dialog
The following figure illustrates how to add a message object to a scroll area on a
master dialog:

Changing the Size of a Dialog Subworkspace

You can change the size of a dialog subworkspace by dragging the upper-right or
lower-left corner of the subworkspace. Drag on the corner of the subworkspace
immediately inside the subworkspace’s border.

You can also enlarge a dialog subworkspace by dragging a UIL control to the
edge of it. This enlarges the subworkspace in the direction in which you drag. As
you drag a UIL control away from the perimeter of the subworkspace, the border
remains tightly wrapped around the subworkspace.
77

Editing a Tab Dialog
A tab dialog is a dialog of the subclass of uil-tailored-dialog that supports the
operation of tab pages on its subworkspace. Each tab page is an object of the
subclass of uil-grmes that provides a grouping for other objects.

A tab page contains objects by storing them into an item-list attribute of the tab
page. As the tab pushbutton is selected by the user, all of the contents of the tab
page are raised to the top and become visible.

Each operation that affects a tab page, such as move, clone, transfer, and delete,
also carries out that operation on the contents of the tab page.

A tab push button is a push button of the subclass of uil-text-pushbutton that lifts
the associated tab page to the top of the stack of tab pages. On a mouse-down
gesture, the tabbed button is selected. This style conforms to current window
standards.

The tab pages on a dialog are managed by a tab page group. There can be only
one tag page group on a tab dialog. If you add tab pages to a dialog, the tab pages
are automatically added to the tag page group on that dialog.

Lifting a Tab Page to the Top of the Stack

To lift a tab page to the top of the stack, click the tab page. In build or
administrator mode, you can then choose the select menu choice, just as you
would for any UIL button. In any other mode, a single mouse click lifts that tab
page to the top.

Adding UIL Controls to a Tab Page

You can add UIL objects to a tab page on a master dialog in the same way that you
can add UIL objects to any dialog. You can place any G2 object, including UIL
objects, on the area of the dialog outside the stack of tab pages.

To add an object to a particular tab page:

1 Create the object and drop it manually onto the top page.

2 If the tab page to which you want to add an object is not currently the top
page, click the tab for that page to bring it to the top, then drop the object on
that tab page.

For example, to add a scroll area to a tab page labeled Page 2:

1 Select Page 2 by clicking on the button labeled Page 2.

2 Choose select from the menu.

3 Click the scroll area icon on the GUIDE palette and drag it on top of Page 2.
78

Editing a Tab Dialog
For example:

Changing the Size and Labels of Tab Buttons

You can change the size and labels of tab buttons by editing attributes of the
buttons:

• To change the size of a tab button, change the value of the uil-size attribute to
one of: small, medium, or large.

• To change the label of a tab button, change the label attribute of the button to
the desired value. Enclose the label text in quotation marks ("").

By default, the button is automatically resized to fit the size of the new label.
You can enable or disable the automatic resizing of tab buttons by setting the
resize-to-fit-label attribute of the button to true or false.
79

Changing the Placement of Tab Buttons

For any stack of tab pages, you can specify whether the tab buttons are placed on
the top, left, or right edge of the stack.

To change the placement of tab buttons:

1 Select rotate tab pushbuttons from the menu of a tab page or a tab pushbutton.

This user menu choice aligns the tab buttons across the top, left, or right side
of the tab pages on the dialog.

2 Open the attribute table of the master tab dialog, and in the uil-tab-page-
button-placement attribute, specify one of: top, left, or right.

The tab pages are aligned along the left or right or across the top of the dialog,
depending on the value that you specify for the uil-tab-page-button-placement
attribute.

The following figure illustrates the top, right, and left placement of tab buttons:
80

Editing a Tab Dialog
Adding New Tab Pages

A new tabbed master dialog contains three tab pages by default. You can add any
number of tab pages to the dialog.

To add a tab page to a tab dialog, select the Tab Page icon on the GUIDE palette
and drop it onto the stack of tab pages in the master dialog subworkspace:

The new tab page is added to the bottom of the stack. If necessary, the stack
automatically enlarges to fit the new tab page.
81

Deleting a Tab Page

To delete a tab page, select the tab page or tab button and choose the delete. menu
choice. A confirmation dialog appears, asking you to confirm that you want to
delete the tab page.

Deleting a tab page deletes the tab page itself, its tab button, and any uil-grobj or
uil-grmes object on the tab page.

Cloning a Tab Page

To clone a tab page, select the tab page and choose the clone. menu choice. The
new tab page is placed at the bottom of the stack of tab pages on the dialog.

When you clone a tab page, you also clone the contents of the tab page.

Reordering Tab Pages

To move a tab page to a different place in the stack, drag that page’s tab button to
the desired position and release it. (In any user mode other than administrator, the
drag motion is constrained to move horizontally or vertically, depending on the
placement of the tab buttons.)

For example, to move Page 3 so that it is between pages 1 and 2, drag the tab on
Page 3 to where it is between the Page 1 tab and the Page 2 tab:
82

Editing a Tab Dialog
Lifting and Dropping Tab Pages with non-UIL
Objects

When a tab page is lifted above or dropped below other tab pages, any UIL
objects on that tab page are lifted or dropped with it automatically. Tab pages are
raised and lowered using G2’s system procedures for dropping and lifting objects
on G2 workspaces.

However, any non-UIL objects on a tab page are not lifted or dropped with that
tab page automatically. To ensure that the non-UIL objects are lifted or dropped
with the tab pages, you must write user code that maintain these objects in the
tab-page-contents-list of the tab page, as well as support the lifting and dropping
of items on the G2 workspace.

Moving the Stack of Tab Pages

You can move the entire stack by dragging the page that is currently at the top of
the stack to the desired position. When you drop this page, the rest of the tab
pages follow.

Moving the tab pages retains the positions of objects on the tab pages relative to
those tab pages.

Resizing the Stack of Tab Pages

To change the size of a tab page:

1 Click the top tab page and select the change size menu choice.

2 Specify a new size for the top tab page.

The tab page is resized immediately.

3 Click the top tab page again and select the resize all tab pages menu choice.

All the other tab pages in the stack are resized to the same size as the top tab page.

Transferring Tab Pages

You can transfer a tab page to another master tab dialog by selecting the tab page
and choosing the transfer menu option.

You can transfer a tab page only to another master tab dialog. If you attempt to
transfer the tab page to any other location, the tab page is returned to its original
location.
83

Manipulating UIL Controls through User Menu
Choices

Dialogs and UIL controls have menus of choices that you can select to perform
operations on these objects, such as naming, rotating, transferring, deleting, and
moving them. You can also access the object editor for a UIL control through its
user menu. For example, to open the Edit Scroll Area dialog to edit a particular
scroll area, select edit scroll area from the scroll area’s user menu.

To use menus of dialogs and UIL controls, you must be running in Build Mode or
Administrator Mode.

To open the user menu of a UIL control, click the UIL control. You can then select
menu choices to perform operations on the UIL control.

The following figure illustrates the user menu of a scroll area:
84

Moving UIL Controls
When you select a menu choice, the operation associated with that choice is
carried out by a special procedure known as a UIL method. UIL provides a set of
system-defined methods for carrying out the operations associated with user
menu choices. You can create customized methods to use in place of these system-
defined methods. For more information about methods, see Methods, Actions,
and Callbacks.

A description of the user menu choices for each kind of UIL control is included at
the end of the chapter in this guide that describes the UIL control.

Moving UIL Controls
After you add UIL controls to a dialog, you can move them within the dialog.

Moving UIL Controls by Dragging Them

You can move any UIL control on a dialog subworkspace by moving the pointer
to the object, holding down any mouse button, and dragging the object.

You can also drag a dialog subworkspace within the workspace where it is
displayed. To do this, move the pointer to any blank area within the
subworkspace and then drag.

Moving UIL Controls with Labels

When you move or transfer a UIL control with a label, the label is automatically
moved or transferred along with the object. When you drag the label of an object,
the object is moved along with the label.

Push buttons, radio buttons, check buttons, button groups, toggle buttons,
navigation buttons, and edit boxes all have labels.

Moving UIL Controls with Borders

When you move or transfer a UIL control with a border, the border is
automatically moved or transferred with the UIL control.

You can move a border by grabbing the upper right corner or the lower left corner
with the mouse.

Edit boxes, text objects, and workspaces are the only UIL controls that can have
borders.
85

Using the Move Menu Choice

If you need to position a UIL control more precisely than you can by dragging it,
select move from the UIL control’s user menu. This opens the Move Object dialog,
which enables you to specify the x and y coordinates and centering options for the
UIL control:

You can move the object up or down, or to the left or right, by clicking the arrows
in the upper left corner of the Move Object dialog. You can specify the number of
pixels that the object moves each time you click by scrolling the value in the edit
box in the upper right corner of the Move Object dialog; by default, each click
moves the object 1 pixel. The edit boxes label X: and Y: display the current x and y
coordinates of the object.

Clicking the Options button opens the GUIMove Options dialog, which allows
you to move the object to the top-left, top-center, top-right, center-left, center,
center-right, bottom-left, bottom-center, or bottom-right:
86

Resizing UIL Controls
Resizing UIL Controls
To resize a toggle button, radio button, check button, push button, or navigation
button, choose change size from its menu.

To resize an edit box, an edit box label, or a text object, select change min size
from its menu.

When you select change size or change min size, a black border appears around
the object, and a G2 dialog of resizing options appears on the workspace. For
information about how to use the G2 resizing dialogs, see the G2 Reference
Manual.

Transferring UIL Controls
You can transfer any UIL control from one subworkspace or workspace to
another by selecting transfer from the menu of the UIL control and dropping it on
the other workspace.

When you transfer a message object, you must drop it on a scroll area on the
destination subworkspace. Transferring a scroll area transfers the scroll area and
all of the message objects that it contains.

When you transfer a radio button or check button, you must drop it on a radio
box or check box on the destination subworkspace. Transferring a selection box
transfers all the buttons within the selection box.

Transferring objects with borders transfers the borders.

Specifying Initial Contents of Text Objects,
Message Objects, and Edit Boxes

To set the initial contents of edit boxes, text objects, and message objects, select the
object and choose edit from the object’s menu. The editor appears over the object
that you selected.

When you open the editor on a text object, it looks like this:

When you open the editor on an edit box with an edit style that specifies single
line editing mode, the editor looks like this:
87

When you open the editor on an edit box that uses a multi-line edit style, the
editor looks like this:

The text that you edit using the edit menu choice is stored in the message-
contents attribute of the object that you are editing. This attribute contains the
full, unformatted text as it has been entered by application developers or users.

If you specify a format for the text object through the Select Format dialog, this
format is applied to the contents of the message-contents attribute, and the
resulting formatted text is stored in the text attribute of the text object. Any
limitation on the length of the text object that you specify is also applied to the
formatted text in the text attribute. You cannot directly view or edit the text
attribute. The formatted text is the text attribute is the version that is displayed to
the user.

When you are working with an international language system of G2, such as
Japanese or Korean, you need the edit menus in order to use the basic language
features. You can enable these menus by enabling the Display menus on edit
option in the Editor Behaviors dialog. For information about how to use this
dialog, see Editor Behaviors Dialog.

Specifying Initial Contents of an Array or List
Attribute

You can set the initial contents of an attribute declared as an array or list using the
Edit Array and Edit List dialogs.

To open these dialogs, select edit array or edit list from the menu of the G2 object.
These menu choices are added to the menus of G2 objects that have class-specific
attributes declared as instances of text-array or text-list.

You can also launch the Edit Array and Edit List dialogs programmatically, using
the UIL procedure guidata-launch-dialog-for-item. For information about this
procedure, see the G2 GUIDE/UIL Procedures Reference Manual.

For example, the class cars has a class-specific attribute declared as follows:

extras initially is an instance of a text-array
88

Specifying Initial Contents of an Array or List Attribute
The following figure illustrates how to open the Edit Array dialog to edit the
extras attribute of an object of the cars class named my-old-car:

To use the Edit Array or Edit List dialog:

1 Select the name of the array or list attribute that you want to edit.

The names of the array or list attributes of the object are displayed in the scroll
area at the top of the dialog. In the Edit Array dialog, this scroll area is labeled
Arrays. In the Edit List dialog, the scroll area is labeled Lists.

2 In the Elements field, enter the text of an element that you want to add to the
array or list.

3 Click Apply to add the element to the array or list. You can also add the
element by pressing the Tab or Return key. The elements that you add appear
in the Elements scroll area.
89

4 If you need to delete the contents of the Elements scroll area, click the Clear
button.

5 Click OK to apply your edits to the array or list that you selected.

The contents that you specify for arrays or lists using the Edit Array and Edit List
dialogs are not permanent. They are lost whenever the array or list attribute is
updated or edited.

Specifying Source and Target Attributes of UIL
Controls

When you create UIL controls using the GUIDE palette, you must edit each UIL
control to specify its the source and target objects and attributes.

The source attribute and target attribute are class-specific attributes of a G2 object,
where:

• The source attribute contains the value with which the UIL control is updated.

• The target attribute receives the value of the UIL control when the UIL control
concludes its values.

The values of individual UIL controls are updated and concluded when the
dialog as a whole is made to update or conclude its contents.

For information about how to set source and target objects and attributes of UIL
controls, see Specifying Source and Target Objects.

Note When you generate a dialog using the GUIDE Dialog Generator, each UIL control
on the dialog is automatically assigned source and target objects and attributes.
However, you can edit UIL controls on generated dialogs to change their source
and target attributes.

Closing a Finished Subworkspace
When you finish adding UIL controls to the subworkspace of the new master
dialog, you can close it by selecting Hide Workspace from its menu.
90

Creating a Customized Dialog Programmatically
Creating a Customized Dialog
Programmatically

You can create a customized dialog programmatically using the UIL procedure
uil-generate-customized-dialog. This procedure enables you to specify:

• The attributes of a user-defined class for which you want to add UIL controls
to the generated dialog.

• The class of UIL control that you want to use to represent each attribute.

For information about how to use uil-generate-customized-dialog, see the
G2 GUIDE/UIL Procedures Reference Manual.
91

92

5

Using UIL Controls
on a Workspace
Illustrates several ways to use UIL controls on a workspace, without incorporating
them into a dialog.

Introduction 93

Examples of UIL Controls Used on Workspaces 93

Placing UIL Objects on Subworkspaces of G2 Items 98

Introduction
You can use UIL controls on a workspace without incorporating them into a
dialog.

UIL controls on a workspaces can be updated from and conclude their values to
G2 objects. However, the source and target objects of UIL controls on a workspace
must be named objects. You cannot specify initiating object as the source or target
object of a UIL control used on a workspace.

You may have to write procedures to update and conclude the values of UIL
controls used on a workspace without the support of a dialog.

Examples of UIL Controls Used on Workspaces
This section contains several simple examples of UIL controls that are used on
workspaces. These examples illustrate only a few common ways to use UIL
controls on workspaces.
93

Invoking a Procedure from a Push Button on a
Workspace

You can use a push button on a workspace to run a procedure or a set of
procedures. When a user clicks on the push button, the callback procedure of the
push button is run. You can create user-defined callbacks to run any system-
defined or user-defined procedure.

To use a push button to run procedures:

1 Create a callback procedure that calls the procedure or procedures that you
want users to be able to run by clicking on the push button.

2 Specify this callback procedure as the callback of the push button.

The figure below illustrates a push button labeled Run Procedure that calls a user-
defined callback procedure named my-pushbutton-callback. This callback calls a
user-defined procedure, my-pushbutton-procedure, that posts a message on the
Message Board.

For information about how to create callback procedures, see Methods, Actions,
and Callbacks. For information about how to associate a user-defined callback
with a push button, see Push Buttons.

Using an Edit Box on a Workspace

The following example shows how to conclude the values in edit boxes on a
workspace to a target object, and how to update the values in the edit boxes.
94

Examples of UIL Controls Used on Workspaces
Concluding the Value in an Edit Box on a Workspace

The following example shows two edit boxes, labeled Make and Model, that
update their values to attributes of an object named another-old-car:

The following attributes of the edit box labeled Make enable users to update the
make of the object named another-old-car:

The uil-conclude-value-immediately attribute of the Make edit box is set to true.
This attribute value causes the value of the edit box to be concluded immediately
when the edit box loses focus. Thus, users can apply the contents of the Make edit
box by pressing the Return or Tab key.

The uil-event-target-object of the Make edit box is set to another-old-car, the target
object of this edit box.

The uil-event-target-attribute of the Make edit box is set to make, the attribute of
another-old-car to which this edit box concludes its value.
95

Updating the Value in an Edit Box on a Workspace

You can run a procedure to update an edit box on a workspace, provided that you
have specified a source object and source attribute for the edit box. The source
object must be a named object.

The following figure illustrates a procedure that can update an edit box on a
workspace, and the action button used to run this procedure:

The procedure my-update-edit-box-on-ws concludes that the uil-update-value
attribute of the edit box is true. This allows the update method for the edit box to
be run. The procedure then calls uil-call-update-method-for-grobj, which runs the
update method of the edit box. The update method updates the edit box with the
value of the edit box’s source attribute.

Using a Scroll Area on a Workspace

To use a scroll area on a workspace, you must specify named objects as the source
and target objects of the scroll area. You must also use procedures to update and
conclude the values of the message objects in the scroll area.
96

Examples of UIL Controls Used on Workspaces
The following figure illustrates how a scroll area on a workspace can be updated
with the values in a symbol array:

The source object of the scroll area is the symbol array values-for-scrollarea-on-
ws. The source attribute of the scroll area is the initial-values attribute of values-
for-scrollarea-on-ws. Initial-values references the elements of the array.

The action button labeled Fill array starts a user-defined procedure, my-fill-ws-
array, which initializes the first five elements of the array to the first five months
of the year.

The action button labeled Update Scroll Area starts a user-defined procedure
named my-update-scroll-area-on-ws. This procedure sets the uil-update-value
attribute of the scroll area to true, so that the scroll area’s update method can be
run on it. The procedure then calls the UIL procedure uil-call-update-method,
which runs the update method of the scroll area.

The update method of these scroll area updates the scroll area with the array
elements referenced by the initial-values attribute of the symbol array values-for-
scroll-area-on-ws.
97

Placing UIL Objects on Subworkspaces of
G2 Items

You can place UIL objects, such as borders, buttons, and dialogs, on the
subworkspaces of G2 items, such as class definitions and action buttons.
98

6

Customizing Dialogs
Describes how to edit and customize GUIDE dialogs.

Introduction 99

Editing Master Dialogs 100

Controlling Dialogs with Actions 115

Creating Systems of Cascaded Dialogs 118

Specifying a Default Button for a Dialog 120

Using Dialogs on Multiple Windows 120

Creating and Deleting Permanent Dialog Copies 121

Internationalization of Dialogs 121

Summary of Dialog Menu Choices 129

Introduction
Using the tools described in this chapter, you can:

• Edit the appearance and behavior of a master dialog.

• Control dialogs by running procedures called actions on the dialogs.

• Create dialogs that can be opened by clicking on buttons in other dialogs.

• Specify a default button for a dialog.

• Use dialogs on multiple G2 windows.
99

Editing Master Dialogs
You can edit the appearance and behavior of a master dialog, using the Edit
Dialog dialog, Editor Behaviors dialog, Dialog Options dialog, and Edit Methods
dialog.
100

Editing Master Dialogs
The following figure illustrates the dialogs that you use to edit dialogs and their
behaviors:

Dialogs for Editing the Appearance and Behavior of Master Dialogs

Specifies additional
options for dialog
behavior.

Enables you to
create methods for
performing basic
operations on the
dialog.

More Options

Editor Behaviors

Methods...

Edits appearance
and behavior of
the dialog.

Edit Methods

Dialog Options

Edit Dialog

Set up GFR
Group
and Local
Resources

Enables you to
specify text of labels
in different natural
languages.

Setup Translation
Text

Customizes
behavior of editor
for edit boxes in the

Editor Behaviors
101

Edit Dialog Dialog

To open the Edit Dialog dialog, click the icon for the dialog and choose edit dialog
from the dialog’s menu.

The components of the Edit Dialog dialog are presented on three tab pages:

• General — Contains components that you use to specify the class, name, ID,
contents, and behaviors of the dialog.

• Title — Contains components that you use to specify the title text,
justification, size, title bar button, and border display of the dialog title.

• Translation — Contains components that you use to specify versions of dialog
label text in different natural languages.

To use a tab page, click its tab button to bring it forward so that all its components
are visible.

General Tab Page of Edit Dialog Dialog

The General tab page of the Edit Dialog dialog looks like this:
102

Editing Master Dialogs
The follow table lists and describes the components on the General tab page:

Components on General Tab Page of Edit Dialog Dialog

Component Description

Class (read-only) Displays the class of the dialog
that you are editing.

Name (optional) Displays the current name of the
dialog that you are editing. Changing the
displayed value updates the name of the
dialog. This field does not require a value. Its
contents, if any, must be a valid symbolic
name.

Id (optional) Displays the ID of the dialog that
you are editing. Changing the ID updates the
id attribute of the dialog.

Specifying an ID for a dialog provides a way
to identify the dialog as the dialog on which to
run a set of actions. In the Edit Dialog Actions
dialog, one of the options for identifying the
target dialog is by its ID.

Standard Buttons (optional) The toggle buttons below the label
Standard Buttons enable you to add standard
OK, Apply, and Cancel buttons to the dialog
that you are editing.

OK Selecting this button adds an OK button to the
dialog that you are editing. The OK button is
preconfigured with the actions uil-call-
conclude-method, uil-unsimulate-play-mode,
uil-hide-dialog, and uil-release-dialog.

If you do not select this button, the OK button
is removed from the dialog that you are
editing.

Apply Selecting this button adds an Apply button to
the dialog that you are editing. The Apply
button is preconfigured with the action uil-
call-conclude-method.

If you do not select this button, the Apply
button is removed from the dialog that you
are editing.
103

Cancel Selecting this button adds a Cancel button to
the dialog, if the dialog does not already
contain a Cancel button. The Cancel button is
configured with the default actions uil-
unsimulate-play-mode, uil-hide-dialog, and uil-
release-dialog.

If you turn off this button and click OK or
Apply, the Cancel button is removed from the
dialog that you are editing.

Display Dialog at Specify the x-item and y-item coordinates at
which the dialog is displayed in the edit boxes
labeled X and Y.

Window Style (required) The radio buttons below the label
Window Style (Motif™, Windows™) indicate
the current window style used for the
graphical objects on the dialog that you are
editing. If the dialog contains graphical
objects in both styles, neither radio button is
selected.

You can change the window style of the
graphical objects in the dialog by selecting the
Motif™ or Windows™ radio button. GUIDE
converts all graphical objects in the dialog to
the new window style.

Create Pushbutton
to Launch Dialog

Clicking this button creates a push button that
users can click to open the dialog that you are
editing. The push button appears on an
automatically created workspace, and can be
transferred to any dialog or workspace.

By default, the push button is named
Launch id, where id is the id of the dialog that
you are editing. When a user clicks the button,
the actions for updating and displaying a
dialog are run. By default, these actions are
uil-call-update-method, uil-simulate-play-
mode, and uil-show-managed-dialog.

Components on General Tab Page of Edit Dialog Dialog

Component Description
104

Editing Master Dialogs
Title Tab Page of Edit Dialog Dialog

The Title tab page of the Edit Dialog Dialog looks like this:

Editor Behaviors Clicking the Editor Behaviors button opens
the Editor Behaviors dialog. See for more
information about this dialog, see Editor
Behaviors Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the dialog.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks

More Options Clicking on this button opens the Dialog
Options dialog. See the following section for
information about this dialog.

Components on General Tab Page of Edit Dialog Dialog

Component Description
105

The follow table lists and describes the components on the Title tab page:

Components on Title Tab Page of Edit Dialog Dialog

Component Description

Title (optional) Indicates whether or not the dialog
that you are editing has a title. If toggled off,
the dialog title object is deleted from the
dialog that you are editing. If toggled on, a
title is created using the text that you enter in
the edit box to the right of the title toggle
button.

Title Justification Select the Center, Left, or Right radio buttons
to specify how the dialog title is justified in
the title bar across the top of the dialog.

Title Size Select the Small, Medium, or Large radio
button to specify the size of the dialog title.

Title bar button Selecting this button causes the hide button
on the dialog title to be displayed.

Title bar button
callback

You can specify a non-default callback
procedure that is invoked when a user clicks
the hide button. If you do not specify a non-
default callback procedure, the procedure
uil-title-button-callback is invoked when a user
clicks the hide button.

For information about hide buttons on dialog
titles, see Using the Hide Button on Title Bars.

Show border Selecting this button creates a border and
attaches it to the edges of the dialog that you
are editing. When a dialog has a border,
automatic shrink-wrapping is activated.

If you do not select this button, the border is
deleted.

While borders on dialogs are optional, they
are needed if the dialog has a title. The title
maintains its position by keying off the
location of the anchored dialog border.
106

Editing Master Dialogs
Translation Tab Page of Edit Dialog Dialog

The Translation tab page of the Edit Dialog dialog looks like this:

The following table describes the components on the Translation tab page of the
Edit Dialog dialog:

Components on Translation Tab Page of Edit Dialog Dialog

Component Description

Translate dialog Select this button to enable the following
components in the dialog.

GFR text resource
group

The GFR text resource group that provide the
text in different natural languages for the
labels of UIL controls in the master dialog that
you are editing.

Set Up GFR Group
and Local Resources

Opens the Setup Translation Text dialog. For
information about how to use this dialog, see
Internationalization of Dialogs.
107

Dialog Options Dialog

To open the Dialog Options dialog, click the More Options button in the Edit
Dialog dialog. The Dialog Options dialog looks like this:

The following table describes the components of the Dialog Options dialog:

Components of Dialog Options Dialog

Component Description

Allow field edit (optional) When this button is selected, users
can navigate to an edit box in this dialog by
pressing the tab, return, or abort key.
Navigating to an edit box opens the field
editor on it.

When this button is not selected, users can
open the field editor on this edit box only by
clicking on the edit box.
108

Editing Master Dialogs
Movable workspace Indicates whether or not users can move this
dialog.

When the Movable workspace toggle button
is off, the position of dialogs is locked. Users
cannot reposition them. The only way to
dismiss a dialog in the state is to select its OK
or Cancel button.

When the Movable workspace toggle button
is on, users can reposition dialogs by dragging
them.

Allow multiple copies Indicates whether or not the user is allowed to
display more than one copy of the master
dialog that you are editing at a time on the
same G2 window.

When the Allow multiple copies toggle button
is selected, an unlimited number of copies of
the master dialog can be displayed on the
same G2 window at the same time.

When the Allow multiple copies toggle button
is not selected, only one copy of the master
dialog that you are editing can be displayed at
a time.

Update when managed If this button is selected, the update method
(if any) that is run on this dialog when the
dialog is displayed updates all UIL objects on
the dialog, regardless of how the UIL objects
are configured for updates.

If this button is not selected, the update
method does not override the update
configurations of individual UIL objects on
the dialog.

Components of Dialog Options Dialog

Component Description
109

Use default positioning If this option is set to True, the dialog, when
first launched, appears at the default screen
position indicated by the uil-x-position and
uil-y-position attributes (0,0). If this option is
set to off, the location at which the dialog was
last displayed is written to uil-x-position and
uil-y-position, and the dialog is displayed at
this position the next time it is launched.

Allow lift to top If this option is selected, the dialog is lifted
above other dialogs or objects when a user
clicks on its title or background. If this option
is not selected, clicking on the dialog does not
lift it.

Dialog bin instance
limit

Specifies the maximum number of copies of
this dialog that can collect in the dialog bin.
Copies can be created in excess of this limit,
but they are deleted when they are dismissed,
rather than saved in the pool.

If Dialog instance pool limit is set to zero, a
slight delay occurs each time the dialog is
requested. The delay occurs because GUIDE
must make a copy of the dialog for each
request. The watch cursor is displayed in the
upper-left corner until the dialog appears.

If Dialog instance pool limit is set to one, the
delay occurs only the first time the dialog is
accessed. After that, a copy of the dialog is
retrieved from the dialog bin and displayed
whenever the dialog is requested. This
eliminates the delay that occurs when GUIDE
must make a copy of the dialog.

A good practice is to allow at least as many
dialog instances as users of the system.

Components of Dialog Options Dialog

Component Description
110

Editing Master Dialogs
Editor Behaviors Dialog

In the Editor Behaviors dialog, you can specify what happens when a user presses
the Tab, Return, and Abort keys while editing an edit box. You can also choose
whether or not special editor menus appear when a user edits the edit boxes.

The behaviors that you specify in the Editor Behaviors dialog apply only to edit
boxes on the dialog that you are currently editing.

To open the Editor Behaviors dialog, click the Editor Behaviors button in the Edit
Dialog dialog. The Editor Behaviors dialog looks like this:

Temporary storage
object

(optional) If you are using temporary storage
objects with this dialog, enter the name of the
class that you have defined for temporary
storage objects. Whenever a copy of the dialog
that you are editing is reserved, an object of
this class is created for the dialog to use as its
temporary storage object. The default value is
the symbol unspecified. This field does not
require a value. Its contents, if any, must be a
valid symbolic name.

For information about temporary storage
objects, see Creating Temporary
Storage Objects.

Components of Dialog Options Dialog

Component Description
111

The following table describes the components of the Editor Behaviors dialog:

Components of Editor Behaviors Dialog

Component Description

Field editor The toggle button below the label Field editor,
Display menus on edit, controls the display of
menus in the editor for edit boxes.

Display menus on edit When the Display menus on edit button is
selected, the editor has special editor buttons
and menus.

This option is useful when edit menus are
needed to support internationalization or for
other purposes.

When the Display menus on edit toggle
button is not selected, the editor does not have
the special editor buttons and menus.

Tab key behavior Select one of the radio buttons below the label
Tab key behavior to specify what happens
when a user clicks the Tab key while editing
the contents of an edit box.

End and tab
to next row

When this button is selected, clicking the tab
key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the leftmost edit
box in the next row.
112

Editing Master Dialogs
End and tab to
next field

When this button is selected, clicking the tab
key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the next edit box.

The ordering for edit boxes is based on
workspace position. Ordering starts at the
top left corner and progresses right and
downward to the bottom right corner.

End and exit
field edit

When this button is selected, clicking the tab
key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Attempts to run the actions associated
with the default button on the dialog. If
there is no default button, then the editor
is shut down.

Return key behavior Select one of the radio buttons below the label
Return key behavior to specify what happens
when a user presses the Return key while
editing the contents of an edit box.

End and tab to
next row

When this button is selected, pressing the
Return key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the leftmost edit
box in the next row.

Components of Editor Behaviors Dialog

Component Description
113

End and tab to
next field

When this button is selected, pressing the
Return key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the next edit box.

The ordering for edit boxes is based on
workspace position. Ordering starts at the
top left corner and progresses right and
downward to the bottom right corner.

End and exit
field edit

When this button is selected, pressing the
Return key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Attempts to run the actions associated
with the default button on the dialog. If
there is no default button, then the editor
is simply shut down.

Abort key behavior Select one of the radio buttons below the label
Abort key behavior to specify what happens
when a user presses the Abort key (Ctrl + a)
while editing the contents of an edit box.

Cancel and tab
to next row

When this button is selected, pressing the
abort key does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the next edit box in
the next row.

Components of Editor Behaviors Dialog

Component Description
114

Controlling Dialogs with Actions
Controlling Dialogs with Actions
Actions are procedures that perform operations on a dialog, such as opening or
closing the dialog, or updating or concluding the values in it.

UIL provides system-defined actions that perform all the commonly required
operations on dialogs. You can create customized actions to perform any
specialized operations that your application requires.

You can run actions on dialogs through push buttons or by invoking the
procedure uil-control-dialog-callback.

When action buttons and procedures invoke uil-control-dialog-callback, this
procedure references a named action description array. An action description
array is an object that stores a list of actions. The procedure runs the actions listed
in the action description array on a specified dialog. For information about how to

Cancel and tab
to next field

When this button is selected, pressing the
Abort key (Ctrl + a) does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Refocuses the editor to the next edit box.

The ordering for edit boxes is based on
workspace position. Ordering starts at the top
left corner and progresses right and
downward to the bottom right corner.

Cancel and
exit field edit

When this button is selected, pressing the
Abort key (Ctrl + a) does the following things:

1 Closes the edit session on the current edit
box.

2 Runs the unselection method, if defined,
for the edit box.

3 Attempts to run the actions associated
with the default button on the dialog. If
there is no default button, then the editor
is shut down.

Components of Editor Behaviors Dialog

Component Description
115

invoke uil-control-dialog-callback from an action button or procedure, see
Launching Dialogs.

uil-control-dialog-callback is the default callback of push buttons. However, the
actions that a push button runs on a dialog are stored in the uil-action-description
attribute of the push button, rather than in an action description array.

Specifying the Actions Run by a Push Button

The OK, Apply, and Close push buttons that appear on a master dialog by default
reference appropriate sets of actions. Your application can use the OK, Apply, and
Close push buttons with their default actions for almost all purposes.

You can change the set of actions run by any push button, using the Edit Dialog
Actions dialog, which edits list of actions referenced by the uil-action-description
attribute of the push button. For information about how to use this dialog, see
Edit Dialog Actions Dialog.

To edit the actions run by a push button:

1 Select edit array from the menu of the push button.

This opens the Edit Array dialog, in which you can specify the actions that
you want to run.

2 Click uil-action-description in the Arrays scroll area in the Edit Array dialog.

The actions currently referenced by the uil-action-description attribute are
listed in the Elements scroll area in the Edit Array dialog. You edit this list to
specify which actions are run when a user clicks on the push button.

3 To add an action to uil-action-description, enter its name in the Element field
and click Apply.

4 To delete an action from uil-action-description, select the name of the action in
the Elements scroll area and click the Remove button.

5 Click OK to apply your changes and close the Edit Array dialog.

Note To use the Edit Array dialog to associate actions with a push button, you must
know the names of all the actions that you want to use. The Edit Array dialog
does not prompt you with lists of existing actions or provide any other help.
116

Controlling Dialogs with Actions
Creating an Action Description Array

To create an action description array:

1 Select the following choice from the GUIDE menu bar:

Item > GUIDE Objects > Action Array

The icon for the action description array becomes attached to your cursor. You
can drop it on any workspace. The action description array looks like this:

You can also add action description arrays by:

• Clicking on the More Options button on the G2 GUIDE palette to open the
More Options palette. In the More Options palette, click the Action
Description Array icon. Drag the icon to the workspace where you want to
create the action description array, and click again.

• Opening the KB Workspace menu on a workspace and choosing:

New Object > choose a class > uil-action-description-array

Each action description array has an attribute named uil-action-specifics,
which points to a symbol array that stores the names of the actions. The
actions are listed in the initial-values attribute of the symbol array. The
following figure illustrates an action description array, its table, and the table
of the symbol array stored in the uil-action-specifics attribute.
117

2 You can edit an existing action description array by choosing edit action
description from its menu.

This opens the Customize Dialog Actions dialog, in which you can specify the
actions that are included in the action description array. For information about
this dialog, see Customize Dialog Actions Dialog.

Invoking uil-control-dialog-callback

Once you have defined an action description array, you can run the actions in the
action description array using the procedure uil-control-dialog-callback.

You can invoke uil-control-dialog-callback from an action button or a procedure.

The following figure illustrates an action button, Validate and Conclude, that
starts uil-control-dialog-callback to run the actions in my-action-list on a dialog
whose ID is employees-dialog:

For a complete description of uil-control-dialog-callback, see the G2 GUIDE/UIL
Procedures Reference Manual.

Creating Systems of Cascaded Dialogs
It is often convenient or necessary for users to be able to open one dialog from
within another dialog. Dialogs that are related to each other in this way are said to
be cascaded. GUIDE enables you to combine the dialogs that you create into
systems of cascaded dialogs.
118

Creating Systems of Cascaded Dialogs
When one dialog is opened from within another dialog, the first open dialog is
known as the parent dialog, and the dialog that is opened from within the parent
dialog is called the child dialog.

Users can open child dialogs from within their parent dialogs by clicking push
buttons. Dismissing a parent dialog triggers the actions associated with the child
dialog’s Cancel button. To ensure that changes made on a child dialog are
applied, a user can dismiss a child dialog by selecting the equivalent of its OK
button before dismissing the parent dialog.

The initiating object of a dialog is the object that launches the dialog. For
example, when a user chooses a menu choice from the menu of the G2 object, that
object becomes the initiating object of the dialog. In a series of cascaded dialogs,
all dialogs have the same initiating object — the object that launches the first
dialog in the series.

To close a child dialog and return control to its parent dialog, users click a push
button with standard OK or Cancel functionality.

To make it possible to open a dialog by clicking a push button, you edit the push
button to specify that:

• The actions associated with the push button are directed to the dialog that you
want to open

• The actions associated with the push button include opening and displaying
this target dialog

For information about how to do this, see System-Defined Actions for Dialog
Processing. There is no limit on the number of child dialogs that a parent dialog
can have. However, a child dialog can have only one parent. A system of
cascaded dialogs can include as many levels as your G2 application requires.

Note It is not recommended practice to use a navigation button to open a dialog. A
dialog that is opened by a navigation button does not have full GUIDE support
for field editing, automatic updating and concluding of values, and other
essential features of the GUIDE dialog system.

Automatically Creating a Push Button for Starting a Dialog

You can create a push button for starting a dialog by clicking Create a Pushbutton
to Launch Dialog button in the Edit Dialog dialog. This creates a push button that
is automatically configured to start the dialog that you are editing.

You can transfer this push button to the subworkspace of a different master
dialog.
119

To transfer a push button to a master dialog, follow these steps:

1 Select transfer from the menu of the push button.

2 Move the pointer to the subworkspace of the master dialog to which you want
to add the push button.

3 Click to drop the push button on the subworkspace.

Relations Among Cascaded Dialogs

For each UIL object, GUIDE provides a set of relations that define the possible
relationships between that UIL object and other UIL objects. These relations make
it possible for users to traverse the parent and child hierarchy of cascaded dialogs,
for data to pass back and forth among dialogs, and for users to access UIL objects
procedurally.

For information about the relations among cascaded dialogs, see the
G2 GUIDE/UIL Procedures Reference Manual.

Specifying a Default Button for a Dialog
You can designate a push button on each dialog to be the default button for that
dialog. The default button is activated when the user presses the Return key.

For information about how to designate a push button as the default button for a
dialog, see Edit Pushbutton Dialog.

Using Dialogs on Multiple Windows
Users sharing a knowledge base can open different copies of the same GUIDE
dialog on different G2 windows. UIL provides API calls for dialogs and their
windows. All API calls contain a window argument enabling GUIDE to
determine the exact dialog to use in the procedure.

Each time a dialog is reserved, a copy is retrieved from the dialog bin or
generated by cloning the master if no copies are available. This dialog is then
assigned to the window specified in the window argument of the reserve dialog
operation. GUIDE automatically associates the dialog with this window through
the relation a-uil-dialog-presently-in-use-on-window.

If, after the dialog is released, it is accessed by a different user, and a different
window argument is passed into the reserve dialog operation, the dialog is re-
assigned to the new window.
120

Creating and Deleting Permanent Dialog Copies
Creating and Deleting Permanent Dialog
Copies

You can create and delete permanent dialog copies using the GUIDE menu
choices:

Tools > Create Permanent Dialog Copies
Tools > Delete Permanent Dialog Copies

These menu choices enable you to create and delete permanent copy dialogs that
are remain in your GUIDE application when you reset or save your KB.

For more information about how GUIDE uses dialog copies to provide more
efficient dialog of dialogs, see Launching Dialogs.

Internationalization of Dialogs
GUIDE/UIL supports the internationalization of dialogs through the use of G2
Foundation Resources (GFR). Through GFR, GUIDE can maintain different
natural language versions of the text in UIL controls on dialogs, making it easy to
change the text displayed to any desired natural language.

GUIDE can translate the text in UIL objects of the classes uil-grmes or uil-button, or
any subclass of these buttons. These classes include the following UIL controls:

• Edit boxes

• Text objects

• Message objects

• All buttons

GFR Objects that Support Internationalization

To support internationalization, GUIDE uses two classes of GFR objects: GFR Text
Resource Groups (gfr-text-resource-group) and GFR Local Text Resources
(gfr-local-text-resource):

• A GFR Text Resource Group serves as a unifying point for all the possible
language versions. The GFR Text Resource Group used by a dialog is
specified in the uil-gfr-text-resource-group attribute of the dialog.

• A GFR Local Text Resource contains label text in a specific language and the
name of a gfr-text-resource-group with which it is associated.
121

For example, if your application supports English, Spanish and French users, you
need at least one gfr-text-resource-group and three gfr-local-text-resource objects
— one for the English text, one for the Spanish, and one for the French:

The dialog my-dialog references a gfr-text-resource-group, which in turn is
referenced by each of the three gfr-local-text-resource objects. Each gfr-local-text-
resource object holds the name of a file that contains a textual lookup table,
indexed by the same constants used in the uil-label-constant attributes of the UIL
objects to be translated.

For example, if a UIL object references the constant k-red in its uil-label-constant
attribute, that UIL object displays the text “Red”, “Rojo”, or “Rouge”, depending
on whether English, Spanish, or French is the currently chosen natural language.
122

Internationalization of Dialogs
The following figure illustrates the tables for the GFR objects:

The file /home/ex-spn.txt contains the following:

EXAMPLE-GROUP-RESOURCE
7.0
SPANISH
K-HOUSE, "Casa"
K-COLOR, "Color"
K-BLUE, "Azul"
K-GREEN, "Verde"
K-RED, "Rojo"

UIL Object Attributes that Support
Internationalization

Dialogs and text objects have attributes that support the internationalization of
dialogs:

• uil-label-constant, an attribute of the classes uil-text and uil-button, and any of
their subclasses. Thus, text objects and all buttons have this attribute. The
uil-label-constant attribute stores a symbol used as a look-up constant.

• uil-translate-dialog, an attribute of dialogs. This attribute contains a truth-
value, which when set to true causes UIL to attempt to translate the text on the
dialog before displaying it to the user. UIL performs the translation during
execution of the uil-show-managed-dialog action.
123

• uil-gfr-text-resource-group, an attribute of dialogs. This attribute specifies the
gfr-text-resource-group used by this dialog to support internationalization.

How the Translation Works

GFR and GUIDE follow these steps to translate a dialog when the dialog is
launched:

1 Find the user’s current language.

a Look at the g2-window-specific-language, which you can change when
you enter Ctrl + y.

b If the g2-window-specific-language is none, look at the top-level KB’s
current language, which you can change in the Language Parameters
system table. G2 must know about this language; by default, it is English.

2 Use the current language to translate the dialog.

a Find the gfr-text-resource-group associated with the dialog.

b Search all gfr-local-text-resources associated with the gfr-text-resource-
group, until you find one that matches the current language.

c If no match exists, check the use-default-language flag on the gfr-text-
resource-group. If the flag is true, use the local resource that matches the
default language in the gfr-text-resource-group; if it is false, signal an
error.

d Using the matched gfr-local-text-resource’s lookup table, find text strings
for each uil-text upon the dialog.

The UIL procedure uil-translate-dialog handles the translation of the text of
dialogs. For information about this procedure, see the G2 GUIDE/UIL Procedures
Reference Manual.
124

Internationalization of Dialogs
Creating GFR Objects to Support
Internationalization

GUIDE provides editors for creating gfr-text-resource-group objects and gfr-local-
text-resource objects for your application to use.

The Edit Dialog dialog contains options that access the attributes you need for
translation, using GFR:

The options on the Edit Dialog dialog that support internationalization are:

• A toggle button labeled Translate dialog

• An edit box labeled GFR text resource group

• A push button labeled Set Up Gfr Group and Local Resources

When you toggle off the Translate dialog toggle button, you disable the Gfr text
resource group edit box and the Setup Gfr Group and Local Resources
pushbutton. The Translate dialog attribute must be set to true (toggle on) to
enable UIL to perform translation.

Make sure the Gfr text resource group edit box contains the name of a gfr-text-
resource-group object. You can create and edit gfr-text-resource-group objects and
gfr-local-text-resource objects from the Setup Translation Text dialog that you
launch by clicking the Set Up Gfr Group and Local Resources button.

The Setup Translation Text Dialog enables you to select the GFR local text
resource that provides the label text for a master dialog.
125

To open the Setup Translation Text Dialog:

1 Click the Translate dialog button in the Edit Dialog dialog.

2 Click the Set Up GFR Group and Local Resources button:

Click the New button directly to the right of the scroll area labeled Gfr Text
Resource Groups to launch a dialog that enables you create a new gfr-text-
resource-group:

After you type in the name for the new gfr-text-resource-group, and specify the
default language and whether or not to use the default language if the specified
language is not found, click OK to create a gfr-text-resource-group object, and
place it just above the dialog being edited by the Edit Dialog dialog. The name of
the gfr-text-resource-group is updated into the scroll area labeled Gfr Text
Resource Groups on the Setup Translation Text dialog.
126

Internationalization of Dialogs
Note Selecting a gfr-text-resource-group from the GFR Text Resource Groups scroll
area fills in the scroll area labeled Gfr Local Text Resources with entries for each
gfr-local-text-resource that is associated with the selected gfr-text-resource-group.
Clicking the New button directly to the right of the scroll area labeled Gfr Local
Text Resources, launches a dialog that handles creating new gfr-local-text-
resource objects.

After you type in the language for the gfr-local-text-resource, and specify the file
location and whether or to preload the resource when starting G2, select OK to
create a gfr-local-text-resource object and place it above and to the right of the
dialog being edited by the Edit Dialog dialog. The file location and language
information is concatenated and added to the scroll area labeled Gfr Local Text
Resources on the Setup Translation Text dialog.

Selecting a message in the Gfr Local Text Resources scroll area enables the three
scroll areas and edit boxes on the lower half of the Setup Translation Text dialog.

• The scroll area labeled Dialog Text fills in with the labels or message contents
of uil-grmes objects that can be translated.

• The scroll area labeled Label Constant fills in with the value found in the
uil-grmes attribute, uil-label-constant. By default, this value is unspecified.

• The scroll area labeled Translated Text fills in when a match is found for the
label constant in the selected gfr-local-text-resource.

To modify label constant and translated text values:

 Type the new text into the edit box directly above the scroll area and then do
one of the following:

• Select the icon button with the down arrow to the far left of the row of edit
boxes.

• Tab out of the edit box.

• Press the Return key.

Click the Edit button directly to the right of the scroll area labeled Gfr Local Text
Resources to launch the Edit Gfr Local Text Resource dialog. This dialog enables
127

you to modify the attributes of the gfr-local-text-resource. For information about
how to use this dialog, see the G2 Foundation Resources User’s Guide.

guidemo.kb contains a working example of a dialog that can be translated from
English to Spanish:

Select the navigation button labeled Internationalized Dialog to take you to the
working example:

For more information about current GFR functionality, see the G2 Foundation
Resources User’s Guide.
128

Summary of Dialog Menu Choices
Summary of Dialog Menu Choices

Menu Choice Description

table Shows the G2 table for the dialog.

go to subworkspace Opens the subworkspace of this dialog. The
subworkspace is the dialog that users see and
use.

transfer Places the dialog on the mouse, so that you can
drop it on a different workspace.

name Opens an editor in which you can specify or edit
a name for this dialog.

rotate/reflect Opens a menu of rotation and reflection options:
90 clockwise, 90 counterclockwise, 180, left-right
reflection, up-down-reflection.

change size Opens a G2 dialog providing change size
options.

color Opens a series of G2 menus enabling you to
change colors of regions of the dialog icon.
GUIDE provides the Configuration Editor as the
recommended way to change icon regions.

lift to top Opens a dialog on top of another object on a
workspace.

drop to bottom Drops a dialog behind another object on a
workspace.

disable/enable Disables or enables the dialog.

describe Shows a description of the object and its
relations.

go to master dialog
object

Closes this menu and returns focus to the master
dialog.

edit list Do not select this menu choice.

edit configuration Opens the GUIDE Configuration Editor. For
information about this editor, see Using The
GUIDE Configuration Editor.
129

configure Applies the current configuration to the dialog.
This menu choice is visible only when the dialog
is disabled.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the dialog. This menu choice
is visible only when the dialog is enabled.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the dialog is enabled.

clone. Makes a copy of the dialog and places it next to
the original dialog on the workspace. This menu
choice is visible only when the dialog is enabled.

go to dialog bin Shows the workspace used to store dialog
copies of the dialog. This menu choice is visible
only when the dialog is enabled.

highlight copies Highlights copies of the dialog in the dialog bin
or on other workspaces to distinguish them
from master dialogs. This menu choice is visible
only when the dialog is enabled.

delete copies Clears copies of dialog from dialog bin. This
menu choice is visible only when the dialog is
enabled.

initialize Calls the initialization method of the dialog.
This menu choice is visible only when the dialog
is enabled.

show dialog Displays the subworkspace of this master
dialog. This menu choice is visible only when
the dialog is enabled.

edit dialog Open the Edit Dialog dialog, in which you can
edit the various attributes of the dialog. This
menu choice is visible only when the dialog is
enabled.

rotate tab
pushbuttons

Rotates the placement of tab push buttons 90
degrees clockwise (from top of tab page, to right
side, to bottom, to left side, and so on).

Menu Choice Description
130

7

Launching Dialogs
Describes how to launch a dialog from an action button, a user-menu choice, a
user-defined procedure, a push button, or a rule.

Introduction 131

Pooling Reusable Dialogs for Quick Retrieval 132

Procedures that Launch Dialogs 133
uil-control-dialog-callback 135
uil-start-dialog 137
uil-start-or-refocus-dialog 138
uil-start-dialog-processing 139

Launching a Dialog from an Action Button 140

Launching a Dialog from a User-Defined Procedure 142

Launching a Dialog from a User Menu Choice 145

Launching a Dialog from a Push Button 147

Launching a Dialog from a Rule 148

Introduction
Users can launch a dialog from an action button, a user menu choice, a user-
defined procedure, a push button, or a rule. All these techniques invoke system-
defined procedures to launch dialogs. The procedures specify the dialogs to
launch by their IDs.
131

Pooling Reusable Dialogs for Quick Retrieval
If you want to use dialogs in your user interface, you must create templates, or
master dialogs. The dialogs that users see are copy dialogs, which GUIDE creates
by cloning master dialogs. All the UIL controls that you add to a master dialog,
such as edit boxes, scroll areas, and push buttons, are reproduced in each copy
that GUIDE makes of the master.

Using Dialogs in the Dialog Bin

GUIDE stores copy dialogs in a workspace known as the dialog bin. The dialog
bin is designed to enable G2 applications to retrieve copy dialogs quickly and
efficiently. To view the dialogs in the dialog bin, select View > Dialog Bins >
GUIDE from the GUIDE menu bar.

When a G2 application requests a dialog, for example, when a user clicks on a
button or selects a user menu choice designed to open the dialog, GUIDE looks in
the dialog bin for a copy of the requested master dialog. If GUIDE finds a copy, it
displays it. If GUIDE does not find a copy, it clones the master dialog and
displays the resulting copy. GUIDE creates additional copies of a master dialog
only when there are no copies in the dialog bin to meet requests for dialogs.

The process of creating and displaying a copy dialog, or displaying an existing
copy dialog, is called reserving a dialog.

When a user closes a dialog — for example, by clicking the Cancel or OK button
on the dialog — GUIDE places the copy in the dialog bin. Your G2 application can
reuse these copies from the dialog bin whenever it needs them.

Users can open copies of the same master dialog on any number of different G2
windows that are running on the same knowledge base.

Copies of a single master dialog can accumulate in the dialog bin until a limit is
reached. This limit is specified by an attribute of the master dialog (uil-dialog-
instance-pool-limit). Copies can be created and displayed in excess of this limit,
but they are deleted when users dismiss them, rather than being saved in the bin.
For information about how to set this limit for a master dialog, see Dialog Options
Dialog.

By default, copies of a master dialog are permanent. Permanent copies are not
deleted when you restart or reset G2. A permanent copy is the first copy to be
used when a dialog is reserved. If no permanent copies are available to meet a
request, additional copy dialogs are cloned from the master dialog.

Note Permanent copies are deleted if their subworkspaces are displayed when you
reset G2. To preserve the permanent copies, close them before you reset.
132

Procedures that Launch Dialogs
Each master dialog has an attribute named uil-origin that is automatically set to
the symbol master. Each copy dialog has an attribute named uil-origin that is
automatically set to the symbol permanent.

Releasing and Returning Dialogs

When an application finishes using copy dialogs, it can either release or return the
dialogs.

Releasing a copy dialog returns the copy dialog to the dialog bin, so that it
becomes available for use by other users. To release a copy dialog, run the
uil-release-dialog action on the dialog.

Returning a copy dialog returns control of the dialog to the procedure that
launched the dialog, but does not return the dialog to the dialog bin. You can
return a copy dialog when the procedure that launched the copy needs to perform
processing on the contents of the copy before allowing other users to use the copy.
To return a dialog, run the uil-return-dialog action on the dialog. The procedure to
which the copy is returned should itself call uil-release-dialog to release the copy
when it finishes processing the copy.

For more information about how to run actions on dialogs, see Push Buttons.

Creating and Deleting Permanent Copies

You can create and delete permanent copies of all your master dialogs by
selecting the following choices from the GUIDE menu bar:

Tools > Create Permanent Dialog Copies > GUIDE
Tools > Delete Permanent Dialog Copies > GUIDE

You can also delete permanent copies of a master dialog by choosing delete
copies from the menu of the master dialog.

Procedures that Launch Dialogs
Every technique for launching a dialog must invoke the procedure uil-control-
dialog-callback either directly, or indirectly through calls to other procedures. The
procedure uil-control-dialog-callback is responsible for displaying a copy of the
master dialog that you launch. The process of creating and displaying a copy
dialog, or displaying an existing copy dialog, is called reserving a dialog.

Push buttons invoke uil-control-dialog-callback directly.

Action buttons, user menu choices, and user-defined procedures can invoke
uil-control-dialog-callback directly, or indirectly through calls to the following
procedures:
133

• uil-start-dialog, which passes a system-defined set of actions to uil-control-
dialog-callback for launching the dialog.

• uil-start-or-refocus-dialog, which passes a set of actions to uil-control-dialog-
callback for launching the dialog or for updating the dialog if it is already
displayed.

• uil-start-dialog-processing, which can run different sets of actions on dialogs,
depending on whether it launches a dialog or refocuses a dialog that is
already displayed.

The following sections describe these procedures.
134

uil-control-dialog-callback
uil-control-dialog-callback
Reserves a dialog and runs actions on the dialog.

Synopsis

uil-control-dialog-callback
(target-object: item-or-value, target-attribute: symbol,
 action-array: item-or-value, initiating-item: item-or-value,
 window: class g2-window

-> {dialog: item-or-value | dialog-not-found: symbol},
{button: item-or-value | none: symbol}

Argument Description

target-object The dialog on which actions are run. Specify
either:

• A text value representing a valid dialog
ID, enclosed in quotation marks.

• the symbol host-dialog

Specify the symbol host-dialog if you are
invoking uil-control-dialog-callback from
a button on a dialog and you want to run
actions on the dialog that contains the
button.

target-attribute Not used. Specify the symbol none.

action array An action description array that specifies
the actions to run on the dialog. For
information about how to create action
description arrays, see Creating an Action
Description Array.
135

Description

uil-control-dialog-callback reserves the dialog with a specified ID and sets up an
event loop for the dialog. The event loop processes any actions that are called to
run on the dialog. Actions perform operations such as showing the dialog and
updating its values.

You can specify actions in the call to uil-control-dialog-callback, or pass actions to
uil-control-dialog-callback through other procedures that invoke uil-control-dialog-
callback.

uil-control-dialog-callback analyzes the button’s uil-target-object, which is either a
dialog name, ID, or the symbol host-dialog, and adds its actions into the event
handler for the target dialog. If no event handler is active, it starts one.

Caution An action fails if it attempts to invoke uil-control-dialog-callback on the target
dialog of the push button that invokes the action itself.

initiating-item The object that launches this dialog (for
example, an action button, push button, or
user menu choice), or the symbol none.

You can specify this item if you invoke
uil-control-dialog-callback from a user menu
choice.

window The G2 window on which the dialog is
managed.

You can specify this window if you invoke
uil-control-dialog-callback from a user menu
choice.

Note: This procedure creates an inoperable
dialog if window specifies an invalid G2
window. An invalid G2 window is one
whose g2-connection-status is not equal to
the symbol connected.

Return Values Description

dialog The dialog or the symbol dialog-not-found.

button The button that was activated on the dialog,
or the symbol none.

Argument Description
136

uil-start-dialog
uil-start-dialog
Launches a dialog, using a simplified set of arguments.

Synopsis

uil-start-dialog
(dialog-id: text, initiating-item: item-or-value,
 window: class g2-window)

-> {dialog: item-or-value | dialog-not-found: symbol},
{button: item-or-value | none: symbol}

Description

This procedure invokes uil-control-dialog-callback to display the dialog whose ID
matches the specified dialog-id on the specified window.

uil-start-dialog passes the following actions to uil-control-dialog-callback:

uil-call-update-method
uil-simulate-play-mode
uil-show-managed-dialog

Argument Description

dialog-id The ID of the dialog to display.

initiating-item The item responsible for launching the
dialog or the symbol none.

You can specify this item if you invoke
uil-start-dialog from a user menu choice.

window The window on which to manage the dialog.

You can specify this window if you invoke
uil-start-dialog from a user menu choice.

Return Value Description

dialog The dialog, or the symbol dialog-not-found.

button The button that was activated on the dialog,
or the symbol none.
137

uil-start-or-refocus-dialog
Launches or updates a dialog.

Synopsis

uil-start-or-refocus-dialog
(dialog-id: text, initiating-item: item-or-value,
window: class g2-window)

-> {dialog: item-or-value | dialog-not-found: symbol},
{button: item-or-value | none: symbol}

Description

uil-start-or-refocus-dialog first checks to see if a dialog whose ID matches dialog-id
is currently displayed on the specified window. If so, the dialog is updated to
display information associated with the new initiating-item.

If uil-start-or-refocus-dialog does not find a dialog with the specified ID on the
window, it searches the dialog bin for a copy dialog to display. If the dialog bin
does not contain a copy dialog, uil-start-or-refocus-dialog clones the master dialog
and displays the resulting copy dialog.

Argument Description

dialog-id The ID of the dialog to display.

initiating-item The item responsible for launching dialog or
the symbol none.

You can specify this item if you invoke
uil-start-or-refocus-dialog from a user menu
choice.

window The window on which to manage the dialog.

You can specify this window if you invoke
uil-start-or-refocus-dialog from a user menu
choice.

Return Value Description

dialog The dialog, or the symbol dialog-not-found.

button The button that was activated on the dialog,
or the symbol none.
138

uil-start-dialog-processing
uil-start-dialog-processing
Launches or updates a dialog. Runs different actions on the dialog, depending on
whether it launches or updates the dialog.

Synopsis

uil-start-dialog-processing
(dialog-id: text, initiating-item: item-or-value, window: class g2-window,

start-actions: item-or-value, refocus: truth-value,
conclude-values: truth-value, refocus-actions: item-or-value,
prompt-for-conclude: truth-value)
-> {dialog: item-or-value | dialog-not-found: symbol},

{button: item-or-value | none: symbol}

Argument Description

dialog-id The ID of the dialog to display or refocus.

initiating-item The item to bind as initiating-object or the
symbol none.

You can specify this item if you invoke
uil-start-dialog-processing from a user menu
choice.

window The window on which to manage the dialog,
or to check for if already managed.

You can specify this window if you invoke
uil-start-dialog-processing from a user menu
choice.

start-actions The action(s) to run if dialog is started.

Specify a symbol naming an existing action,
the name of a uil-action-description-array, or
the symbol none.

refocus If true, attempt to refocus dialog. If false,
display a new copy.

conclude-values If true, run the conclude method before
refocusing the dialog.
139

Description

The uil-start-dialog-processing procedure displays or refocuses the dialog whose
ID matches the specified ID on the given window.

Launching a Dialog from an Action Button
A G2 action button can launch a dialog by invoking uil-control-dialog-callback
directly, or by invoking it through calls to uil-start-dialog, uil-start-or-refocus-
dialog, or uil-start-dialog-processing.

The action button must use the start action to invoke these procedures.

Note In order to launch a dialog from an action button, you must first edit each UIL
control on the master dialog to specify the source and target object and attribute
of that UIL control.

refocus-actions Specifies action(s) to run if dialog is
refocused. You can specify a symbol naming
an existing action, the name of a uil-action-
description-array, or the symbol none.

prompt-for-conclude If true, prompt user to run conclude method
before refocusing dialog, or not to run
conclude.

Return Value Description

dialog The dialog, or the symbol dialog-not-found.

button The button that was activated on the dialog,
or the symbol none.

Argument Description
140

Launching a Dialog from an Action Button
Example: Launching the "current-rates" dialog from an action button

Suppose that an action button named show-dialog-action-button starts a dialog
whose ID is current-rates. The action button contains the following start action:

start uil-control-dialog-callback (“current-rates”, the symbol none,
rates-dialog-actions, show-dialog-action-button, this window)

where:

• current-rates is the ID of the dialog that is launched.

• rates-dialog-actions is the action description array that specifies the actions
run on the current-rates dialog. rates-dialog-actions contains the following
actions:

– uil-show-managed-dialog (show the dialog)

– uil-call-update-method (update all the objects on the current-rates dialog
that can receive values from source objects)

• show-dialog-action-button is the action button that launches the dialog.

Note You can omit the two item-or-value return arguments of uil-control-dialog-callback
when you invoke this procedure using the start action.
141

The following figure illustrates the show-dialog-action-button action button
labeled Show Rates, the Current Rates dialog, and the rates-dialog-actions action
description array:

Launching a Dialog from a User-Defined
Procedure

A user-defined G2 procedure can launch a dialog by invoking the uil-control-
dialog-callback procedure directly, or by invoking it indirectly through calls to
uil-start-dialog, uil-start-or-refocus-dialog, or uil-start-dialog-processing.

A user-defined procedure can use the call or start action to invoke these
procedures.

Example: Launching the Current-Rates Dialog through a
User-Defined Procedure

Suppose that you want to write a procedure that shows and updates the dialog
whose ID is current-rates. You also want to invoke this procedure from an action
button.
142

Launching a Dialog from a User-Defined Procedure
To do this, you follow these steps:

1 Write a procedure that calls uil-control-dialog-callback to show and update the
current-rates dialog. In this example, the procedure is named start-rates-
dialog.

2 Create an action description array that includes the actions that you want to
run on the current-rates dialog:

• uil-show-managed-dialog (show the dialog)

• uil-call-update-method (update all the objects on the dialog that can
receive values from source objects)

In this example, the action description array is named rates-dialog-actions.

3 Create an action button that launches the procedure start-rates-dialog.

The action button should use a start action that passes to the procedure the ID
of the dialog that you want to launch, and the name of the action description
array that you want to run on the dialog.
143

The following figure illustrates how the action button named show-rates-dialog-
action-button launches the procedure start-rates-dialog to show and update the
dialog:

For more information about uil-control-dialog-callback, see the G2 GUIDE/UIL
Procedures Reference Manual.

Processing a Dialog Before Returning it to the
Dialog Bin

For some purposes, a procedure that launches a dialog may need to process
values in a dialog after a user closes it, but before the dialog is returned to the
dialog bin. In this case, you must use the call action to call the procedure that
launches the dialog and use the action uil-return-dialog to return the dialog to the
procedure that launched it. For example, an OK or Dismiss button that includes
uil-return-dialog among its actions can return the dialog to the launching
procedure. When a dialog is returned by uil-return-dialog, its contents can still be
accessed by the launching procedure, even though users can no longer use the
dialog.
144

Launching a Dialog from a User Menu Choice
When the procedure finishes processing a dialog that has been returned to it by
uil-return-dialog, the procedure should call the uil-release-dialog action to return
the dialog to its dialog bin and make it available for reuse by the application. The
action uil-release-dialog returns the dialog to the dialog bin, rather than to the
procedure that launched the dialog.

Launching a Dialog from a User Menu Choice
A G2 user menu choice can launch a dialog by invoking the uil-control-dialog-
callback procedure directly, by invoking it through calls to uil-start-dialog,
uil-start-or-refocus-dialog, or uil-start-dialog-processing.

The user-menu choice must use the start action to invoke these procedures.

Example: Launching the Current-Rates Dialog from a User-Menu
Choice using uil-start-dialog

The following statement opens the dialog whose ID is current-rates on the G2
window where the user menu choice is used:

start uil-start-dialog (“current-rates”, the item, this window)

The following figure illustrates the show rates menu choice on an object named
walter-smith-investments:

The show rates menu choice appears on the table for walter-smith-investments
because this menu choice applies to the class object, and walter-smith-investments
is an instance of a class whose direct superior class is object.
145

Example: Launching the Current-Rates Dialog from a User-Menu
Choice using uil-start-or-refocus-dialog

The following statement launches or refocuses (updates) the dialog whose ID is
current-rates on the G2 window where the user menu choice is used:

start uil-start-or-refocus (“current-rates”, the item, this window)

Example: Launching the Current-Rates Dialog from a User-Menu
Choice using uil-start-dialog-processing

The following statement opens the dialog whose ID is current-rates on the G2
window where the user menu choice is used:

start uil-start-dialog-processing (“current-rates”, the item, this window,
rates-dialog-actions, true, true, uil-call-update-method, false)

where:

• current-rates is the ID of the dialog.

• the item is this user-menu choice.

• this window launches or updates the dialog on the window that displays the
object with this user menu choice.

• rates-dialog-actions is an action description array that is run if the dialog is
launched. This action array contains the actions:

– uil-call-update-method
uil-simulate-play-mode
uil-show-managed-dialog

• true refocuses the dialog if it is already displayed.

• true runs the conclude method on this dialog before it is refocused.

• uil-call-update-method is a UIL procedure that is called if the dialog is already
displayed and needs only to be updated. If you need to run more than one
action on the dialog when it is refocused, you can specify an action array
containing all the required actions, rather than a single action.

• false means do not prompt the user about running the conclude method.
146

Launching a Dialog from a Push Button
Launching a Dialog from a Push Button
To make it possible to open a dialog by clicking a push button, you edit the push
button to specify that:

• The actions associated with the push button are directed to the dialog that you
want to open.

• The actions associated with the push button include opening and displaying
this target dialog

For information about how to do this, see System-Defined Actions for Dialog
Processing.

For example, a dialog with title Certificates of Deposit: Current Rates contains a
push button with the label More Rates. Users can click the More Rates button to
open a second dialog with the title More Rates: Certificates of Deposit. The
following figure illustrates the relationship between these two dialogs:

To make it possible to open the second dialog by clicking the More Rates button,
you must edit the More Rates button to specify that its target object is the second
dialog. In addition, the actions on the More Rates button must include showing
the dialog, as well other actions that you want to run on the dialog, such as
updating it.
147

Creating Push Buttons to Launch Dialogs

The Edit Dialog dialog enables you to create push buttons to launch existing
dialogs.

To create a push button to launch an existing dialog, follow these steps:

1 Select edit dialog from the menu of the dialog that you want to launch to open
the Edit Dialog dialog.

2 In the Edit Dialog dialog, click the button Create Pushbutton to Launch Dialog
to create the new push button.

The target object of the new push button is the dialog that you are editing.
When a user clicks on the push button, it runs the following actions on the
target dialog:

uil-call-update-method
uil-simulate-play-mode
uil-show-managed-dialog

3 Transfer the push button to the workspace or dialog subworkspace where you
want users to be able to use it.

The GUIDE Dialog Generator enables you to create push buttons to launch the
master dialogs that you generate. For information about the GUIDE Dialog
Generator, see Generating Master Dialogs.

Specifying Source and Target Objects for UIL
Controls on a Dialog Launched from a Push Button

If you intend to launch a dialog from a push button, you must edit each UIL
control on the dialog to specify its source and target objects and attributes. For
information about how to do this, see Specifying Source and Target Objects.

Launching a Dialog from a Rule
A rule can launch a dialog by invoking a user-defined procedure that identifies
the G2 window on which the dialog is to be launched. Procedures that have an
argument for G2 window cannot be invoked directly from a rule, because the rule
itself cannot pass a value to the G2 window argument.
148

Launching a Dialog from a Rule
The following figure illustrates a rule that launches a dialog, Pressure Change
Alert, by invoking a user-defined procedure, my-uil-start-dialog:

In the example shown in the figure above, tank is a user-defined class with a class-
specific attribute named pressure.

Whenever the power attribute of an instance of tank, such as tank-112, receives a
value, the rule invokes the user defined procedure my-uil-start-dialog.

my-uil-start-dialog invokes uil-start-dialog to launch the dialog Pressure Change
Alert on any G2 window where the dialog is found.
149

150

8

System-Defined Dialogs
Describes the predefined message, confirmation, query, and notification dialogs
and delay notification icon.

Introduction 151

Message, Query, Confirmation, and Notification Dialogs 151

Delay Notification 158

Introduction
GUIDE provides templates for the system-defined message, confirmation, query,
and notification dialogs available in most windowing systems. It also supports a
delay notification icon that you can post to inform the user that a time-consuming
task is being processed by the application.

Message, Query, Confirmation, and Notification
Dialogs

You can display these dialogs with customized messages, using the uil-post-
generic-dialog procedure.

uil-post-generic-dialog returns values that indicate the user’s response to the
dialog, such as clicking on a button or entering a value. The values returned
depend on the type of the dialog posted.

The following section describes uil-post-generic-dialog.
151

Using uil-post-generic-dialog to Post Dialogs

The system-defined procedure uil-post-generic-dialog posts a confirmation,
message, query, or notification dialog.

Synopsis

uil-post-generic-dialog
(txt: text, type: symbol, size: symbol, window: class g2-window,
icon: symbol)
-> button-label: text, return-sstring: text, dialog: item-or-value

Argument Description

txt The text to post in the dialog.

type The type of generic dialog to use. Specify
confirmation, message, query, or
notification.

size The size of the text. Specify small, medium,
or large.

window The G2 window on which to post the dialog.

Note: This procedure creates an inoperable
dialog if window specifies an invalid G2
window. An invalid G2 window is one
whose g2-connection-status is not equal to
the symbol connected.

icon The class-name of an icon to display with
text. UIL provides the following icons:
uil-information-icon, uil-question-icon,
uil-warning-icon.

Return Values Description

button-label The label of the button selected: Yes, No,
OK, Cancel. Query dialogs return Yes if the
OK button is selected or No if the Cancel
button is selected.

return-string The value returned by a query dialog, or ""
(empty string).

dialog The dialog, if type specified is notification.
Otherwise, the symbol dialog-not-available.
152

Message, Query, Confirmation, and Notification Dialogs
Description

This procedure posts one of GUIDE’s system-defined dialogs: Confirmation,
Message, Query, Notification.

If you use this procedure to post a notification dialog, you must also call
uil-remove-notification-dialog to hide and release the dialog.

For example, the following user-defined procedure, post-generic-dialog, calls
uil-post-generic-dialog:
153

Message Dialog

A message dialog displays a customized message and contains an OK button,
which a user can click to dismiss the dialog. The following figure illustrates a
sample message dialog:

Query Dialog

A query dialog contains a user-defined message, an edit box in which the user can
respond to the message, and OK and Cancel buttons.
154

Message, Query, Confirmation, and Notification Dialogs
The following figure illustrates a query dialog that displays a message, and
contains an edit field into which a user can enter a response to the query:

In this example, the action button labeled Get tank name starts a user-defined
procedure named post-query-dialog. The text of the message that is to be
displayed in the query dialog, Which tank do you want to start? Enter tank name.,
is passed by the start action to the user-defined procedure.

The user-defined procedure, rather than the start action, is used to call uil-post-
generic-dialog, because a start action cannot capture the return values of
procedures. Thus, the start action could not capture the value entered by the user
in the query dialog.

The user-defined procedure captures user input to the query dialog in the
argument Return-value, which can be referenced by statements that start the tank
(not shown). The user-defined procedure also informs the operator that the tank
whose name was entered by the user in the query dialog is being started.

Confirmation Dialog

A confirmation dialog prompts users to confirm that they want to take an action,
such as deleting an object. The dialog contains Yes, No, and Cancel buttons for
responding to the prompt.
155

For example, the following confirmation dialog appears when a user selects a
small radio button and chooses delete from the button’s menu:

Click Yes to delete the object. Click No if you decide that you do not want to
delete the object.

Notification Dialog

The Notification Dialog displays a string of text that you specify. You can use this
dialog to inform users about a delay in processing or any other condition. For
example:

To open a Notification Dialog, call the procedure uil-post-notification-dialog. To
close the Notification Dialog, call uil-remove-notification-dialog. You can change
the message in an open Notification Dialog, using the procedure uil-update-
notification-text.
156

Message, Query, Confirmation, and Notification Dialogs
For example, the following user-defined procedure, post-notification-dialog, calls
uil-post-notification-dialog, starts a time-consuming process, and calls uil-remove-
notification-dialog when the processing is done:

The following figure illustrates an action button that starts the user-defined
procedure post-notification-dialog:
157

Delay Notification
The Delay Notification displays a clock face and a text string. You can use this
icon to tell users that a delay in processing is happening.

To open and close the Delay Notification, your application can call the procedures
uil-post-delay-notification and uil-remove-delay-notification-if-any.

The following figure illustrates a Delay Notification and an action button, labeled
Post Delay, that starts the Delay Notification. The action button starts a user-
defined procedure, post-delay-notification, that displays the Delay Notification for
15 seconds, with the message Waiting.

Note The class-of-procedure-invocation attribute of the user-defined procedure must
be set to procedure-invocation. This setting causes the Delay Notification to be
removed automatically when the procedure that posts the delay notification
finishes executing.

For complete descriptions of uil-post-delay-notification and uil-remove-delay-
notification-if-any, see the G2 GUIDE/UIL Procedures Reference Manual.
158

Part III
Editing User
Interface Components
Chapter 9: Push Buttons

Describes how you can create and edit push buttons to run specific sets of actions on dialogs,
such as opening and closing them, or updating or concluding their values.

Chapter 10: Radio Buttons

Describes how to create and edit groups of radio buttons to provide users with sets of
mutually exclusive choices.

Chapter 11: Check Buttons

Describes how to create and edit groups of check buttons, in which users can select any
number of choices.

Chapter 12: Toggle Buttons

Describes how to create and edit toggle buttons, which represent two mutually exclusive
choices.

Chapter 13: Edit Boxes, Combo Boxes, and Spin Controls

Describes how to create and customize edit boxes, combo boxes, and spin controls.

Chapter 14: Scroll Areas and Message Objects

Describes how to create and edit scroll areas and message objects.

Chapter 15: Sliders

Describes how to use and edit Sliders.
159

Chapter 16: Text Objects

Describes how to create and edit text objects, which display read-only text.

Chapter 17: Title Bars, Borders, and Separators

Describes how to use title bars, border, and separators to provide your user interface with
visual definition.

Chapter 18: Navigation Buttons and Other Tools

Describes how to add navigation buttons, help buttons, print workspaces, and the GUIDE
garbage pail to workspaces.
160

9

Push Buttons
Describes how you can create and edit push buttons to run specific sets of actions
on dialogs, such as opening and closing them, or updating or concluding their
values.

Introduction 161

Editing Pushbuttons 169

Summary of Push Button Menu Choices 181

Introduction
GUIDE supports two kinds of push buttons: icon push buttons and text push
buttons:

Icon push buttons and text push buttons differ from each other only in
appearance. You can use either kind of push button to:

• Perform operations on dialogs by running procedures called actions. Actions
can perform operations on a dialog such as opening or closing the dialog, or
updating or concluding its values. The following section describes how to use
a push button to run actions on a dialog.

• Run a user-defined callback procedure to perform specialized processing.
GUIDE continues to support the features of GUIDE 3.0 that enable developers
161

to use system-defined callbacks and/or write their own procedures to
perform desired behaviors and functionality through push buttons. For
information about how to create and use callbacks, see Methods, Actions,
and Callbacks.

Adding Push Buttons to a Master Dialog

The GUIDE palette provides icons for two distinct kinds of push buttons, icon
push buttons and text push buttons:

You can add push buttons to a master dialog by clicking either of these icons and
dragging them to the subworkspace of the dialog. You can also add push buttons
by selecting either of these choices from the GUIDE menu bar:

Item > GUIDE Objects > Buttons > uil-icon-pushbutton
Item > GUIDE Objects > Buttons > uil-text-pushbutton

The icon for the class of push button that you select becomes attached to your
cursor. You can drop it on the subworkspace of the master dialog that you are
editing.

Using Push Buttons to Perform Operations
on Dialogs

You can create push buttons that enable users to perform operations on dialogs
such as updating and concluding the values in the dialog, opening another dialog,
or closing the dialog.

Push buttons that perform operations on dialogs should use the default callback
for push buttons, uil-control-dialog-callback. When a user clicks on the push
button, this callback runs the set of actions associated with the push button.

Actions perform operations such as displaying or hiding the dialog, or running
the update or conclude methods of the UIL objects on the dialog. The actions can
be run on the dialog that contains the push button, or on a different dialog.

Icon Push
Button

Text Push
Button
162

Introduction
You can associate a wide variety of actions with push buttons. GUIDE provides
system-defined actions for displaying, updating, and dismissing the dialog, as
well as for other common operations. For more information about actions, see
Summary of Push Button Menu Choices.

Each dialog that is open on a window has an event queue. When a user clicks on
the push button or when a developer running in Build Mode or Administrator
Mode chooses select from the push button’s menu, the push button’s actions are
inserted into the dialog’s event queue and are processed.

The dialog on which the actions are run is specified by the push button’s
uil-event-target-object attribute. The actions associated with a push button are
stored in a symbol array, which is referenced by an attribute of the push button
named uil-action-description.

To specify which actions are run when a user pushes a push button, use the Edit
Dialog Actions dialog, which you can access through the Edit Pushbutton dialog.
The Edit Dialog Actions dialog contains a set of radio buttons that are
preconfigured with sets of actions for OK, Apply, Cancel, Update, and Conclude
buttons. The Edit Dialog Actions dialog also specifies the dialog on which the
actions are run.

You can create a customized set of actions and associate it with a push button,
using the Customize Dialog Actions dialog. The customized set of actions can
include both system-defined actions and user-defined actions. You can access the
Customize Dialog Actions dialog through the Edit Dialog Actions dialog.

You can also edit the contents of the symbol array referenced by the uil-action-
description attribute directly. To do this, click the attribute value (a symbol-array)
of the uil-action-description attribute and select subtable. The subtable for the
symbol array appears. In this subtable, you edit the list of actions stored in the
initial-values attribute. The following figure illustrates the subtable of a symbol
array:
163

Note If you edit the actions directly in this sub-table without using the GUIDE dialogs,
you must set the array length to 0, and then to the actual number of actions
specified. This technique forces the array to reinitialize itself.

By default, the OK, Apply, and Cancel buttons on GUIDE dialogs are
preconfigured to run the standard OK, Apply, and Cancel actions.

System-Defined Actions for Dialog Processing

The following list describes the system-defined actions that perform operations
on dialogs. These actions can be associated with a push button or included in an
Action Description Array that is run from a procedure.

System-Defined Actions for Dialog Processing

Action Description

uil-call-conclude-method Runs the conclude methods of all UIL
objects on the dialog that have state.

The conclude method looks at the
uil-event-target-object and uil-event-
target-attribute to identify the location
where the state of the object is to be
directed upon execution of the conclude
method.

Conclude methods can handle complex
data structures such as arrays, lists,
variables, and parameters. If the uil-event-
target-object and uil-event-target-attribute
of a scroll-area point to a symbol array, for
example, all of the message objects of the
scroll-area conclude their values into the
target array.

uil-call-conclude-method-
for-parent

Runs the conclude method for the parent
dialog, if one exists. The conclude method
is run iteratively on every UIL object that
has a value that can be concluded.

uil-call-conclude-method-
for-children

Runs the conclude method for all child
dialogs, if these methods exist. On each
child dialog, the conclude method is run
on every UIL object that has a value that
can be concluded.
164

Introduction
uil-call-update-method An update method can be run on any UIL
object. The update method looks at the
uil-event-source-object and uil-event-
source-attribute to identify the source of
the UIL object’s state value. The update
method is run on every UIL object on the
dialog that has a value that can be
updated.

uil-call-update-method-for-
parent

Runs the update method on the parent
dialog. On the parent dialog, the update
method is run iteratively on every UIL
object that has a value that can be
updated.

uil-call-update-method-for-
children

Runs the update method on all child
dialogs. On each dialog, the update
method is run iteratively on every UIL
object that has a value that can be
updated.

uil-call-configuration-
method

Runs the configuration method specified
in the attribute uil-configuration-method of
the object. The configuration method
applies the configuration identified in the
configuration attribute of the uil-grobj or
uil-grmes.

uil-simulate-play-mode Places the dialog into a temporary state of
proprietary behavior, simulating play
mode. When the dialog is in a proprietary
state, users cannot access its menu.

uil-show-managed-dialog Displays the indicated dialog on the
indicated window. If the dialog contains
editable fields, the field editor is invoked
and takes focus on the first field whose
Allow field edit option is set to true.

uil-hide-dialog Hides the indicated dialog on the
indicated window. Any edit session in
progress is canceled.

uil-unsimulate-play-mode Restores the indicated dialog to a normal
(non-proprietary) state.

System-Defined Actions for Dialog Processing

Action Description
165

uil-release-temporary-
storage-object

Releases the temporary storage object
from its relation with the indicated dialog
if one exists.

uil-delete-temporary-
storage-object

Deletes the temporary storage object
related to the indicated dialog if one
exists.

uil-return-dialog Returns the dialog to the procedure that
launched it, without returning the dialog
to the dialog bin.

The dialog is not available for reuse by
your application until it is returned to the
dialog bin. The application is responsible
for calling uil-release-dialog to return the
dialog to the dialog bin.

uil-release-dialog Releases the indicated dialog and returns
the dialog instance to the pool of available
dialogs. This dialog can now be reused by
another client.

System-Defined Actions for Dialog Processing

Action Description
166

Introduction
Creating Actions

You can create dialog actions using the GUIDE Method Help dialog. This dialog
creates an empty action with the set of arguments required for all actions. In the
body of the action, you specify the operations that the action is to perform. You
can invoke any UIL procedures in the body of the action.

For information about how to create actions, see Creating Callbacks, Methods,
Procedures, Functions, and Actions Using the GUIDE Method Help Dialog.

Setting a Target Object for a Push Button

The target object of a push button is the dialog on which the actions associated
with the push button are run when a user pushes the push button.

Unlike other kinds of buttons, push buttons do not have state values that can be
concluded to or updated from other objects. Push buttons do not have source

uil-delete-dialog Deletes the instance (copy) of the
indicated dialog. It will not, therefore, be
placed in the dialog bin or available for
reuse.

uil-call-validate-method This method only applies to uil-edit-box
instances. The validation method
compares the contents of the edit box
against the valid values as defined by the
format specified for the edit box.

If this method is run on a dialog, the fields
in the dialog are validated in order,
beginning with the top-left field and
continuing to left to right and top to
bottom.

Should there be any discrepancies
between the format and the edit-box
value, an error is generated. See
uil-validations discussed later in this
guide.

For information about how uil-call-
validate-method validates edit boxes, see
How GUIDE Validates Edit Boxes.

System-Defined Actions for Dialog Processing

Action Description
167

objects. For information about how to specify the target object of a push button,
see System-Defined Actions for Dialog Processing.

Specifying Labels for Push Buttons

By default, the labels of Motif-style push buttons created in GUIDE 5.0 or higher
are contained in the icons of the buttons. Because the label is part of the icon, a
Motif-style button and its label move and remain together whenever you drag
either of them.

However, Windows-style push buttons use separate label objects for labels, as in
versions of GUIDE/UIL prior to 5.0.

For both Motif and Windows style push buttons, you specify label text in the Edit
Pushbutton dialog. In this dialog, you also specify whether you want a push
button to resize itself to fit its label. For information about how to use the Edit
Pushbutton dialog, see Edit Pushbutton Dialog.

Upgrading Push Buttons Created with Previous Versions of
GUIDE/UIL

GUIDE/UIL supports push buttons with separate label objects created in versions
of GUIDE/UIL prior to 5.0. It does not automatically convert them to place their
labels in their icons. For information about how to convert existing Motif-style
push buttons to the GUIDE/UIL 5.0 styles, see Chapter 26, “Upgrading Guide
Applications” in the G2 GUIDE User’s Guide G2 Utilities Version 5.0 manual.

Using Label Objects for Push Button Labels

Dialogs that contain Motif-style push buttons created with GUIDE/UIL 5.0 or
higher launch more quickly than dialogs that contain push buttons with separate
label objects. However, if you want to use separate label objects for button text, as
was used in versions of GUIDE/UIL prior to 5.0, set the uil-use-icon-text-for-
buttons parameter to false. You can set this parameter using the following menu
choice from the GUIDE menu bar:

Tools > GUIDE 50r0 Migration Tools > Create 50r0 Buttons

When Create 50r0 Buttons is not selected, GUIDE/UIL creates a separate object to
contain the label for each button that you create.

You can also set the uil-use-icon-text-for-buttons parameter using a conclude
statement such as the following in an action button:

conclude that uil-use-icon-text-for-buttons is false
168

Editing Pushbuttons
Caution Application code that accesses text in separate label objects will not work if you
use the GUIDE/UIL 5.0-style buttons that include button and text within a single
object.

Do not attempt to extract text from buttons using relations. Instead, you can use
the UIL procedure uil-get-label-text to return the uil-text object that provides the
text of another object’s label.

Editing Pushbuttons
You can edit the appearance and behavior of push buttons using the Edit
Pushbutton dialog, Edit Dialog Actions dialog, Customize Dialog Actions dialog,
and Create New Actions dialog.
169

The following figure illustrates the dialogs that you use to edit push buttons and
their actions:

Edit Pushbutton Dialog

The Edit Pushbutton dialog enables you to edit basic characteristics of a push
button, such as its name, label, ID, size, and location.

You can also specify the actions that are run when a user pushes a push button,
using dialogs that you access from the Edit Pushbutton dialog.

 Dialogs for Editing Push Buttons and Their Actions

Your user action appears next to the dialog that
contains the push button, or next to the push
button if the push button is not on a dialog
subworkspace. You must edit the body of the
action to specify what it does. You associate the
action with the push button using the
Customize Dialog Actions dialog.

Edit Pushbutton

Edits push button
characteristics.

Actions...

Edit Dialog Actions

Selects a target dialog
and a set of actions to
run on that dialog
when a user clicks on
the push button.

Customize Actions...

Create New Action

Creates a new
action with a name
that you specify.

Create Action New...

Creates a
customized set of
actions to run when
a user clicks on the
push button.

Customize
Dialog Actions
170

Editing Pushbuttons
To open the Edit Pushbutton dialog, click the push button and choose edit push
button from the push button menu. The Edit Pushbutton dialog looks like this:

The following table describes the components of the Edit Pushbutton dialog:

Components of Edit Pushbutton Dialog

Component Description

Class (read-only) Indicates the class of push button
that you are editing.

Name (optional) Displays the current name of the
push button that you are editing. You can edit
this field to change the name of the push
button. The contents, if any, must be a valid
symbolic name.
171

Label (optional) Displays the label of the push
button that you are editing. You can edit this
field to change the text of the label for the
push button. This field does not require a
value. Its contents, if any, must be a valid text
entry. Quotation marks are not required. If
you include quotation marks, they become
part of the label.

Id (optional) Displays the ID of the push button
that you are editing. You can edit this field to
change the id attribute of the push button.
This field does not require a value.

Position (required) The two edit box fields (X, Y) below
the label Position display the current item-x-
position and item-y-position of the push
button that you are editing. Changes to the X
and Y values move the push button to the
new location. This is a required field and
defaults to the push button’s current position
on the workspace. Values for X and Y must be
integers.

Dimensions The two text fields below the label
Dimensions display the current item-width
and item-height of the push button that you
are editing. You cannot edit this field.

Size (required) The radio buttons below the label
Size indicate the current size (small, medium,
or large) of the push button that you are
editing. You can change the size of the push
button by selecting the radio button whose
label indicates the desired size. When you
apply this change, GUIDE regenerates the
push button in the new size without changing
the button’s other attributes.

Components of Edit Pushbutton Dialog

Component Description
172

Editing Pushbuttons
Style (required) The radio buttons below the label
Style (Motif™, Windows™) indicate the
current window style of the push button that
you are editing. You can change the window
style by selecting the radio button whose label
indicates the desired style. When you apply
this change, GUIDE regenerates the push
button in the new style without changing the
button’s other attributes.

Options The toggle buttons below the label Options
offer optional settings for the push button that
you are editing.

Default button Makes the push button that you are editing
the default button for this dialog. The default
button is activated when the user hits the
Return key.

To make this push button the default button
of its dialog, you must also configure the
Return key behavior, as follows:

1 Open the Edit Dialog dialog to edit the
dialog that contains the push button you
are editing.

2 Open the Editor Behaviors dialog by
clicking the Editor Behaviors button in the
Edit Dialog dialog.

3 In the Editor Behaviors dialog, select the
End and exit field edit option under
Return Key Behavior.

See Editor Behaviors Dialog.

Cancel button Makes the push button that you are editing
the cancel button.

Update button Identifies the pushbutton as an Apply type
button.

Components of Edit Pushbutton Dialog

Component Description
173

Default button
configurations

Applies the configuration for default buttons
to the push button that you are editing. This
configuration places a border around the
default push button to distinguish it from the
other push buttons in the dialog. The
following figure illustrates an OK button with
the default button configuration:

Release button
after selection

If selected, this option causes the button to
become deselected and reusable as soon as it
has initiated its actions.

If this option is not selected, the button does
not become deselected and reusable until the
actions that it initiates are completed.

Resize button
to fit label

If this option is selected (the default),
GUIDE/UIL automatically resizes the push
button to fit the label text that you specify for
the button. If this option is not selected, the
button is not resized automatically.

State (required) Select one of the two radio buttons
(Enabled, Disabled) below the label State to
enable or disable the push button.

Callback Specify the callback associated with this push
button. For information about callbacks, see
Methods, Actions, and Callbacks.

Actions Opens the Edit Dialog Actions dialog. See the
following section for information about this
dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the push
button.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Pushbutton Dialog

Component Description
174

Editing Pushbuttons
Edit Dialog Actions Dialog

The Edit Dialog Actions dialog enables you to:

• Specify the dialog (target object) on which actions are run when a user clicks
on this push button.

• Select a system-defined set of actions to run when a user clicks on the push
button. The set of actions that you select are stored in the uil-action-description
attribute of the push button.

• Create a customized set of actions to run when a user clicks on this push
button.

To open the Edit Dialog Actions dialog, push the Actions push button in the Edit
Pushbutton dialog. The Edit Dialog Actions dialog looks like this:
175

The following table describes the components of the Edit Dialog Actions dialog:

Components of Edit Dialog Actions Dialog

Component Description

Target Object The radio buttons below the label Target
Object indicate the dialog on which the
actions are run when a user clicks the push
button that you are editing.

For information about target objects, see Edit
Target Object & Attribute Dialog.

Host dialog Indicates that the specified actions are run on
the dialog where the push button is located.

Dialog Id Indicates that the specified actions are to be
run on the dialog whose id attribute matches
the ID specified in the edit box to the right of
the Dialog Id radio button. If the Dialog Id
radio button is selected, the edit box to the
right of the radio button requires a value. Id
values are case sensitive.

Unspecified No target object is specified for this push
button.

Actions Each radio button below the label Actions is
associated with a different set of UIL actions.
Selecting one of these buttons specifies that
the corresponding set of UIL actions is run
when a user clicks the push button. When you
select a set of actions, that set replaces any
existing set of actions associated with the
push button. The current set of actions
associated with the push button is displayed
in the scroll area in the bottom half of the Edit
Dialog Actions dialog.

The actions are run in the order in which they
are listed in the scroll area.

Display dialog Selects the default actions for displaying a
dialog. The default actions are: uil-simulate-
play-mode, uil-show-managed-dialog.
176

Editing Pushbuttons
Customize Dialog Actions Dialog

The Customize Dialog Actions dialog enables you to specify a combination of UIL
actions and user-defined actions that are run when a user clicks the push button.

To open the Customize Dialog Actions dialog, click the Customize Actions push
button on the Edit Dialog Actions dialog. You can also open the Customize Dialog

Update dialog Selects the default action for updating a
dialog. The default action is: uil-call-update-
method.

Update and
display dialog

Selects the default actions for updating and
displaying a dialog. The default actions are:
uil-call-update-method, uil-simulate-play-
mode, uil-show-managed-dialog.

Dismiss dialog
(Cancel)

Selects the default actions for dismissing a
dialog. The default actions are: uil-unsimulate-
play-mode, uil-hide-dialog, uil-release-dialog.
These actions are appropriate for a Cancel
button.

Apply changes
(Apply)

Selects the default action associated with
applying changes made on a dialog. The
default action is: uil-call-conclude-method.
These actions are appropriate for an Apply
button.

Apply changes and
dismiss dialog (OK)

Selects the default actions associated with
applying changes made on a dialog and then
dismissing the dialog. The default actions are:
uil-call-conclude-method, uil-unsimulate-play-
mode, uil-hide-dialog, uil-release-dialog. These
actions are appropriate for an OK button.

Customized
dialog actions

Select this button when you want to create a
customized set of actions. The customized set
can include user-defined actions.

Customize Actions Clicking this push button opens the
Customize Dialog Actions dialog. See the
following section for information about the
Customize Dialog Actions dialog.

Components of Edit Dialog Actions Dialog

Component Description
177

Actions dialog to edit the actions in an Action Description Array by choosing edit
action description from the menu of the Action Description Array.

The Customize Dialog Actions dialog looks like this:
178

Editing Pushbuttons
The following table describes the components of the Customize Dialog Actions
dialog:

Components of Customize Dialog Actions Dialog

Component Description

Selected Actions Lists the actions that are run when a user
clicks on the push button. You add actions to
the Selected Actions list by moving them from
the Available System Actions scroll area
and/or the Available User Actions scroll area.

You can reorder the actions in the Selected
Actions scroll area by dragging actions up or
down within the scroll area.

To remove an action from the Selected
Actions scroll area, select the action and then
select the right arrow button. The selected
action is transferred back to its original scroll
area (Available System Actions or Available
User Actions).

Available System
Actions

Lists all the system-defined UIL actions. To
transfer an action from this scroll area to the
Selected Actions scroll area, select the action
and click the left arrow button.

You can select and transfer more than one
action at a time.

Available User Actions Lists all user-defined actions. To transfer an
action from this scroll area to the Selected
Actions scroll area, select the action and click
the left arrow button.

You can select and transfer more than one
user-defined action at a time.

Action You can add the name of a user-defined action
to the Available User Actions list by entering
its name in this field and clicking on the up
arrow.

Update User Actions Updates the Available User Actions scroll
area to list all user-defined actions.
179

Create New Action Dialog

The Create New Action dialog enables you to specify a name for a user-defined
action and generates the a stub for the action.

To open the Create New Action dialog, click the New button on the Customize
Dialog Actions dialog. The Create New Action dialog looks like this:

New Opens the Create New Action dialog. See the
following section for information about the
Create New Action dialog.

The name of the new action that you create
appears in the field below the scroll area
labeled Available User Actions. You can then
transfer this user action to the Selected
Actions scroll area.

Name Displays the name of the Action Description
Array that you are editing. This field contains
a value only if you are editing a named Action
Description Array that you created by
selecting New Object > choose a class >
uil-action-description-array from the
KB Workspace menu.

For information about Action Description
Arrays, see Controlling Dialogs with Actions.

You can also enter the name of an existing
action.

OK Copies the actions listed in the Selected Actions scroll area
into the scroll area on the Edit Dialog Actions dialog and
then dismisses the Customize Actions dialog.

Cancel Dismisses the dialog.

Components of Customize Dialog Actions Dialog

Component Description
180

Summary of Push Button Menu Choices
The following table describes the components of the Create New Action dialog:

The new action looks like this:

You should transfer the action to another workspace.

To edit the action, click it and choose edit from the procedure menu. In the editor
window, you see a default definition with the required argument signature:

my-new-action (D:class uil-dialog, B: item-or-value, W: item-or-value,
O: item-or-value, SL: class symbol-list)

begin
end

You must supply the code to specify what the action does when it is run.

Summary of Push Button Menu Choices

Components of Create New Action Dialog

Component Description

Name Enter a unique name for the user-defined
action in this field. By default, this field is
blank. You must enter a valid text name in
this field.

Create Action If the name that you enter in the Name field is
unique, GUIDE creates a subworkspace with
a new action on it. If the name is not unique,
GUIDE displays a message informing you
that you must enter a unique procedure name,
and does not create an action.

Menu Choice Description

table Shows the G2 table for the push button.

transfer Places the push button on the mouse and
transfers it to a different workspace.
181

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options.

change size Opens a G2 dialog providing change size
options.

Note: Use this menu choice only with push
buttons whose label text is contained in separate
label objects. It does not work with GUIDE 5.0
buttons whose icons contain the label text of the
buttons.

color Opens a series of G2 menus enabling you to
change the colors of regions of the push button
icon. GUIDE provides the Configuration Editor
as the recommended way to change colors of
icon regions. For information about this editor,
see Using The GUIDE Configuration Editor.

lift to top Places the button on top of an other object on a
workspace.

drop to bottom Drops the button behind another object on a
workspace.

describe Shows a description of the object and its
relations.

describe
configuration

Displays a description of the dialog’s current
configuration.

create subworkspace Creates and shows a subworkspace for the
button.

edit array Opens the Edit Array dialog, in which you can
specify the actions that are run when a user
clicks on this push button.

edit configuration Opens the GUIDE Configuration Editor for
selecting, deleting, copying, or editing
configurations.

configure Applies the current configuration to the push
button.

Menu Choice Description
182

Summary of Push Button Menu Choices
delete. Opens a confirmation dialog to the user and if
confirmed, deletes the push button.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the dialog is enabled.

clone. Makes a copy of the button and places it next to
the original button on the workspace.

disable./enable. Disabling the push button prevents the select
menu choice from being shown or run on the
button’s menu. The colors of the button change
to reflect its disabled state.

select Executes the uil-handler-method specified on
the button. The handler method will
subsequently execute the callback for the button.

initialize Calls the initialization method of the push
button. This menu choice is visible only when
the push button is enabled.

edit push button Opens the Edit Pushbutton dialog, which you
can use to edit attributes of the push button.

Menu Choice Description
183

184

10
Radio Buttons
Describes how to create and edit groups of radio buttons to provide users with sets
of mutually exclusive choices.

Introduction 185

Editing Radio Boxes 189

Editing Radio Buttons 192

Summary of Radio Box Menu Choices 196

Summary of Radio Button Menu Choices 198

Introduction
Radio buttons are used in groups of two or more buttons to represent mutually
exclusive choices.

Each group of radio buttons is managed by a radio box. In a radio box, one and
only one radio button is always selected. Selecting a radio button causes all other
radio buttons in the same radio box to be deselected. By default, the radio box is
surrounded by a selection box frame:

Selection box frame

Radio box
185

You can show and hide the selection box frame using the hide selection box and
show selection box choices on the user menu of the radio box.

You can edit attributes of radio boxes and radio buttons to modify their
appearance and behavior.

Selecting Motif or Windows Style Buttons

You can create Motif or Windows style buttons. You select the style of buttons
that you want to create in the GUIDE Control Panel. For information about how
to do this, see Steps for Building a Master Dialog.

Adding Radio Buttons to a Master Dialog

Radio buttons cannot be used outside of radio boxes. To add radio buttons to a
master dialog, you first click the radio box icon on the GUIDE palette and drop it
on the dialog subworkspace. By default, a radio box contains three radio buttons.

You add radio buttons to a radio box by clicking on the icon for individual radio
buttons on the GUIDE palette and dropping the buttons on or near the radio box
on the dialog subworkspace.

You can also add radio boxes and radio buttons to a master dialog by selecting the
following choices from the GUIDE menu bar:

Item > GUIDE Objects > uil-radio-box
Item > GUIDE Objects > Buttons > uil-radio-button

The object that you select becomes attached to your cursor. You can drop it on the
subworkspace of the master dialog that you are editing.

The GUIDE palette includes separate icons for radio boxes and for individual
radio buttons:

Note In the icon for radio boxes, only one button is shown selected. This distinguishes
the radio box icon from check box icon to its right, in which two buttons are
selected.

Radio Box
Individual
Radio Button
186

Introduction
Moving Radio Buttons

You can move an entire group of radio buttons by dragging the topmost button.
The topmost button is called the lead button.

You can rearrange the buttons in a group by dragging individual buttons up or
down within the group. You can add additional buttons to groups in any
position. The lead button, when moved to a new location within the group,
relinquishes its lead to the new topmost button.

Resizing Radio Buttons

You can change the size of a radio button by selecting a size (small, medium, or
large) in the Edit Radio Button dialog.

You can also resize a radio button by choosing change size from its menu. When
you select change size, a black border appears around the object, and a G2 dialog
of resizing options appears on the workspace. For information about how to use
the G2 resizing dialogs, see the G2 Reference Manual.

Deleting Radio Buttons and Radio Boxes

To delete a radio button from a radio box, choose delete. from the menu of the
radio button. To delete a radio box and all the radio buttons that it contains,
choose delete. from the menu of the radio box.

A radio box must contain at least two radio buttons in order to provide a set of
mutually exclusive choices.

Updating and Concluding Radio Buttons

Radio buttons can be updated from source objects and can conclude their state
into target objects. Radio buttons are commonly updated and concluded when a
user clicks a push button that updates or concludes all UIL objects on the dialog.
Update and conclude methods can be run on radio boxes, but not on individual
radio buttons.

When an update method is run on a radio box, the update method examines the
on-value of every radio button in the radio box. It then selects the radio button, if
any, whose on-value attribute matches the update value that the update method
is using. If there is no radio button whose on-value matches the update value, the
update operation has no effect on the radio buttons.

When a conclude method is run on a radio box, the on-value of the currently
selected radio button in the radio box is concluded to the target attribute of the
target object for that radio button.
187

Specifying Labels for Radio Buttons

By default, the labels of Motif-style radio buttons created in GUIDE 5.0 or higher
are contained in the icons of the buttons. Because the label is part of the icon, a
Motif-style button and its label move and remain together whenever you drag
either of them.

However, Windows-style radio buttons use separate label objects for labels, as in
versions of GUIDE/UIL prior to 5.0.

For both Motif and Windows style radio buttons, you specify label text in the Edit
Radio Button dialog. In this dialog, you also specify whether you want a radio
button to resize itself to fit its label. For information about how to use the Edit
Radio Button dialog, see Editing Radio Buttons.

Upgrading Radio Buttons Created with Previous Versions of
GUIDE/UIL

GUIDE/UIL supports radio buttons with separate label objects created in
versions of GUIDE/UIL prior to 5.0. It does not automatically convert them to
place their labels in their icons. For information about how to convert existing
Motif-style radio buttons to the GUIDE/UIL 5.0 styles, see Chapter 26,
“Upgrading Guide Applications” in the G2 GUIDE User’s Guide G2 Utilities
Version 5.0 manual.

Using Label Objects for Radio Button Labels

Dialogs that contain Motif-style buttons created with GUIDE/UIL 5.0 or higher
launch more quickly than dialogs that contain buttons with separate label objects.
However, if you want to use separate label objects for button text, as was used in
versions of GUIDE/UIL prior to 5.0, set the uil-use-icon-text-for-buttons
parameter to false. You can set this parameter using the following menu choice
from the GUIDE menu bar:

Tools > GUIDE 50r0 Migration Tools > Create 50r0 Buttons

When Create 50r0 Buttons is not selected, GUIDE/UIL creates a separate object to
contain the label for each button that you create.

You can also set the uil-use-icon-text-for-buttons parameter using a conclude
statement such as the following in an action button:

conclude that uil-use-icon-text-for-buttons is false
188

Editing Radio Boxes
Caution Application code that accesses text in separate label objects will not work if you
use the GUIDE/UIL 5.0-style buttons that include button and text within a single
object.

Do not attempt to extract text from buttons using relations. Instead, you can use
the UIL procedure uil-get-label-text to return the uil-text object that provides the
text of another object’s label.

Editing Radio Boxes
The Edit Radio Box dialog enables you edit the size, label, location, and other
properties of radio boxes.

To open the Edit Radio Box dialog, click the radio box and choose edit radio box
from its menu. You can also open the Edit Radio Box dialog by choosing edit radio
box from the menu of any radio button in the radio box.

The Edit Radio Box dialog looks like this:
189

The following table describes the components of the Edit Radio Box dialog:
.

Components of Edit Radio Box Dialog

Component Description

Class (read-only) Displays the class of radio box
that you are editing.

Name Displays the current name of the radio box
that you are editing. Changing the displayed
value updates the name of the radio button.

This field does not require a value. Its
contents, if any, must be a valid symbolic
value.

Label (optional) Specify the text of the label that
appears with the radio box.

Id (optional) The ID of the radio box. Specify an
ID for the radio box if you need to manipulate
the radio box using a UIL procedure that
references it by ID.

Label offset from
buttons

Specify the horizontal (X) and vertical (Y)
offset of the label from the radio box, in pixels.

The X and Y values must be integers.

Current value The On value of the currently selected radio
button, or the value uil-none.

Box offset from buttons The horizontal (X) and vertical (Y) offset of
the radio button from the lead button in the
radio box, in pixels.

The X and Y values must be integers.

Source object Opens the Edit Source Object & Attribute
dialog, in which you can specify a source
object for the radio buttons in this radio box.
When the radio box is updated with the value
of the source object, this value determines
which radio button in the radio box is
selected. For information about how specify
the source object, see Edit Source Object &
Attribute Dialog.
190

Editing Radio Boxes
Target object Opens the Edit Target Object & Attribute
dialog, in which you can specify a target
object for the radio buttons in this radio box.
The value of the currently selected radio
button is concluded to this object when the
values in the dialog are concluded. For
information about how to specify the target
object, see Edit Target Object & Attribute
Dialog.

State Select the Enabled or Disabled button to
enable or disable the radio box and all the
radio buttons that it contains.

Orientation Select Horizontal or Vertical to specify whether
you want the radio buttons in the radio box to
appear in a vertical column or in a horizontal
row.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the radio
box.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Radio Box Dialog

Component Description
191

Editing Radio Buttons
To open the Edit Radio Button dialog, choose edit radio button from the menu of
the radio button that you want to edit. The Edit Radio Button dialog looks like
this:

The following table describes the components of the Edit Radio Button dialog:

Components of Edit Radio Button Dialog

Component Description

Class (read-only) Displays the class of radio button
that you are editing.

Name (required) Displays the current name of the
radio button that you are editing. Changing
the displayed value updates the name of the
radio button.

Note that all radio buttons must have a name.
Although the name is used primarily as a
grouping mechanism (the selection box that
groups selection buttons knows the name of
each button in the group), you can change the
name here for convenience.
192

Editing Radio Buttons
Label (optional) Displays the label of the radio
button that you are editing. Changing the
label causes a new label to be generated for
the radio button with the new text. This is a
non-required field, but if entered, it must be a
valid text entry. Quotation marks are not
required. If included, they will become part of
the label.

Id (optional) The ID of the radio button that you
are editing. Changing the ID updates the id
attribute of the radio button in its table.

On value (optional) The current on-value for the radio
button that you are editing. This is the value
of the radio button when it is selected. Update
and conclude methods require a value in this
field. The default value is the symbol radio-
button.

Off value (optional) The current off-value for the radio
button that you are editing. This is the value
of the radio button when it is not selected.
Update and conclude methods require a value
in this field. The default value is the symbol
radio-button.

Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the radio
button that you are editing. Changes to the X
and Y values will move the radio button to the
new location. This is a required field and
defaults to the radio button’s current position
on the workspace. The X and Y values must
be integers.

Dimensions (read-only) The two text fields below the label
Dimensions display the current item-width
and item-height of the radio button that you
are editing. You cannot edit this field.

Components of Edit Radio Button Dialog

Component Description
193

Size (required) The radio buttons below the label
Size indicate the current size (small, medium,
large) of the radio button that you are editing.
You can change the size of the radio button
that you are editing by selecting the radio
button whose label indicates the desired size.
When you apply this change, GUIDE
regenerates all the radio buttons grouped by
the same selection box in the new size without
changing the buttons’ other attributes.

Change label size Applies the current selected size (small,
medium, large) to all labels on radio buttons
in the selection box.

Button spacing (required) Displays the current number of
workspace units used for the vertical spacing
of the radio buttons. Changes to this value
will cause the entire grouping of radio buttons
to be re-displayed. The leader button (top-
most) maintains its X/Y positioning. The
remaining buttons are spaced accordingly.

Style (required) The radio buttons below the label
Style indicate the current window style (Motif
or Window) of the radio button that you are
editing. Users can change the window style
by selecting the radio button whose label
indicates the desired style. When this change
is applied, GUIDE regenerates all the radio
buttons grouped by the same selection-box in
the new style without changing the buttons’
other attributes.

Components of Edit Radio Button Dialog

Component Description
194

Editing Radio Buttons
State (required) The two sets of radio buttons below
the label State indicate:

• Whether the radio button is enabled or
disabled.

• Whether the radio button is on or off.

Users can change the state by selecting the
radio button whose label indicates the desired
state. When this change is applied, the radio
button is updated to reflect its new state.

Run conclude method
immediately

The conclude method specified for this radio
button is run as soon as a user clicks on the
button. If you do not select the Run conclude
method immediately option, the radio button
is not concluded until a conclude method is
run on the dialog (typically through an OK or
Apply push button).

Callback The callback procedure associated with this
radio button. The callback is run when a user
selects the radio button. The default callback
is uil-do-nothing, which does nothing. For
most purposes, radio buttons do not require
their callbacks to perform any processing.
However, if you need to perform special
processing when a user selects a radio button,
you can write a customized callback and use it
in place of uil-do-nothing. For information
about callbacks, see Methods, Actions,
and Callbacks.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the radio button that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Components of Edit Radio Button Dialog

Component Description
195

Summary of Radio Box Menu Choices

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the radio button that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the radio
button.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Radio Box Menu Choices

Menu Choice Description

table Shows the attribute table of the radio box.

transfer Places the radio box on the mouse, so that you
can drop it on a different workspace. The radio
buttons in the radio box are transferred with it.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options:
90 clockwise, 90 counterclockwise, 180, left-right
reflection, up-down-reflection.

change size Opens a G2 dialog providing change size
options.

color Opens a series of G2 menus enabling you to
change the colors of regions of the radio box.
GUIDE provides the Configuration Editor as the
recommended way to change icon regions. For
information about this editor, see Using The
GUIDE Configuration Editor.

Components of Edit Radio Button Dialog

Component Description
196

Summary of Radio Box Menu Choices
lift to top Displays radio box on top of another object on a
workspace.

drop to bottom Drops the radio box behind another object on a
workspace.

describe Shows a description of the object and its
relations.

describe
configuration

Displays a description of the object’s current
configuration.

edit array Opens the Edit Array dialog, in which you can
edit the member list of radio buttons in the radio
box.

edit configuration Posts GUIDE’s Configuration Editor for
selecting, deleting, copying, or editing
configurations

configure Applies the current configuration to the radio
box.

delete. Opens a confirmation dialog to the user and, if
confirmed, deletes the radio box.

initialize Calls the initialization method of the radio box.
This menu choice is visible only when the radio
box is enabled.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the dialog is enabled.

clone. Makes a copy of the radio box and places it next
to the original radio box on the workspace. This
menu choice is visible only when the radio box
is enabled.

enable./disable. Enables or disables the radio box and the radio
buttons that it contains.

resize box to fit
buttons

Resizes the radio box to fit correctly around the
radio buttons that the radio box contains. This
user menu choice is useful if you add, delete, or
modify radio buttons in the radio box.

Radio Box Menu Choices

Menu Choice Description
197

Summary of Radio Button Menu Choices

hide/show selection
box

Makes the radio box invisible or invisible. Does
not affect the visibility of the radio buttons in
the radio box.

edit radio box Opens the Edit Radio Box dialog, in which you
can edit attributes of this radio box.

Menu Choice Description

table Shows the G2 table for the radio button.

transfer Places the radio button on the mouse so that you
can transfer it to a different workspace.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options.

change size Opens a G2 dialog providing change size
options.

color Opens a series of dialogs that enable you to
select colors for the radio button.

lift to top Displays radio button on top of other objects on
the workspace.

drop to bottom Drops the radio button behind other objects on
the workspace.

describe Shows a description of the object and its
relations. The description includes the radio
button’s name, module assignment, and
relations to other objects.

describe
configuration

Displays a description of the object’s current
configuration.

create subworkspace Creates a subworkspace for this radio button.

Radio Box Menu Choices

Menu Choice Description
198

Summary of Radio Button Menu Choices
edit configuration Opens the GUIDE Configuration Editor, which
enables you to select, delete, copy, or edit
configurations.

configure Applies the current configuration to the radio
button.

delete. Opens a confirmation dialog to the user and, if
confirmed, deletes the radio button.

initialize Calls the initialization method of the radio
button. This menu choice is visible only when
the radio button is enabled.

move Opens the Move Object dialog, which you can
use to position the radio button precisely. For
information about this dialog, see the
G2 Reference Manual.

clone. Creates a copy (clone) of the radio button and
places it at the bottom of the radio box that
contains the original button.

disable./enable. Disables or enables the radio button. Users
cannot use disabled radio buttons.

select Simulates the effect of selecting the radio button
in a play mode.

edit radio box Opens the Edit Radio Box dialog for editing
attributes of the radio box that contains this
radio button. For information about how to use
this dialog, see Editing Radio Boxes.

edit radio button Opens the Edit Radio Button dialog. For
information about how to use this dialog, see
Editing Radio Buttons.

Menu Choice Description
199

200

11
Check Buttons
Describes how to create and edit groups of check buttons, in which users can select
any number of choices.

Introduction 201

Editing Check Boxes 205

Editing Check Buttons 208

Summary of Check Box Menu Choices 212

Summary of Check Button Menu Choices 214

Introduction
Check buttons are used in groups of two or more buttons. In a group of check
buttons, any number of buttons can be selected or unselected at the same time.

Each group of check buttons is managed by a check box. By default, the check box
is surrounded by a selection box frame:

selection box frame
201

You can show and hide the selection box frame, using the hide selection box and
show selection box choices on the user menu of the check box.

You can edit attributes of check boxes and check buttons to modify their
appearance and behavior.

Selecting Motif or Windows Style Buttons

You can create Motif or Windows style buttons. You select the style of buttons
that you want to create in the GUIDE Control Panel. For information about how
to do this, see Steps for Building a Master Dialog.

Adding Check Buttons to a Master Dialog

The GUIDE palette includes separate icons for check boxes and for individual
check button:

Note In the icon for check boxes, two buttons are shown selected. This distinguishes the
check box icon from radio box icon to its left, in which only one button is selected.

Check buttons cannot be used outside of check boxes. To add check buttons to a
master dialog or workspace, you first add a check box. To do this, select the icon
for check boxes on the GUIDE palette and drop the check box on the
subworkspace of the master dialog or on the workspace. By default, a check box
contains three check buttons.

To add a check button to an existing check box, select the icon for individual
check buttons on the GUIDE palette and drop it on or near the check box. The
button is automatically added to the check box when you drop it.

You can also add check boxes and check buttons to a master dialog or workspace
by selecting the following choices from the GUIDE menu bar:

Item > GUIDE Objects > uil-check-box
Item > GUIDE Objects > Buttons > uil-check-button

Check Button
Group

Individual
Check Button
202

Introduction
The object that you select becomes attached to your cursor. You can drop it on the
subworkspace of a master dialog or on a workspace.

You can delete a check button from a check box by selecting the check button and
choosing delete. from its menu.

Moving Check Buttons

You can move an entire check box by dragging the topmost button. The topmost
button is called the lead button.

You can rearrange the buttons in a check box by dragging individual buttons up
or down within the check box. You can add additional buttons to check boxes in
any position. The lead button, when moved to a new location within the check
box, relinquishes its lead to the new topmost button.

Resizing Check Buttons

You can change the size of a check button by selecting a size (small, medium, or
large) in the Edit Check Button dialog.

To resize a check button, choose change size from its menu. When you select
change size or change min size, a black border appears around the check button,
and a G2 dialog of resizing options appears on the workspace. For information
about how to use the G2 resizing dialogs, see the G2 Reference Manual.

Updating and Concluding Check Buttons

Check buttons can be updated with a single value or with an array or list of
values. When a check button is updated with a single value, the check button is
selected if its on-value matches the update value. When a check button is updated
with an array or list of values, the check button is selected if its on-value matches
any one of the values in the array or list.

How check buttons conclude their values depends on whether all the check
buttons in the check box have the same target object and target attribute:

• If all the check buttons in the check box have the same target object and target
attribute, only the currently selected check buttons in the check box conclude
their values. In this case, the check buttons conclude their on-value to the
target attribute.

• If at least one check button in the check box specifies a different target
attribute from the other check buttons, each check button concludes its
on-value (if the button is selected) or its off-value (if the button is not selected)
to the target attribute of the target object specified for that check button.
203

Specifying Labels for Check Buttons

By default, the labels of Motif-style check buttons created in GUIDE 5.0 or higher
are contained in the icons of the buttons. Because the label is part of the icon, a
Motif-style button and its label move and remain together whenever you drag
either of them.

However, Windows-style check buttons use separate label objects for labels, as in
previous versions of GUIDE/UIL.

For both Motif and Windows style check buttons, you specify label text in the Edit
Check Button dialog. In this dialog, you also specify whether you want a check
button to resize itself to fit its label. For information about how to use the Edit
Check Button dialog, see Editing Check Buttons.

Upgrading Check Buttons Created with Previous Versions of
GUIDE/UIL

GUIDE/UIL supports check buttons with separate label objects created in
versions of GUIDE/UIL prior to 5.0. It does not automatically convert them to
place their labels in their icons. For information about how to convert existing
Motif-style check buttons to the GUIDE/UIL 5.0 styles, see Chapter 26,
“Upgrading Guide Applications” in the G2 GUIDE User’s Guide G2 Utilities
Version 5.0 manual.

Using Label Objects for Check Button Labels

Dialogs that contain Motif-style buttons created with GUIDE/UIL 5.0 or higher
launch more quickly than dialogs that contain buttons with separate label objects.
However, if you want to use separate label objects for button text, as in previous
versions of GUIDE/UIL, set the uil-use-icon-text-for-buttons parameter to false.
You can set this parameter using the following menu choice from the GUIDE
menu bar:

Tools > GUIDE 50r0 Migration Tools > Create 50r0 Buttons

When Create 50r0 Buttons is not selected, GUIDE/UIL creates a separate object to
contain the label for each button that you create.

You can also set the uil-use-icon-text-for-buttons parameter using a conclude
statement such as the following in an action button:

conclude that uil-use-icon-text-for-buttons is false
204

Editing Check Boxes
Caution Application code that accesses text in separate label objects will not work if you
use the GUIDE/UIL 5.0-style buttons that include button and text within a single
object.

Do not attempt to extract text from buttons using relations. Instead, you can use
the UIL procedure uil-get-label-text to return the uil-text object that provides the
text of another object’s label.

Editing Check Boxes
The Edit Check Box dialog enables you to edit the size, label, location, and other
properties of check boxes.

To open the Edit Check Box dialog, click the edit box and choose edit check box
from its menu. You can also open the Edit Check Box dialog by choosing edit
check box from the menu of any check button in the check box.

The Edit Check Box dialog looks like this
:
205

The following table describes the components of the Edit Check Box dialog:
:

Components of Edit Check Box Dialog

Component Description

Class (read-only) Displays the class of check box
that you are editing.

Name (required) Displays the current name of the
check box that you are editing. Changing the
displayed value updates the name of the
check button.

This field does not require a value. Its
contents, if any, must be a valid symbolic
value.

Label (optional) Specify the text of the label that
appears with the check box.

Id (optional) The ID of the check box. Specify an
ID for the check box if you need to manipulate
the check box, using a UIL procedure that
references it by ID.

Label offset from
buttons

Specify the horizontal (X) and vertical (Y)
offset of the label from the check box.

The X and Y values must be integers.

Box offset from buttons Specify the horizontal (X) and vertical (Y)
offset of the check box from the lead check
button.

The X and Y values must be integers.

State Select the Enabled or Disabled button to
enable or disable the check box and all the
check buttons that it contains.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the check button that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.
206

Editing Check Boxes
Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the check button that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the check
box.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Check Box Dialog

Component Description
207

Editing Check Buttons
To open the Edit Check Button dialog, click the check button that you want to edit
and choose edit check button from the check button menu. The Edit Check Button
dialog looks like this:
208

Editing Check Buttons
The following table describes the components of the Edit Check Button dialog:

Components of Edit Check Button Dialog

Component Description

Class (read-only) Displays the class of check button
that you are editing.

Name (required) Displays the current name of the
check button that you are editing. Changing
the displayed value updates the name of the
check button.

This field must contain a valid symbolic
name. All check buttons must have a name.

Although the name is used primarily as a
grouping mechanism (the selection box that
groups selection buttons knows the name of
each button in the group), it may be changed
here for convenience.

Label (optional) Displays the label of the check
button that you are editing. Changing the
label causes a new label to be generated for
the check button with the new text. This is a
non-required field, but if entered, it must be a
valid text entry. Quotation marks are not
required. If included, they become part of the
label.

Id (optional) Displays the ID of the check button
that you are editing. Changing the ID updates
the ID of the check button in its table.

On value (optional) Displays the current on-value for
the check button that you are editing. This is
the value of the check button when it is
selected. Update and conclude methods
require this field to have a value. The default
value is the symbol check-button.

Off value (optional) Displays the current off-value for
the check button that you are editing. This is
the value of the check button when it is not
selected. Update and conclude methods
require this field to have a value. The default
value is the symbol check-button.
209

Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the check
button that you are editing. Changes to the X
and Y values will move the check button to
the new location. This is a required field and
defaults to the check button’s current position
on the workspace. The X and Y values must
be integers.

Dimensions (read only) The two text fields below the label
Dimensions display the current item-width
and item-height of the check button that you
are editing. You cannot edit this field.

Size (required) The buttons below the label Size
indicate the current size (small, medium, or
large) of the check button that you are editing.
You can change the size of the check button
that you are editing by selecting the button
whose label indicates the desired size. When
you apply this change, GUIDE regenerates all
the check buttons grouped by the same
selection box in the new size without
changing the buttons’ other attributes.

Change label size Applies the currently selected size (small,
medium, or large) to the labels of the checks
buttons in this selection box.

Button spacing (required) Displays the current number of
workspace units used for the vertical spacing
of the check buttons. Changes to this value
causes the entire grouping of check buttons to
be re-displayed. The leader button (top-most)
maintains its X/Y positioning. The remaining
buttons are spaced accordingly.

Components of Edit Check Button Dialog

Component Description
210

Editing Check Buttons
Style (required) The buttons below the label Style
(Motif, Windows) indicate the current
window style of the check button that you are
editing. You can change the window style by
selecting the button whose label indicates the
desired style. When you apply this change,
GUIDE regenerates all the check buttons in
the same selection box in the new style,
without changing the buttons’ other
attributes.

State (required) The buttons below the label State
(Enabled, Disabled, On, Off), indicate the
current state of the check button that you are
editing. You can change the state by selecting
the button whose label indicates the desired
state. When you apply this change, the check
button is updated to reflect its new state.

Run conclude method
immediately

(optional) The conclude method specified for
this check button is run as soon as a user
clicks on the button. If you do not select the
Run conclude method immediately option,
the check button is not concluded until a
conclude method is run on the dialog
(typically through an OK or Apply push
button).

Callback The callback procedure associated with this
check button. The callback is run when a user
selects the check button. The default callback
is uil-do-nothing, which does nothing. For
most purposes, check buttons do not require
their callbacks to perform any processing.
However, if you need to perform special
processing through a check button, you can
write a customized callback and use it in place
of uil-do-nothing. For information about
callbacks, see Methods, Actions,
and Callbacks.

Components of Edit Check Button Dialog

Component Description
211

Summary of Check Box Menu Choices

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the check button that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the check button that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the check
button.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Menu Choice Description

table Shows the attribute table of the check box

transfer Places the check box on the mouse, so that you
can drop it on a different workspace. The check
buttons in the check box are transferred with it.

name Opens an editor allowing a name to be entered
or changed

rotate/reflect Opens a menu of rotation and reflection options:
90 clockwise, 90 counterclockwise, 180, left-right
reflection, up-down-reflection.

change size Posts a G2 dialog providing change size options

Components of Edit Check Button Dialog

Component Description
212

Summary of Check Box Menu Choices
color Opens a series of G2 menus enabling you to
change colors of icon regions. GUIDE provides
the Configuration Editor as the recommended
way to change colors. For information about this
dialog, see Using The GUIDE Configuration
Editor.

lift to top Displays check box on top of another object on a
workspace.

drop to bottom Drops the check box behind another object on a
workspace.

disable/enable Disables or enables the check box.

describe Shows a description of the object and its
relations.

describe
configuration

Displays a description of the object’s current
configuration.

edit array Opens the Edit Array dialog, in which you can
edit the member list of check buttons in the
check box.

edit configuration Posts GUIDE’s configuration editor for
selecting, deleting, copying, or editing
configurations

configure Applies the current configuration to the check
box.

delete. Posts a confirmation dialog to the user and, if
confirmed, deletes the check box.

initialize Calls the initialization method of the check box.
This menu choice is visible only when the check
box is enabled.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the dialog is enabled.

clone. Makes a copy of the check box and places it next
to the original check box on the workspace. This
menu choice is visible only when the check box
is enabled.

Menu Choice Description
213

Summary of Check Button Menu Choices

disable./enable. Enables or disables the check box and the check
buttons that it contains.

resize box to fit
buttons

Resizes the check box to fit correctly around the
check buttons that the check box contains. This
user menu choice is useful if you add, delete, or
modify check buttons in the check box.

hide/show selection
box

Makes the check box invisible or invisible. Does
not affect the visibility of the check buttons in
the check box.

edit check box Opens the Edit Check Box dialog, in which you
can edit attributes of the check box.

Menu Choice Description

table Shows the attribute table of the check button.

transfer Places the check button on the mouse so that
you can transfer it to a different workspace.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options:
90 clockwise, 90 counterclockwise, 180, left-right
reflection, up-down-reflection.

change size Opens a G2 dialog providing change size
options.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration editor as a preferred
means of changing icon regions.

lift to top Displays check button on top of another object
on a workspace.

drop to bottom Drops the check button behind another object on
a workspace.

Menu Choice Description
214

Summary of Check Button Menu Choices
describe Shows a description of the object and its
relations. The description includes the check
button’s name, module assignment, and
relations to other objects.

describe
configuration

Displays a description of the object’s current
configuration.

create subworkspace Creates a subworkspace for this check button.

edit configuration Opens the GUIDE Configuration Editor, which
enables you to select, delete, copy, or edit
configurations.

configure Applies the current configuration to the check
button.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the check button.

initialize Calls the initialization method of the check
button. This menu choice is visible only when
the check button is enabled.

move Opens the Move Object dialog, which you can
use to position the check button precisely. For
information about this dialog, see the
G2 Reference Manual.

select Simulates the effect of selecting the check button
in a play mode.

clone. Makes a copy of the check button and places it
at the bottom of the check box that contains the
original button.

disable/enable Disables a check button. Prevents the select
menu choice from being shown or run on the
button. Also changes the colors of the button to
reflect its disabled state

Menu Choice Description
215

edit check box Opens the Edit Check Box dialog, in which you
can edit attributes of the check box that contains
this check button.

edit check button Opens Edit Check Button dialog for editing the
various attributes of the check button. For
information about this editor, see Editing Check
Buttons.

Menu Choice Description
216

12
Toggle Buttons
Describes how to create and edit toggle buttons, which represent two mutually
exclusive choices.

Introduction 217

Editing Toggle Buttons 220

Summary of Toggle Button Menu Choices 225

Introduction
A toggle button can represent two mutually exclusive values. One value is
chosen when the toggle button is selected, and the other value is chosen when the
toggle button is unselected. These values are stored in attributes named on-value
(button is selected) and off-value (button is not selected).

Selecting Motif or Windows Style Buttons

You can create Motif or Windows style buttons. You select the style of buttons
that you want to create in the GUIDE Control Panel. For information about how
to do this, see Steps for Building a Master Dialog.
217

Adding Toggle Buttons to a Master Dialog

The GUIDE palette provides icons for two kinds of toggle buttons, icon toggle
buttons and text toggle buttons:

Icon toggle buttons and text toggle buttons behave exactly the same; they differ
from each other only in appearance:

You can add toggle buttons to a master dialog by clicking on either of these icons
and dragging to the subworkspace of the master dialog. You can also add toggle
buttons by selecting either of these choices from the GUIDE menu bar:

Item > GUIDE Objects > Buttons > uil-icon-toggle-button
Item > GUIDE Objects > Buttons > uil-text-toggle-button

The icon for the class of toggle button that you select becomes attached to your
cursor. You can drop the button on the subworkspace of the master dialog that
you are editing.

Updating and Concluding Toggle Buttons

When a conclude method is run on a toggle button, the current value of the toggle
button (on-value if the button is selected or off-value if it is unselected) is
concluded to the target attribute of the toggle button’s target object.

When an update method is run on a toggle button, the toggle button is selected if
it receives a value that matches its on-value, and is unselected if it receives a value
that matches its off-value. If it receives any other value, the selection state of the
toggle button is not affected.

For example, the on-value of a toggle button can be set to running and its off-value
can be set to stopped. The initiating object of the toggle button is an object

Icon toggle
button icon

Text toggle
button icon

Icon toggle
button

Text toggle
button
218

Introduction
representing a tank that has an attribute named tank-state. The toggle button has
the following attribute values:

:

When the update method is run on the toggle button, the value of the tank-state
attribute of the tank is automatically reflected in the state of the toggle button. If
the value of the attribute tank-state is stopped, then the toggle button is left
unselected. If the value of tank-state is running, then the toggle button is selected.

When the conclude method is run on the toggle button, the state of the toggle
button is concluded into the tank-state attribute. If the value of toggle button is
selected, then its on-value is concluded into the tank-state attribute of the
initiating object. If the toggle button is unselected, then its off-value is concluded
into tank-state.

Specifying Labels for Toggle Buttons

By default, the labels of Motif-style toggle buttons created in GUIDE 5.0 or higher
are contained in the icons of the buttons. Because the label is part of the icon, a
Motif-style button and its label move and remain together whenever you drag
either of them.

However, Windows-style toggle buttons use separate label objects for labels, as in
versions of GUIDE/UIL prior to 5.0.

For both Motif and Windows style toggle buttons, you specify label text in the
Edit Toggle Button dialog. In this dialog, you also specify whether you want a
toggle button to resize itself to fit its label. For information about how to use the
Edit Toggle Button dialog, see Editing Toggle Buttons.

Upgrading Toggle Buttons Created with Previous Versions of
GUIDE/UIL

GUIDE/UIL supports toggle buttons with separate label objects created in
versions of GUIDE/UIL prior to 5.0. It does not automatically convert them to
place their labels in their icons. For information about how to convert existing
Motif-style toggle buttons to the GUIDE/UIL 5.0 styles, see Chapter 26,
“Upgrading Guide Applications” in the G2 GUIDE User’s Guide G2 Utilities
Version 5.0 manual.

Toggle Button Attribute Value

uil-event-target-object initiating-object

uil-event-target-attribute tank-state

uil-event-source-object initiating-object

uil-event-source-attribute tank-state
219

Using Label Objects for Toggle Button Labels

Dialogs that contain Motif-style buttons created with GUIDE/UIL 5.0 or higher
launch more quickly than dialogs that contain buttons with separate label objects.
However, if you want to use separate label objects for button text, as in previous
versions of GUIDE/UIL, set the uil-use-icon-text-for-buttons parameter to false.
You can set this parameter using the following menu choice from the GUIDE
menu bar:

Tools > GUIDE 50r0 Migration Tools > Create 50r0 Buttons

When Create 50r0 Buttons is not selected, GUIDE/UIL creates a separate object to
contain the label for each button that you create.

You can also set the uil-use-icon-text-for-buttons parameter using a conclude
statement such as the following in an action button:

conclude that uil-use-icon-text-for-buttons is false

Caution Application code that accesses text in separate label objects will not work if you
use the GUIDE/UIL 5.0-style buttons that include button and text within a single
object.

Do not attempt to extract text from buttons using relations. Instead, you can use
the UIL procedure uil-get-label-text() to return the uil-text object that provides the
text of another object’s label.

Editing Toggle Buttons
You can edit the appearance and behavior of toggle buttons using the Edit Toggle
Button dialog, Edit Source Object & Attribute dialog, Edit Target Object &
Attribute dialog, and Edit Methods dialog.
220

Editing Toggle Buttons
Edit Toggle Button Dialog

To open the Edit Toggle Button dialog, click the toggle button that you want to
edit and choose edit toggle button from the toggle button menu. The Edit Toggle
Button dialog looks like this:

The following table describes the components of the Edit Toggle Button dialog:
.

Components of Edit Toggle Button Dialog

Component Description

Class (read-only) Displays the class of toggle button
that you are editing.

Name (optional) Displays the current name of the
toggle button that you are editing. Changing
the displayed value updates the name of the
toggle button. This field does not require a
value. Its contents, if any, must be a valid
symbolic name.
221

Id (optional) Displays the ID of the toggle button
that you are editing. Changing the ID updates
the ID of the toggle button in its table.

Label (optional) Displays the label of the toggle
button that you are editing. Changing the
label will cause a new label to be generated
for the toggle button with the new text. This is
a non-required field, but if entered, it must be
a valid text entry. Quotation marks are not
required. If included, they will become part of
the label.

Toggle Label (optional) Displays the toggle-label of the
toggle button that you are editing. The text
used for the toggle label is displayed when the
toggle button is toggled on. This is a non-
required field, but if entered, it must be a
valid text entry. Quotation marks are not
required. If included, they will become part of
the label.

Off value (optional) Displays the current off-value for
the toggle button that you are editing. This is
the value of the toggle button when it is not
selected. The update and conclude methods
for dialogs require this field to have a value.
The default value is the symbol off.

On value (optional) Displays the current on-value for
the toggle button that you are editing. This is
the value of the toggle button when it is
selected. The update and conclude methods
for dialogs require this field to have a value.
The default value is the symbol on.

Components of Edit Toggle Button Dialog

Component Description
222

Editing Toggle Buttons
Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the toggle
button that you are editing. Changes to the X
and Y values will move the toggle button to
the new location. This is a required field and
defaults to the toggle button’s current
position on the workspace. The X and Y
values must be integers.

Dimensions (read only) The two text fields below the label
Dimensions display the current item-width
and item-height of the toggle button that you
are editing. You cannot edit this field.

Size (required) The radio buttons below the label
Size indicate the current size (small, medium,
or large) of the toggle button that you are
editing. You can change the size of the toggle
button that you are editing by selecting the
radio button whose label indicates the desired
size. When this change is applied, GUIDE
regenerates the toggle button in the new size
without changing the button’s other
attributes.

Style (required) The radio buttons below the label
Style (Motif, Windows) indicate the current
window style of the toggle button that you are
editing. Users can change the window style
by selecting the radio button whose label
indicates the desired style. When this change
is applied, GUIDE regenerates the toggle
button in the new style without changing the
button’s other attributes.

State The Enabled and Disabled radio buttons
below the label State indicate the current state
of the toggle button that you are editing. You
can change the state by selecting the radio
button whose label indicates the desired state.
When this change is applied, the toggle
button is updated to reflect its new state.

Components of Edit Toggle Button Dialog

Component Description
223

Callback The callback procedure associated with this
toggle button. The callback is run when a user
clicks on the toggle button. The default
callback is uil-do-nothing, which does nothing.
For most purposes, toggle buttons do not
require their callbacks to perform any
processing. However, if you need to perform
special processing through a toggle button,
you can write a customized callback and use it
in place of uil-do-nothing. For information
about callbacks, see Methods, Actions,
and Callbacks.

Resize button to
fit label

If this option is selected (the default),
GUIDE/UIL automatically resizes the toggle
button to fit the label text that you specify for
the button. If this option is not selected, the
button is not resized automatically.

Run conclude method
immediately

If this option is selected, the value of this
button is concluded to its target object
whenever a user clicks on the button to toggle
it on or off. If this option is not selected, the
value of the button is not concluded until a
conclude method is run on the dialog that
contains the button.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the toggle button that you
are editing. For information about this dialog,
see Edit Source Object & Attribute Dialog.

Components of Edit Toggle Button Dialog

Component Description
224

Summary of Toggle Button Menu Choices
Summary of Toggle Button Menu Choices

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the toggle button that you
are editing. For information about this dialog,
see Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the toggle
button.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Menu Choice Description

table Shows the G2 table for the toggle button.

transfer Places the toggle button on the mouse and
transfers it to a different workspace.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a G2 dialog proving rotation and
reflection options: 90 clockwise, 90
counterclockwise, 180, left-right reflection,
up-down-reflection.

change size Opens a G2 dialog providing change size
options.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration Editor as a preferred
means of changing the colors of icon regions.

lift to top Displays toggle button on top of another object
on a workspace.

Components of Edit Toggle Button Dialog

Component Description
225

drop to bottom Displays toggle button behind another object on
a workspace.

describe Shows a description of the object and its
relations.

describe
configuration

Displays a description of the button’s current
configuration.

create subworkspace Creates and shows a subworkspace for the
button.

edit configuration Opens the Configuration Editor for selecting,
deleting, copying, or editing configurations.

configure Applies the current configuration to the button.
This menu choice is visible only when the
button is disabled.

delete. Opens a confirmation dialog to the user and, if
confirmed, deletes the button.

initialize Calls the initialization method of the toggle
button. This menu choice is visible only when
the toggle button is enabled.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the toggle button is
enabled.

select Executes the uil-handler-method specified on
the button. The handler method subsequently
executes the callback specified for the button.

clone. Makes a copy of the button and places it next to
the original button on the workspace.

disable./enable. Disabling the toggle button prevents the select
menu choice from being shown or run on the
button. The colors of the button change to reflect
its disabled state.

edit toggle button Opens the Edit Toggle Button dialog, in which
you can edit the attributes of the toggle button.

Menu Choice Description
226

13
Edit Boxes, Combo
Boxes, and Spin Controls
Describes how to create and customize edit boxes, combo boxes, and spin controls.

Introduction 227

Editing Edit Boxes 232

Background Color and Text Color Dialogs 247

Combo Boxes 247

Spin Control Boxes 250

Summary of Edit Box, Combo Box, and Spin Control Menu Choices 252

Summary of Spin Control Box Menu Choices 253

Summary of Combo Box Menu Choices 255

Introduction
Edit boxes are fields in which an application can display textual information to
users, and users can input textual information to the application.

The GUIDE palette provides icons for four different kinds of edit boxes:

• Edit boxes that can contain only a single line.

• Scrollable edit boxes that can contain more than one line of text. Edit boxes
containing more than one line have scroll bars.
227

• Spin control edit boxes, which provide scrollable lists of values.

• Combo edit boxes, which are edit boxes combined with scrollable lists of text
items.

The different kinds of edit boxes look like this:

You can add edit boxes to a master dialog by clicking the icon for the class of edit
box that you want to create and dropping it on the subworkspace of the master
dialog. You can also add edit boxes by selecting the following choices from the
GUIDE menu bar:

Item > GUIDE Objects > Texts > uil-edit-box
Item > GUIDE Objects > Texts > multi-line-uil-edit-box
Item > GUIDE Objects > Texts > uil-spin-control
Item > GUIDE Objects > Texts > uil-combo-box

Different sizes and styles of edit boxes are listed under each of these choices.
Select the class of edit box that you want to add. The icon for that class of edit box
becomes attached to your cursor. You can drop it on the subworkspace of the
master dialog that you are editing.

For each edit box, you can specify the initial contents, the behavior of the editor
for that edit box, validation criteria for data that users enter into the edit box, and
the source and target objects and attributes of the edit box.

Setting the Initial Contents of Edit Boxes

You can specify initial contents for an edit box by choosing the edit. user menu
choice. This menu choice opens the editor on the edit box. The full, unformatted
contents of the edit box are stored in the message-contents attribute of the edit
228

Introduction
box. A formatted and clipped version of the text is stored in the text attribute of
the edit box, which you cannot view or edit directly.

Edit Styles for Edit Boxes

You can specify different edit styles for edit boxes to control how the editor
behaves when it is opened on the edit boxes, in all user modes.

An edit style can specify editing features such as the language in which the editor
displays menus and prompts when it is opened on an edit box, and whether an
edit box can display more than one line of text. Edit styles are instances of the
class uil-field-edit-style.

GUIDE provides a number of useful system-defined edit styles. You can also
create your own reusable edit styles.

Edit styles apply rules to edit boxes that govern the following:

• Aspects of editor behavior, such as whether the edit box can accept more than
one line of text, whether the edit box is cleared at the beginning of an edit, and
whether the editor displays edit buttons, menus, and grammatical prompts.

• The font size and color of text.

• The background color of the edit box.

• The default size of the editor.

• Whether the editor displays menus and buttons.

• The natural language, such as English, French, or German, in which the text of
the label is displayed.

For information about how to edit an edit style, see Creating and Editing an Edit
Field Edit Style.

Validating the Contents of Edit Boxes

You can associate procedures known as validation methods with edit boxes to
validate the edits that a user makes to the contents of the edit box. The procedure
that performs the validation for an edit box is specified in the uil-validation-
method attribute of the edit box. The default validation method for edit boxes is
uil-validate-grobj-method.

The validation method for an edit box compares the contents of the edit box with
an existing format, which is specified in the uil-format-specification attribute of the
edit box. Each format specifies validation criteria for the contents of the edit box,
such as the data type and format, minimum and maximum length, minimum and
maximum value, and other criteria. The format also controls how quotation
marks are displayed and how cases are handled.
229

You can specify that the validation method is run on the edit box when a user
finishes editing it — for example, when a user presses the Tab or Return key, or
clicks on some other edit box in the dialog. If you do not specify that validation is
to occur immediately when a user finishes editing, the contents of the edit box are
validated only when a validation method is run on the dialog — for example,
when a user clicks a push button (typically, an OK or Apply button).

You select a format and validation options for an edit box through the edit edit
box dialog. For information about the this dialog, see Keyboard Navigation to
Edit Boxes.

Because UIL cannot anticipate all types of validation that may be needed by the
application, you can create your own validation procedures and functions to use
in place of those provided. Supported types of validation are: data type checking,
date and time formats, list member lookup, and range-checking.

How GUIDE Validates Edit Boxes

The validation method uil-call-validate-method validates the contents of edit
boxes according to these rules:

1 If the value remains unchanged (that is, if the user has not altered the value
but tabbed or aborted out of the edit), then the validation method is not run,
even if it is specified.

2 The attribute uil-validate-value-immediately, if true, applies the validation
method immediately upon exit from the edit session on the field.

3 When the validation method is run on a dialog, every edit-box in the
uil-dialog-grobj-list of the dialog which specifies a validation method is
validated. Each validation error, in turn is reported until all of the errors have
been corrected or the dialog canceled.

4 If a validation failure occurs, the user must enter a value that satisfies the
validation criteria before the next edit box is validated.

5 The validation method validates values using criteria specified in a format
object of the class uil-format-specification-object. For information about
formats, see Formats and Validation Criteria..

6 You can specify your own validation procedures and functions in the format
selected for validation.

7 Validation failures, by default, are handled by the built-in error handler. This
error handler posts a dialog on the window that explains the reason for the
validation failing. If information is available about the nature of the failure
and the expected value or type of value, this information is displayed.

8 You can create and use a user-defined validation failure handler. This handler
is used rather than the default handler.
230

Introduction
A validation failure method can be referenced from the uil-validation-failure
method attribute of a format. By default, the validation failure method of a format
is unspecified. You can create a validation failure method using the GUIDE
Method Help dialog. For information about how to use this dialog, see Creating
Callbacks, Methods, Procedures, Functions, and Actions Using the GUIDE
Method Help Dialog.

Keyboard Navigation to Edit Boxes

Users can navigate from edit box to edit box in a dialog by pressing the Tab,
Return, and abort (Ctrl + a) keys. Pressing these keys moves the editor forward in
the sequence of edit boxes on the dialog, beginning with the edit box in the top
left corner of the dialog and moving horizontally from left to right, and vertically
from top to bottom. When the editor reaches the last edit box in the dialog, it can
move forward by returning to the edit box in the top left corner of the dialog.
Keyboard navigation is available only for edit boxes created from the system-
defined class uil-edit-box or subclasses of uil-edit-box.

You can modify the behavior of the Tab, Return, and abort (Ctrl + a) keys to
specify whether pressing these keys moves the editor ahead to the next edit box or
to the first edit box in the next row. You can also specify that pressing the key
exits the editor. For information about how to edit the behavior of these keys, see
Editor Behaviors Dialog. Users can also move the editor to another edit box on the
same dialog or another dialog by clicking on the other edit box.

Disabling Keyboard Navigation to an Edit Box

If you do not want users to be able to access an particular edit box through
keyboard navigation, you can set the uil-allow-field-edit-of-this-message attribute
of the edit box to false. When this attribute is set to false, users can open the editor
on the edit box only by clicking on the edit box. Setting this attribute to true
enables users to open the editor on the edit box by pressing the tab, return, and
abort key until the editor reaches the edit box.

Customizing Before and After Method Processing
(Optional)

GUIDE/UIL provides system-defined selection and unselection methods that
perform special processing at the beginning and at the end of edit sessions on the
edit boxes.

The selection method for an edit box is called when the edit box is selected. The
unselection method is called when the edit session on the edit box is finished —
for example, when you click another edit box, or when a user clicks on another
edit box or clicks a key to navigate to another edit box.
231

The default selection method is uil-edit-box-selection-method, and the default
unselection method is uil-edit-box-unselection-method. These methods provide
support for opening and closing the editor on edit boxes.

Your application can use the default selection and unselection methods for most
purposes. If you want to perform any additional, specialized processing on edit
boxes when you open and close them for editing, you can write your own
selection and unselection methods to use in place of the default methods.

Note Any customized selection method that you write should include a call to the
lower-level procedures uil-edit-box-selection. Any customized unselection
method should include a call to the lower-level procedure uil-edit-box-
unselection. These lower-level procedures are required for starting and closing
edit sessions on edit boxes.

Selection and unselection methods are available only for edit boxes and for edit
boxes created from subclasses of the system-defined edit box classes. These
methods are used in all user modes.

Updating and Concluding Edit Boxes

The text in edit boxes can be updated from and concluded to other objects. You
can specify the source and target objects and attributes of edit boxes by selecting
the Source Object and Target Object buttons in the Edit Edit Box dialog.

GUIDE/UIL provides default methods for performing the update and conclude
operations on edit boxes. Your application can use the default methods for most
purposes. For information about how to create and use customized methods for
updating and concluding edit boxes, see Methods, Actions, and Callbacks.

Editing Edit Boxes
You can edit the appearance and behavior of edit boxes using the Edit Edit Box
dialog, the Select Edit Style dialog, the Edit Field Edit Style dialog, and the
Background Color and Text Color dialogs. The following figure illustrates these
dialogs and how to access them.
232

Editing Edit Boxes
Edit Edit Box Dialog

The Edit Edit Box dialog enables you to edit characteristics of an edit box such as
its name, label, ID, value, position, state, and run-time options.

You can also select an existing edit style, or define a new one, through dialogs that
you access from the Edit Edit Box dialog.

For more information about the Select Edit Style and Edit Field Edit Style dialogs,
see the sections immediately following this one.

Dialogs for Editing Edit Boxes and Edit Styles

New...

...

Note: You can also use the Edit Edit Box
dialog to access the Select Format Dialog,
in which you can select a format for the
edit box. For information about how to do
this, see Applying and Editing Formats.

Text Color

Selects color of
text edit box.

Background Color

Selects background
color for edit box.

Edit Field Edit Style

Creates a new edit
style

Field Edit
Background Color

Field Edit Text
Color

Edit Edit Box

Edits edit box
characteristics.

Edit Style:

Select Edit Style

Selects an existing
edit style to apply
to an edit box.
Creates a new edit
box and opens Edit
Field Edit Style
dialog.
233

To open the Edit Edit Box dialog, click the edit box that you want to edit and
choose edit edit box from the edit box menu. The Edit Edit Box dialog looks like
this:
234

Editing Edit Boxes
The following table describes the components of the Edit Edit Box dialog:

Components of Edit Edit Box Dialog

Component Description

Class (read-only) Displays the class of edit box that
you are editing.

Name (optional) Displays the current name of the
edit box that you are editing. Changing the
displayed value updates the name of the edit
box. This field does not require a value. Its
contents, if any, must be a valid symbolic
name entry.

Label (optional) Displays the current text of the edit
box’s label. You can edit the contents of this
field to change the label text.

Id (optional) Displays the ID of the edit box that
you are editing. Changing the ID updates the
id attribute of the edit box.

Value (optional) Displays the unformatted contents
of the edit box that you are editing. You can
edit the Value field to modify the edit box’s
unformatted contents. The unformatted
contents are stored in the message-contents
attribute of the edit box.

If you specify a format for the edit box
(through the Select Format dialog), this
format is applied to the contents of the
message-contents attribute, and the resulting
formatted text is stored in the text attribute of
the edit box. Any limitation on the contents of
the edit box that you specify in the Maximum
Characters to Display field (see below) is also
applied to the formatted text in the text
attribute. You cannot directly access or edit
the text attribute.
235

Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the edit box
that you are editing. Changes to the X and Y
values will move the edit box to the new
location. This is a required field and defaults
to the edit box’s current position on the
workspace. The X and Y values must be
integers.

Dimensions (read-only) The two text fields below the label
Dimensions display the current item-width
and item-height of the edit box that you are
editing. You cannot edit this field.

Size (required) The radio buttons below the label
Size indicate the current size (small, medium,
or large) of the edit box that you are editing.
You can change the size of the edit box by
selecting the radio button whose label
indicates the desired size. When this change is
applied, GUIDE regenerates the edit box in
the new size without changing the object’s
other attributes.

State (required) The radio buttons below the label
State indicate the current enabled or disabled
state of the object that you are editing. Users
can change the state by selecting the radio
button whose label indicates the desired state.
When this change is applied, the edit box is
updated to reflect its new state.

Components of Edit Edit Box Dialog

Component Description
236

Editing Edit Boxes
Options

Run validate
method
immediately

If you select this option, the validation
method for this edit box is run as soon as the
user finishes editing the contents of the edit
box. The validation method is specified in the
uil-validation-method attribute of the edit box.
This method applies validation criteria
specified in the format that is currently
selected for this edit box.

If you do not select this option, the contents of
the edit box are not validated until a
validation method is run on the dialog,
typically through an OK or Apply push
button.

Run conclude
method
immediately

If you select this option, the conclude method
for this edit box is run as soon as the user
finishes editing the contents of the edit box.
The conclude method is specified in the
uil-conclude method attribute of the edit box.

If you do not select this option, the contents of
the edit box are not concluded until a
conclude method is run on the dialog,
typically through an OK or Apply push
button.

Components of Edit Edit Box Dialog

Component Description
237

Maximum
characters to
display

(required) Specifies the maximum number of
characters that can be displayed in the edit
box. Any characters in excess of this number
are clipped. The default value is the 10
characters.

Specifying a value in the Maximum characters
to display field prevents the edit box from
expanding beyond its original dimensions.
This is particularly useful for maintaining
dialog layout and item alignment.

The full, unformatted text is maintained in the
message-contents attribute of the edit box.
The clipped and/or formatted text is placed in
an attribute named text, which you cannot
view or edit directly.

Bounding box (optional) When this button is selected,
GUIDE creates a border and wraps it around
the edit box. The border is given a name and
is referred to in the edit box’s uil-border-
relation attribute. If the edit box has a border
and you turn this option off, the border is
deleted and the uil-border-relation attribute is
set to be the symbol unspecified.

Clear field on edit (optional) If this button is selected, GUIDE
clears out the text in the edit box whenever
the edit box receives focus for editing. If the
toggle button is unselected, then the text is not
cleared from the edit box.

Allow field edit (optional) If this button is selected, users can
navigate to this edit box by pressing the tab,
return, or abort key. Navigating to the edit
box opens the field editor on it.

If this button is not selected, users can open
the field editor on this edit box only by
clicking on the edit box.

Components of Edit Edit Box Dialog

Component Description
238

Editing Edit Boxes
Use target grammar If this button is selected, the editor for the edit
box displays look-ahead grammatical
prompts that are appropriate to target object
of this edit box. This target grammar takes
precedence over the grammar of the Edit Style
specified for this edit box.

Format You can enter the name of an existing format
to specify a format for this edit box. For
information about how to use formats, see
Formats and Validation Criteria.

Clicking on the push button to the right of the
Format edit box opens the Select Format
dialog, in which you can select a format for
this edit box. For more information about this
dialog, see Creating Formats.

Edit Style You can enter the name of an existing edit
style to apply to this edit box. For information
about how to use edit styles, see Edit Styles
for Edit Boxes.

Clicking on the push button to the right of the
Edit Style edit box opens the Select Edit Style
dialog, which enables you to choose an
existing edit style for the edit box that you are
editing. See the following section for more
information about the Select Edit Style dialog.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the edit box that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Components of Edit Edit Box Dialog

Component Description
239

Select Edit Style Dialog

The Select Edit Style dialog enables you to select an existing edit style to apply to
an edit box. An edit style controls the appearance and behavior of the editor when
you edit edit boxes to which the edit style is applied.

The Select Edit Style dialog also enables you to access the Edit Field Edit Style
dialog, in which you can create a new edit style for an edit box.

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the edit box that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the edit
box.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Edit Box Dialog

Component Description
240

Editing Edit Boxes
To open the Select Edit Style dialog, click the Select Edit Style button in the Edit
Edit Box dialog. The Select Edit Style dialog looks like this:

To select an edit style, select the name of the style in the scroll area of the dialog,
and click OK.

To ensure that all existing edit styles are displayed in the list, click Update.

To create an edit style, click the New button. Clicking New opens the Edit Field
Edit Style dialog. See the following section for information about this dialog.

You can also create an edit style by clicking on the Field Edit Style icon in the
More Options palette and dropping it on the workspace where you to use the edit
style. You can access this palette by clicking on the More Options button in the
GUIDE palette.

Creating and Editing an Edit Field Edit Style

You can create an edit style in either of three ways:

• Select the following choice from the GUIDE menu bar:

Item > GUIDE Objects > Edit Style

The icon for the edit style becomes attached to your cursor, and you can drop
it on any workspace.

• Open the Edit Field Edit Style dialog by clicking the New button in the Select
Edit Style dialog. When you click the New button, an edit style is created and
241

the following icon is added to the workspace that contains the object that you
are editing.

:

• To edit an existing edit style or create a new edit style, select edit field edit
style from the edit button menu to open the Edit Field Edit Style dialog. The
Edit Field Edit Style dialog looks like this:
242

Editing Edit Boxes
The following table describes the components of the Edit Field Edit Style dialog:

Components of Edit Field Edit Style Dialog

Component Description

Name (required) Displays the current name of the
edit style that you are editing. Changing the
displayed value updates the name of the edit
style. This field must contain a valid symbolic
name entry.

Attribute Settings

Edit in multi line
mode

Indicates whether the editor has scroll bars.

When this button is selected, pressing Return
adds a line-feed to the field, and the editor has
scroll bars. Pressing Ctrl + Return or Tab
closes edit.

When this button is not selected, pressing
Return terminates the editing session on this
edit box. The editor does not have scroll bars.

Clear before edit Removes contents of edit box when a user
starts to edit the edit box.

Edit in place Indicates where the editor appears when a
user edits the field.

When this button is selected, the editor
appears directly on top of the edit box being
edited.

When this button is not selected, the editor
appears in the upper left corner of the screen.
243

Show edit buttons Indicates whether to show or hide the Cancel,
End, and Paste buttons that appear along the
left side of the editor in the field that you are
editing.

When this button is selected, the Cancel, End,
and Paste buttons appear. For example:

When this button is not selected, the Cancel,
End, and Paste buttons do not appear. For
example:

Confirm cancelled
edit

Indicates whether or not to display a
confirmation dialog when the user cancels an
editing session on this field.

When this button is selected, the following
confirmation dialog appears when a user
cancels an edit:

When this button is not selected, no
confirmation dialog is displayed when a user
cancels an editing session.

Font size Specifies the size of the characters in the field.
Select the button for the size that you want
(small, medium, large, or default). The default
size is the current font size of the object that
you are editing.

Editor size Specifies the size of the editor. You can specify
the size of the editor in the field directly below
the Editor size label. Or, you can determine
editor size by selecting one of the following
buttons:

Components of Edit Field Edit Style Dialog

Component Description
244

Editing Edit Boxes
Minimum The editor expands to size of the edit box that
you are editing.

Maximum The editor expands to display the entire
contents of the edit box that you are editing. If
the edit box has a multi-line format and
contains several lines of text, the editor may
expand to overlap other objects in the dialog.

Grammar

Show grammar
menus

Indicates whether or not to display look-
ahead grammatical prompts in the editor.

When this button is selected, the editor
displays grammatical prompts as you edit.

When this button is not selected, no
grammatical prompts are displayed.

Class The class of object for which grammar is
enforced.

Defining class The class that defines the attributes for which
grammar is enforced. In most cases, this is the
class specified in the preceding Class field.
However, it can also be a parent class of the
class specified in the preceding Class field.

Attribute The attribute of the specified Class or
Defining class for which grammar is enforced.

Frame style name Displays the current frame-style (a built-in G2
4.0 class) to use when posting the editor. The
frame style controls the appearance of the
border that gets drawn around the edit field.
This field expects a symbol that names a
frame-style. The symbol default is also
acceptable.

Components of Edit Field Edit Style Dialog

Component Description
245

Specifying a Password-Style Block Font

You can specify a password-style block font for an edit box by applying to the edit
box an edit style whose uil-field-edit-use-block-font attribute is set to true. When
the block font is applied to the edit box, all characters that the user enters in the
edit box appear as black rectangles. By default, the uil-field-edit-use-block-font
attribute of edit styles is false.

To specify a password-style block font::

1 Open the attribute table of the edit style by selecting table from the menu of
the edit style.

2 In the table, set the uil-field-edit-use-block-font attribute to true.

Field edit background
color

Displays the G2 color used for the
background color of the editor displayed
when a user edits the edit box.

You can enter the name of any G2 color. You
can also click the push button to the right of
the field to display the Background Color
dialog. In the Background Color dialog, you
select one color and click OK.

The symbol default is also acceptable.

Field edit text color Displays the G2 color used for the text color of
the editor displayed when a user edits the edit
box.

You can enter the name of any G2 color. You
can also click the push button to the right of
the field to display the Text Color dialog. In
the Text Color dialog, you select one color and
click OK.

The symbol default is also acceptable.

Language Enter the name of the natural language in
which you want the field editor to be
displayed.

You can also select a language from the scroll
area below this field. The name of the
language that you select is displayed in the
field above the scroll area.

Components of Edit Field Edit Style Dialog

Component Description
246

Background Color and Text Color Dialogs
Background Color and Text Color Dialogs
The Background Color dialog enables you to select a background color for the
edit boxes to which a particular edit style is applied. The Text Color dialog
enables you to select the color of the text in these edit boxes.

To open the Background Color dialog, click the Field edit background color
button in the Edit Field Edit Style dialog.

To open the Text Color dialog, click the Field edit text color button in the same
dialog.

These dialogs are identical except for their titles. The Text Color dialog looks like
this:

To choose a background color or text color, select the color in the scroll area of the
dialog and click OK.

Combo Boxes
A Combo Box (uil-combo-box) is an edit box combined with a scrollable list of text
items. Users can display the list by clicking the button in the upper right corner of
the Combo Box. When a user selects an item in the list, the list is closed and the
selected item appears in the edit box.
247

The following figure illustrates a Combo Box with its list hidden and shown:

Users can change the contents of the edit box part of a Combo Box in two ways:

• By clicking an item in the scrollable list. This causes the selected item to
appear in the edit box, replacing the previous contents.

If you do not want users to be able to select messages in the scrollable list,
specify uil-combo-box-no-selection as the method referenced from the
uil-message-unselection-method attribute of the Combo Box.

• By entering characters or deleting them in the edit box directly.

When a conclude method is run on a Combo Box, the value that is concluded is
the value that currently appears in the edit box.

You cannot add a value to the Combo Box scrollable list by concluding a value to
the Combo Box. You can, however, add a value to the Combo Box list
programmatically. To do so, use the UIL procedure uil-add-to-combo-box-list() for
individual values or the UIL procedure uil-update-scroll-area-from-list() for
multiple values. For information about these procedures, see the G2 GUIDE/UIL
Procedures Reference Manual.

Editing Combo Boxes

You can edit most attributes of a combo box through the Edit Edit Box dialog,
which you can open by selecting edit edit box from the menu of the Combo Box.

list

button

scroll baredit box

scroll area

list

button

scroll baredit box
248

Combo Boxes
You can edit the contents of the list in a Combo Box through the GUIDE/UIL Edit
List dialog. To open the Edit List dialog, select edit combo box from the menu of
Combo Box:

To add an item to the Combo Box list, enter the new item in the Elements field
and click Add.

To change an item in the list, select the item in the Elements scroll area and edit it
in the Element: field. Click Modify to apply your edit to that item.

To remove an item from the list, select the item and click Remove.

Note The Lists scroll area in the Edit List dialog is not used for editing Combo Boxes.

GUIDE/UIL provides procedures that manipulate and modify the default
behavior of Combo Boxes. For information about these procedures, see the
G2 GUIDE/UIL Procedures Reference Manual.
249

Spin Control Boxes
A spin control entry box (uil-spin-control-entry-box) is a specialized edit box that
enables users to select one value from a range of values by scrolling a list of values
up or down within the box:

Spin control boxes share most characteristics of other styles of edit boxes,
including how their values can be updated and concluded.

Creating Spin Control Boxes

You can create spin control boxes in the following ways:

• Drag the icon for spin control boxes on the GUIDE palette to the workspace or
dialog subworkspace where you want to add the spin control box.

• Select the following choice from the GUIDE menu bar:

Item > GUIDE Objects > Texts > uil-edit-box

Under uil-edit-box, choose the size of spin control box that you want to add.
The spin control box icon becomes attached to your cursor, and you can drop
it wherever you want to add it.

• Add the spin control box programmatically, using the UIL procedure
uil-create-spin-control. For information about this procedure, see
G2 GUIDE/UIL Procedures Reference Manual.

Editing Spin Control Boxes

You can edit most attributes of a spin control box through the Edit Edit Box
dialog, which you can open by selecting edit edit box from the menu of the Spin
Control box.
250

Spin Control Boxes
You can edit the attributes of a spin control box that distinguish it from other edit
boxes through the Edit Spin Control dialog. To open the Edit Spin Control dialog,
select edit spin control from the menu of Spin Control Box:

The following table describes the components of the Edit Spin Control dialog:

Components of Edit Spin Control Dialog

Component Description

Low Value The lowest value that the spin control box can
have. You can specify any valid G2 quantity.

High Value The highest value that the spin control box
can have. You can specify any valid G2
quantity.

Increment The increment by which the value of the spin
control box is increased or decreased when a
user scrolls the spin control box. You can
specify any valid G2 quantity.

Wrap around when low
or high value is reached

If the option is selected, the value of the spin
control box wraps around when a user
attempts to scroll beyond the low value or
high value specified for the spin control box.
For example, if a user is decrementing the
value and scrolls beyond the low value, the
first value scrolled to is the high value.

If this option is not selected, scrolling stops
when a user scrolls to either the low value or
the high value.
251

Summary of Edit Box, Combo Box, and Spin
Control Menu Choices

Menu Choice Description

table Shows the attribute table of the edit box.

transfer Places the edit box on the mouse and allows the
user to move it to another workspace or
subworkspace.

change min size Enables you to change the minimum size of the
edit box by dragging the edge of the edit box.

align text Align edit box text left, right, or center.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration Editor as a preferred
means of changing colors of icon regions.

lift to top Displays the edit box on top of another object on
a workspace.

drop to bottom Drops the edit box behind another object on a
workspace.

describe Shows a description of the object and its
relations.

table of hidden
attributes

Display the edit box’s hidden attributes table.

show unsaved
attributes

Display the table for the edit box with
permanently changed attributes highlighted.

describe
configuration

Display the inheritance of configurations for the
edit box.

help on this item Access help about edit boxes.

describe
configuration

Displays a description of the edit box’s current
configuration.

edit configuration Opens the Configuration Editor, which you can
use to select, delete, copy, or edit configurations.
252

Summary of Spin Control Box Menu Choices
Summary of Spin Control Box Menu Choices

configure Applies the current configuration to the edit
box.

initialize Calls the initialization method of the edit box.
This menu choice is visible only when the edit
box is enabled.

disable./enable. Disabling the edit box prevents the select menu
choice from being shown or run on the edit box.
The colors of the edit box change to reflect its
disabled state.

edit. Opens a text editor for editing the message-
contents of the edit box.

move Opens the Move Object dialog, which enables
you to position the edit box precisely.

clone. Makes a copy of the edit box and places it next
to the original edit box on the workspace.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the edit box.

edit edit box Opens the Edit Edit Box dialog, in which you
can edit attributes of the edit box.

validate Calls the validation method for the edit box.

Menu Choice Description

table Shows the attribute table of the spin control box.

transfer Places the spin control box on the mouse and
allows the user to move it to another workspace
or subworkspace.

change min size Enables you to change the minimum size of the
spin control box by dragging the edge of the
spin control box.

align text Align spin control box text left, right, or center.

Menu Choice Description
253

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUI DE
provides the Configuration Editor as a preferred
means of changing colors of icon regions.

lift to top Displays the spin control box on top of another
object on a workspace.

drop to bottom Drops the spin control box behind another
object on a workspace.

describe Shows a description of the object and its
relations.

table of hidden
attributes

Display the spin control box’s hidden attributes
table.

show unsaved
attributes

Display the table for the spin control box with
permanently changed attributes highlighted.

describe
configuration

Display the inheritance of configurations for the
spin control box.

help on this item Access help about spin control boxes.

describe
configuration

Displays a description of the spin control box’s
current configuration.

edit configuration Opens the Configuration Editor, which you can
use to select, delete, copy, or edit configurations.

configure Applies the current configuration to the spin
control box.

initialize Calls the initialization method of the spin
control box. This menu choice is visible only
when the spin control box is enabled.

disable./enable. Disabling the spin control box prevents the
select menu choice from being shown or run on
the spin control box. The colors of the spin
control box change to reflect its disabled state.

edit. Opens a text editor for editing the message-
contents of the spin control box.

Menu Choice Description
254

Summary of Combo Box Menu Choices
Summary of Combo Box Menu Choices

Menu Choice Description

table Shows the attribute table of the combo box.

transfer Places the combo box on the mouse and allows
the user to move it to another workspace or
subworkspace.

change min size Enables you to change the minimum size of the
combo box by dragging the edge of the combo
box.

align text Align combo box text left, right, or center.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration Editor as a preferred
means of changing colors of icon regions.

lift to top Displays the combo box on top of another object
on a workspace.

drop to bottom Drops the combo box behind another object on a
workspace.

describe Shows a description of the object and its
relations.

table of hidden
attributes

Display the combo box’s hidden attributes table.

show unsaved
attributes

Display the table for the combo box with
permanently changed attributes highlighted.

describe
configuration

Display the inheritance of configurations for the
combo box.

help on this item Access help about combo boxes.

describe
configuration

Displays a description of the combo box’s
current configuration.

edit configuration Opens the Configuration Editor, which you can
use to select, delete, copy, or edit configurations.

configure Applies the current configuration to the combo
box.
255

initialize Calls the initialization method of the combo box.
This menu choice is visible only when the
combo box is enabled.

disable./enable. Disabling the combo box prevents the select
menu choice from being shown or run on the
combo box. The colors of the combo box change
to reflect its disabled state.

edit. Opens a text editor for editing the message-
contents of the combo box.

Menu Choice Description
256

14
Scroll Areas and
Message Objects
Describes how to create and edit scroll areas and message objects.

Introduction 257

Editing Scroll Areas 264

Edit Message Dialog 273

Multiple Column Scroll Areas 276

Summary of Scroll Area Menu Choices 288

Summary of Message Object Menu Choices 289

Introduction
A scroll area contains one or more message objects. Each message object contains
a text value that can be updated from or concluded to other objects in your G2
application.

You can use a scroll area to represent a set of values that is larger than can be
conveniently displayed in its entirety at one time. Users can scroll the contents of
the scroll area up or down by clicking on the scroll bar of the scroll area.
257

The following figure illustrates a scroll area containing several message objects:

Note In order to create scroll areas, GUIDE requires that the top-level module of your
application be named. GUIDE incorporates the name of the top-level module into
scroll area names that it generates for internal use.

Adding Scroll Areas and Message Objects

The GUIDE palette provides two icons for scroll areas. One contains empty
message objects by default, and one contains no message objects.

The empty scroll area is convenient to use if you intend to add all message objects
to the scroll area programmatically, using the procedure uil-add-message-to-list
or uil-create-message. For information about these procedures, see
G2 GUIDE/UIL Procedures Reference Manual.

To add a scroll area to a workspace or dialog, select the icon for the scroll area that
you want to use and drop it on the workspace or dialog subworkspace. You can
add individual message objects to existing scroll areas, but you cannot add them
to a dialog or workspace outside of any scroll area.

To add a message object to an existing scroll area, select the icon in the GUIDE
palette labeled Message and drop it on or near the scroll area. The message object
is added to the scroll area.

You can also add scroll areas and message objects by selecting the following
choices from the GUIDE menu bar:

Item > GUIDE Objects > Scroll Areas
Item > GUIDE Objects > Texts > uil-message-object

Under the choice for scroll areas, you can choose either empty or populated scroll
areas. The object that you select becomes attached to your cursor. You can drop it

Scroll bar

Message objects

Scroll area
258

Introduction
on the subworkspace or the master dialog to which you want to add the scroll
area or message object.

Resizing Scroll Areas and Message Objects

To resize a scroll area, move the pointer to the resize corner, which is the lower
right corner of the scroll area. Then drag until the scroll area has the size and
shape that you want. The following figure illustrates a scroll area and its resizing
corner.

When you resize a scroll area, the message objects in the scroll area are
automatically resized to the new size of the scroll area.

Note It is good practice to disable the resize corner when you finish adjusting the size
of the scroll area, so that it does not appear at run time. For information about
how to do this, see Scroll Area Options Dialog.

Moving Scroll Areas and Message Objects

You can move a scroll area by moving the pointer to an edge of the scroll area and
dragging it.

You can rearrange the message objects in a scroll area by dragging individual
message objects up or down within the scroll area.

You can move message objects from one scroll area to another by dragging the
message objects. When you drop a message object on the new scroll area, the
message object is resized and reformatted according to the size and format of the
new scroll area.

Updating and Concluding Scroll Areas

Scroll areas can be updated from source objects and can conclude their values into
target objects. You can edit scroll areas to specify how their contents are updated
and concluded.

resize corner
259

For example, you can specify that the contents of all the message objects in a scroll
area are cleared when the scroll area is updated with a list of values, or that
message objects are selected if their values match any of the update values.

Similarly, you can specify that only selected message objects conclude their values
when the scroll area is concluded, or that all message objects conclude their
values.

For information about how to specify update and conclude options for scroll
areas, see Managing Message Size in Scroll Areas.

Specifying Formats for Message Objects

You can specify formats for individual message objects. Each format contains
formatting information about the appearance of the text contained in the message
object. The format also controls how quotation marks are displayed and how
cases are handled. For information about how to select a format for a message
object, see Select Format Dialog.

Specifying Configurations for Scroll Areas and
Message Objects

Scroll areas and message object have separate configurations.

The configuration of a scroll area specifies the colors of foreground, background,
scroll bar, buttons, and arrows on the scroll area. The configuration of the scroll
area also has an attribute, uil-scroll-message-configuration, that specifies a default
configuration for message objects in the scroll area.

If you add a message object whose own configuration is unspecified to a scroll
area, the default message object configuration of the scroll area determines the
colors of that message object. However, if you add a message object that specifies
its own configuration, the message object’s own configuration determines the
colors of the message object.
260

Introduction
The following figure illustrates a scroll area, the table of the scroll area’s
configuration, and the table of the default message object configuration
referenced by the scroll area:

In the figure above, the configuration attribute of the scroll area references a scroll
area configuration named test-scroll-config. This scroll area configuration
references a default message object configuration named text-mesg-config. If you
add a message object whose own configuration is unspecified to this scroll area,
the colors of this message object are specified by test-mesg-config when you add
it to the scroll area. If the message object specifies its own configuration, test-
mesg-config has no effect on the colors of the message object.
261

Specifying Selection and Unselection Methods for
Scroll Areas

Message objects can have their own selection and unselection methods. For
information about how to specify methods for UIL controls, see Methods,
Actions, and Callbacks.

Managing Message Size in Scroll Areas

Scroll areas do not change size to accommodate long messages received by
message objects at run time. Long messages can extend beyond the boundaries of
the scroll area. You can do two things to prevent this from happening:

• Specify a maximum number of characters to display in message objects. If the
message object receives a message that exceeds the maximum number of
characters, the text is clipped to the maximum number and is annotated with
ellipses (...).

You can specify a maximum number of characters to display on both the scroll
area and on individual message objects. You set the Maximum number of
characters to display option for scroll areas in the Scroll Area Options dialog,
and for message objects in the Edit Message dialog. The setting of the
Maximum number of characters to display option is stored in the attribute
uil-maximum-characters-to-display attribute of scroll areas and message
objects. The value of a message object’s uil-maximum-characters-to-display
attribute takes precedence over the value of a scroll area’s uil-maximum-
characters-to-display attribute.

• Allow the message objects in a particular scroll area to contain multiple line
messages. When this option is selected, long messages in message objects that
do not clip text can wrap to additional lines in the message object.

To allow multiple line messages in the message objects in a particular scroll
area, select the Multi-lined messages option in the Scroll Area Options dialog.
The setting of this option is stored in the uil-allow-multiple-line attribute of the
scroll area. You cannot set the multiple line option for individual message
objects.

For information about how to set the options for managing long messages, see
Scroll Area Options Dialog.

Specifying User-Defined Methods for Message
Objects

When you add a message object to a scroll area, the message object inherits the
methods that are specified as attributes of the scroll area, as well as values for
other attributes such as uil-maximum-characters-to-display and configuration.
262

Introduction
If you want to specify user-defined methods as attributes of the message objects
in a scroll area, it is easiest to specify the user-defined methods as attributes of the
scroll area before you add the message objects to the scroll area. The message
objects that you subsequently add to the scroll area inherit the user-defined
methods.

If you specify user-defined methods as attributes of a scroll area after you add
message objects to it, the message objects do not inherit the new user-defined
methods. In this case, you must edit the attributes of each message object
individually to specify the user-defined methods.

Appending Items to Message Objects

To illustrate the purpose or content of message objects, you can append items to
the message objects. The icons of the appended items appear next to the message
objects.

For example, the following scroll area in the G2 Save Module dialog contains
message objects with appended g2-ui-file-open-icon or g2-ui-file-closed-icon
objects appended to them. Objects of these classes have icons that illustrate open
or closed directories:

To create a message object with an appended item:

1 Create a subclass of the uil-appended-item class. You append an instance of
this class to the message object.

2 As a method of your subclass, specify uil-on-single-click or uil-on-double-click
to specify that single-clicking or double-clicking on the icon causes the
associated message object to be selected. For information about these UIL
procedures, see the G2 GUIDE/UIL Procedures Reference Manual.
263

3 Assign an icon to the uil-appended-item class. This icon appears next to the
message object to which the instance of your appended item subclass is
appended.

4 Call the UIL procedure uil-create-message-with-appended-item to create a
new message object with an instance of your appended item subclass
appended to it, or uil-append-item-to-message to append an instance of your
subclass to an existing message object.

For information about the UIL procedures that you can use to append items to
message objects and manipulate appended items, see the G2 GUIDE/UIL
Procedures Reference Manual.

Editing Scroll Areas
You can edit the appearance and behavior of scroll areas, using the Edit Scroll
Area dialog and the Scroll Area Options dialog. The following figure illustrates
these dialogs:

:
Dialogs for Editing Scroll Areas

Edit Scroll Area Scroll Area Options

Edits scroll area
characteristics.

More...

Specifies additional
options for scroll
area behavior.
264

Editing Scroll Areas
Edit Scroll Area Dialog

The Edit Scroll Area dialog enables you to edit characteristics of a scroll area such
as its name, ID, position, location, and other characteristics. To open the Edit
Scroll Area dialog, click the scroll area that you want to edit and select edit scroll
area from the scroll area menu. The Edit Scroll Area dialog looks like this:

:

265

The following table describes the components of the Edit Scroll Area dialog:
:

Components of Edit Scroll Area Dialog

Component Description

Class (read-only) Displays the class of the scroll
area that you are editing.

Name (optional) Displays the current name of the
scroll area that you are editing. Changing the
displayed value updates the name of the
scroll area. This field does not require a value.
Its contents, if any, must be a valid symbolic
name.

Id (optional) Displays the ID of the scroll area
that you are editing. Changing the ID updates
the id attribute of the scroll area.

Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the scroll area
that you are editing. Changes to the X and Y
values will move the scroll area to the new
location. This is a required field and defaults
to the scroll area’s current position on the
workspace. The X and Y values must be
integers.

Dimensions (required) The two edit box fields below the
label Dimensions display the current item-
width and item-height of the scroll area that
you are editing.

You can resize the scroll area by changing the
width and height values, while maintaining its
X and Y position. The width and height values
must be integers.

This attribute defaults to the scroll area’s
current dimensions on the workspace.
266

Editing Scroll Areas
State (required) The radio buttons below the label
State indicate the current state (enabled or
disabled) of the object that you are editing.

You can change the state by selecting the
radio button whose label indicates the desired
state. When this change is applied, the scroll
area is updated to reflect its new state.

Ordering (required) The radio buttons below the label
Ordering indicate the current ordering
method (alphabetic, chronological, logbook,
priority, or unordered) of the scroll area that
you are editing.

You can change the ordering method of the
scroll area by selecting the radio button whose
label indicates the desired method. When this
change is applied, GUIDE reorders the
messages contained in the scroll area in the
new order.

Alphabetic Sorts the messages in alphabetical order.

Chronological The most recent messages are added to the
bottom. Messages are time stamped with the
current real-time when they are created.

Logbook The most recent messages are added to the
top.

Priority Sorts the messages according to the value of
the message-display-priority attribute of the
message. You can set this attribute on
individual message objects using the Edit
Message dialog.

Unordered Messages are displayed in the order that they
were added to the scroll area.

Components of Edit Scroll Area Dialog

Component Description
267

Font size The radio buttons below the label Font size
indicate the current size font (small, medium,
or large) used by the messages contained in
the scroll area that you are editing.

Users can change the size of the font used by
selecting the radio button whose label
indicates the desired size. When this change is
applied, GUIDE regenerates the messages to
display their new font size without changing
the message objects’ other attributes.

Update Style

Clear before update Deleting any message objects that are
currently in the scroll area before updating
the scroll area.

Select matching
items

Selects any message object in the scroll area
whose value matches one of the values with
which the scroll area is being updated.

Reuse messages Recycles message objects in the scroll area.
When an update method is run on the scroll
area, existing messages objects are used to
display the values with which the scroll area
is being updated. If the scroll area contains
more message objects than are needed to
display the update values, the unused
message objects are disabled and hidden.

Conclude Style

Selected messages Conclude values of all message objects that
are currently selected and enabled.

All messages Conclude values of all enabled message
objects.

All including
disabled

Conclude values of all message objects,
including disabled message objects.

Components of Edit Scroll Area Dialog

Component Description
268

Editing Scroll Areas
Orientation The Scrollbar on left and Scrollbar on right
radio buttons below the label Orientation
indicate the scroll bar’s orientation on the
scroll area that you are editing. Users can
change the scroll bar’s orientation by selecting
the radio button whose label indicates the
desired orientation. When this change is
applied, GUIDE displays the scroll area with
the new scroll bar orientation.

Format Clicking the button to the right of the Format
field opens the Select Format dialog, in which
you can select a format to apply to message
objects in the scroll area. For information
about formats and the Select Format dialog,
see Formats and Validation Criteria.

Note: If you specify formats for individual
message objects within the scroll area, these
formats override the format that you select for
the scroll area as a whole through the Edit
Scroll Area dialog.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the scroll area that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the scroll area that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Components of Edit Scroll Area Dialog

Component Description
269

Scroll Area Options Dialog

To open the Scroll Area Options dialog, click the More button in the Edit Scroll
Area dialog. The Scroll Area Options dialog looks like this:

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the scroll
area.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

More Opens the Scroll Area Options dialog. The
dialog contains additional choices for the
scroll area that you are editing. See the
following section for information about the
Scroll Area Options Dialog.

Components of Edit Scroll Area Dialog

Component Description
270

Editing Scroll Areas
The following table describes the components of the Scroll Area Options dialog:

Components of Scroll Area Options Dialog

Component Description

Number of messages (read only) Displays the total number of
messages currently in the scroll area that you
are editing.

Maximum number
of messages

(required) Specifies the maximum number of
messages allowed in the scroll area that you
are editing.

When the number of messages exceeds the
maximum number, the excess messages are
removed from the scroll area. Messages are
removed in the reverse of the ordering
method specified under Ordering in the Edit
Scroll Area dialog. For example, if Alphabetic
is the currently selected ordering method,
messages are removed in reverse alphabetic
order. If Logbook is the ordering method,
messages are removed from the bottom of the
list, because the Logbook ordering method
adds message to the top.

Maximum number of
characters to display

Displays the current number of characters
displayed before clipping. The clipped text is
placed in the text attribute. By default this
attribute is 25 characters.

You can use this feature to prevent message
objects from extending beyond the edges of
the scroll area.

Multi-lined messages Allow multi-line messages in the scroll area.
A long message wraps to additional lines.

Allow unselection
of messages

Allow users to unselect messages by clicking
on them.

Allow manual
reordering

When this button is selected, application
developers and users can change the order of
the messages in the scroll area by dragging
individual messages up or down.
271

Display resize corner Displays the resizing corner on the lower
right corner of the scroll area. You can drag
this handle to change the size and shape of the
scroll area.

You can disable the resize corner if you do not
want end users to be able to change the size of
the scroll area.

Allow multiple
selection

Allow users to select more than one message
in the scroll area.

Run conclude method
immediately

If this option is selected, the contents of the
scroll area conclude to the scroll area target
object whenever there is a change to the
contents of the scroll area. If this option is not
selected, the contents of the scroll area are not
concluded until a conclude method is run on
the dialog that contains the scroll area.

Display disabled
messages

If this option is selected, disabled message
objects in the scroll area are greyed out but
displayed. If this option is not selected,
disabled message objects in the scroll area are
invisible.

Components of Scroll Area Options Dialog

Component Description
272

Edit Message Dialog
Edit Message Dialog
To open the Edit Message dialog, click the message object that you want to edit
and choose edit message from the message object’s menu. The Edit Message
dialog looks like this:

The following table describes the components of the Edit Message dialog:

Components of Edit Message Dialog

Component Description

Class (read-only) Displays the class of message
object that you are editing.

Name (optional) Displays the current name of the
message object that you are editing. Changing
the displayed value updates the name of the
message object. This field does not require a
value. Its contents, if any, must be a valid
symbolic name.
273

Id (optional) Displays the ID of the message
object that you are editing. Changing the ID
updates the id attribute of the message object.

Message Value (optional) Displays the unformatted contents
of the message object that you are editing.
You can edit the Message Value field to
modify the message object’s unformatted
contents. The unformatted contents are stored
in the message-contents attribute of the
message object.

If you specify a format for the message object
(through the Select Format dialog), this
format is applied to the contents of the
message-contents attribute, and the resulting
formatted text is stored in the text attribute of
the message object. Any limitation on the
length of the message object that you specify
in the Maximum characters to display field
(see below) is also applied to the formatted
text in the text attribute. You cannot directly
access or edit the text attribute.

Position (required) The two fields below the label
Position display the current item-x-position
and item-y-position of the message object that
you are editing. Changes to the X and Y
values will move the message object to the
new location. This is a required field and
defaults to the message object’s current
position on the workspace. The X and Y
values must be integers.

If you specify a position that is outside the
scroll area that contains the message object,
the message object appears at this position. To
bring the message object back into the scroll
area, you can move the scroll area.

Dimensions (read-only) The two text fields below the label
Dimensions display the current item-width
and item-height of the message object that
you are editing. You cannot edit this field.

Components of Edit Message Dialog

Component Description
274

Edit Message Dialog
State (required) The Enabled and Disabled radio
buttons below the label State indicate the
current state of the message object that you
are editing. Users can change the state by
selecting the radio button whose label
indicates the desired state. When this change
is applied, the message object is updated to
reflect its new state.

Options

Message priority Displays an integer value for the current
priority of the message object that you are
editing. The value is stored in the message-
display-priority attribute of the message object.

Message objects in a scroll area are ordered by
the values in their message-display-priority
attributes if you specify Priority as the
ordering method for the scroll area in the Edit
Scroll Area dialog.

Maximum
characters to
display

Displays the current number of characters
displayed before clipping. By default this
attribute is the symbol unlimited.

Setting the Maximum characters to display
can prevent a message object from expanding
beyond its original dimensions. This is
particularly useful for maintaining dialog
layout and item alignment. The full,
unformatted text is maintained in the
message-contents attribute of the message
object. The clipped and/or formatted text is
placed in the text attribute (which is not
visible to the user).

Components of Edit Message Dialog

Component Description
275

Multiple Column Scroll Areas
For some purposes, your application may need to display sets of related
information in a multiple-column scroll area. Users need to scroll all the columns
simultaneously.

Using GUIDE, you can construct multiple-column scroll areas such as the three-
column scroll area in the following dialog:

Format You can enter the name of an existing format
to specify a format for this message object. For
information about how to use formats, see
Formats and Validation Criteria.

Clicking on the button to the right of the
Format edit box opens the Select Format
dialog, in which you can select a format for
this message object. For more information
about how to select a format, see Select
Format Dialog.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the message object that you
are editing. For information about this dialog,
see Edit Source Object & Attribute Dialog.

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the message object that you
are editing. For information about this dialog,
see Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the
message object.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Message Dialog

Component Description
276

Multiple Column Scroll Areas
In the dialog shown above, users can scroll all three columns simultaneously
using the scroll bar on the left side of the left column. For example, if a user scrolls
the left scroll area so that two is at the top, the other scroll areas are scrolled so that
B and beta move to the top.

Note You can access a working example of a multiple-column scroll area through the
GUIDE Examples workspace. To access this example, click UIL Examples in the
GUIDE Help dialog, and go to the Scroll Area Examples workspace.

Creating a Multiple-Column Scroll Area

To create a multiple-column scroll area:

1 Add a scroll area to the dialog, using the GUIDE palette.

2 If you want the scroll bar for the multiple-column scroll area to be on the left
side, move the scroll bar to the left side.

If you want the scroll bar for the multiple-column scroll area to be on the right
side, you can leave the scroll bar in its default position (right side).

To move the scroll bar to the opposite side of the scroll area, choose left right
reflection. from the scroll area’s menu.

3 Make one copy of the scroll area to represent each additional column in the
multiple-column scroll area.

To make a copy, select clone. from the user menu of the scroll area.

4 Move the scroll areas next to each other, and align them vertically.

The scroll bar for the multiple-column scroll area should be either on the left
side or the right side of the contiguous scroll areas.

5 For your own convenience, edit the IDs of the scroll areas to identify them as
scroll areas used together for multiple-column scrolling.
277

In this example, the three scroll areas have the IDs my-sa-1, my-sa-2, my-sa-3,
from left (my-sa-1) to right.

To edit a scroll area, choose edit scroll area from its user menu. This opens the
Edit Scroll Area dialog, in which you specify the ID for each scroll area.

Note Use the Edit Scroll Area dialog to edit the IDs of the scroll areas. Do not edit
the IDs directly in the attribute tables.

6 Edit the configuration of each cloned scroll area to hide its scroll bar and
border. To do this:

a Select edit configuration from the user menu of the cloned scroll area. This
opens the GUIDE Configuration Editor.

b In the GUIDE Configuration Editor, select uil-default-scroll-configuration,
and click the Copy button.

c A dialog appears prompting you to enter a name for the new
configuration. Enter a name such as multiple-column-scrolling-config, and
click OK.

This creates a copy of the standard configuration uil-default-scroll-
configuration. You can now edit this configuration to make it hide the
scroll bar and borders.

d Edit the new configuration to make the scroll bar and borders transparent.

To do this, select the name of the new configuration in the GUIDE
Configuration Editor. Then click the Edit button. This opens another
dialog named GUIDE Configuration Editor.

e In the second GUIDE Configuration Editor dialog, set the colors of the
following attributes to transparent:

– uil-scroll-area-border-color

– uil-scroll-area-background-color

– uil-scroll-bar-background-color

– uil-scroll-button-light-color

– uil-scroll-button-dark-color

– uil-scroll-button-face-color

– uil-scroll-button-arrow-color

To set an attribute to transparent, click it. This opens a dialog in which you
can select a color for that particular attribute. Select transparent and click
OK.
278

Multiple Column Scroll Areas
When you have set all these attribute to transparent, click OK in the
second GUIDE Configuration Editor.

f In the first GUIDE Configuration Editor, make sure that the new
configuration is selected—in this example, multiple-column-scrolling-
config—and click OK.

This applies the new configuration to the cloned scroll area. The scroll bar
and borders on the cloned scroll area disappear.

7 Write customized methods for the scroll area whose scroll bar you intend to
use to scroll all the columns.

These methods perform all scrolling and message selection and unselection
operations on the multiple-column scroll areas. You can write methods to
reference from the following attributes of the scroll area:

uil-message-selection-method
uil-message-unselection-method
uil-scroll-increment-method
uil-scroll-increment-line-method
uil-scroll-decrement-method
uil-scroll-decrement-line-method
uil-scroll-to-position-method

For example, you can create methods as shown in the following scroll area
attribute table:

8 For the scroll areas with hidden scroll bars and borders, write empty place-
holder methods for all scrolling, message selection, and message unselection
operations.

Reference these empty methods from the appropriate attributes of the scroll
areas with hidden scroll bars. Using these empty methods guarantees that
nothing happens if a user accidentally scrolls with a hidden scroll bar.
279

For example, you can create empty methods as shown in the following scroll
area attribute table:

Creating Methods Required by Multiple-Column
Scroll Areas

To create the methods required for a multiple-column scrolling area:

1 Select edit scroll area from the menu of the left scroll area to open the Edit
Scroll Area dialog.

2 In the Edit Scroll Area dialog, click the Methods button to open the Edit
Methods dialog for scroll areas:

3 Click the button for the kind of method that you want create to open a dialog
in which you can specify a name for the method.
280

Multiple Column Scroll Areas
For example, if you want to create a scroll increment method, click that
button. The Modify Scroll-increment Method dialog appears:

In the Modify Scroll-increment Method dialog, select the Create new method
option and enter the name of the new method in the Name field. When you
click OK, the new method is created.

4 Open the attribute table of the new method.

The table contains the default definition of the method:
281

5 Edit the body of the new method to make it perform the operations required
for multiple-column scrolling.

The following sections illustrate the methods that you must create for multiple-
column scrolling.

Caution Do not edit the arguments of the new method. Each method referenced by the
attribute of an object has a set of arguments to which GUIDE passes values
automatically when the method is invoked. The method cannot function properly
if you alter these arguments.

Scroll Increment Method

The scroll increment method is called whenever a user clicks on the scroll bar
below the scroll thumb. The scroll increment method is referenced by the
uil-scroll- increment-method attribute of the scroll area.

The scroll increment method has the following required argument signature:

guide-sample-scroll-increment(scroll-area: class uil-scroll-area)

For example, the following customized scroll increment method, my-multi-scroll-
increment, is referenced from the uil-scroll-increment-method attribute of the
scroll area used to scroll the entire multi-column scroll area:

The method my-multi-scroll-increment does the following things:

• It scrolls the scroll area upward when a user clicks on the down arrow on the
scroll bar. To do this, the method calls the UIL procedure uil-scroll-increment.

• It scrolls two other scroll areas in the multi-column scroll area. The IDs of
these scroll areas are my-sa-2 and my-sa-3. To scroll my-sa-2 and my-sa-3, the
method calls the UIL procedure uil-display-message-list to set the current
message pointers of my-sa-2 and my-sa-3 to be equal to the current message
pointer of the first scroll area. The result is that the three scroll areas are
282

Multiple Column Scroll Areas
scrolled simultaneously and to the same position when a user clicks on the
down arrow.

Note The current-message-pointer referenced by uil-display-message-list points to the
top message currently displayed in the scroll area.

Scroll Decrement Method

The scroll decrement method is called whenever a user clicks on the scroll bar
above the scroll thumb. The scroll decrement method is referenced by the
uil-scroll-decrement-method attribute of the scroll area.

For example, the following customized scroll decrement method, my-multi-scroll-
decrement, is referenced from the uil-scroll-decrement-method attribute of the
scroll area used to scroll the entire multi-column scroll area:

.

The multi-column-scroll-decrement method is identical to the customized scroll
increment method, except that it calls uil-scroll-decrement rather than uil-scroll-
increment.

Scroll Decrement Line Method and Scroll Increment Line Method

The scroll decrement line method is called whenever a user clicks on the scroll up
arrow on the scroll bar. This method causes the message objects in the scroll area
to move down one line.

The scroll increment line method is called whenever a user clicks on the scroll
down arrow on the scroll bar. This method causes the message objects in the scroll
area to move up one line.

The contents of these methods can be the same as the contents of the scroll
decrement method and scroll increment method, except that they call uil-scroll-
decrement-line (rather than uil-scroll-decrement) and uil-scroll-increment-line
(rather than uil-scroll-increment).
283

Scroll to Position Method for Multiple-Column Scrolling

The scroll to position method is called whenever a user drags the scroll thumb.
The scroll to position method is referenced by the uil-scroll-to-position-method
attribute of the scroll area.

The scroll to position method has the following required argument signature:

guide-sample-scroll-to-position(scroll-area: class uil-scroll-area)

For example, the following customized scroll to position method, my-multi-scroll-
to-position, is referenced from the uil-scroll-to-position-method attribute of the
scroll area used to scroll the entire multi-column scroll area:

The method my-multi-scroll-to-position does the following things:

• It scrolls the scroll area to a particular position when a user drags the scroll
thumb. To do this, the method calls the UIL procedure uil-scroll-to-position.

• It scrolls two other scroll areas in the multi-column scroll area. To do this, it
calls the UIL procedure uil-display-message-list to set the current message
pointers of the two other scroll areas to be equal to the current message
pointer of the first scroll area. The result is that the three scroll areas are
scrolled simultaneously and to the same position.

Selection and Unselection Methods for Multiple-Column Scrolling

The selection method of a scroll area is called whenever a user clicks on a message
object within the scroll area. The unselection method is called whenever a user
deselects the message object by clicking on something else. These methods are
referenced by the uil-message-selection-method and uil-message-unselection-
method attributes of the scroll area.
284

Multiple Column Scroll Areas
Note Specify the customized selection and unselection methods for the scroll area
before you add message objects to the scroll message. The message objects that
you subsequently add to the scroll area inherit the message selection and
unselection methods as well as other attributes of the scroll area.

The message selection method has the following required argument signature:

guide-sample-message-selection
(message-object: class uil-message-object,
scroll-area: class uil-scroll-area, window: class g2-window)

The message unselection method has the following required argument signature:

guide-sample-message-unselection
(message-object: class uil-message-object,
scroll-area: class uil-scroll-area, window: class g2-window)

For example, the following customized message selection method, my-multi-
scroll-message-selection, is referenced from the uil-message-selection-method
attribute of the scroll area used to scroll the entire multi-column scroll area:
285

The method my-multi-scroll-message-selection method does the following things:

• It selects the message object whenever a user clicks on it. To do this, it calls the
UIL procedure uil-message-selection.

• It selects the message objects in the other two scroll areas that are at the same
position as the message object that the user clicks on. To do this, it:

– Calls the UIL procedure uil-get-index-of-scroll-message to get the index of
the message object that the user clicks on.

– Calls uil-get-grobj-from-id-on-dlg-or-wksp to get the other two scroll areas.

– Calls the UIL procedure uil-get-message to get the message objects in the
other two scroll areas that have the index returned by uil-get-index-of-
scroll-message.

– If message objects with this index exist in the other two scroll areas, it calls
uil-message-selection to select these messages.

The message unselection method, my-multi-scroll-message-unselection, is
identical to my-multi-scroll-message-selection, except that it calls uil-message-
unselection, rather than uil-message-selection:
286

Multiple Column Scroll Areas
Empty Methods for Scroll Areas with Hidden Scroll Bars

For the scroll areas whose scroll bars are hidden, you must specify empty
methods for the following attributes to ensure that nothing happens when users
accidentally click the hidden scroll bars:

uil-message-selection-method
uil-message-unselection-method
uil-scroll-increment-method
uil-scroll-increment-line-method
uil-scroll-decrement-method
uil-scroll-decrement-line-method
uil-scroll-to-position-method

Each empty method must have the required argument signature for its particular
kind of method. However, the body of each empty method contains no code. For
example, the empty scroll increment method looks like this:

Note In this example, clicking on message objects in the scroll areas with hidden scroll
bars has no effect, because the selection and unselection methods of these scroll
areas are empty. However, you may want to be able to select all message objects
in a row by clicking on message objects in the scroll areas with hidden scroll bars.

To do this, create a selection method and an unselection method for each scroll
area with a hidden scroll bar to select and unselect all message objects at the same
position as the message object that the user clicks on. You can model these
selection and unselection methods on the methods used for the scroll area with
the visible scroll bar, as shown in Specifying Selection and Unselection Methods
for Scroll Areas.
287

Summary of Scroll Area Menu Choices

Menu Choice Description

table Shows the attribute table of the scroll area.

go to subworkspace Opens a subworkspace that contains any
message objects that are in the scroll area but are
not currently displayed.

transfer Places the scroll area on the mouse and transfers
it to a different workspace.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options.

change size Opens a G2 dialog in which you can change the
size of the scroll area.

lift to top Displays the scroll area on top of another object
on a workspace.

drop to bottom Drops the scroll area behind another object on a
workspace.

describe Shows a description of the object and its
relations.

edit array Opens the Edit Array dialog. Do not attempt to
use this dialog to editing scroll areas.

edit list Opens the Edit List dialog, which you can use to
add message objects to or delete message objects
from the scroll area.

edit configuration Opens the Configuration Editor, in which you
can select, delete, copy, or edit configurations.

configure Applies the current configuration to the scroll
area.

delete. Posts a confirmation dialog to the user and if
confirmed, deletes the scroll area.

initialize Calls the initialization method of the scroll area.
This menu choice is visible only when the scroll
area is enabled.
288

Summary of Message Object Menu Choices
Summary of Message Object Menu Choices

move Opens the Move Object dialog, which enables
you to position the scroll area precisely.

clone. Makes a copy of the scroll area and places it next
to the original scroll area on the workspace.

disable./enable. Disabling the scroll area prevents the select
menu choice from being shown or run on the
messages contained in the scroll area. The colors
of the scroll area change to reflect its disabled
state.

left right reflection Reorients the scroll-area’s scroll bar from left to
right, or vice versa.

edit scroll area Invokes the Edit Scroll Area dialog, in which
you can edit the various attributes of the scroll
area.

Menu Choice Description

table Shows the attribute table for the message object.

transfer Places the message object on the mouse so that
you can move it to a different workspace.

color Posts a series of G2 menus allowing icon regions
to have their colors altered. GUIDE provides a
Configuration Editor as a preferred means of
changing the colors of icon regions.

lift to top Displays the message object on top of another
object on a workspace.

drop to bottom Drops the message object behind another object
on a workspace.

describe Shows a description of the object and its
relations.

describe
configuration

Displays a description of the message object’s
current configuration.

Menu Choice Description
289

edit configuration Opens the Configuration Editor, which you can
use to select, delete, copy, or edit configurations.

configure Applies the current configuration to the
message object.

initialize Calls the initialization method of the message
object. This menu choice is visible only when the
message object is enabled.

edit. Opens a GUIDE editor for modifying message
contents

clone. Makes a copy of the message object and places it
below the original message object in the scroll
area.

disable./enable. Disabling the message object prevents the select
menu choice from being shown or run on the
message object. The colors of the message object
change to reflect its disabled state

delete. Posts a confirmation dialog to the user and if
confirmed, deletes the message object.

select Calls uil-select-message-on-window and
highlights the message.

edit message Open the Edit Message dialog, in which you can
edit attributes of the message object.

Menu Choice Description
290

15
Sliders
Describes how to use and edit Sliders.

Introduction 291

Summary of Slider Menu Choices 296

Introduction
A slider is a graphical object that enables you to display and select numeric values
by moving a pointer, called a thumb, along a horizontal or vertical track.
291

GUIDE provides a variety of different styles of sliders. Sliders of all styles behave
the same; they differ from each other only in appearance:

Using Sliders

Every slider has a thumb whose position determines the current value of the
slider. Three numeric values appear with each slider, representing the minimum
value, current value, and maximum value of the slider.

Every slider can have a source object and a target object. When a slider is updated
with the value of its source object, the current value of the slider is changed to this
value, and the thumb is moved to the position indicated by the value. When a
slider is concluded, its current value is sent to its target object.

Slider Styles
292

Introduction
The following figure illustrates a regular slider (uil-slider) whose minimum and
maximum values are 0 and 100, and whose thumb is shown at three different
positions:

Creating Sliders

You can create sliders by choosing Tools > Slider from the GUIDE menu bar and
choosing one of the styles of sliders available: uil-slider, uil-slider-thin, uil-slider-
regular, uil-slider-special, uil-slider-vertical, uil-slider-vertical-with-scale, and
uil-slider-horizontal.

You can also create sliders programmatically, using the UIL procedure uil-create-
slider. For information about this procedure, see the G2 GUIDE/UIL Procedures
Reference Manual.

Slider Showing Different Current Values
293

Editing Sliders

The Edit Slider dialog enables you to specify the minimum and maximum values
of a sliders, as well as other aspects of its behavior. To open this dialog, click the
slider and choose edit slider from its menu. The Edit Slider dialog looks like this:

The following table lists and describes the components of the Edit Slider dialog:
:

Components of Edit Slider Dialog

Component Description

Low value for slider The smallest possible value that the slider can
represent, shown at the left end of a
horizontal slider or the bottom of a vertical
slider.

High value for slider The largest possible value that the slider can
represent, shown at the right end of a
horizontal slider or the top of a vertical slider.
294

Introduction
Run conclude method
immediately?

If this choice is toggled on, the conclude
method of the slider is run immediately after
any change to the current value of the slider.
If this choice is toggled off, the conclude
method is not run until some other action
causes it to be run, such as an action that
causes all the values in a dialog containing the
slider to be concluded.

Allow fractional
increments?

If this option is selected, the current value of
the slider can have three decimal places. If this
option is not selected, the slider can have only
one decimal place.

Set value while sliding? If this option is selected, moving the thumb
causes the current value of the slider to
change continuously. If this option is not
selected, the current value of the slider is not
changed until the user moving the thumb
releases the mouse button.

Value Changed
Callback

In this edit box you can specify a callback
procedure that is invoked automatically
whenever the thumb is moved or the value of
the slider is changed. By default, no value
change callback is specified.

For information about how to write callback
procedures, see Creating Methods, Actions,
and Callbacks.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the slider that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Components of Edit Slider Dialog

Component Description
295

Summary of Slider Menu Choices

Target Object Opens the Edit Target Object & Attribute
dialog. The Edit Target Object & Attribute
dialog enables you to specify the target object
and attribute for the check button that you are
editing. For information about this dialog, see
Edit Target Object & Attribute Dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the check
box.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Menu Choice Description

table Shows the attribute table for the slider.

transfer Places the slider on the mouse so that you can
move it to a different workspace.

name The name of the slider object.

change size Enables you to change the size and shape of the
slider by dragging its edges.

color Opens dialogs in which you can modify the
colors of different regions of the slider.

edit configuration Opens the Configuration Editor, which you can
use to select, delete, copy, or edit configurations
that apply to the slider.

delete. Posts a confirmation dialog to the user and if
confirmed, deletes the slider.

move. Opens the Move Object dialog, which you can
use to position the slider precisely on the dialog
subworkspace or workspace that contains it.

clone. Clones the slider object.

Components of Edit Slider Dialog

Component Description
296

Summary of Slider Menu Choices
disable./enable. Disabling the slider prevents the select menu
choice from being shown or run on the slider.
The colors of the slider change to reflect its
disabled state

rotate. Rotates the slider by 90 degrees.

edit slider Open the Edit Slider dialog, in which you can
edit attributes of the slider.

Menu Choice Description
297

298

16
Text Objects
Describes how to create and edit text objects, which display read-only text.

Introduction 299

Setting the Initial Contents of Text Objects 300

Updating the Contents of Text Objects 300

Specifying Formats for Text Objects 300

Editing Text Objects 301

Summary of Text Object Menu Choices 304

Introduction
Text objects only display text. Users cannot edit the contents of text objects.

The GUIDE palette includes the following icon for text objects:

You can add a text object to a master dialog or workspace by clicking the text
object icon and dragging it to the subworkspace of the master dialog or to the
299

workspace. You can also add a text object by selecting the following choice from
the GUIDE menu bar:

Item > GUIDE Objects > Texts > uil-text

The text icon object becomes attached to your cursor. You can drop it on the
subworkspace of a master dialog or on a workspace.

Setting the Initial Contents of Text Objects
You can specify the initial contents of a text object by choosing edit. from the
menu of the text object. In the editor, you can edit the unformatted contents of the
text object, which is stored in the message-contents attribute of the text object.
The following figure illustrates a text object when the editor is open on it, and
after it has been edited:

You can edit a text object’s size, position, state, and other properties, using the
Edit Text dialog. For information about how to use this dialog, see Editing Text
Objects.

Updating the Contents of Text Objects
Your application can update the contents of text objects. The method that updates
a text object is specified in the uil-update-method attribute of the text object.

You cannot conclude the value of a text object.

Specifying Formats for Text Objects
You can specify formats for text objects. Each format contains formatting
information about the appearance of the text contained in the text object. The
format also controls how quotation marks are displayed and how cases are
handled.

You can specify a maximum number of characters to display in a text object.
Setting a maximum number of characters can prevent text objects from growing
too large.

You can select a format and specify a maximum number of characters for a text
object using the Edit Text dialog. For information about how to use this dialog,
see the following section.
300

Editing Text Objects
Editing Text Objects
You can edit the appearance and behavior of text objects using the Edit Text
dialog, the Select Format dialog, the Edit Source Object & Attribute dialog, the
Edit Target Object & Attribute dialog, the and the Edit Method dialog.

Edit Text Dialog

The Edit Text dialog enables you to edit attributes of a text object and to access
other dialogs that you use to edit the appearance and behavior of the text object.

To open the Edit Text dialog, click the text object that you want to edit and choose
edit text from the text object’s menu. The Edit Text dialog looks like this:
301

The following table describes the components of the Edit Text dialog:

Components of Edit Text Dialog

Component Description

Class (read-only) Displays the class of text object
that you are editing.

Name (optional) Displays the current name of the
text object that you are editing. Changing the
displayed value updates the name of the text
object. This field does not require a value. Its
contents, if any, must be a valid symbolic
name.

Id (optional) Displays the ID of the text object
that you are editing. Changing the ID updates
the id attribute of the text object.

Value (optional) Displays the unformatted contents
of the text object that you are editing. You can
edit the Value field to modify the text object’s
unformatted contents. The unformatted
contents are stored in the message-contents
attribute of the text object.

If you specify a format for the text object
(through the Select Format dialog), this
format is applied to the contents of the
message-contents attribute, and the resulting
formatted text is stored in the text attribute of
the text object. Any limitation on the length of
the contents that you specify in the Maximum
characters to display field (see below) is also
applied to the formatted text in the text
attribute. You cannot directly access or edit
the text attribute.

Position (required) The two edit box fields below the
label Position display the current item-x-
position and item-y-position of the text object
that you are editing. Changes to the X and Y
values move the text object to the new
location. This is a required field and defaults
to the text object’s current position on the
workspace. The X and Y values must be
integers.
302

Editing Text Objects
Dimensions (read-only) The two text fields below the label
Dimensions display the current item-width
and item-height of the text object that you are
editing. You cannot edit this field.

Size (required) The radio buttons below the label
Size indicate the current size (small, medium,
or large) of the text object that you are editing.
You can change the size of the text object that
you are editing by selecting the radio button
whose label indicates the desired size. When
this change is applied, GUIDE regenerates the
text object in the new size without changing
the text object’s other attributes.

State (required) The radio buttons below the label
State (Enabled, Disabled), indicate the current
enabled or disabled state of the object that you
are editing. Users can change the state by
selecting the radio button whose label
indicates the desired state. When this change
is applied, the text object is updated to reflect
its new state.

Maximum characters
to display

(required) Specifies the maximum number of
characters that can be displayed in the text
object. Any characters in excess of this
number are clipped. The default value is the
symbol unlimited.

Specifying a value in the Maximum characters
to display field prevents the text field from
expanding beyond its original dimensions.
This is particularly useful for maintaining
dialog layout and item alignment.

The full, unformatted text is maintained in the
message-contents attribute of the text object.
The clipped and/or formatted text is placed in
the text attribute, which users cannot access
directly.

Components of Edit Text Dialog

Component Description
303

Summary of Text Object Menu Choices

Bounding box When this button is selected, GUIDE creates a
border and wraps it around the text object.
The border is given a name and is referred to
in the text object’s uil-border-relation attribute.
If the toggle button is unselected and the text
object has a border, the border is deleted and
the uil-border-relation attribute is set to be the
symbol unspecified.

Format (optional) You can enter the name of an
existing format to specify a format for this text
object. For information about how to use
formats, see Formats and Validation Criteria.

To select from a list of existing formats, click
the button to the right of the Format field.
This opens the Select Format dialog, in which
you can select a format for this text object. For
more information about this dialog, see Select
Format Dialog.

Source Object Opens the Edit Source Object & Attribute
dialog. The Edit Source Object & Attribute
dialog enables you to specify the source object
and attribute for the text object that you are
editing. For information about this dialog, see
Edit Source Object & Attribute Dialog.

Note: Text objects cannot conclude their
values and for this reason do not have target
objects.

Menu Choice Description

table Shows the attribute table for the text object.

transfer Places the text object on the mouse and transfers
it to a different workspace.

change min size Opens a G2 dialog providing change size
options.

Components of Edit Text Dialog

Component Description
304

Summary of Text Object Menu Choices
color Opens a series of G2 menus that you can use to
change the colors of icon regions. GUIDE
provides the Configuration Editor as the
recommended way to change icon regions. For
information about this dialog, see Using The
GUIDE Configuration Editor.

lift to top Displays the text object on top of another object
on a workspace.

drop to bottom Drops the text object behind another object on a
workspace.

describe Shows a description of the object and its
relations.

edit configuration Opens a GUIDE editor for selecting, deleting,
copying, or editing configurations.

configure Applies the current configuration to the text
object.

initialize Calls the initialization method of the text object.
This menu choice is visible only when the text
object is enabled.

edit. Opens a G2 editor for modifying the text object’s
value.

move Opens the Move Object dialog, which enables
you to position the text box precisely.

clone. Makes a copy of the text object and places it next
to the original text on the workspace.

disable. Changes the colors of the text object to reflect its
disabled state.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the text object.

create border for text Places a border around the text object.

edit text Opens the Edit Text dialog, in which you can
edit attributes of the text object.

Menu Choice Description
305

306

17
Title Bars, Borders,
and Separators
Describes how to use title bars, border, and separators to provide your user
interface with visual definition.

Introduction 307

Title Bars 307

Borders 309

Separators 313

Summary of Title Bar Menu Choices 314

Summary of Border Menu Choices 315

Summary of Separator Menu Choices 317

Introduction
You can use title bars, borders, and separators to provide your user interface with
visual definition. These objects do not have values that can be concluded or
updated.

Title Bars
A title bar is a text object that you can add to a workspace or dialog
subworkspace to identify the workspace or subworkspace to users.

To add a title bar to a workspace or dialog subworkspace, select the icon labeled
Title on the GUIDE palette and drop it on the workspace or dialog subworkspace.
307

When you drop a title bar on a dialog subworkspace, GUIDE automatically
generates an anchored border for the subworkspace, if the subworkspace does
not have a border. GUIDE resizes the title bar to span the width of the
subworkspace and resizes the border to surround the entire subworkspace.

When you drop a title bar on a workspace, GUIDE automatically generates an
anchored border and resizes the title bar and border to enclose all the objects that
happen to be on the workspace.

A workspace or dialog subworkspace can have only one title bar. Dropping title
bars on workspaces or dialog subworkspaces that already have title bars has no
effect.

Using the Hide Button on Title Bars

Beginning in GUIDE/UIL 5.0, title bars include hide buttons that users can click
to hide the dialog or workspace that contains the title bar. By default, the hide
buttons are disabled and invisible.

To make the hide buttons on Title Bars usable:

1 Apply the configuration uil-dialog-title-configuration-with-title-button to the
title bar.

You can also apply a user-defined configuration that makes the hide button
visible.

For information about how to use configurations, see Specifying the
Colors of UIL Objects.

2 Set the attribute uil-title-button-behavior-enabled of the title bar to true.

3 Set the uil-title-button-callback attribute of the dialog title to the name of a
procedure, or leave the default procedure uil-title-button-callback.

uil-title-button-callback() does the following:

• If the dialog title is on a workspace and there is a Cancel button on the
workspace, it selects the Cancel button. If there is no Cancel button on the
workspace, it hides the workspace.

• If the dialog title is on a dialog and there is a Cancel button on the dialog,
it selects the Cancel button. If there is no Cancel button on the dialog, it
inserts the cancel actions (uil-unsimulate-play-mode, uil-hide-dialog, and
uil-release-dialog) into the dialog’s event queue.

Any callback that you specify for the uil-title-button-callback attribute must
have the following argument signature:

title: class uil-dialog-title, window: class g2-window
308

Borders
Borders
The GUIDE palette provides icons for eight different border styles:

You can add stand-alone borders as decoration, or attach borders to edit boxes,
text objects, dialog subworkspaces, or workspaces. Edit boxes, text objects, dialog
subworkspaces, and workspaces are the only objects that can have borders.

Adding Borders

You can add a border to an object in either of two ways:

• Select the icon on the GUIDE palette for the border style that you want to use
and drag it to the object.

• Select the following choice from the GUIDE Men Bar:

Item > GUIDE Objects > Borders

Under the Borders choice, you can select from all the different styles of
borders. The icon for the border that you select becomes attached to your
cursor, and you can drop it on the object to which you want to add a border.
309

The following table lists steps that you must follow to add borders to objects of
different classes:

:

Note To access a border’s menu, click the lower left corner of the border.

If you want to detach a border from a workspace or dialog subworkspace, choose
release border from workspace edge from the border menu. You can then resize
the border and move it anywhere within the workspace or subworkspace.

You can also add borders programmatically through a series of calls to UIL
procedures. For information about UIL procedures that manipulate borders, see
the chapter on borders in the G2 GUIDE/UIL Procedures Reference Manual.

Deleting Borders

To delete a border, choose delete. from the border’s menu.

Deleting an object with an anchored border deletes the border as well. However,
you can delete the border without deleting the object that the border surrounds.

Adding Borders to Different Classes of Objects

Object Steps for Adding Border to Object

Edit box or text object 1 Drop border on or near object to which
you want to add border.

2 Choose snap to nearest text from the
border menu. The border wraps
around the edit box or text object.

Dialog subworkspace 1 Drop the border on an empty area
within the subworkspace.

2 Choose anchor to workspace edge
from the border menu. The border
expands to surround the entire
subworkspace.

Workspace 1 Drop the border on an empty area
within the workspace.

2 Choose anchor to workspace edge
from the border menu. The border
expands to surround all the objects on
the workspace.
310

Borders
Moving Objects with Borders

When you move or transfer an object with a border, the border is automatically
moved or transferred with the object.

You can move a border by grabbing the upper right corner or the lower left corner
with the mouse.

Resizing Borders

You can resize a border by dragging its upper right or lower left corner.

After you resize a UIL object that has a border, move the UIL object slightly. This
causes the border to reposition itself with respect to it the UIL object. The border
does not reposition itself properly until you move the UIL object.

Edit Border Dialog

You can use the Edit Border dialog to edit characteristics of stand-alone borders
and borders anchored to workspaces or dialog subworkspaces. You cannot use
the Edit Border dialog to edit borders anchored to edit boxes or text objects.

To open the Edit Border dialog, click the border that you want to edit and choose
edit border from the border menu. The Edit Border dialog looks like this:

:

311

The following table describes the components of the Edit Border dialog:

Edit Border Margins Dialog

To open the Edit Border Margins dialog, click the Edit Border Margins button in
the Edit Border dialog. The Edit Border Margins dialog looks like this:

Components of Edit Border Dialog

Component Description

border styles (see
previous figure)

Select one of the border styles illustrated in
the Edit Border dialog by selecting the radio
button to the left of the style that you want to
use.

In the figure above, the border style in the top
left corner of the Edit Border dialog is
selected.

Maintain border
configuration

Selecting this button applies the configuration
of the original border to the new border.

Border Margins Opens the Edit Border Margins dialog, which
enables you to specify the size of the margins
around the border. See the following section
for information about the Edit Border Margins
dialog.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the border.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.
312

Separators
The following table describes the components of the Edit Border Margins dialog:
.

Separators
You can use separators to group and distinguish features of your user interface.
You can add separators to workspaces and to master dialog subworkspaces.

The G2 GUIDE palette provides icons for separators of four different thicknesses.
To add a separator to a workspace or dialog subworkspace, select the icon that
you want to use and drop it where you want to add the separator.

Components of Edit Border Margins Dialog

Component Description

Left margin Displays the number of workspace units used
for the left margin. This is a non-required
field, but if modified must contain a positive
whole number value.

Right margin Displays the number of workspace units used
for the right margin. This is a non-required
field, but if modified must contain a positive
whole number value.

Top margin Displays the number of workspace units used
for the top margin. This is a non-required
field, but if modified must contain a positive
whole number value.

Bottom margin Displays the number of workspace units used
for the bottom margin. This is a non-required
field, but if modified must contain a positive
whole number value.

No workspace margin/
Border anchored to
workspace

When this button is selected, its label is
Border anchored to workspace. Selecting this
button anchors the border to the workspace
and activates automatic shrink-wrap for the
workspace whenever items are added or
repositioned.

When this button is not selected, its label is
No workspace margin, and the border acts
like any other item on the workspace.
313

You can also add a separator by selecting the following choice from the GUIDE
menu bar:

Item > GUIDE Objects > Separators

Under the Separators menu choice, you select the style of separator that you want
to add. The icon for the separator that you select becomes attached to your cursor,
and you can drop it on any workspace or master dialog subworkspace.

You can move and resize a separator dragging either one of its ends.

Separators have menu choices for operations such as deleting, moving, cloning,
and rotating the separator. To access the menu, click the left end point of the
separator.

The rotate. menu choice rotates the separator by 90 degrees. This enables you to
change the orientation of the separator from horizontal to vertical, or from vertical
to horizontal.

Summary of Title Bar Menu Choices

Menu Choice Description

table Shows the attribute table of the title bar.

transfer Places the title bar on the mouse and transfers it
to a different workspace.

change min size Opens a G2 dialog providing change size
options.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration editor as a preferred
means of changing icon regions.

lift to top Displays the title bar on top of another object on
a workspace.

drop to bottom Drops the title bar behind another object on a
workspace.

describe Shows a description of the object and its
relations.

lift workspace to top Lifts the title bar and its workspace to the top.

edit configuration Opens a GUIDE editor for selecting, deleting,
copying, or editing configurations.
314

Summary of Border Menu Choices
Summary of Border Menu Choices

configure Applies the current configuration to the title bar.

initialize Calls the initialization method of the title bar.
This menu choice is visible only when the title
bar is enabled.

edit. Opens an editor allowing the current text of the
title bar to be modified.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the title bar is
enabled.

create border for text Places a border around the dialog title.

clone. Makes a copy of the title bar and places it next to
the original title bar on the workspace.

disable./enable. Disables or enables the title bar.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the title bar.

Menu Choice Description

table Shows the attribute table for the border.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu of rotation and reflection options.

change size Opens a G2 dialog that you can use to change
the size of the border.

color Post a series of G2 menus enabling you to
change the color of the icon. GUIDE provides
the Configuration Editor as the recommended
way to change icon regions. For information
about this dialog, see Using The GUIDE
Configuration Editor.

Menu Choice Description
315

Note A border anchored to a workspace containing a title bar can not be deleted as long
as the title bar exists. You must delete the title bar before you delete the border.

lift to top Displays the border on top of other objects on a
workspace.

drop to bottom Drops the border behind other objects on a
workspace.

describe Shows a description of the object and its
relations.

edit configuration.. Opens GUIDE’s configuration editor for
selecting, deleting, copying, or editing
configurations.

configure Applies the current configuration to the border.

move Opens the Move Object dialog, which enables
you to position the edit box precisely.

clone. Makes a copy of the border object and places it
next to the original border on the workspace.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the border.

anchor to workspace
edge/release border
from workspace edge

Attaches the border object to the workspace
while enforcing its margins, or releases border.

snap to nearest text Wrap the border around the edit box or text
object.

edit border Opens the Edit Border dialog, in which you can
edit the attributes of the object.

Menu Choice Description
316

Summary of Separator Menu Choices
Summary of Separator Menu Choices

Menu Choice Description

table Shows the attribute table for the separator.

move Attaches the separator to the mouse and drops it
when the user clicks the mouse.

name Opens an editor allowing a name to be entered
or changed.

color Opens a series of G2 menus allowing icon
regions to have their colors altered. GUIDE
provides the Configuration Editor as a preferred
means of changing the colors of icon regions.

describe Shows a description of the separator and its
relations.

describe
configuration

Displays a description of the separator’s current
configuration.

edit configuration Opens the GUIDE Configuration Editor, in
which you can select, delete, copy, or edit
configurations.

configure Applies the current configuration to the
separator.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the separator.

move Opens the Move Object dialog, which enables
you to move the object precisely. This menu
choice is visible only when the separator is
enabled.

clone. Makes a copy of the separator and places it next
to the original separator on the workspace.

rotate. Rotates the line separator 90 degrees.
317

318

18
Navigation Buttons
and Other Tools
Describes how to add navigation buttons, help buttons, print workspaces, and the
GUIDE garbage pail to workspaces.

Introduction 320

Navigation Buttons 320

Edit Navigation Button Dialog 322

The Print Workspace Button 324

The GUIDE Garbage Pail 324

Summary of Navigation Button Menu Choices 325
319

Introduction
The GUIDE palette includes the following icons for navigation buttons and other
tools that you can drop onto the workspaces of your G2 applications:

You can add navigation buttons to a workspace by dragging these icons to the
workspace. You can also add navigation buttons by selecting the GUIDE menu
bar choice:

Item > GUIDE Objects > Buttons > uil-navigation button

A list of all classes of navigation buttons appears under the uil-navigation button
menu choice. Select the class of navigation button that you want to add. The icon
for that class of navigation button becomes attached to your cursor. You can drop
the button on any workspace.

Navigation Buttons
The GUIDE palette contains icons that you can use to add navigation buttons to
the workspaces of your G2 application. To add a navigation button to a
workspace, click the icon for the kind of navigation button that you want to add
and drop it on the workspace.

go
to

 w
or

ks
pa

ce
go

to
 s

up
er

io
r

go
to

 p
re

vi
ou

s

go
to

 n
ex

t
hi

de
 b

ut
to

n
he

lp
 b

ut
to

n
pr

in
t w

or
ks

pa
ce

gu
id

e
ga

rb
ag

e
pa

il
320

Navigation Buttons
Classes of Navigation Buttons

GUIDE supports the following classes of navigation buttons:

Note It is not recommended practice to use navigation buttons to open dialogs. A
dialog that is opened by a navigation button does not have full GUIDE support
for field editing, automatic updating and concluding of values, and other
essential features of the GUIDE dialog system.

When GUIDE is not loaded, you can create navigation buttons by selecting
New Object from the KB Workspace menu.

Modules Supporting Navigation Buttons

The uil module supports full navigation button functionality.

The uilroot module provides navigation buttons and some of the procedures, class
definitions, and functions that support the full navigation functionality of
navigation buttons. It does not support some features of navigation buttons, such

Navigation Button Class Description

uil-goto-workspace-button Navigates to a named workspace (if
defined), to the subworkspace of this
button (if one exists), or to a
subworkspace that it creates.

uil-goto-superior-button Navigates to the item that is superior to
the workspace of this button, and then
displays the workspace of that item.

uil-goto-previous-button Navigates to a named workspace (if
defined), to the subworkspace of this
button (if one exists), or to a
subworkspace that it creates.

uil-goto-next-button Navigates to a named workspace (if
defined), to the subworkspace of this
button (if one exists), or to a
subworkspace that it creates.

uil-hide-button Hides the workspace that contains this
button.

uil-help-button Navigates to a workspace on which you
can place help information.
321

as labels, or the ability to edit navigation buttons by means of the Edit Navigation
Button dialog.

You can use uilroot with G2 applications that do not require the full navigation
button functionality. When you work with just the uilroot loaded, support for
navigation buttons is limited to creation, configuration, activation and deletion.

Edit Navigation Button Dialog
To open the Edit Navigation Button dialog, click the navigation button that you
want to edit and select edit navigation button from the navigation button menu.
The Edit Navigation Button dialog looks like this:

:

The following table describes the components of the Edit Navigation Button
dialog:

Components of Edit Navigation Button Dialog

Component Description

Class (read-only) Displays the class of navigation
button that you are editing.

Name Displays the current name of the navigation
button that you are editing. Changing the
displayed value updates the name of the
navigation button. This field is not required.
Its contents, if any, must be a valid symbolic
name.
322

Edit Navigation Button Dialog
Label Displays the label of the navigation button
that you are editing. Changing the label
causes a new label to be generated for the
navigation button with the new text. This is a
non-required field, but if entered, it must be a
valid text entry. Quotation marks are not
required. If included, they will become part of
the label.

Id (optional) Displays the ID of the navigation
button that you are editing. Changing the ID
updates the id of the navigation in its table.

Hide workspace
when button selected

If this option is selected, the workspace that
contains the navigation button is hidden
when a user clicks the navigation button. If
this option is not selected, the workspace is
not hidden when a user clicks the button.

Go to subworkspace Select this option if you want the button to
navigate to the subworkspace of the
workspace that contains the button.

This option is disabled for uil-goto-superior-
button and uil-hide-button navigation buttons.

Go to workspace
named

If this option is selected, you can enter the
name of a workspace to which you want the
button to navigate.

This option is disabled for uil-goto-superior
and uil-hide-button navigation buttons.

Methods Opens the Edit Methods dialog, in which you
can create customized methods for the
navigation buttons.

For information about how to create
customized methods, see Methods, Actions,
and Callbacks.

Components of Edit Navigation Button Dialog

Component Description
323

The Print Workspace Button
Clicking on a print workspace button prints the workspace or dialog
subworkspace where the print workspace button resides.

To add a print workspace button to a workspace, click the print workspace icon in
the GUIDE palette and drop it on the workspace. You cannot use the print
workspace button on a dialog subworkspace.

The print workspace button prints the workspace on a default printer using
default settings. To specify these settings, choose the following from the G2
Main Menu:

System Tables > Printer Setup

This opens the Printer-Setup table, in which you can specify default printer
settings.

Note To enable users to select a printer and specify printing options for printing a
workspace, you can add a Print button to the workspace. Clicking on the Print
button opens the Printer Setup Dialog. In this dialog, users can specify options for
printing the workspace that contains the Print button.

To add a Print button to a workspace, click the Print Workspace Dialog icon in the
More Options palette and drop it on the workspace.

You can also print a workspace by choosing:

KB Workspace > Print

This menu choice opens a series of dialogs in which you can specify options for
printing the workspace. For information about how to use these dialogs, see
Printing GUIDE Workspaces.

The GUIDE Garbage Pail
You can delete dialogs and UIL controls by dragging and dropping them on a
GUIDE Garbage Pail.

To add a GUIDE Garbage Pail to a workspace, click the GUIDE Garbage Pail icon
in the GUIDE palette and drop it on the workspace.

Caution You cannot recover dialogs or UIL controls after you drop them on the GUIDE
Garbage Pail.
324

Summary of Navigation Button Menu Choices
Summary of Navigation Button Menu Choices

Menu Choice Description

table Shows the attribute table for the navigation
button.

go to subworkspace Shows the subworkspace of the button.

transfer Places the button on the mouse and transfers it
to a different workspace.

name Opens an editor allowing a name to be entered
or changed.

rotate/reflect Opens a menu proving rotation and reflection
options.

change size Opens a G2 dialog providing change size
options.

color Opens a series of menus enabling you to change
the size of the icon. GUIDE provides the
Configuration Editor as the recommended way
to change the colors of icon regions. For
information about this dialog, see Using The
GUIDE Configuration Editor.

lift to top Displays the navigation button on top of
another object on a workspace.

drop to bottom Drops the navigation button behind an other
object on a workspace.

describe Shows a description of the object and its
relations

edit configuration Opens the GUIDE Configuration Editor, in
which you can select, delete, copy, or edit
configurations.

configure Applies the current configuration to the
navigation button.

delete. Opens a confirmation dialog to the user and if
confirmed, deletes the navigation button.
325

initialize Calls the initialization method of the navigation
button. This menu choice is visible only when
the navigation button is enabled.

move Opens the Move Object dialog, which enables
you to position the navigation button precisely.

clone. Makes a copy of the navigation button and
places it next to the original button on the
workspace.

disable./enable. Disabling the navigation button prevents the
select menu choice from being shown or run on
the button. The color of the button is changed to
reflect its disabled state.

select Executes the handler method specified on the
button.

edit navigation button Opens the Edit Navigation Button dialog, in
which you can edit the attributes of the
navigation button.

Menu Choice Description
326

Part IV
Advanced Features
Chapter 19: Formats and Validation Criteria

Describes how to create and edit reusable formats for edit boxes, message objects, and text
objects.

Chapter 20: Specifying Source and Target Objects

Describes how to specify the objects from which the graphical objects on a dialog are updated
and to which the graphical objects conclude their values.

Chapter 21: Creating Temporary Storage Objects

Describes how to create and use temporary storage objects, which you can use when you
process data while it is being updated into or concluded from a dialog.

Chapter 22: Methods, Actions, and Callbacks

Describes how to create and use UIL methods, actions, and callbacks.

Chapter 23: Help Dialog

Describes the GUIDE help facility.

Chapter 24: Creating Custom UIL Subclasses

Describes how to create customized subclasses of system-defined UIL classes provided with
GUIDE.
327

Chapter 25: Specifying the Colors of UIL Objects

Describes how to create reusable objects called configurations, which specify the colors of the
different regions of the graphical components in your user interface.

Chapter 26: Upgrading GUIDE Applications

Describes how to modify dialogs and other components of a user interface created with earlier
versions of GUIDE, to take advantages of the features introduced in newer versions.
328

19
Formats and
Validation Criteria
Describes how to create and edit reusable formats for edit boxes, message objects,
and text objects.

Introduction 329

Creating Formats 331

Applying and Editing Formats 333

Introduction
Formats are reusable objects that specify how text is formatted in edit boxes,
message objects, and text objects. Formats can also establish criteria for validating
data that users enter into edit boxes.

You can associate a format any number of different objects to which you want to
apply the formatting or validating criteria specified by that format. All formats
are instances of the class uil-format-specification-class.

Formatting Rules for Edit Boxes, Message Objects,
and Text Objects

For edit boxes, message objects, and text objects, a format can specify formatting
rules that govern:

• Quotation marks

• Capitalization
329

Validation Criteria for Edit Boxes

For edit boxes only, a format can specify validation rules that govern:

• Data format type, such as symbol, text, quantity, and so on

• Minimum and maximum text values

• Minimum and maximum text length

• Default values

• Date and time formats

• Legal values for the edit box

If you apply a format to a text object (through the Select Format dialog), the
format is applied to the contents of the message-contents attribute of the text
object. The resulting formatted text is stored in an attribute named text, which you
cannot view or access directly. Any limitation on the length of the text object that
you specify in the Maximum characters to display field of the Select Format
dialog is also applied to the formatted text in the text attribute.

GUIDE provides a number of useful predefined formats. You can also create your
own customized formats.

Creating Customized Validation Procedures or
Functions

You can write your own validation procedures or functions to handle application-
specific validations. By selecting the format type Procedure Call or Function Call
in the Edit Format Specification dialog, you can substitute your own customized
procedure or function call for the validation method provided by GUIDE. You
enter the procedure or function to call in the Validation Method Name field in the
Edit Format Specification dialog.

Data validation occurs immediately at the conclusion of an edit if the uil-validate-
immediately attribute on the edit box is set to true. Validation is also triggered
when the Apply or OK button is clicked and the button includes the validation
method (uil-call-validation-method) among its actions.

You can create new validation methods, using the GUIDE Method Help dialog.
For information about how to use this dialog, see Creating Methods, Actions, and
Callbacks.
330

Creating Formats
Creating Formats
You can create formats in the following ways:

• Open the More Options palette by clicking the More Options button in the
GUIDE palette. In the More Options palette, click the Format Specification
icon and drop it on the workspace where you want to add the format.

To edit the new format, choose edit format specification from its menu. This
menu choice opens the Edit Format Specification dialog, in which you can
specify formatting information and validation criteria in the new format.

• Click the New button in the Select Format dialog. Clicking on the New button
creates a new format and opens the Edit Format Specification dialog.

You can open the Select Format dialog by clicking on the button to the right of
the Format field in the Edit Text dialog, the Edit Message dialog, or the Edit
Edit Box dialog.

• Selecting the following choice from the GUIDE menu bar:

Item > GUIDE Objects > Format Specification

The icon for the format specification becomes attached to your cursor, and
you can drop it on any workspace.
331

The following figure illustrates how you access the Select Format and Edit Format
Specification dialogs:

Dialogs for Editing Formats

New...

...

...

Select Format

Edit Text

Edits text object
characteristics.
Format:

Edit Message

Edit message object
characteristics.
Format:

...Format:

Edits edit box
characteristics.

Edit Edit Box

More Options Palette

Format Specification

Format

Edit Format
Specification

Edits a format.

Selects an existing
format to apply to
the text object,
message object, or
edit box. Creates a
new format and
opens the Edit
Format
Specification dialog.
332

Applying and Editing Formats
Applying and Editing Formats
You can apply an existing format to an edit box, message object, or text object
using the Select Format dialog.

Select Format Dialog

The Select Format dialog enables you to apply an existing format to a text object,
message object, or edit box.

You can also use the Select Format dialog to access the Edit Format Specification
dialog, in which you can create a new format for a text object, message object, or
edit box. For more information about the Edit Format Specifications dialog, see
the section immediately following this section.

To open the Select Format dialog, click the button to the right of the Format field
in the Edit Text dialog, the Edit Message dialog, or the Edit Edit Box dialog. The
Select Format dialog looks like this:
333

The following table describes the components of the Select Format dialog:

Components of Select Format Dialog

Component Description

Filter Specifies which of the existing formats are
displayed in the scroll area on the left side of
the Select Format dialog.

All Display all existing formats.

Date Display formats for dates.

Integer Display formats for integers.

Quantity Display formats for quantity values.

Symbol Display formats for symbols.

Text Display formats for text.

Time Display formats for expressions of time.

Unspecified Displays format with the default format type
unspecified.

OK Applies your selection.

Update Refreshes the scroll area to include any new
formats of the specified Filter type.

New Clicking the New button creates a new format
and opens the Edit Format Specification
dialog, in which you can edit the new format.
For information about how to edit a format,
see the following section.
334

Applying and Editing Formats
Edit Format Specification Dialog

The Edit Format Specification dialog enables you to define a format that you can
apply to text objects, message objects, and edit boxes.

To define a format, you use the Edit Format Specification together with other
dialogs that you can access from the Edit Format Specification dialog. The
following figure illustrates the dialogs for editing formats.

You can open the Edit Format Specification dialog to create a new format or to
edit an existing format.

• To create a new format, open the Edit Format Specification dialog by clicking
the New button in the Select Format dialog. When you click the New button, a
format is created and the following icon is added to the workspace that
contains the item that you are editing:

Dialogs for Editing Formats

Text Formatting
Options

Specifies formatting
options for
quotation marks
and capitalization.

Date & Time Options

Specifies formatting
options for dates
and expressions of
time.

Edit Legal Values

Specifies a list of
legal values for the
object to which this
format is applied.

Edit Format
Specification

Defines a new format.

Text Options...

Date/Time Options...

Specify Legal
Values...
335

• To edit an existing format, choose edit format specification from the menu of
that format to open the Edit Format Specification dialog.

The Edit Format Specification dialog looks like this:
336

Applying and Editing Formats
The following table describes the components of the Edit Format Specification
dialog:

Components of Edit Format Specification Dialog

Component Description

Name (required) Displays the current name of the
format that you are editing. Changing the
displayed value updates the name of the
format. The Name field must contain a valid
symbolic name entry.

Format Type (required) The radio buttons below the label
Format Type specify the data type of the
format that you are editing. You can change
the data type by selecting the radio button for
the data type that you want to use.

Unspecified No formatting activity will occur.

Symbol Entries into the item that you are editing must
be symbolic.

If you select Symbol, the Specify Legal Values
button becomes enabled. Click the Specify
Legal Values button if you want to open the
Edit Legal Values dialog to specify a list of
legal values that any UIL object to which this
format is applied can contain. For information
about this dialog, see Edit Legal Values
Dialog.
337

Text Entries made into the item that you are
editing must be textual.

If you select Text, the Text Options and
Specify Legal Values buttons become enabled.

• Click the Text Options button if you want
to open the Text Formatting Options
dialog, in which you can specify
additional formatting for text. For
information about this dialog, see Text
Formatting Options Dialog.

• Click the Specify Legal Values button if
you want to open the Edit Legal Values
dialog to specify a list of legal values that
any UIL object to which this format is
applied can contain. For information
about this dialog, see Edit Legal Values
Dialog.

Integer Entries made into objects to which this format
applies must be whole numbers.

If you select Integer, the Specify Legal Values
button becomes enabled. Click the Specify
Legal Values button if you want to open the
Edit Legal Values dialog to specify a list of
legal values that any UIL object to which this
format is applied can contain. For information
about this dialog, see Edit Legal Values
Dialog.

Components of Edit Format Specification Dialog

Component Description
338

Applying and Editing Formats
Quantity Entries made into objects to which this format
applies must be quantitative. If you select
Quantity, the Float Options and Specify Legal
Values buttons become enabled.

• Click the Float Options button if you want
to open the Float Formatting Options
dialog to specify the format of floating
point values that any UIL object to which
this format is applied can represent. For
information about this dialog, see Float
Formatting Options Dialog.

• Click the Specify Legal Values button if
you want to open the Edit Legal Values
dialog to specify a list of legal values that
any UIL object to which this format is
applied can contain. For information
about this dialog, see Edit Legal Values
Dialog.

Date Entries made into objects to which this format
applies must be dates conforming to the
currently specified date format.

To specify a format for dates, click the
Date/Time Options button, which becomes
enabled when you select the Date format type.
This opens the Date & Time Options dialog,
which you use to specify additional
formatting for date and time values. For
information about this dialog, see Date &
Time Options Dialog.

Time Entries made into objects to which this format
applies must conform to the time format that
has been selected.

When you select Time, the Date/Time
Options button is enabled. Click the
Date/Time Options button if you want to
open the Date & Time Options dialog to
specify additional formatting for date and
time values. For information about this
dialog, see Date & Time Options Dialog.

Components of Edit Format Specification Dialog

Component Description
339

Procedure Call Entries made into objects to which this format
applies are validated by the procedure that
you specify in the Validation Method Name
edit box.

Function Call Entries made into objects to which this format
applies are validated by the function that you
specify in the Validation Method Name edit
box.

Validation Method
Name

Indicates the current user-defined validation
method specified for the format that you are
editing. Enter the name of the procedure or
function that you want to use to validate
entries into any UIL object to which this
format is applied.

The Validation Method Name edit box is
enabled only when the Procedure Call or
Function Call button is selected.

Validation Failure
Handler

Indicates the user-defined validation failure
method for the format that you are editing.
Enter the name of the procedure or function
that you want to use to use to handle failures
to validate any UIL object to which this
format is applied.

Default Value
Handling

Specifies a default value for the edit box. If
any of these options are selected and no value
is placed into the edit box by an update
method, then the value will be placed
according to the default declaration indicated
here.

The radio buttons below the label Default
Value Handling are enabled for the
Unspecified, Symbol, Text, Quantity, Integer,
Date, and Time formats. When you specify a
procedure call or function call to validate
formats, default values are handled by that
procedure or function.

Unspecified No default value is provided.

Components of Edit Format Specification Dialog

Component Description
340

Applying and Editing Formats
Use 1st value in
value array

The default value is the value listed first in the
list of legal values. You specify a list of legal
values using the Edit Legal Values dialog.

Use type as basis Provides a default value based on the data
type selected under Format Type. The default
values provided with the data types are:

• G2 (for Symbol)

• "G2" (for Text)

• 0.0 (for Quantity)

• 0 (for Integer)

• Today’s date in the currently specified
format (for Date)

• The current time in the currently specified
format (for Time)

Use attribute name The default value is the symbol used as the
attribute name in the source object, if any.

Field Limiters The edit boxes below the label Field Limiters
specify restrictions on the range and text
length of data entries.

The edit boxes are enabled only for the
Unspecified, Symbol, Text, Quantity, Integer,
Date, and Time formats. When you specify a
procedure call or function call to validate
formats, field limiters are specified by that
procedure or function.

Minimum Value Contains the current minimum value
accepted by the validation method.

Maximum Value Contains the current maximum value
accepted by the validation method.

Minimum Length Contains the current minimum length of text
accepted by the validation method.

Maximum Length Contains the current maximum length of text
accepted by the validation method.

Components of Edit Format Specification Dialog

Component Description
341

Float Formatting Options Dialog

The Float Formatting Options dialog enables you to specify the style of any
floating point value represented by the UIL object to which this format is applied.

To open the Float Formatting Options dialog, click the Float Options button in the
Edit Format Specification dialog. This button is enabled only when the Quantity
button is clicked.

The Float Formatting Options dialog looks like this:

The following table lists and describes the components of the Float Formatting
Options dialog:

Allow none as
valid option

If set to true, recognizes none as a valid entry.

Revert value on error If the new value cannot be validated by the
criteria specified in this format, replace the
new value with the last successfully validated
value.

Components of Edit Format Specification Dialog

Component Description
342

Applying and Editing Formats
Text Formatting Options Dialog

To open the Text Formatting Options dialog, go to the Edit Format Specification
dialog and select the Text radio button. Then click the Text Options button.

Components of Float Formatting Dialog

Component Description

Display Format The buttons below this label provide you with
a choice of styles for representing the floating
point value. One of these buttons is always
selected.

Default Format the data according to the default
format specified by G2.

Decimal notation Represent the floating point value in decimal
notation.

Scientific notation Represent the floating point value in scientific
notation.

Best (Decimal or
Scientific notation)

Allow GUIDE to determine the better display
format for the data to which this format is
applied.

Decimal Precision Specify the decimal precision of the floating
point value. This option is enabled only when
the Decimal notation or Scientific notation
button is selected.

Remove Trailing Zeros Remove trailing zeros from the floating point
value. This option is enabled only when the
Decimal notation or Scientific notation button
is selected.
343

The Text Formatting Options dialog looks like this:

The following table describes the components of the Text Formatting Options
table:

Components of Text Formatting Options Dialog

Component Description

Quote Mark Handling The radio buttons below the label Quote Mark
Handling indicate how quotation marks are
handled by the format that you are editing.

Manage Quote
Marks

Selecting this button ensures that quotation
marks are not displayed in the edit box even
when the data value contains them.

If quotation marks are present or are required
by the data in an object, they are replaced
automatically before the value is concluded
back to this object.

Do Not Manage
Quote Marks

Selecting this button ensures that the data
placed into the edit box is preserved exactly as
it is found. Quotation marks are not added or
subtracted from the data.

Text Case Handling The radio buttons below the label Text Case
Handling indicate how text case is handled by
the format that you are editing.
344

Applying and Editing Formats
Edit Legal Values Dialog

The Edit Legal Values dialog enables you to specify a list of legal values
associated with the format that you are editing. GUIDE uses this list to validate
the contents of objects to which the format is applied.

To open the Edit Legal Values dialog, click the Specify Legal Values button in the
Edit Format Specification dialog. The Edit Legal Values dialog looks like this:

Default No alteration are made to the text before it is
displayed in the edit box.

Upper Case All
Characters

Every character in the string of text is
capitalized before it is displayed in the edit
box.

Capitalize All
Words

Every word in the string of text is capitalized
before it is displayed in the edit box.

Lower Case All
Characters

Every character in the string of text is made
lower case before it is displayed in the edit
box.

Components of Text Formatting Options Dialog

Component Description
345

The following table describes the components of the Edit Legal Values dialog:
.

Date & Time Options Dialog

The Date & Time Options dialog enables you to specify additional formatting
options for formats with the Date or Time format type, as specified in the Edit
Format Specification dialog.

To open the Date & Time Options dialog, click the Date/Time Options button in
the Edit Format Specification dialog. The Date & Time Options dialog looks like
this:

The following table describes the components of the Date & Time Options dialog:

Components of Edit Legal Values Dialog

Component Description

Legal Values Lists the array of current legal values.

Remove Selection(s) Deletes all selected messages from the Legal
Values scroll area.

Enter new legal value Enter new values into the Legal Values scroll
area. When you finish entering a value, click
Return. The value that you entered is added
to the list of legal values in the Legal Values
scroll area.
346

Applying and Editing Formats
Components of Date & Time Options Dialog

Component Description

Date/Time Formats The radio buttons below the label Date/Time
Formats indicate the current date or time
format for the format that you are editing.

These formats are used with a delimiter that
you select under Date/Time Delimiter. The
delimiter is used to separate fields in the
selected date or time format. For example,
selecting the date and time format mmddyy
with a delimiter of / means that a valid entry
must resemble 10/15/93.

Unspecified No format is enforced.

mmddyy Entries made into the edit box must resemble
05/31/94 or 053194 (no delimiter).

ddmmyy Entries made into the edit box must resemble
31/05/94 or 310594 (no delimiter).

yymmdd Entries made into the edit box must resemble
94/05/31 or 940531 (no delimiter).

ddmmyyyy Entries made into the edit box must resemble
31/05/1994 or 31051994 (no delimiter).

mmddyyyy Entries made into the edit box must resemble
05/31/1994 or 05311994 (no delimiter).

yyyymmdd Entries made into the edit box must resemble
1994/05/31 or 19940531 (no delimiter).

hhmmss Entries made into the edit box must resemble
10/25/30 or 102530 (no delimiter).

hhmm Entries made into the edit box must resemble
9/30.
347

Date/Time Delimiter The radio buttons below the label Date/Time
Delimiter specify the delimiter used with the
date or time format that you select under
Date/Time Formats above.

The following examples illustrate the
supported delimiters used with a value in
mmddyy format.

: 05:31:94

/ 05/31/94

- 05-31-94

None 053194

Other You can specify any alphanumeric character
to use as the delimiter. Enter the character in
the edit box to the right of the label Other.

Other Options

24 hour clock Entries made into the edit box must be in
military format.

Example: 17:45:10 (ten seconds past 5:45 pm)

Components of Date & Time Options Dialog

Component Description
348

20
Specifying Source
and Target Objects
Describes how to specify the objects from which the graphical objects on a dialog
are updated and to which the graphical objects conclude their values.

Introduction 349

Edit Source Object & Attribute Dialog 352

Edit Target Object & Attribute Dialog 355

Updating from and Concluding to Embedded Objects 359

Introduction
Most UIL controls can send values to and receive values from other objects. For
example, a user can enter values for the make, model, year, and color of a car into
edit boxes in a dialog, and then send the values of these edit boxes to a G2 object
holding the data for that car. The object can, in turn, send these values back to the
edit boxes in the dialog for display and editing.

The object to which a UIL control sends a value is called a target object. The UIL
control sends the value to a particular attribute of the target object, which is called
a target attribute. A UIL control sends a value to the target attribute of its target
object when a conclude method is run on the UIL control.

The object from which a UIL control receives a value is called a source object. The
particular attribute of the source object from which this value comes is called the
source attribute. A UIL control receives a value from the source attribute of its
source object when an update method is run on the UIL control.

You can specify source and target objects and attributes for UIL controls using
GUIDE editors, which are described in this section. The source and target objects
349

and attributes of UIL controls are specified in attributes of the UIL controls named
uil-event-source-object, uil-event-source-attribute, uil-event-target-attribute, and
uil-event-target-object.

Specifying Source and Target Objects

You can use the following kinds of objects as source objects for a UIL control:

• The G2 object that launched the dialog containing the UIL control. This object
is known as the initiating object of the dialog.

The initiating object must be an instance of a user-defined class. The user-
defined class must have at least one class-specific attribute whose value can be
reflected in the state of the UIL control.

• The temporary storage object for the dialog that contains the UIL control that
you are editing. For information about how to use temporary storage objects,
see Creating Temporary Storage Objects.

• Any named G2 object.

You can use the following kinds of objects as target objects:

• The object that launched that dialog containing the UIL control the you are
editing.

• The temporary storage object for the dialog that contains the UIL control that
you are editing.

• The destination object for the dialog that contains the UIL control that you are
editing. This object is specified at runtime by a call to the UIL procedure
uil-set-destination-for-dialog. You can specify only one destination object for a
dialog. For information about uil-set-destination-for-dialog, see the
G2 GUIDE/UIL Procedures Reference Manual.

• Any named G2 object.

For detailed descriptions of the different kinds of source and target objects that
you can specify, see Edit Source Object & Attribute Dialog and Edit Target Object
& Attribute Dialog.

Note For some purposes, you may want to perform additional processing on the values
when they are concluded to a target object or retrieved from a source object. For
information about how to do this, see Creating Temporary Storage Objects.
350

Introduction
Source and Target Objects of Different UIL Controls

Except for text objects, all UIL controls that have values or state can have both
source and target objects. Text objects can have only source objects. This is
because text objects display read-only text and cannot send their values to other
objects.

Push buttons have target objects, even though push buttons do not have values
that can be concluded to or updated from object attributes. The target object of a
push button is a dialog on which a set of actions is run whenever a user clicks on
the push button.

For information about how to specify the source object and attribute, see Edit
Source Object & Attribute Dialog.

For information about how to specify the target object and attribute, see Edit
Target Object & Attribute Dialog.

Note UIL controls such as separators and borders do not have source or target objects,
because these UIL controls do not have values that can be updated or concluded.

Target Objects for Push Buttons

Push buttons can have target objects, but do not have source objects.

The target object of a push button is always a dialog — this can be either the
dialog that contains the push button, or some other dialog.

When a user clicks a push button, the actions associated with that push button are
run on the dialog that is specified as that push button’s target object. For example,
if the actions on the push button include an action for concluding values, then all
the UIL controls on the target dialog conclude their values when a user clicks the
push button.

Unlike other UIL controls, push buttons do not send values to their target objects.

You do not specify source attributes for push buttons, because push buttons do
not have values that can be derived from other objects.

For information about how to specify the target object for a push button, see
System-Defined Actions for Dialog Processing.

Note If you use a push button to perform specialized processing through a user-
defined callback procedure, rather than to run actions on a dialog, the push
button does not require or use a target object.
351

Edit Source Object & Attribute Dialog
The Edit Source Object & Attribute dialog enables you to specify the source object
and attribute for the UIL control that you are editing. When the update method is
run on an object, the value used to update the UIL control comes from the
attribute of the source object that you specify in the Edit Source Object & Attribute
dialog.

To open the Edit Source Object & Attribute dialog, click the Edit Source Object
push button on one of the following dialogs: Edit Toggle Button, Edit Radio
Button, Edit Check Button, Edit Edit Box, Edit Message and Edit Text. The Edit
Source Object & Attribute dialog looks like this:

:

The following table describes the components of the Edit Source Object &
Attribute dialog:

Components of Edit Source Object & Attribute Dialog

Component Description

Source Object The radio buttons below the label Source
Object specify the object used as the source
object.

Unspecified Indicates that the UIL control that you are
editing has no source object.
352

Edit Source Object & Attribute Dialog
Initiating Object Selecting this button indicates that the value
of the UIL control that you are editing is to be
updated with a value from the object
initiating dialog activity.

The class of the initiating object appears in the
Class field.

Temporary storage
object

Selecting this button indicates that the value
of the UIL control that you are editing is to be
updated with a value from the temporary
storage object associated with the dialog or
parent dialog. For information about how to
use temporary storage objects, see Creating
Temporary Storage Objects.

The class of the temporary storage object
appears in the Class field.

Object Id Specify the source object by its numeric object
ID. You can obtain the ID of a UIL object from
its attribute table or from its graphical editor.

Object specified by
Name

If you click this button, you must enter the
name of the source object in the field to the
right of the Object specified by Name button.

The class of the source object that you specify
appears in the Class field.

Embedded Object Selecting this button indicates that the source
object is an embedded object.

For information about how to use embedded
objects as source and target objects, see
Updating from and Concluding to Embedded
Objects.

Components of Edit Source Object & Attribute Dialog

Component Description
353

Source Attribute The field immediately below the label Source
Attribute indicates the currently specified
source attribute for the UIL control.

You can enter the name of a class-specific
attribute directly into this field. The attribute
that you enter must be an attribute of the class
specified in the Class field.

Selecting an attribute from the scroll area
automatically enters it in the edit box below
the label Source Attribute.

Class Displays the class of the source object.

To display the class-specific attributes of this
class, click the Update button. The attributes
are listed in the scroll area immediately above
the Class field.

Update Clicking on this button causes the class-
specific attributes of the class in the Class field
to be displayed in the scroll area immediately
above the Class field and Update button.

You can specify a source attribute by selecting
one of the attributes displayed in the scroll
area.

Set Target from Source Sets the target object and target attribute to be
the same as the source object and source
attribute that you select in this dialog.

Components of Edit Source Object & Attribute Dialog

Component Description
354

Edit Target Object & Attribute Dialog
Edit Target Object & Attribute Dialog
The Edit Target Object & Attribute dialog enables you to specify a target object
and attribute for the UIL control that you are editing. When the conclude method
for this UIL control is run, the current value of the UIL control is concluded into
the attribute of the target object that you specify in the Edit Target Object &
Attribute dialog.

Apply Target to Group This button is enabled only when you are
editing a radio button or check button.

If you select Set Target from Source, you can
click Apply Target to Group to assign the
source object and source attribute specified in
this dialog to be, in addition, the target object
and target attribute for all the other buttons in
the radio box or check box.

Apply Source to Group This button is enabled only when you are
editing a radio button or check button.

Selecting Apply Source to Group assigns the
specified source object and source attribute
that you specify in this dialog to all the other
buttons in the radio box or check box.

Components of Edit Source Object & Attribute Dialog

Component Description
355

To open the Edit Target Object & Attribute dialog, click the Edit Target Object
push button on one of the following dialogs: Edit Toggle Button, Edit Radio
Button, Edit Check Button, Edit Edit Box, Edit Message or Edit Text. The Edit
Target Object & Attribute dialog looks like this:

The following tables describes the components of the Edit Target Object &
Attribute dialog:

Components of Edit Target Object & Attribute Dialog

Component Description

Target Object (required) The radio buttons below the label
Target Object indicate the object to be used as
the target object when the conclude method is
run on the UIL control that you are editing.

Unspecified Indicates that the UIL control that you are
editing has no target object.

Temporary storage
object

Indicates that the value of the UIL control that
you are editing is to be concluded into the
temporary storage object associated with the
dialog or parent dialog when the conclude
method is run. For information about how to
use temporary storage objects, see Creating
Temporary Storage Objects.
356

Edit Target Object & Attribute Dialog
Initiating Object Indicates that the value of the UIL control that
you are editing is to be concluded into the
object initiating dialog activity when the
conclude method is run. The initiating object
is found by traversing up the chain of
cascaded dialogs. The initiating object can be
any G2 item.

Destination Object Indicates that the value of the UIL control that
you are editing is to be concluded into a
destination object.

When you select this option, the uil-event-
target-object attribute is set to destination-
object. You must then use the uil-set-
destination-for-dialog procedure to specify a
destination object for the dialog at run time.
You can also use the uil-find-destination-for-
dialog procedure to return the destination
object. For information about these
procedures, see the G2 GUIDE/UIL Procedures
Reference Manual.

Object Id Specify the source object by its numeric object
ID. You can obtain the ID of a UIL object from
its attribute table or from its graphical editor.

Object specified by
Name

Indicates that the value of the UIL control that
you are editing is to be concluded into the
object with the given name. If this radio
button is selected, a valid name for an object
must be specified in the edit box to the right of
this radio button. The named object can be
any G2 item.

Embedded Object Selecting this button indicates that the target
object is an embedded object.

For information about how to use embedded
objects as source and target objects, see
Updating from and Concluding to Embedded
Objects.

Components of Edit Target Object & Attribute Dialog

Component Description
357

Target Attribute The field immediately below the label Target
Attribute indicates the currently specified
target attribute for the UIL control.

You can enter the name of a class-specific
attribute directly into this field. The attribute
that you enter must be an attribute of the class
specified in the Class field.

Selecting an attribute from the scroll area
automatically enters it in the edit box below
the label Target Attribute.

Class Displays the class of the target object.

To display the class-specific attributes of this
class, click the Update button. The attributes
are listed in the scroll area immediately above
the Class field.

Update Clicking on this button causes the class-
specific attributes of the class in the Class field
to be displayed in the scroll area immediately
above the Class field and Update button.

You can specify a target attribute by selecting
one of the attributes displayed in the scroll
area.

Set Source from Target Sets the source object and source attribute to
be the same as the target object and target
attribute that you select in this dialog.

Components of Edit Target Object & Attribute Dialog

Component Description
358

Updating from and Concluding to Embedded Objects
Updating from and Concluding to Embedded
Objects

An embedded object is an object that is referenced or contained by an attribute of
another object.

You can specify an embedded object as the source object or target object of a UIL
control. If you do this, you must specify an attribute of the embedded object as the
source attribute or target attribute of the UIL control.

The following example shows how UIL controls in a dialog can use an embedded
object as their source object.

Apply Target to Group This button is enabled only when you are
editing a radio button or check button.

Selecting Apply Target to Group assigns the
specified target object and target attribute that
you specify to all the other buttons in the
radio box or check box.

Apply Source to Group This button is enabled only when you are
editing a radio button or check button.

If you select Set Source from Target, you can
click Apply Source to Group to assign the
target object and target attribute specified in
this dialog to be, in addition, the source object
and source attribute for all the other buttons
in the radio box or check box.

Components of Edit Target Object & Attribute Dialog

Component Description
359

Suppose that an automobile-rental application uses an object named Rambler,
which is an instance of a class named Car. A dialog named Rental Information
displays the information stored in the object named Rambler. In this dialog, the
different pieces of information stored in Rambler are represented by edit boxes:

The edit boxes labeled Model and Year display the values of attributes of
Rambler.

However, the edit boxes labeled Radio, Power Steering, and Power Brakes
display attribute values of an embedded object, rather than attribute values of
rambler itself. This embedded object is embedded in an attribute of rambler
named rental-extras.

The embedded object is an instance of a class named extras. The class extras has
attributes that represent the radio, power steering, and power brakes rental
options. These attributes are the source attributes for the edit boxes labeled Radio,
Power Steering, and Power Brakes.
360

Updating from and Concluding to Embedded Objects
In the attribute table for rambler, the rental-extras attribute contains this instance
of extras as an embedded object. To view or edit the attributes of this embedded
object, open the subtable for the rental-extras attribute:

The following figure illustrates how to specify an embedded source object for the
Radio edit box in the Rental Information dialog:

The following example illustrates in detail how to use an embedded object as the
source object or target object of UIL controls on a dialog.
361

Note In the following example, you must use the GUIDE palette to add the edit boxes
representing attributes of the embedded object (Radio, Power Steering, and
Power Brakes) to the Rental Information dialog. For this reason, you may want to
create the entire dialog using the GUIDE palette, rather than using the GUIDE
Dialog Generator.

The GUIDE Dialog Generator does not generate individual UIL controls to
represent attributes of an embedded object. Instead, the GUIDE Dialog Generator
generates a push button for the embedded object. To use this push button, you
must first generate a dialog for the class of the embedded object. You can then use
the push button to launch the dialog for the embedded object.

To specify an attribute of an embedded object as the source attribute:

1 Open the object editor for the UIL control and click the Source Object button
to open the Edit Source Object & Attribute dialog.

2 Specify the source object and the attribute of the source object that contains
the embedded object. To do this:

a In the Edit Source Object & Attribute dialog, specify the source object of
the UIL control. The source object must be the object that contains the
embedded object in one of its attributes.

For example, if the source object is the initiating object, click the Initiating
object button.

b Click the Embedded Object button. The name of the source object that you
specified appears in the first field to the right of the Embedded Object
button.

c In the second field to the right of the Embedded Object button, enter the
attribute of the source object that contains the embedded object.

In the example above, the embedded object is contained in the attribute of
cars named rental-extras. Thus, you enter rental-extras in the second field
to the right of the Embedded Object button.

3 Specify the attribute of the embedded object that you want to use as the source
attribute of the UIL control. To do this:

a Enter the class of the embedded object in the field to the right of the label
Class.

In this example, the embedded object is an instance of the class extras.
Thus, enter extras in the field to the right of the label Class.

b Click the Update button. This displays the attributes of the extras class in
the scroll area above the Update button.
362

Updating from and Concluding to Embedded Objects
c In the scroll area, select the attribute of the embedded object that you want
to use as the source attribute of the UIL control.

In this example, select Radio as the attribute of the embedded object that
you want to use as the source attribute.

4 Click OK in the Edit Source Object & Attribute dialog.

5 Click OK in the object editor for the UIL control.

When you finish specifying attributes of an embedded object as a source or target
attributes for a UIL control, you can examine the attribute table of the UIL control
to verify that you have specified these attributes correctly. The following figure
illustrates the attribute table of the Radio edit box when it is edited to specify the
object in the rental-extras attribute of rambler as the source and target object:

The attribute value specified for uil-event-target-object or uil-event-source-object
can include only one level of embedding. GUIDE does not support the third level
of embedding represented, for example, by radio-type in the following attribute
specification:

initiating-object.rental-extras.radio-type

To enable users to view and edit the attributes of two or more levels of embedded
objects, you can either create a system of cascaded dialogs, or create methods that
update and conclude values from the appropriate objects.
363

364

21
Creating Temporary
Storage Objects
Describes how to create and use temporary storage objects, which you can use
when you process data while it is being updated into or concluded from a dialog.

Introduction 365

How Temporary Storage Objects Work 366

Introduction
For some purposes, an application may need to store data in one set of terms
while enabling users to view and edit the data in a different set of terms.

For example, a G2 object may store certain system parameters as numbers. Each
parameter value has a meaning that users need to understand. Instead of
requiring users to view and edit the parameters in numeric format, you can create
a dialog that uses a descriptive text string to represent each parameter value.

Similarly, you might want to use a dialog to display the average value of
attributes of several different objects. Your application must recalculate the
average each time a user requests an update of the display in the dialog.
365

How Temporary Storage Objects Work
Temporary storage objects make it possible for you to use dialogs as described in
the preceding paragraphs. A temporary storage object serves as a buffer during
update and conclude actions on the dialog, in the following ways:

• When an update action is run on the dialog, a user-defined update action first
translates the attribute values of a G2 object or objects into the terms used by
the dialog, and updates the temporary storage object with these translated
values.

The dialog’s update method then updates the dialog with the translated
values in the temporary storage object. This update method is referenced in
the dialog’s uil-update-method attribute.

• When a conclude action is run on the dialog, the dialog’s values are first
concluded into the temporary storage object by the dialog’s conclude method.
This conclude method is referenced in the dialog’s uil-conclude-method
attribute.

A user-defined conclude action then translates the values back into their
original terms and concludes them to the G2 object or objects.

The following figure illustrates one possible use of a temporary storage object as a
buffer during update and conclude actions on a dialog:

User-defined update
action, translating
numbers to text.

Dialog’s update
and conclude
methods.

User-defined
conclude
action, translating
text to numbers.

Temporary
storage object
expressing
values as text.

Dialog
expressing
values as text.

G2 Object
expressing
values
numerically.
366

How Temporary Storage Objects Work
Note Temporary storage objects can be updated from and conclude values to any
number of different objects.

How Temporary Storage Objects Are Created

Temporary storage objects are instances of user-defined object definitions. You
associate the object definition with any dialog that needs to use temporary storage
objects of that particular class. When the dialog is reserved, a temporary storage
object of the associated class is automatically created.

GUIDE automatically links the temporary storage object to the dialog with the
dynamic relation the-uil-temporary-storage-object-of. This relation is maintained
until the dialog is released by the uil-release-dialog action.

Steps for Defining a Temporary Storage Object for a
Dialog

To use a temporary storage object with a dialog:

1 Create a class definition for the temporary storage object. The class definition
should include a class specific attribute for each UIL object on the dialog
whose value will be updated from or concluded to the temporary storage
object.

2 Specify the name of this class in the Dialog Options dialog, which you can
open by clicking on the More Options button in the Edit Dialog dialog.

3 For the source and target attribute of each UIL object on the dialog, specify a
class-specific attribute of the temporary storage object. This enables the values
of the UIL objects to be updated from and concluded to the temporary storage
object.

4 Create an update action that updates the temporary storage object with
attribute values of the G2 object or objects. The update action must translate
these attribute values into the terms that the dialog uses.

5 Include your user-defined update procedure among the actions run by the
push button, action button, user menu choice, or procedure that starts the
dialog. Place the user-defined update action before the update method.

6 Create a conclude action that writes the attribute values of the temporary
storage object back into the G2 object or objects. The conclude action must
translate the attribute values of the temporary storage object back into their
original terms.

7 Include your user-defined conclude procedure among the actions run by the
push button on the dialog that concludes the values in the dialog. Place the
user-defined conclude action after the conclude method.
367

Note You can access a working example of a temporary storage object through the
GUIDE Examples workspace. To open this workspace, click UIL Examples in the
GUIDE Help dialog.

The following section illustrates the steps that you must follow to use a temporary
storage object.

For example, suppose that an application uses objects of a class named my-color-
class to store the numeric color codes 100, 101, and 102, representing red, white,
and blue respectively. The following figure illustrates an object of this class that
stores the color code 100 (red) in an attribute named object-color:

Users can view and edit the object-color attribute of the objects of the class
my-color-class, using the following dialog:

The radio buttons in this dialog have the values Red, White, and Blue, which
correspond to the possible values of the object-color attribute. To make it possible
for users to edit the numerical values of the object-color attribute using the radio
368

How Temporary Storage Objects Work
buttons, your application must first translate the numeric values into the textual
on values of the radio buttons.

The following figure illustrates how your application can do this:

Creating this Example

The following sections describe how to implement the application shown in the
figure above.

Create a Class Definition for the Temporary Storage Object

To create the class definition tso-color-class for the temporary storage object used
in this example, select:

KB Workspace > New Definition > object-definition

my-update-temporary-storage

temporary
storage
object

the dialog’s update method

my-conclude-temporary-
storage

my-color-object-1 Color Dialog

the dialog’s
conclude method

object-color
attribute

Legal values:
100 (= red)
101 (= white)
102 (= blue)

Radio Buttons
369

Open the table of the new class definition. In the table, specify a name, a direct
superior class, and a class specific attribute named my-color, as follows:

Specify this New Class Definition as the Class of the Dialog’s
Temporary Storage Object

To specify this new class definition as the class from which temporary storage
objects will be created for this dialog:

1 Choose edit dialog from the menu of the Color Dialog dialog to open the Edit
Dialog dialog.

2 Click More Options in the Edit Dialog dialog to open the Dialog Options
dialog.
370

How Temporary Storage Objects Work
3 In the Dialog Options dialog, specify the name of the user-defined class for
temporary storage objects. For example:

When the dialog Color Dialog is reserved, an instance of the class tso-color-
class is created automatically. This instance is used as the temporary storage
object.

4 Click the OK buttons in the Dialog Options and Edit Dialog dialogs.

Set the Source and Target Attributes of the UIL Objects on the Dialog

In this example, all the radio buttons on the Color Dialog dialog use the my-color
attribute of the temporary storage object as their source object and target object.

To specify the my-color attribute as the source and target attribute of the buttons:

1 Click the radio button labeled Red and select edit radio button from its menu
to open the Edit Radio Button dialog.

2 In the Edit Radio Button dialog, click the Source Object button to open the
Edit Source Object & Attribute dialog.
371

3 In the Edit Source Object & Attribute dialog, select the Temporary Storage
object option under the heading Source Object, and enter my-color in the edit
box under the heading Source Attribute:

These settings specify that the temporary storage object associated with Color
Dialog is the source object for the Red button, and that the my-color attribute
of the temporary storage object is the source attribute of the Red button.

4 Click the Set Target from Source button in the Edit Source Object & Attribute
dialog. This makes my-color the target attribute of the Red button.

5 Click the Apply Target to Group button. This makes my-color the target
attribute of all the buttons in the same group as the Red button.

6 Click the Apply Source to Group button. This makes my-color the source
attribute of all the buttons in the same group as the Red button.

7 Click the OK buttons in the Edit Source Object & Attribute and Edit Radio
Button dialogs.

Create a User-Defined Update Action for the Temporary Storage
Object

In this example, a user-defined update action named my-update-temporary-
storage translates the numeric values 100, 101, and 102 into the corresponding
text values used in the dialog, red, white, and blue. It then updates the temporary
storage object with the translated values.

To create an update action:

1 Click the question mark (?) button in the GUIDE palette to open the GUIDE
Help dialog.

2 In the GUIDE Help dialog, click the button labeled UIL Methods, Actions, and
Callbacks to open the GUIDE Method Help dialog.
372

How Temporary Storage Objects Work
3 In the Methods column of the GUIDE Method Help dialog, select user defined
dialog action in the Methods column. The required argument signature for
actions appears in the Signature scroll area. A description of actions appears
in the Description scroll area.

4 Click the Create Method button. This opens the Create New Method dialog.

5 In the Create New Method dialog, enter the name of the update action that
you want to create. For example:
373

When the icon for the new action appears, select edit from its menu, and enter the
procedure code. The following figure illustrates the code of the user-defined
action my-update-temporary-storage:

This procedure:

• Finds the temporary storage object associated with the dialog.

• Translates the numeric value (100, 101, or 102) of the object-color attribute of a
G2 object into a corresponding text string ("red", "white", and "blue",
respectively).

• Updates the my-color attribute of the temporary storage object with this text
string.

Include the User-Defined Update Procedure among the Actions Run
on the Dialog When the Dialog Is Started

You must include the my-update-temporary-storage procedure among the actions
that are run on the dialog when the dialog is started. You can start a dialog from
an action button, a procedure, a push button in another dialog, or a user-menu
choice.
374

How Temporary Storage Objects Work
The following steps illustrate how to include my-update-temporary-storage
among the actions that are run on the dialog when the dialog is started from a
user-menu choice:

1 Create a user menu choice named start color dialog.

To do this, select:

KB Workspace > New Definition > user-menu-choice

2 Open the table of the new user menu choice and edit the table to specify the
name, label, applicable class, and action, as follows:

The start statement in the action attribute of the user menu choice invokes the
procedure uil-start-dialog-processing to start the dialog, or to update it if it is
currently displayed. The procedure references the dialog by its ID, Color
Information. The uil-start-dialog-processing procedure references two actions lists,
setup-color-dialog-actions and refocus-color-dialog-actions.

The call to uil-start-dialog-processing runs the actions in setup-color-dialog-
actions when it starts the dialog. This action description array includes the
following actions:

my-update-temporary-storage (the user-defined update procedure)
uil-call-update-method (the system-defined update method)
uil-simulate-play-mode
uil-show-managed-dialog
375

The call to uil-start-dialog-processing also runs the actions in refocus-color-dialog-
actions when it updates a dialog that is currently displayed. This action
description array includes the following actions:

my-update-temporary-storage (the user-defined update procedure)
uil-call-update-method (the system-defined update method)

For information about how to create action description arrays, see Controlling
Dialogs with Actions. For information about how to start dialogs, see Launching
Dialogs.

Create a User-Defined Conclude Action for the Temporary Storage
Object

In this example, a user-defined conclude procedure translates the text values
"red", "white", and "blue" into their original numeric terms 100, 101, and 102.

The following figure illustrates the user-defined method my-conclude-temporary-
storage:

This procedure:

• Finds the temporary storage object associated with the dialog.

• Translates the text string ("red", "white", or "blue") in the object-color attribute
of the temporary storage object into the corresponding numeric value (100,
101, or 102, respectively).

• Concludes this numeric value into the object-color attribute of the target
object of the dialog. You specify the target object in the following step.
376

How Temporary Storage Objects Work
Include the User-Defined Conclude Procedure among the Actions
Run When the Dialog’s Values are Concluded

To do this, edit the push button or buttons in Color Dialog that you want to use to
conclude the values in the dialog.

The OK and Apply buttons on a dialog are commonly used to conclude the values
in the dialog. By default, OK and Apply buttons include uil-call-conclude method
among their actions.

You can add my-conclude-temporary-storage to the OK and Apply buttons using
the Customize Dialog Actions dialog.

Note You must put my-conclude-temporary-storage or any other user-defined
conclude action after the call to uil-conclude-method.

For information about how to use the Customize Dialog Actions dialog, see
Customize Dialog Actions Dialog.

Add an Action to Delete the Temporary Storage Object

It is good practice to delete the temporary storage object when you dismiss the
dialog. To do this, add the system-defined action uil-delete-temporary-storage-
object to the button that dismisses the dialog, before the uil-release-dialog action.
377

378

22
Methods, Actions,
and Callbacks
Describes how to create and use UIL methods, actions, and callbacks.

Introduction 379

UIL Methods 380

How UIL Methods Work 382

UIL Actions 386

UIL Callbacks 386

Creating Methods, Actions, and Callbacks 387

Introduction
GUIDE/UIL provides an extensive set of system-defined procedures that make it
possible to create and use a GUIDE user interface. There are three kinds of
procedures:

• UIL methods, which perform operations required by developers, such as
cloning and deleting objects, or operations required by users, such as opening
and closing dialogs, and updating and concluding their values.

• Actions, which perform run time operations on dialogs, such as opening or
closing them, and updating or concluding their values.

• Callbacks, which are invoked whenever a user clicks on a button.

GUIDE/UIL provides an extensive set of system-defined methods, actions, and
callbacks. When you create a user interface, GUIDE automatically ensures that the
interface references the appropriate system-defined procedure for each common
379

operation. You can create and use a GUIDE user interface without modifying the
set of methods, actions, and callbacks that the interface references by default.

However, if your user interface needs to perform specialized operations, you can
create customized methods, actions, and callbacks to perform these operations,
and then edit the interface to reference these procedures in place of the default
system-defined procedures.

The following sections describe how you can create and use customized UIL
methods, actions, or callbacks.

UIL Methods
Every dialog and UIL control has attributes that correspond to the common
operations that can be performed on the object. For example, dialogs have
attributes named uil-delete-method, uil-conclude-method, uil-update-method,
uil-validation-method, uil-clone-method, and so on. Edit boxes have attributes
named uil-initialization-method, uil-enable-method, uil-disable-method, and so on.

Each of these attributes references the method responsible for performing the
corresponding operation. When an application developer or user initiates one of
these operations, the method responsible for performing that operation is run.

For example, when you select the clone operation from the menu of a UIL object,
the procedure specified in the uil-clone-method attribute of that object is run. The
method that is specified by default in this attribute, uil-clone-grobj-method,
dispatches a procedure, uil-clone-grobj, that carries out the clone operation.

To use a customized method, edit the attribute for the corresponding operation to
reference the customized method. For example, to use a customized clone method
on an object, reference the name of that method from the uil-clone-method
attribute of that object.
380

UIL Methods
The following figure illustrates the clone. menu choice of a dialog and the uil-
clone-method attribute in the table of that dialog:

:

UIL methods are designed to perform the same operation on UIL objects of
different classes. For example, uil-clone-grobj-method is the default method for
cloning all classes of UIL objects that can be cloned.

UIL Methods for Application Development

Some UIL methods perform operations that you need in order to construct a user
interface, such as cloning, deleting, enabling, and disabling UIL objects.

UIL Methods for Runtime Operations

Some UIL methods are run in response to actions by the user, such as clicking a
push button or tabbing to an edit box. The user operations performed by methods
include:

• Concluding a value in a UIL object to a destination in the application, or
updating a UIL object with a value retrieved from somewhere else in the
application.

• Starting and stopping the editor for edit boxes.
381

• Validating edits that users make to contents of edit boxes, using validation
criteria that you specify.

• Initializing UIL objects to a default, initial state.

Similarly, when a user clicks an OK push button and that button includes an
action for concluding the values of all UIL objects on a dialog, the conclude
method specified in the uil-conclude-method attribute of each UIL object is run.
The result is that the values in these UIL objects are concluded to their target
objects.

How UIL Methods Work
When an application developer or user requests an operation, a UIL method is
invoked as the handler for that operation. UIL handler methods perform
operations in the following way:

1 A user or application developer requests an operation on a UIL object. This
executes the UIL handler method for that operation.

For example, if an application developer chooses delete. from the menu of an
object, the handler for that operation, uil-delete-grobj-method, is run.

2 The handler examines the attribute of the UIL object that corresponds to the
requested operation.

For example, the handler for delete operations, uil-delete-grobj-method,
examines the current value of the uil-delete-method attribute of the scroll area.

3 If the attribute for the requested operation references the handler itself, the
handler calls a system-defined UIL procedure to perform the requested
operation on the particular object.

For example, the handler uil-delete-grobj-method calls the UIL procedure
uil-delete-grobj.

4 However, if the attribute for the requested operation references a user-defined
method, the handler runs the user-defined method. The user-defined method
can do the following:

• Executes user code to perform the desired customized operations on the
object.

• (optional) Calls a system-defined UIL procedure to perform the requested
operation on the object.

For example, a user-defined method for deleting an object can first post a
message to the message board to inform the operator that the object is being
deleted. The user-defined method then calls the system-defined UIL
procedure uil-delete-grobj to delete the object.
382

How UIL Methods Work
The following figure illustrates how a scroll area is deleted when the uil-delete-
method attribute references the UIL handler method uil-delete-grobj-method, and
when it references a user-defined method, user-delete-grobj-method.

Caution Never call the handler method for an operation, such as uil-delete-grobj-method,
from a user-defined method that you reference from the attribute for that
operation. Calling the handler from the user-defined method results in an infinite
loop.

user-delete-grobj-method
(OBJ: class item)

begin
<user code such as the following line:>
inform the operator that "Deleting
Object";
call uil-delete-grobj(OBJ);
end

Does
attribute reference
handler or user-
defined method?

Handler for delete operation,
uil-delete-grobj-method,
examines uil-delete-method
attribute of scroll area.

Handler

A user-defined method,
such as
user-delete-grobj-method

Developer selects
delete. from menu
of scroll area.

uil-delete-grobj
383

Object Attributes that Reference UIL Methods

The following table lists the attributes of UIL objects that reference methods:

Method Attributes of UIL Objects

Attribute
Classes with
this Attribute

Operations Performed by
Method Referenced from
this Attribute

uil-initialization-method All UIL objects Initializes the UIL object to
the default state for objects
of its class.

uil-update-method All UIL objects Updates the value of the
UIL object from the source
attribute of the source
object currently specified
for this UIL object.

uil-conclude-method All UIL objects
except text
objects

Concludes the value of the
UIL object to the target
attribute of the target object
currently specified for this
UIL object.

uil-delete-method All UIL objects Deletes this UIL object.

uil-clone-method All UIL objects Performs a clone operation
on the UIL object.

uil-handler-method Buttons Invokes callback for button
when button is clicked.

uil-validation-method Dialogs and edit
boxes only

Validates the contents of
the UIL object using the
currently specified format.

uil-configuration-
method

All UIL objects Updates appearance of UIL
object to reflect its
currently selected
configuration.

uil-size-of-method All UIL objects Returns the height and
width of the UIL object.

uil-manage-method All UIL objects Manages (displays) the UIL
object

uil-enable-method All UIL objects Enables the UIL object.
384

How UIL Methods Work
uil-disable-method All UIL objects Disables the UIL object.

uil-message-selection-
method

Edit boxes and
message objects

Starts an edit session on an
edit box. Selects a message
object.

uil-message-
unselection-method

Edit boxes and
message objects

Ends the edit session on an
edit box. Deselects a
message object.

uil-scroll-increment-
method

Scroll areas Moves message objects in
the scroll area up one page
when the user clicks on the
scroll bar below the scroll
thumb.

uil-scroll-decrement-
method

Scroll areas Moves message objects in
the scroll area down one
page when the user clicks
on the scroll bar above the
scroll thumb.

uil-scroll-increment-
line-method

Scroll areas Moves message objects in
the scroll area up one line
when a user clicks on the
scroll down arrow.

uil-scroll-decrement-
line-method

Scroll areas Moves message objects in
the scroll area down one
line when a user clicks on
the scroll up arrow.

uil-scroll-to-position-
method

Scroll areas Scrolls the scroll area
whenever a user drags the
scroll thumb.

Method Attributes of UIL Objects

Attribute
Classes with
this Attribute

Operations Performed by
Method Referenced from
this Attribute
385

UIL Actions
Actions are procedures that perform operations on a dialog, such as opening or
closing the dialog, or updating or concluding the values in it.

UIL provides system-defined actions that perform all the commonly required
operations on dialogs. You can create customized actions to perform any
specialized operations that your application requires.

Action buttons, user menu choices, and procedures can run actions on dialogs by
invoking the procedure uil-control-dialog-callback. This procedure references a
specified action description array, an object that stores a list of actions. uil-control-
dialog-callback runs the actions listed in the action description array on a
specified dialog.

uil-control-dialog-callback is also the default callback of push buttons. However, a
push button runs the actions referenced by its uil-action-description attribute,
rather than the actions in an action description array.

The OK, Apply, and Close push buttons that appear on a master dialog by default
reference appropriate sets of actions. Your application can use the OK, Apply, and
Close push buttons with their default actions for almost all purposes. You can edit
any push button to change the list of actions that it runs on a dialog.

For more information about how to run actions on dialogs, see Launching
Dialogs. For information about how to associate actions with push buttons, see
Push Buttons.

Caution An action fails if it attempts to run uil-control-dialog-callback on the target dialog
of the push button that runs the action itself.

UIL Callbacks
Callbacks are invoked by the handler of a button whenever a user clicks on the
button. The callback invoked by a button is referenced by the callback attribute of
that button. Callbacks are invoked by push buttons, radio buttons, check buttons,
and toggle buttons.

Callbacks on Push Buttons and Other Kinds of
Buttons

Push buttons use a different callback from other kinds of buttons.

Push buttons use the callback uil-control-dialog-callback. When a user clicks on a
push button, uil-control-dialog-callback runs a specified set of actions on the target
386

Creating Methods, Actions, and Callbacks
dialog of that push button. For information about how to specify the actions that
uil-control-dialog-callback runs, see Push Buttons.

If you need to customize the operations that are performed when a user clicks on
a push button, you can do this by creating customized actions and including these
actions among the set of actions run by uil-control-dialog-callback. Replacing
uil-control-dialog-callback with a user-defined callback is not recommended.

By default, toggle buttons, radio buttons, and check buttons execute a callback,
uil-do-nothing, that performs no actions. This callback is suitable for most uses of
radio buttons, check buttons, and toggle buttons.

However, if you want a radio button, check button, or toggle button to perform
specialized processing, you can create a customized callback to use in place of the
default callback uil-do-nothing. You must specify the name of the customized
callback in the callback attribute of the radio button, check button, or toggle
button.

Callbacks in GUIDE 3.0 and GUIDE 4.0

In GUIDE 3.0, almost all processing of dialogs and their contents is performed by
callbacks. Beginning in GUIDE 4.0, almost all of this processing is performed by
methods and actions.

GUIDE 4.0 and later versions support user-defined callbacks created with GUIDE
3.0. However, you can upgrade your 3.0 GUIDE applications to use methods and
actions in place of callbacks. For information about how to do this, see Chapter 26,
“Upgrading Guide Applications” in the G2 GUIDE User’s Guide G2 Utilities
Version 5.0 manual.

Creating Methods, Actions, and Callbacks
You can create your own methods to use in place of the default methods that
GUIDE provides for the method attributes of UIL objects. The methods that you
create can perform any operations that are required operations.

Creating UIL Methods Using the Edit Method Dialog

You can create UIL methods, using the Edit Methods dialog. This dialog enables
you to select the attribute for which you want to create a method, and provides
the correct argument signature for methods referenced from that attribute.
387

To create a customized method for a UIL object, follow these steps:

1 Open the object editor for the UIL object that you want to create.

For example, if you want to create a customized method for an edit box, select
edit edit box from the edit box’s menu.

2 In the object editor, click the Methods button to open the Edit Methods dialog:

If the class of UIL control that you are editing does not use a particular kind of
method, the field and button for that method are disabled in the Edit Methods
dialog.

The methods listed under the label Common Methods are common to dialogs
and all or most classes of UIL controls that reference methods from their
attributes.

Methods used only by certain classes of UIL controls are listed under the label
Object Specific Methods.
388

Creating Methods, Actions, and Callbacks
3 In the Edit Methods dialog, click the button to the right of the attribute for
which you want to create a method. This opens a dialog that enables you to
create a method for that attribute.

For example, if you want to create an update method, click the button to the
right of the edit box labeled Update. This opens the Modify Update Method
dialog:

4 Enter a name for the method that you are creating and click OK. This creates a
method with the argument signature that is required for the attribute that you
selected. When the method is run, appropriate values are passed to these
arguments automatically.

For example, an update method for an edit box looks like this:
389

Caution Do not edit the arguments of the new method. Each method referenced from
the attribute of an object has a set of arguments to which GUIDE passes values
automatically when the method is invoked. The method cannot function
properly if you alter these arguments.

5 Edit the body of the method to specify the operations that you want it to
perform.

Creating Callbacks, Methods, Procedures,
Functions, and Actions Using the GUIDE Method
Help Dialog

You can use the GUIDE Method Help dialog to create the following kinds of
procedures:

• Callbacks

• Methods

• Validation functions

• Validation procedures

• User defined dialog actions

To create a callback, method, or action using the GUIDE Method Help dialog:

1 Click the question mark (?) button in the GUIDE palette to open the GUIDE
Help palette.

2 In the GUIDE Help palette, click the button labeled UIL Methods, Actions,
and Callbacks to open the GUIDE Method Help dialog.

3 In the Methods column of the GUIDE Method Help dialog, select the kind of
procedure that you want to create.
390

Creating Methods, Actions, and Callbacks
For example, to create an action, select user defined dialog action in the
Methods column. The required argument signature for actions appears in the
Signature scroll area. A description of actions appears in the Description scroll
area.

4 Click the Create Method button to open the Create New Method dialog.

5 In the Create New Method dialog, enter the name of the procedure that you
want to create.

For example, you can name an action my-sample-action:

6 Click the Create Method button.

GUIDE creates a procedure of the kind that you specified (method, action, or
callback). The new procedure has the name that you specified in the Create
New Method dialog.

GUIDE places the new procedure on an unnamed workspace. You can
transfer the procedure from the unnamed workspace to another workspace,
and then delete the unnamed workspace.
391

The following figure illustrates the user-defined action my-sample-action and the
table showing the action’s default definition:
392

23
Help Dialog
Describes the GUIDE help facility.

Introduction 393

Displaying Argument Signatures of UIL Methods, Callbacks, and Actions 395

Displaying Help for UIL Methods 397

Generating Master Dialogs 399

Using UIL Examples 400

Using the GUIDE Online Tutorial 402

Using the GUIDE Debugging Utility 402

Introduction
This chapter describes the GUIDE Help dialog, through which you can access the
following features of GUIDE:

• UIL Procedure Lookup Facility, which you can use to display the argument
signatures of particular methods, actions and callbacks.

• GUIDE Method Help dialog, which you can use to display general
descriptions of methods, actions and callbacks, and to create customized
methods, actions, and callbacks.

• GUIDE Dialog Generator, which you can use to generate dialogs for viewing
and editing the attributes of objects created from user-defined classes.
393

• The GUIDE Examples workspace. Through this workspace, you can access
different categories of working online examples of GUIDE features.

• The GUIDE tutorial. This online tutorial leads you through the steps of
creating and using a GUIDE user interface.

• The GUIDE Debugging Utility. This feature enables you to display messages
that help you track and debug the execution of your GUIDE application.

Opening the GUIDE Help Dialog

To open the GUIDE Help dialog, click the question mark (?) icon to the left of the
Mode button in the GUIDE palette. The GUIDE Help dialog looks like this:

To access a feature through the GUIDE Help dialog, click one of the button with
three dots (...) that appear in a column on the right side of the dialog.

The GUIDE Help dialog remains open and usable until you click the Dismiss
button.
394

Displaying Argument Signatures of UIL Methods, Callbacks, and Actions
The following figure illustrates the dialogs that you can access through the
GUIDE Help dialog:

Displaying Argument Signatures of UIL
Methods, Callbacks, and Actions

You can display the argument signature of any UIL method, action, or callback
using the UIL Procedure Lookup Facility.

You can open the UIL Procedure Lookup Facility in either of two ways:

• Click the button labeled Uil Procedure Lookup Facility on the GUIDE Help
dialog.

• Select Help > UIL Procedure Lookup Facility from the GUIDE menu bar.

Help System Dialogs

Creates a customized
dialog for editing class-
specific attributes of the
user-defined class that you
selected in GUIDE Help
Dialog Generator.

GUIDE Dialog Generator
GUIDE Help Dialog Generator

Automatically generates a
dialog for any selected class.

Opens the GUIDE Dialog
Generator.

Customize Dialog. . .

Your method appears
in a subworkspace.
You must edit the
body of this method
to define what it does.

GUIDE Help System

GUIDE Method Help

Create Method. . .

Displays information
about methods.

GUIDE Create Method

Enables you to
create a new
method with a
name that you
specify.

Methods. . .

Dialogs. . .

Displays
information about
UIL procedures.

Create. . .
395

The Uil Procedure Lookup Facility looks like this:

To display a list of all UIL procedures, click the UIL button to the right of the label
Select. You see the following display of UIL procedures:

You can stop the search for UIL procedures before it is complete by clicking on
the Suspend button.

To print the contents of the scroll area, click the Print button.

If you want information only about certain procedures, you can enter a search key
in the edit box to the right of the prompt: or enter search key here >. When you
press Return after entering the search key, GUIDE searches for all procedures
whose names or argument lists include the search key.
396

Displaying Help for UIL Methods
For example, the following UIL Procedure Lookup Facility dialog displays the
names of procedures that contain the word configure:

Displaying Help for UIL Methods
You can display a general descriptions of methods, actions, and callbacks, using
the GUIDE Method Help dialog. Through the GUIDE Method Help dialog, you
can also open the GUIDE Create Method dialog, which you can use to create
methods, actions, and callbacks.

You can open the GUIDE Method Help dialog in either of two ways:

• Click the button labeled Uil Methods, Actions, and Callbacks on the GUIDE
Help dialog.

• Select Help > UIL Methods, Actions, and Callbacks from the GUIDE
Menu Bar.
397

The GUIDE Method Help dialog looks like this:

In the scroll area under the label Methods, you see a list of the currently defined
methods. Clicking on a method in the Methods scroll area displays its calling
signature in the Signature scroll area and a short description of its purpose in the
Description scroll area.

For example, if you click callback, the signature and general description of
callbacks are displayed, as shown in the figure above.

To create a method, dialog action, or callback, click the category of the procedure
in the Methods column, and click the Create Method button. This opens the
GUIDE Create Method dialog. For information about how to use this dialog, see
Creating Callbacks, Methods, Procedures, Functions, and Actions Using the
GUIDE Method Help Dialog.

Finding the UIL Help System File

The GUIDE help system file lists the procedures in the public API to UIL. These
procedures can be invoked by any other G2 procedure.

The More Options palette includes an icon that represents the GUIDE help
system file:
398

Generating Master Dialogs
When you click this icon, a dialog appears that gives the file name and the current
pathname of the help system file:

The help system file lists the procedures provided by the G2 GUIDE User
Interface Library (GUIDE/UIL).

To set the location of the help file:

 Choose Help/Setting UIL Help File Location from the GUIDE menu bar to
open the UIL Help File Location dialog, in which you can set the help file
location:

Generating Master Dialogs
The GUIDE Dialog Generator enables you to generate dialogs for viewing and
editing the attributes of objects created from user-defined classes.

To open the GUIDE Dialog Generator dialog, click the button labeled GUIDE
Dialog Generator on the GUIDE Help dialog. For information about how to use
the GUIDE Dialog Generator, see Generating Master Dialogs.
399

Using UIL Examples
To open the GUIDE Examples workspace, click UIL Examples in the GUIDE Help
dialog. The GUIDE Examples workspace looks like this:

GUIDE Examples
400

Using UIL Examples
You can click any of the buttons in this workspace to open workspaces of
examples on different topics. For example, if you click the Dialog and Title
Examples button, you open a workspace from which you can select different
working examples of dialogs and dialog titles:
401

Using the GUIDE Online Tutorial
To open the GUIDE Tutorial, click GUIDE Tutorial in the GUIDE Help dialog.
The main workspace of the GUIDE Tutorial workspace looks like this:

:

The GUIDE Tutorial is a series of workspaces containing explanations and
exercises that teach you how to use of all the main features of GUIDE. You can
navigate among these workspaces using the navigation buttons that appear in the
upper right corner of the workspaces.

Using the GUIDE Debugging Utility
The GUIDE Debugging Utility enables you to display messages that enable you to
track and debug the execution of your GUIDE application. These messages enable
you to trace the execution of system-defined methods and actions.
402

Using the GUIDE Debugging Utility
To start the GUIDE Debugging Utility, click GUIDE Debugging Tools in the
GUIDE Help dialog. The GUIDE Debugging Utility looks like this:

Click the option or options in the scroll area labeled Debug Options for the
features of your GUIDE user interface that you want to debug, then click OK.

You can also select the debugging options provided in the GUIDE Debugging
Utility dialog by selecting the following choices from the GUIDE menu bar:

Tools > GUIDE Debugging> Button Selection
Tools > GUIDE Debugging> Conclude Methods
Tools > GUIDE Debugging> Dialog Event Processing
Tools > GUIDE Debugging> Scroll Methods
Tools > GUIDE Debugging> Update Methods
Tools > GUIDE Debugging> Validation Methods

When you run a G2 application that uses your GUIDE interface, debugging
messages are posted on the message board for the features of your application
that you chose in the GUIDE Debugging Utility.
403

404

24
Creating Custom
UIL Subclasses
Describes how to create customized subclasses of system-defined UIL classes
provided with GUIDE.

Introduction 405

Creating and Using Customized Subclasses 406

Creating a Customized Object Definition 411

Creating a Customized Message Definition 414

Creating Instances of Customized Subclasses and Adding them to Master
Dialogs 417

Creating Subclasses of uil-object and uil-message 417

Introduction
Your application may require dialogs or UIL controls that look or behave
differently from dialogs or UIL controls created from system-defined UIL classes.

You can create dialogs and UIL controls with a customized appearance and
behavior by creating subclasses of system-defined UIL classes and editing
attributes of the subclass to specify the customized appearance or behavior. Every
dialog or UIL control that you create from this subclass inherits the customized
appearance and behavior that you specify in the subclass definition.
405

Creating and Using Customized Subclasses
This section describes the steps that you must follow to create and use customized
subclasses of UIL controls. These steps are:

1 Choose an appropriate parent class for your customized subclass.

Choose a class from which you can create instances, rather than a general class
that cannot have instances. For example, base a subclass of toggle buttons on
uil-medium-text-toggle-button, rather than on uil-text-button.

2 Create an object definition or message definition that inherits from the parent
class that you choose.

3 Customize the behavior or appearance of the object definition or message
definition that you created.

4 Create instances of your customized subclass and add them to the master
dialog or workspace where you want to use them.

Choosing a Parent Class for a Customized Subclass

You can create subclasses of object definitions or of message definitions.

• Subclasses for buttons, dialogs, selection boxes, scroll areas, borders, and
separators must be object definitions.

• Subclasses for edit boxes, text objects, dialog titles and message objects must
be message definitions.

After you decide whether to create an object definition or a message definition,
you then choose the specific UIL class that you want to use as the parent class of
the subclass. Choose a parent class that has the class-specific attributes and
behavior that you want your subclass to inherit. For example, if you want to
create a customized subclass of edit boxes, create a message definition that
inherits directly from the class uil-edit-box.
406

Creating and Using Customized Subclasses
The following table lists the system-defined UIL classes that are based on object
definitions:

 UIL Object Definitions

UIL Object System-Defined UIL Classes

Fully customized
object definition

uil-object

The class uil-object has no attributes.
You must specify attributes for
methods or values that you want to
associate with any subclass of
uil-object that you create.

For an example of how to create a
subclass of uil-object, see Creating
Subclasses of uil-object and uil-
message.

Dialog uil-dialog
uil-query-dialog
uil-message-dialog
uil-confirm-dialog
uil-tailored-dialog

Selection box uil-selection-box
uil-check-box
uil-radio-box

Buttons uil-button
uil-icon-button

 uil-selection-button
 uil-workspace-button

uil-text-button

Toggle button uil-icon-button
uil-icon-toggle-button

uil-text-button
uil-text-toggle-button

Push button uil-icon-button
uil-icon-pushbutton

uil-text-button
uil-text-pushbutton
407

Selection button uil-selection-button
uil-radio-button
uil-check-button

Radio button uil-radio-button

Check button uil-check-button

Navigation button uil-workspace-button
uil-navigation-button

 uil-goto-workspace-button
 uil-goto-superior-button
 uil-goto-next-button

uil-goto-previous-button
 uil-hide-button

uil-help-button

Border uil-box-border
uil-box-border-right
uil-box-border-left

Separator uil-line-separator
uil-line-separator-left
uil-line-separator-right

 UIL Object Definitions

UIL Object System-Defined UIL Classes
408

Creating and Using Customized Subclasses
The following table lists the system-defined UIL classes that are based on message
definitions:

Note If UIL provides subclasses of a UIL control in different sizes (for example, the
three subclasses of uil-text: uil-small-text, uil-medium-text, and uil-large-text), use
one of the subclasses with a size specification as the parent class of your object
definition or message definition. The subclass that you create inherits a fully-
defined icon from the subclass with the size specification.

Most classes of UIL controls have subclasses in different sizes. To see the
complete class hierarchy of any UIL class, use the Inspect utility.

Customizing a Message Object Class

You can create customized classes of message objects to add more information
capability to the message objects. For example, you can add an alarm-state
attribute to message objects.

UIL Message Definitions

UIL Object System-Defined UIL Classes

Fully customized
message definition

uil-message

The class uil-message has no
attributes. You must specify attributes
for methods or values that you want to
associate with any subclass of
uil-message that you create.

For an example of how to create a
subclass of uil-message, see Creating
Subclasses of uil-object and uil-
message.

Graphical message uil-grmes
uil-message-object,
uil-edit-box,
uil-text

Message object uil-message-object

Edit box uil-edit-box

Text object uil-text

Dialog title uil-dialog-title
409

To customize message objects, you should customize the default message object
class that GUIDE automatically generates for a scroll area when you clone the
scroll area from the G2 GUIDE palette.

The default message object class is referenced by the message-class-name
attribute of the scroll area and has an automatically generated name. The
following line from a scroll area attribute table illustrates an automatically
generated name:

The default message object class inherits directly from uil-message-object.

Caution It is good practice to customize the default message object subclass of a scroll
area, rather than replace it with a user-defined subclass that has a different name.

When you manually resize a scroll area, GUIDE automatically generates a new
subclass of uil-message-object for the message objects in the scroll area. Any
modifications that you made to the original default message object subclass are
retained in the new subclass that GUIDE generates.

However, if you replace the default message object class of a scroll area with a
user-defined subclass, the customized features of this subclass are lost when you
manually resize the scroll area.

The following sections describe how to create customized subclasses based on
object definitions and message definitions.

Customizing the Behavior and Appearance of
Subclasses of uil-grobj or uil-grmes

To customize the behavior of a user-defined subclass of uil-grobj (an object
definition) or uil-grmes (a message definition), follow these steps:

1 Create methods that perform customized operations. These methods define
the customized behaviors of your object definition or message definition.

2 Reference these methods from the appropriate attributes of the object
definition or message definition that you created. Your user-defined methods
replace the default methods that your object definition or message definition
inherits from its parent class.
410

Creating a Customized Object Definition
For example, suppose that you want to create edit boxes whose contents can be
viewed and edited by some users, but only viewed by other users. To create these
edit boxes, you can:

1 Create a message definition that inherits from uil-edit-box, the system-defined
class for edit boxes. Name your subclass my-edit-box-class, for example.

2 Create a edit box selection method that grants editing privileges only to the
users that you want to be able to edit the boxes created from this subclass.
Name your edit box selection method my-edit-box-selection-method, for
example.

Your customized edit box selection method can grant editing privileges only
to users with particular user IDs, or only to users with certain privileges.

3 In the message definition my-edit-box-class, replace the default edit box
selection method, uil-edit-box-selection-method, with you customized edit box
selection method, my-edit-box-selection-method. The edit box selection
method is referenced by the uil-message-selection-method attribute in the
message definition.

4 Create instances of my-edit-box-class to use in the user interface that you are
creating.

For information about how to create methods, see Methods, Actions,
and Callbacks.

To customize the appearance of objects created from your user-defined object
definition, edit the value of icon-description attribute of the definition.

The following sections describe in detail how to create and customize object
definitions and message definitions.

Creating a Customized Object Definition
Classes and subclasses of buttons, dialogs, dialog titles, selection boxes, scroll
areas, borders, and separators are object definitions.

To create a customized object definition:

1 Create a new object definition. To do this, select:

KB workspace > New Definition > object definition
411

2 Open the attribute table of the new object definition:

As the notes slot indicates, the new object definition is incomplete. It requires
values for class-name and for direct-superior-classes.

3 Enter a name for the object definition in the class-name slot.

4 Enter the name of the parent class for your subclass in the direct-superior-
classes slot.
412

Creating a Customized Object Definition
When you specify a parent class, the class-inheritance-path slot and the
inherited-attributes slot are filled with values reflecting this class:

• The class-inheritance-path slot lists the UIL classes from which the new
subclass inherits attributes.

• The inherited-attributes slot lists these inherited attributes.

The following figure illustrates the attribute table of the user-defined class
my-grobj-class, which is a subclass of the system-defined class uil-grobj:

5 To customize behaviors for objects created from this new subclass, specify
attribute values in the attribute-initializations slot to override the attribute
values in the inherited-attributes slot.

The following figure illustrates how to override the inherited attribute values
for uil-is-permanent and uil-disable-method by specifying non-default values
in the attribute-initializations slot:
413

The first override value in the attribute-initializations slot sets the uil-is-
permanent value to true, rather than false (the default). The second override
value specifies that a user-defined disable method named my-disable-method
is used as the disable method for all instances of this class, rather than the
default system-defined method uil-disable-method.

6 Edit the icon-description value to customize the size and appearance of the
icons that represent objects created from this new subclass.

To edit the size and appearance of the icons, select edit icon from the menu of
the object definition. This opens the Icon Editor. You can also open the Icon
Editor by clicking in the icon-description slot in the object definition and
choosing edit icon from the menu. For information about how to use the Icon
Editor, see the G2 Reference Manual.

Caution When you create subclasses of system-defined UIL classes, do not change the
names of color regions in the icon-descriptions. These names are specifically
referenced when the button selection method is activated. You can define
additional color regions. However, the UIL configuration method can not access
or change them.

To access user-defined regions during the selection and unselection process, you
must create a user-defined configuration method. The user-defined configuration
method should be modeled after the system-defined UIL configuration method.

Creating a Customized Message Definition
Classes and subclasses of edit boxes, text objects, and message objects are message
definitions. The steps for creating a message definition are similar to the steps for
creating an object definition.
414

Creating a Customized Message Definition
To create a customized message definition, follow these steps:

1 Create a message definition. To do this, select:

KB workspace > New Definition > message definition

2 Open the attribute table of the new message definition. The table looks like
this:

As the notes slot indicates, the new message definition is incomplete. It
requires values for class-name and for direct-superior-classes.

3 Enter a name for the message definition in the class-name slot.
415

4 Enter the name of the parent class for this message definition in the direct-
superior-classes slot.

The following figure illustrates the attribute table of the user-defined message
definition my-text-object-class, which is a subclass of the system-defined class
uil-text:

:

5 To customize behaviors for objects created from this new subclass, specify
attribute values in the attribute-Initializations slot to override the attribute
values in the inherited-attributes slot.

The following figure illustrates how to override the inherited attribute values
for message-contents and uil-format-specification by specifying non-default
values in the attribute-initializations slot:
416

Creating Instances of Customized Subclasses and Adding them to Master Dialogs
The first override value in the attribute-initializations slot sets the initial
message contents of the text object to the string "System is starting. Please
wait." The second override value specifies that a format named startup-
message-format is used initially to format the contents of this message object.

Creating Instances of Customized Subclasses
and Adding them to Master Dialogs

To create instances of a customized subclasses of a system-defined UIL class,
select create instance from the menu of the subclass definition.

You can also use the following procedures to create instances of customized
subclasses programmatically:

• uil-create-custom-button, which creates buttons.

• uil-create-custom-text, which creates edit boxes, text objects, or message
objects.

For information about these procedures, see the G2 GUIDE/UIL Procedures
Reference Manual.

To add an instance of a customized subclass to a master dialog, choose transfer
from the menu of the instance, and then click the subworkspace of the master
dialog to which you want to add the instance.

Creating Subclasses of uil-object and uil-
message

To create a highly customized subclass, you create an object definition that
inherits from uil-object, or a message definition that inherits from uil-message.
Unlike other system-defined classes, uil-object and uil-message have no attributes
that subclasses can inherit. For this reason, you can create subclasses of uil-object
and uil-message when you want the greatest possible freedom in customizing
your subclass.

Note Objects created from subclasses that inherit directly from uil-object and
uil-message can be moved by users at run-time. In contrast, objects created from
any subclass that inherits from uil-grobj or uil-grmes cannot be moved by users at
run-time.
417

Deciding What Attributes to Add to a Subclass of
uil-object or uil-message

For most purposes, you will need to add attributes to a subclass of uil-object or
uil-message to reference methods that perform basic operations on objects of that
subclass, such as configuring, managing, cloning, and deleting the objects.

The following table lists the attributes that you will need to add to subclasses of
uil-object:

Required Attributes of Subclasses of uil-object

Attribute Description

uil-configuration-
method

References a method that applies the
currently selected configuration to this object.

uil-manage-method References a method that displays the object.

uil-clone-method References a method that makes a copy of the
object.

uil-delete-method References a method that deletes the object.

Adding a uil-delete-method attribute and
referencing a delete method from this
attribute enables you to use the GUIDE/UIL
delete. menu choice to delete objects of this
subclass. The delete. menu choice deletes the
object and any components such as labels that
it may include.

If you do not add a uil-delete-method attribute
to this object definition, you can delete objects
of this subclass, using the G2 delete
command. However, the G2 delete command
does not delete components of the object such
as labels. You must delete these components
individually.

uil-update-method References a method that updates objects of
this subclass with the value of a source
attribute in a source object.

If you add a uil-update-method attribute and
reference an update method from this
attribute, you must also add uil-event-source-
object and uil-event-source-attribute attributes
to the object definition.
418

Creating Subclasses of uil-object and uil-message
uil-event-source-object Specifies source objects for objects of this
class.

uil-event-source-
attribute

Specifies source attributes for objects of this
class.

uil-conclude-method References a method that concludes the
values of objects of this subclass to a target
attribute in a target object.

If you add a uil-conclude-method attribute
and reference a conclude method from this
attribute, you must also add uil-event-target-
object and uil-event-target-attribute attributes
to the object definition.

uil-event-target-object Specifies target objects for objects of this class.

uil-event-target-
attribute

Specifies target attributes for objects of this
class.

message-contents (uil-message subclasses only)

The full, unformatted contents of objects of
this subclass. The formatted and clipped
version of the text is stored in the text attribute
of the object, which you cannot view or edit
directly.

Required Attributes of Subclasses of uil-object

Attribute Description
419

420

25
Specifying the
Colors of UIL Objects
Describes how to create reusable objects called configurations, which specify the
colors of the different regions of the graphical components in your user interface.

Introduction 421

Creating Configurations 422

Using The GUIDE Configuration Editor 422

Introduction
You can create customized configurations that specify the colors of different
regions of UIL objects, including both dialogs and UIL controls.You can apply
each configuration to UIL objects of a particular UIL class.

The color or colors of each UIL object are specified by a configuration object. A
configuration object specifies the colors of the different regions in each object

To customized the appearance of individual UIL objects, you can edit the
configuration of that UIL object. You can also create a customized configuration
and apply it to any number of UIL objects of a given class.

Each configuration object is an instance of a configuration class. Each
configuration class is designed for use with a single class of UIL objects.
Configuration classes for push buttons cannot be used with message objects,
configuration classes for message objects cannot be used with scroll areas, and so
on.

Each configuration class has attributes that specify the default colors (text,
background, border), and the colors that distinguish the enabled and disabled
states, and/or the selected and unselected states.
421

Creating Configurations
To create a configuration, you can:

• Select Item > GUIDE Objects > Configuration from the GUIDE menu bar.

• Click the Configurations button in the More Options palette, which you can
open from the GUIDE palette.

These actions open the Create Configuration dialog, which you can use to create a
configuration:

Using The GUIDE Configuration Editor
The GUIDE Configuration Editor enables you to select an existing configuration
to apply to an object, to create a new configuration object, to edit the attributes of
an existing configuration object, or to delete a configuration object.

Note Altering the values in a configuration object affects all UIL objects that reference
that configuration.

Create Configuration Dialog
422

Using The GUIDE Configuration Editor
To use the GUIDE Configuration Editor on a particular object, click the object and
select Edit Configuration from the object’s menu. The GUIDE Configuration
Editor dialog appears:

:

The scroll area in the dialog displays the names of all currently defined
configurations for the class of the UIL object that you selected. If the configuration
attribute of the object whose configuration you are editing specifies a
configuration, that configuration is selected in the scroll area of the GUIDE
Configuration Editor.

The push button labeled OK, when selected, applies the attributes of the selected
configuration to the initiating object and dismisses the dialog.

Clicking the Apply button applies the attributes of the selected configuration to
the initiating object.

Clicking the Cancel button dismisses the dialog without applying any of the
changes made since the last OK or Apply action.

The Delete, Copy, and Edit buttons open dialogs in which you can perform
specialized editing operations. Closing a configuration dialog automatically
closes any child dialogs of that configuration dialog. Thus if you close the GUIDE
Configuration Editor dialog, any child dialogs of GUIDE Configuration Editor
that happen to be open are also closed.

The following sections describe the special operations for deleting, copying, and
editing configurations.
423

Note If you select edit configuration from the menu of an object while the configuration
editor is running on another object in the same window, the configuration editor
is refocused on the new object. Within a knowledge base, only one user at a time
can edit a configuration.

Deleting Configurations

To delete a configuration, select that configuration and click the push button
labeled Delete in the GUIDE Configuration Editor. A dialog appears prompting
you to confirm that you want to delete the configuration:

If the configuration that you are deleting is stored in the GUIDE or UIL modules,
you also see the following confirmation dialog before you can delete the
configuration:

Copying Configurations

For some purposes, you may want to change the appearance of one UIL object
without changing the appearance of other UIL objects that use the same
configuration. For example, you may want one push button to have a red border,
while all other push buttons in your application have black borders.
424

Using The GUIDE Configuration Editor
To do this, you can:

• Create a copy of the configuration used by other UIL objects.

• Modify this new configuration to specify the appearance that you want.

• Apply the new configuration to the UIL object whose appearance you want to
change.

To create a copy of a configuration:

1 Open the GUIDE Configuration Editor on the UIL object whose appearance
you want to modify. The configuration currently used by the UIL object is
selected in the scroll area in editor.

2 Click the push button labeled Copy to create a copy of the configuration that
you see selected in the scroll area.

3 Enter a name for the new configuration in the dialog that appears when you
push the Copy button:

4 Click the OK button. A dialog appears notifying you where the configuration
was placed:

5 The name of your new configuration appears in the scroll area in the GUIDE
Configuration Editor. To edit the new configuration to make the change you
want — for example, to change the border color to red — click the Edit button.
Then follow the steps described in the following section.

6 When you finish editing the new configuration, make sure that the new
configuration is selected in the GUIDE Configuration Editor, and click OK.
The new configuration is applied to the UIL object.
425

Editing Configurations

To edit an existing configuration, select the configuration in the scroll area in the
GUIDE Configuration Editor and then push the button labeled Edit. The
following dialog is displayed for editing the configuration:

:

The scroll area in the upper half of the dialog lists configurations for the different
color regions in the object that you are editing. Each configuration also contains
color regions for the disabled state of the object. Click the configuration for the
color region that you want to edit.

Below the scroll area is a Preview Area. An instance of the initiating object is
displayed here. As you make changes, the instance in the Preview Area is
updated to reflect the changes.
426

Using The GUIDE Configuration Editor
When you select a color region from the scroll area, a dialog such as the following
appears:

The title of this dialog indicates the color region of the configuration that you are
editing. The dialog contains a scroll area with a message object for every
supported color. Each message object is configured so that its background color is
the actual color that it represents, and the text displayed is the color’s name.

Selecting a color updates the object in the Preview Area on the Edit Configuration
dialog to reflect your choice of color.

You can open the color selection dialog programmatically, using the procedure
uil-display-color-selector-dialog. For information about this procedure, see the
G2 GUIDE/UIL Procedures Reference Manual.
427

Applying Configuration Edits to All Buttons in a
Group

If you are editing the configuration of a radio button or a check button, the
GUIDE Configuration Editor dialog includes a push button labeled Group.
Clicking the Group button applies the configuration that you select to all the
buttons in the same group as the button whose configuration you are editing. The
GUIDE Configuration Editor dialog with a Group button looks like this:
428

26
Upgrading GUIDE
Applications
Describes how to modify dialogs and other components of a user interface created
with earlier versions of GUIDE, to take advantages of the features introduced in
newer versions.

Introduction 429

Upgrading 5.0 KBs 430

4.0 and 5.0 Conversion Tools 430

Editing the Label Text of Generic Dialogs 430

Extending Context-Sensitive Help 436

Introduction
This chapter lists the steps that you must follow to convert applications based on
an earlier version of GUIDE.

You can upgrade a GUIDE application only from the previous release of GUIDE.
For example, you cannot directly upgrade a GUIDE 4.0 application to GUIDE 7.0.
You must first upgrade from 4.0 to 5.0, then to 6.x, then to 7.x, then to 8.x. If you
need to upgrade from a version earlier than 5.0, see the documentation that was
distributed with the version of GUIDE to which you need to upgrade or contact
Gensym Customer Support for assistance.
429

Upgrading 5.0 KBs
You can upgrade applications developed with GUIDE 5.0 simply by loading the
KB into the G2 6.x, 7.0, or 8.0 component. There are no special steps that you must
take.

4.0 and 5.0 Conversion Tools
The GUIDE menu bar has a selection for Tools > GUIDE 50r0 Migration Tools.
These tools are included with GUIDE to maintain backward compatibility with
previous versions of GUIDE, and should not be used to convert aspects of
3.0 or 4.0 applications to the current version of GUIDE.

See the G2 GUIDE User’s Guide G2 Utilities Version 5.0 manual to do any of the
following:

• Convert uil-scroll-areas to 41r0 scroll-areas.

• Convert uil-buttons to 50r0 buttons.

• Convert dialog subworkspaces to uil-dialog-subworkspaces.

• Use Icon Text in Button Labels.

Editing the Label Text of Generic Dialogs
In GUIDE/UIL, generic dialogs derive the text of their labels from GFR
(G2 Foundation Resources) local text resources. GUIDE/UIL supports four kinds
of generic dialog: confirmation, query, message, and notification. For information
about generic dialogs, see Message, Query, Confirmation, and Notification
Dialogs.

Through GFR, you can easily:

• Change the English-language text of labels in generic dialogs.

• Convert labels to languages other than English.

For information about GFR, see the G2 Foundation Resources User’s Guide.

You can edit the English text of generic dialog labels, or specify non-English text
for the labels, in either of two ways:

• Edit the gfr-local-text-resource in the default GFR text resource group uillib-
text-resources.

• Create a gfr-text-resource-group and a gfr-local-text-resource for English, and
edit the gfr-local-text-resource. Then edit the master generic dialogs so that
they reference the English gfr-text-resource-group.
430

Editing the Label Text of Generic Dialogs
To edit label text in uillib-text-resources:

1 Use the Inspect utility to go to uillib-text-resources.

2 Pull down the menu of uillib-text-resources and select go to subworkspace.

This opens the subworkspace that contains the English language gfr-local-text-
resource:

3 To create a non-English GFR local text resource, pull down the menu of the
English GFR local text resource and select clone. A clone appears in the
subworkspace next to the English GFR local text resource. (If you are editing
English label text, skip this step.)

uillib-text-resources Subworkspace of
uillib-text-resources

gfr-local-text-resource
431

4 Pull down the menu of the gfr-local-text-resource and select edit gfr local text
resource to open the Edit Gfr Local Text Resource dialog:

5 To modify a text label:

a Select the key in the column labeled Label Constants for the label whose
text you want to modify. The constants that you see apply to the text in
standard buttons such as OK, Yes, No, Cancel, and Print.

Note You can add constants to a GFR local text resource through this dialog.
However, in order to make the text value associated with the constant appear
in a button, you must edit the uil-label-constant attribute of the text in that
button to specify the new constant.

In GUIDE/UIL, buttons that inherit from uil-text-button also have a uil-label-
constant attribute that references a constant in a GFR local text resource. This
is for translating the text of buttons whose text is embedded in the icon
description of the button.

b Edit the text of the label in the edit box under the heading Translated Text.

c Click Apply to apply your edit, or click OK to apply your edit and close
the dialog.
432

Editing the Label Text of Generic Dialogs
To create a new GFR text resource group:

1 Go to gfr-top-level, the top level GFR workspace. This workspace is a palette
from which you can clone a GFR text resource group:

2 Clone the Text Resource Group and the Local Text Resource and drag them to
a workspace of your user module.

3 To create a non-English GFR local text resource, pull down the menu of the
English GFR local text resource and select clone. A clone appears in the
subworkspace next to the English GFR local text resource. (If you are editing
English label text, skip this step.)
433

4 Edit the text in the label constants of this GFR local text resource. To do this:

a Pull down the menu of gfr-local-text-resource and select edit gfr local text
resource. This opens the Edit Gfr Local Text Resource dialog.

b In the Edit Gfr Local Text Resource dialog, specify constants and text
values, and click OK or Apply.

5 Edit the master dialogs so that they reference this gfr-text-resource-group
instead of the default uillib-text-resources. To do this:

a Select Main Menu > Inspect.

b In the Inspect window, enter go to uil-generic-dialog-class-master, where
dialog-class specifies the particular generic dialog master that you want to
edit (query, confirmation, message, or notification). This opens the
workspace containing the master generic dialogs. For example:

go to uil-generic-query-dialog-master
434

Editing the Label Text of Generic Dialogs
c Pull down the menu of the master generic dialog that you want to edit and
select edit dialog. The Edit Dialog dialog appears:

d In the Edit Dialog dialog, enter the name of the GFR text resource group in
the edit box to the right of the label GFR text resource group.

Note The Translate dialog option must be selected.

e Click Apply to apply your edit, or click OK to apply your edit and close
the dialog.
435

Extending Context-Sensitive Help
You can extend the set of context-sensitive help topics available through G2
Online Documentation (GOLD) to provide help for user-defined UIL classes. You
can add help for master dialogs and for UIL controls or other items that appear on
master dialogs.

How to Extend Context-Sensitive Help for Dialogs
and Items on Dialogs

When a user requests context-sensitive help for a copy dialog or for some item on
a copy dialog, GOLD:

1 Maps the copy dialog or item to the corresponding master dialog or item. The
master dialog and its items reside in an application module.

2 Finds the help tags for the dialog or item. The application module that
contains the master dialog must provide these help tags through a search
procedure.

3 Uses the help tags to locate the corresponding section in the online
documentation, and then displays this section.

To map a UIL item (subclass of uil-object or uil-message) on a copy dialog to an
item on a master dialog, GOLD uses the ID of the item. When a user requests help
for an item on a copy dialog:

• If the item has an ID that matches the ID of an item on the master dialog,
GOLD maps the item on the copy dialog to the item on the master dialog.

• If the item has an ID but there is no item on the master dialog with the same
ID, GOLD maps the item to the master dialog.

• If the item does not have an ID, GOLD maps the item to the master dialog.

Steps for Extending Help

Note If you have dialog subworkspaces that you created in a version of GUIDE prior to
5.0, you must convert them to uil-dialog-workspaces. If you are not providing
extended context-sensitive help for UIL dialogs or items, you do not need to
convert dialog subworkspaces.

To add context-sensitive online help topics:

1 Write a search procedure that returns a help tag for the items for which you
want to provide help. For information about how to do this, see the G2 OnLine
436

Extending Context-Sensitive Help
Documentation Developer’s Guide.

2 Assign an ID to every UIL control or item on a master dialog for which you
want to provide help. The ID must be unique among the items on the master
dialog.

3 To provide help for a UIL object that is dynamically added to a dialog when
the dialog is launched:

a Create a subclass of the class of this UIL object.

b Write a gold-map-item-to-context method for the new subclass that maps
the subclass to a class in the application module containing the master
dialog. Without this mapping, UIL cannot find a matching control and
maps the UIL object to the master dialog.

4 To provide help for a non-UIL object on a master dialog, write a gold-map-
item-to-context method for the class of this object.

The following figure illustrates a gold-map-item-to-context method for a class
named my-grobj:

When a user requests context-sensitive help for an instance of MY-GROBJ, this
procedure maps the instance to the master dialog.
437

For information about how write gold-map-item-to-context methods, see the
G2 OnLine Documentation Developer’s Guide.
438

Glossary
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A

action: A procedure that performs a specialized operation on a dialog, such as
launching or closing the dialog, or updating or concluding the values of the UIL
controls on the dialog. When a user clicks on a push button, a set of actions
associated with that push button is run on a specified dialog. This can be the
dialog that contains the push button, or another dialog. You can edit a push
button to specify the actions that are run when a user clicks on it, and the dialog
on which the actions are run. Actions have a set of five required arguments that
distinguish them from methods and callbacks. Note: GUIDE/UIL actions are
different from G2 actions in the G2 language.

action description array: See uil action description array.

administrator mode: A system-defined G2 user mode that allows you to
construct a GUIDE user interface. In Administrator Mode, you can access the
menus of all GUIDE objects. See also build mode.

API: See Application Programmer’s Interface.

Application Programmer’s Interface: A formally defined programming language
interface. For G2 GUIDE/UIL, the API is the User Interface Library (UIL).

attribute: A characteristic or property of an item. There are four types of
attributes: simple attributes, parameter attributes, which get their values from
parameters, variable attributes, which get their values from g2-variables, and
object attributes, which contain objects.

attribute displays: A display that shows the values and optionally the names of
one or more attributes of an item.

attribute table: A two-column table that shows the name and value of each
attribute of an item.

B

border: A graphical object that encloses a workspace, text object or edit box, to
provide visual contrast and clarity.

build mode: A system-defined G2 user mode in which you can construct a
GUIDE user interface. Selecting objects in Build Mode displays their menus, so
that you can configure and move them. Build Mode is the recommended mode
for using GUIDE.
439

C

call: A G2 action used to invoke other G2 procedures. See also start.

callback: A G2 procedure that is invoked by the handler of a button whenever a
user clicks on a push button, radio button, check button, or toggle button. The
callback invoked by a button is referenced by the callback attribute of that button.

cascaded dialogs: A sequence of dialogs, in which some dialogs can be launched
from within other dialogs. When one dialog is opened from within another
dialog, the first open dialog is known as the parent dialog, and the dialog that is
launched from within the parent dialog is called the child dialog.

check box: A selection box that corresponds to a particular group of check
buttons.

check button: A button used in a group (referred to as a check box) to enable
users to select one or more choices. The choices are not mutually exclusive.

child dialog: A dialog that a user launches from within another dialog by clicking
on a push button in that dialog. The dialog from which the child dialog is
launched is called the parent dialog of the child dialog.

class: A group of items that have the same attributes and the same parent (or
superior) class. Classes are organized into a hierarchy in which each class inherits
the attributes of its superior classes, but may have additional attributes of its own.
In G2, every item is organized into a class.

class hierarchy: A structure defining the inheritance relationships of classes to
each other, including both built-in and user-defined classes.

click: A mouse action. A click involves pressing the mouse button and releasing
immediately without moving the mouse. You can click the mouse button to
display menus, select menu choices, and so on.

clone: A menu choice for some items that copies the item and re-initializes some
attributes of the copy. A clone allows you to quickly create a similar item.

combo box: An edit box combined with a scrollable list of text items. Users can
display the list by clicking the button in the upper right corner of the Combo Box.
When a user selects an item in the list, the list is closed and the selected item
appears in the edit box.

confirmation dialog: A system-defined dialog that prompts users to confirm that
they want to take an action, such as deleting an object. The dialog contains Yes,
No, and Cancel push buttons for responding to the prompt. You can post message
dialogs using uil-post-generic-dialog.

configuration object: An object that specifies the color of a region or regions of
UIL objects. The GUIDE Configuration Editor enables you to select an existing
configuration to apply to an object, to create a new configuration object, to edit the
attributes of an existing configuration object, or to delete a configuration object.
440

copy dialog: A dialog that GUIDE creates by cloning a master dialog. Copy
dialogs are the dialogs that users see and use when they run a G2 application with
a GUIDE user interface. Copy dialogs are permanent objects.

D

default button: A push button on a dialog that is activated when the user presses
the Return key. Each dialog can have only one default button.

delay notification: A clock face in the upper left corner of the window, with an
optional string of text. You can use the delay notification to tell users that a delay
in processing is happening. You can post and remove the delay notification using
the procedures uil-post-delay-notification and uil-remove-delay-notification-if-any.

demo knowledge base (guidemo.kb): A knowledge base, shipped with GUIDE,
that contains:

• Working examples of GUIDE dialogs, and other important features of a
GUIDE user interface.

You can look at these examples as illustrations of how a GUIDE user interface
can be designed. You can also copy and modify examples to use in your own
applications.

• An online tutorial that shows you how to use GUIDE to create a user interface

dialog: A subworkspace of a dialog object that displays UIL controls through
which users can view and edit class-specific attributes of G2 objects. GUIDE
enables you to create templates for customized dialogs. GUIDE also supports the
following kinds of system-defined dialogs: message dialogs, confirmation
dialogs, query dialogs, and notification dialogs.

dialog bin: A workspace in which GUIDE stores copy dialogs. Dialog bins are
designed to enable G2 applications to retrieve copy dialogs quickly and
efficiently. Dialog bins are hidden by default.

E

edit box: A field in which an application can display textual information to users,
and users can input textual information to the application. User input to edit
boxes can be formatted and validated.

edit style: A object that specifies how the editor behaves when it is opened on edit
boxes, in all user modes. An edit style can specify editing features such as the
language in which the editor displays menus and prompts when it is opened on
an edit box, and whether an edit box can display more than one line of text.
441

F

format object: A reusable object that specifies how text is formatted in edit boxes,
message objects, and text objects. Formats can also establish criteria for validating
data that users enter into edit boxes.

G

G2 GUIDE: A development tool that enables you to create a graphical user
interface for G2 applications. Objects created using G2 GUIDE are a permanent
part of your knowledge base.

g2uiprnt.kb: The GUIDE module that contains the print workspace dialog. You
can customize printer selection, papersize, orientation, margins, and other print
options.

GUIDE palette: A workspace that includes basic tools for developing a GUIDE
user interface. These tools include icons that you can select and drop to clone UIL
controls, a button that you can click to access the GUIDE Help dialog, the GUIDE
Control Panel, the GUIDE Information Dialog, and the More Options palette.

GUIDE Configuration Editor: A dialog that enables you to select an existing
configuration to apply to an object, to create a new configuration object, to edit the
attributes of an existing configuration object, or to delete a configuration object

GUIDE Control Panel: A workspace that you can access through the GUIDE
palette to select a user mode for running GUIDE, and to specify the default
window style and size of the UIL controls that you create.

GUIDE Dialog Generator: A dialog that to enables you to generate a master
dialog for viewing and editing attributes of a particular user-defined class.

GUIDE Garbage Pail: A icon that you can add to a workspace to enable users to
delete dialogs and UIL controls. Users delete the objects by dragging them to the
GUIDE Garbage Pail and dropping them on it.

GUIDE Help dialog: A dialog that you can access through the GUIDE palette to:

• Display information about each system-defined UIL procedure. The
information includes a synopsis of the procedure’s arguments and return
values.

• Display information about UIL methods and invoke editors that help you
create customized methods and actions to use in place of the system defined
methods, actions, and callbacks.

• Invoke the GUIDE Dialog Generator.

• Open a workspace that contains working examples of dialogs and UIL
controls. This workspace contains the examples in guidemo.kb.
442

• Run the online GUIDE tutorial, which leads you through the basic steps of
creating a user interface with GUIDE.

• Debugging tools

GUIDE Method Help dialog: A dialog that enables you to display general
descriptions of methods, actions and callbacks, and to create customized
methods, actions, and callbacks.

GUIDE Information Dialog: A dialog that you can access through the GUIDE
palette to display the version numbers of GUIDE and UIL that you are running.

guide.kb: The GUIDE module that supports all GUIDE editors and the front-end
to all UIL objects.

guicolor.kb: The GUIDE module that contains the color selection dialog.

guidata.kb: The GUIDE module that supports editing lists and arrays or items
containing lists and/or array.

guimove.kb: The GUIDE module that contains a move dialog, in which you can
make adjustments to the X and Y positioning of any G2 object.

guitools: The GUIDE module that includes the modules guicolor, guimove, guigfr,
and guidata.

H

hierarchy of classes: An organization of classes into superior and subclasses to
allow for inheritance of attributes and other knowledge. Each class inherits the
attributes of its superior classes.

I

inheritance: An important property of object-oriented development
environments. A class inherits the attributes of its superior. Inheritance facilitates
rapid development, eliminates redundancy in an application, and builds reusable
application components. See also superior class.

initiating object: The G2 object that launches a dialog. For example, when a user
chooses a menu choice from the menu of the G2 object, that object becomes the
initiating object of the dialog.

M

master dialog: A template for the dialogs that users see and user when they run
your G2 application. The dialogs that users see and user are called copy dialogs.
GUIDE creates copy dialogs by cloning master dialog that you create.
443

message dialog: A system-defined dialog that displays a customized message
and contains an OK button, which a user can click to dismiss the dialog. You can
post message dialogs using uil-post-generic-dialog.

message object: An object that contains a text string and appears in scroll areas.
You can apply formats to the text in message objects.

method: See UIL method.

More Options palette: A palette that you can access through the GUIDE palette to
display icons for the Print Workspace dialog, formats, action description arrays,
and field edit styles.

N

navigation button: An iconic button that enables users to navigate from
workspace to workspace. When selected, a navigation button performs a task
related to displaying or hiding workspaces. The following kinds of navigation
buttons are supported: uil-goto-workspace-button, uil-goto-superior-workspace-
button, uil-goto-previous-button, uil-goto-next-button, uil-hide-button, and uil-help-
button.

notification dialog: A system-defined dialog that displays a string of text that you
specify. You can use this dialog to inform users about a delay in processing or any
other condition. You can post message dialogs, using uil-post-notification-dialog.

O

object definition: Defines a class of objects and is represented by a triangular-
shaped icon.

operate on area: An option on the KB Workspace menu that enables users to
select an area on the workspace, and then work with the items in that area as a
group. For example, a user can clone or align all the items in an area. Note: It is
strongly recommended that Operate On Area not be used with GUIDE Version
4.0.

P

parent dialog: A dialog from within which users can launch another dialog, by
clicking on a push button. The dialog that is launched is called the child dialog.

play mode: A term that includes any user mode other than build mode or
administrator mode. You can create any number of named user modes. Use Play
mode when testing or deploying your graphical interface. Selecting objects in
Play mode makes them behave as they do in a running application.

Print button: A button that users can click to display a dialog of printing options
for the workspace that contains the button.
444

Print Workspace button: A button that users can click to print the workspace or
dialog subworkspace where the print workspace button resides. The print
workspace button prints the workspace according to the default settings found in
the system tables.

Print Workspace dialog: A dialog in which users can specify options for printing
the workspace that contains the Print button.

push button: A button that starts a callback procedure when a user clicks on it.
There are two kinds of push buttons: text push buttons and icon push buttons.
Push buttons are called stateless button because that carry no values, but instead
are used to initiate actions. Text push buttons and icon push buttons differ only in
appearance. Each kind of push button comes in three sizes (small, medium, and
large).

Q

query dialog: A system-defined dialog that contains a user-defined message, an
edit box in which the user can respond to the message, and OK, Apply and Cancel
buttons. You can post query dialogs using uil-post-generic-dialog.

R

radio box: A selection box that corresponds to a particular group of radio buttons.

radio button: A button that appears in a group (referred to as a radio box) and
allows you to make a mutually exclusive selection. It behaves like buttons in a car
radio or on a blender. In a radio box, one and only one radio button can be
selected. If no radio button corresponds to the value of the radio box, no radio
button is selected. Selecting one radio button causes the previously selected radio
button in the same radio box to be deselected

relation: A named association between items. You use relation definitions to
define relations between classes of items and the conclude action to conclude
relations between specific instances. The creation and deletion of relations
between items can cause forward chaining to rules. Also, G2 can reason about
existing relations between items. Unlike connections, relations are not depicted
graphically nor saved as part of a knowledge base.

releasing a dialog: The process of closing a dialog and returning it to the dialog
bin, thus freeing the dialog for use by another user. A user releases a dialog by
running the action uil-release-dialog on the dialog — generally, by clicking on a
push button that runs this action.

reserving a dialog: The process of creating and displaying a copy dialog, or
displaying an existing copy dialog. To reserve a dialog, you must call the
procedure uil-control-dialog-callback, either directly, or through calls to the
procedures uil-start-dialog, uil-start-or-refocus-dialog, or uil-start-dialog-
processing.
445

Reset menu choice: An option on the Main Menu of a running knowledge base.
This option stops the knowledge base from running and re-initializes all of its
values.

Restart menu choice: An option on the Main Menu of a running or paused
knowledge base. This option stops the knowledge base, re-initializes all of its
values, and then starts it again.

Resume menu choice: An option on the Main Menu of a paused knowledge base.
This option continues running a knowledge base that had been paused.

returning a dialog: The process of returning control of a dialog to the procedure
that launched it, without returning the dialog to the dialog bin. When a dialog is
returned to its launching procedure, it is no longer available to users, but the
launching procedure can continue to process the information in the dialog. The
dialog is not available for reuse by your application until it is returned to the
dialog bin by the uil-release-dialog action.

S

scroll area: An object that displays a scrollable list of message objects. Each
message object contains a text value that can be updated from or concluded to
other objects in your G2 application. A scroll area can represent a set of values
that is larger than can be conveniently displayed in its entirety at one time.

scroll bar: A bar on one side of a scroll area that a user can click to scroll the
contents of the scroll area up or down.

selection box: An object that corresponds to a particular group of buttons. There
are two kinds of selection boxes: check boxes and radio boxes. They allow you to
operate on all buttons within a particular box.

separator: A horizontal or vertical line that you can add to a workspace or dialog
subworkspace to add visual definition.

slider: A graphical object that enables you to display and select numeric values by
moving a pointer, known as a thumb, along a horizontal or vertical track.

source attribute: The class-specific attribute of a G2 object whose value is
reflected in the UIL control.

source object: The G2 object whose class-specific attribute is used as the source
attribute of a UIL control.

spin control box: A specialized edit box that enables users to select one value
from a range of values by scrolling a list of values up or down within the box.

start: A G2 action that you can use to start other G2 procedures. When executed
by a procedure, the started procedure and the starting procedure run
concurrently. A start action cannot return values.

Start menu choice: An option on the Main Menu that runs the knowledge base.
446

subclass: A class subordinate to another in the hierarchy of classes. For example,
throttling-valve is a subclass of valve. A class may have any number of subclasses.

subworkspace: A workspace that is subordinate to an item. G2 treats the
information on a subworkspace the same as it treats the contents of top-level
workspaces. See also workspace.

superior class: A class that is at a higher level than another in the hierarchy of
classes. Classes inherit attributes from their superiors. You can override and add
to inherited attributes. Each class has only one immediately superior class from
which it inherits attributes, but all of the other ancestors of the class (the
immediate superior of its immediate superior, and so on) are also considered
superiors of the class.

sys-mod.kb: The G2 module that supports the system procedure library.

T

target attribute: The class-specific attribute of a G2 object to which the UIL control
concludes its value.

target object: The G2 object whose class-specific attribute is the target attribute of
a UIL control.

temporary storage object: An object that serves as a buffer during update and
conclude actions on the dialog. Temporary storage objects make it possible to
process information when it is updated into a dialog or concluded from the dialog
to other objects in your G2 application.

text objects: An object that displays read-only text. You can apply formats to text
objects.

title bar: A text object that you can add to a workspace or dialog subworkspace to
identify the workspace or subworkspace to users.

toggle button: A button that, when selected, switches between two toggle states
(ON and OFF). There are two kinds of toggle buttons: text toggle buttons and icon
toggle buttons. Text toggle buttons and icon toggle buttons differ only in
appearance. Each kind of toggle button comes in three sizes (small, medium, and
large)

U

uil.kb: The GUIDE module that provides an API to all UIL objects.

uil-build mode: See build mode.
447

uil-configuration-class: The root class for all configuration objects.

UIL action description array: A object containing a symbolic array of actions that
can be run on a dialog. You can invoke an action description array on a dialog by
invoking the procedure uil-control-dialog-callback.

UIL control: A graphical component of user interface that you construct using
GUIDE. UIL provides different classes of UIL controls for components such as
edit boxes, scroll areas, buttons, and separators. Each class is appropriate to a
particular type of data. For example, edit boxes are suitable for displaying and
editing text values, and scroll areas are suitable for displaying lists and arrays of
values

uildefs.kb: The GUIDE module that provides definitions for UIL objects.

uil-grmes: The root class for all UIL messages.

uil-grobj: The root class for all UIL graphical objects.

UIL method: A UIL procedure that performs operations required by developers,
such as cloning and deleting objects, or operations required by users, such as
opening and closing dialogs, and updating and concluding their values. UIL
methods are referenced from attributes of the objects on which the methods are
run.

UIL Procedure Lookup Facility: A dialog that enables you to display the
argument signatures of all UIL procedures. You access the UIL Procedure Lookup
Facility through the GUIDE Help dialog.

uilroot.kb: The GUIDE module that supports definitions and API support for
navigation buttons only.

user-defined attributes: Attributes provided by G2 users while configuring the
attributes-specific-to-class attribute of a class definition.

User Interface Library (UIL): A knowledge library providing an application
programmer’s interface (API) to procedures that perform basic operations on
dialogs and UIL controls, including dynamically creating, configuring, and
deleting these objects.

user menu choice: A menu choice that you define for a particular class. A user
menu choice is visible in an item’s menu only when the knowledge base is
running and the menu choice’s condition is true.

user mode: A mode of operation that restricts access to G2 and specifies how the
user interface behaves. GUIDE supports three kinds of user modes: Build Mode,
Administrator Mode, and Play Mode (named user modes). You select a user
mode for GUIDE operation using the GUIDE Control Panel.
448

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
About button
action buttons used to launch dialogs
actions

controlling dialogs with
creating
system-defined
uil-call-conclude-method
uil-call-conclude-method-for-children
uil-call-conclude-method-for-parent
uil-call-configuration-method
uil-call-update-method
uil-call-update-method-for-children
uil-call-update-method-for-parent
uil-call-validate-method
uil-delete-dialog
uil-delete-temporary-storage-object
uil-hide-dialog
uil-release-dialog
uil-release-temporary-storage-object
uil-return-dialog
uil-show-dialog
uil-simulate-play-mode
uil-unsimulate-play-mode

adding
objects to tab dialogs
tab pages to a master dialog

appending items to message objects
arrays

editing initial contents of
UIL controls for representing

B
bins

See dialog bins
borders

accessing menus of
adding to dialogs, workspaces, edit boxes,

or text objects
editing margins of
editing on workspaces
editing stand-alone
releasing from workspaces
resizing
selecting styles of

buttons
changing placement of tab buttons
GUIDE

conversion of

C
callbacks

defined
GUIDE 3.0 functionality for supported in

GUIDE
in GUIDE 3.0 and GUIDE 4.0
of check buttons
of radio buttons
of toggle buttons

cascaded dialogs
creating systems of
initiating object of
relations among

case of text
check boxes

adding check buttons to
adding to master dialogs or workspaces
concluding values of
editing
lead buttons of
menu choices of
updating values of

check buttons
adding to check boxes
callbacks of
deleting
editing
moving
resizing

child dialogs
concluding values of
launching
updating values of
449

cloning
not supported through operate on area

menu choice
tab pages

concluding
check boxes
edit boxes
scroll areas
toggle buttons
values of UIL controls on a dialog

Configuration Editor
configuration methods
configurations

applying to all buttons in a selection box
copying
creating
deleting
editing
of message objects
of scroll areas
specifying for a particular UIL control

confirmation dialog
context-sensitive online help, extending
converting

existing GUIDE buttons
copy dialogs

action for deleting
defined
making permanent

Create Gfr Local Text Resource dialog
Create Gfr Text Resource Group dialog
Create New Action dialog
creating

new GFR text resource group
customer support services
Customize Dialog Actions dialog

components of
opening

D
Date & Time Options dialog

components of
opening

date formats
debugging GUIDE applications
default buttons
Delay Notification
deleting
450
not supported through operate on area
menu choice

tab pages
deleting UIL controls

using Garbage Pail
using user menu choices

demo knowledge base
accessing
merging into an application
using

destination objects
dialog bins

defined
setting maximum number of copies in

dialogs
action for releasing
action for returning
action for showing
actions run on
adding borders to
adding scroll areas to
adding title bars to
advantages of editing attribute values

through
allowing multiple copies on same G2

window
automatically generated
bins for storing
building masters of
concluding values of
controlling with actions
converting text of
creating and deleting permanent copies of
creating cascaded dialogs
deleting copy dialogs
editing behaviors of
editing generated
editing with Edit Dialog dialog
example with English and Spanish

versions
examples of
generating masters for using uil-generate-

customized-dialog
generic

editing text of using GFR
kinds of in GUIDE
local text resources for

hiding
initiating objects of
internationalization of
launching from action buttons

launching from other dialogs
launching from push buttons
launching from rules
launching from user menu choices
launching generated dialogs from push

buttons
menu choices of
on multiple G2 windows
procedures that launch
processing contents of before returning to

bin
relations among cascaded
releasing
reserving
returning
UIL procedures for launching
updating values of
viewing attribute values with

disabling the GUIDE menu bar at startup

E
Edit Array dialog
Edit Border dialog

components of
Edit Border Margins dialog
edit boxes

action for validating contents of
adding borders to
before and after method processing for
concluding
disabling keyboard navigation to
edit styles for
editing initial contents of
editing using Edit Edit Box dialog
editing using the edit. menu choice
formatting text of
keyboard navigation to
menu choices of
resizing
selecting colors for background and text
selecting edit styles for
selecting formats for
selection method for
setting initial contents of
single-line and scrollable
specifying validation criteria for in formats
unselection method for
updating
validating
validation methods for
Edit Check Box dialog

components of
opening

Edit Check Button dialog
components of
opening

Edit Dialog Actions dialog
Edit Dialog dialog

components of
General tab page of
Title tab page of
Translation tab page of

Edit Edit Box dialog
components of

Edit Field Edit Style dialog
components of

Edit Format Specification dialog
components of
opening

Edit Legal Values dialog
opening

Edit List dialog
Edit Message dialog

components of
Edit Navigation Button dialog
Edit Pushbutton Dialog

components of
Edit Radio Box dialog

components of
opening

Edit Radio Button dialog
components of
opening

Edit Scroll Area dialog
components of

Edit Slider dialog
components of

Edit Source Object & Attribute dialog
components of
opening

Edit Spin Control dialog
components of

edit styles
applying to edit boxes
creating
editing using Edit Field Edit Style dialog
single line and multi-line

Edit Target Object & Attribute dialog
opening

Edit Text dialog
451

components of
Edit Toggle Button dialog

components of
edit. menu choice
Editor Behaviors dialog

components of
embedded objects

example of use
specify as source or target objects

Enable User Menu Choices button
event queues
examples of GUIDE online
extending context-sensitive online help

F
field edit style

See edit styles
Float Formatting Specification dialog

components of
format objects

See formats
Format Specification icon
formats

applying to text objects, message object, or
edit boxes

creating
data validation features of
editing
for text objects
managing case of text with
managing quotation marks with
specifying date and time formats with
specifying legal values with
text formatting features of
validating edit boxes with

G
G2 Foundation Resources

See GFR
G2 GUIDE palette

creating master dialogs from
features of
tools provided by
UIL controls on

G2 GUIDE/UIL initialization panel
g2cuidev module
g2cuidev.kb

g2uiprnt module
452
g2uiprnt.kb

Garbage Pail
General tab page of Edit Dialog dialog
generated dialogs

creating with default UIL controls
creating with non-default UIL controls
default UIL controls on
editing
steps for creating

generic dialogs
converting label text of

GFR
creating a new text resource group
for GUIDE local text resources
internationalizing dialogs with
using to edit GUIDE generic dialog labels

gfr module
gfr.kb

gfr-local-text-resource objects
attribute table of
generating

gfr-text-resource-group objects
attribute table of
generating

gms module
gms.kb

gold module
gold.kb

goto next navigation buttons
goto previous navigation buttons
goto superior navigation buttons
goto workspace navigation buttons
guicolor module
guicolor.kb

guidata module
guidata.kb

GUIDE
buttons

converting existing
creating

new GFR text resource group
disabling menu bar at startup
license requirements
local text resources

from GFR
online examples
online tutorial
reinitializing
resetting editor
reusing submenus
setting G2 Minimum Scheduling Interval

parameter for best performance of

starting
suggestions for using
verifying initialization status of

GUIDE Configuration Editor
GUIDE Control Panel

opening
opening when in Administrator mode
selecting defaults for window size and

object style
selecting user mode with

GUIDE Dialog Generator
starting
steps for using

GUIDE Help dialog
opening
using to access help and tools

GUIDE Information dialog
GUIDE Method Help dialog

creating procedures with
displaying descriptions of UIL methods

with
opening

guide module
GUIDE modules

g2cuidev
g2uiprnt
gfr
gms
gold
guicolor
guidata
GUIDE
guide
guidelib
guidemo
guidesa
guigfr
guimove
guislide
guitools
removing from a KB
sys-mod
uil
uilcombo
uildefs
uildlg
uillib
uilroot
uilsa
uilslide

guide.kb
GUIDE/UIL
GUI front end of

GUIDE/UIL procedure library
guidelib module
guidemo module
guidemo.kb

See demo knowledge base
guidesa module
guidesa.kb
guidlib.kb
guidslide.kb

guigfr module
guigfr.kb

guimove module
guimove.kb

guislide module
guitools module
guitools.kb

H
Help button
Help dialog

See GUIDE Help dialog
help for UIL methods

See GUIDE Method Help dialog
help navigation buttons
hide navigation buttons

I
icon toggle buttons
initialization panel
initiating object

defined
of cascaded dialogs

Inspect
using to get to GUIDE resources

internationalization of dialogs
example with English and Spanish

versions
how text is translated

K
keyboard navigation

disabling for an edit box
specifying behavior of
to edit boxes

knowledge bases
g2cuidev.kb
453

g2uiprnt.kb
gfr.kb
gms.kb
gold.kb
guicolor.kb
guidata.kb
guide.kb
guidemo.kb
guidesa.kb
guidlib.kb
guidslide.kb
guigfr.kb
guimove.kb
guitools.kb
sys-mod.kb
uil.kb
uilcombo.kb
uildefs.kb
uillib.kb
uilroot.kb
uilsa.kb
uilslide.kb
uiltdlg.kb

L
launching dialogs

as children of other dialogs
from action buttons
from push buttons
from rules
from user menu choices
procedures for
UIL procedures for

lead buttons
of check boxes
of radio boxes

license requirements
lists

editing initial contents of
UIL controls for representing

M
master dialogs

adding check buttons to
adding radio buttons to
adding UIL controls to
closing subworkspaces of
creating and deleting permanent copies of
creating from G2 GUIDE palette
defined
deleting using Garbage Pail
generating rules for updating
454
generating with default UIL controls
generating with non-default UIL controls
icon on G2 GUIDE palette for
opening subworkspaces of
showing subworkspaces of
steps for building
steps for generating
user modes required for creating

menu choices
of check boxes
of dialogs
of edit boxes
of push buttons
of radio boxes
of spin control boxes
of toggle buttons

merging GUIDE
into a KB that uses an earlier version of

GUIDE
message definitions

classes of
creating customized

message dialog
message objects

adding to scroll areas
appending items to
configurations of
editing
editing initial contents of
formatting text of
managing size of
moving
resizing
selecting formats for

Minimum Scheduling Interval system
parameter

More Options palette
Action Description Array icon on
Field Edit Style icon on
Format Specification icon on
opening
Print Workspace Dialog icon on

Move menu choice
moving

check buttons
message objects
radio buttons
scroll areas
separators
stack of tab pages
UIL objects

UIL objects with borders
UIL objects with labels

N
navigation buttons

adding to workspaces
classes of
creating without GUIDE
editing using Edit Navigation Button

dialog
modules supporting
use of on dialogs not recommended

notification dialog

O
object definitions

classes of
creating customized

online examples for GUIDE
online help, extending
online tutorial for GUIDE
Operate on Area menu choice not supported

for cloning or deleting

P
parent dialogs

concluding values of
updating values of

permanent dialog copies
permanent UIL controls
play mode

action for simulating
action for unsimulating
defined

Print button
print workspace button
Print Workspace Dialog icon
printing GUIDE workspaces
push buttons

associating actions with
associating actions with using Customize

Dialog Actions dialog
controlling dialogs with
creating new actions for
editing
event queues of
launching dialogs from
menu choices of
performing operations on dialogs with
setting target objects for
target objects of

Q
query dialog
quotation marks

R
radio boxes

adding radio buttons to
adding to master dialogs or workspaces
editing
lead buttons of
menu choices of
updating and concluding
updating value of

radio buttons
adding to radio boxes
callbacks of
editing
moving
resizing

reinitializing GUIDE
releasing dialogs
reordering

tab pages
reserving dialogs
resetting GUIDE editor
resizing

borders
check buttons
edit boxes
message objects
radio buttons
scroll areas
separators
stack of tab pages
text objects
UIL objects

returning dialogs

S
Scroll Area Options dialog

components of
scroll areas
455

adding message objects to
adding to dialogs or workspaces
configurations of
editing using Edit Scroll Area dialog
managing message size in
moving
resizing
scrolling up or down
setting maximum number of messages for
setting options for
user-defined methods for

scroll down arrow
scroll thumb
scroll up arrow
Select Edit Style dialog
Select Format dialog

components of
opening

separators
adding to workspaces or subworkspaces
menus of
moving
moving and resizing
rotating

Setup Translation Text dialog
sliders

creating
editing
using

source attributes
defined
specifying

source objects
defined
how to specify
specifying
specifying embedded objects as

spin control boxes
menu choices of

starting GUIDE
subclasses

creating for UIL controls
creating instances of
deciding what attributes to add to
of message definitions
of object definitions
of uil-message
of uil-object

sys-mod module
sys-mod.kb

system-defined dialogs
456
confirmation dialog
message dialog
notification dialog
query dialog

T
tab buttons

changing placement of
tab dialogs

adding objects to
editing

tab pages
adding to a master dialog
cloning
defined
deleting
lifting and dropping with non-UIL objects
moving stack of
reordering
resizing stack of
transferring

tab pushbutton
defined

target attributes
defined
specifying

target objects
defined
how to specify
of push buttons
setting for push buttons
specifying
specifying embedded objects as
specifying programmatically at run time

temporary storage objects
action for deleting
action for releasing
as source objects
as target objects
creating
defined
example of
steps for defining
when to delete

Text Formatting Options dialog
components of
opening

text objects
adding borders to

editing initial contents of
editing using Edit Text dialog
formats for
formatting text of
resizing
selecting formats for
setting initial contents of
updating

text toggle buttons
time formats
title bars

adding to workspaces or dialog
subworkspaces

Title tab page of Edit Dialog dialog
toggle buttons

callbacks of
editing
icon
menu choices of
text
updating and concluding

transferring
tab pages

transferring UIL controls
Translation tab page of Edit Dialog dialog
tutorial for GUIDE

U
UIL controls

adding to workspaces
creating customized subclasses of
default classes for representing different

data types
defined
deleting using Garbage Pail
deleting using user menu choices
described
making permanent
moving by dragging
moving using the Move menu choice
on G2 GUIDE palette
setting default sizes and styles of
setting default window styles of
table of
transferring

UIL Examples workspace
opening

UIL help system file
UIL methods
attributes that reference
creating
displaying general descriptions of
displaying help for
for application development
for runtime operations
for validating contents of edit boxes
how they work

uil module
UIL objects

attributes of that reference methods
moving
resizing
specifying the colors of
transferring

UIL Procedure Lookup Facility
opening
using to display argument signatures of

UIL procedures
UIL procedures

displaying argument signatures of
examples of
for launching dialogs
list of in UIL help system file

uil.kb

uil-call-conclude-method
uil-call-conclude-method-for-children
uil-call-conclude-method-for-parent
uil-call-configuration-method
uil-call-update-method
uil-call-update-method-for-children
uil-call-update-method-for-parent
uil-call-validate-method
uilcombo module
uilcombo.kb

uil-control-dialog-callback
uildefs module
uildefs.kb

uil-delete-dialog
uil-delete-temporary-storage-object
uildlg module
uil-generate-customized-dialog
uil-hide-dialog
uil-initialization-status parameter
uillib module
uillib.kb

uillib-text-resources object
in GUIDE

for editing label text
uil-release-dialog
uil-release-temporary-storage-object
457

uil-return-dialog
uilroot module
uilroot.kb

uilsa module
uilsa.kb

uil-show-dialog
uil-simulate-play-mode
uilslide module
uilslide.kb

uil-start-dialog
uil-start-dialog-processing
uiltdlg.kb

uil-unsimulate-play-mode
unselection method
updating

check boxes
edit boxes
radio boxes
scroll areas
text objects
toggle buttons

upgrading
label text of generic dialogs

User Interface Library
See GUIDE/UIL

user menu choices
enabling and disabling for GUIDE/UIL

objects
launching dialogs from

user modes
for using GUIDE
required for creating master dialogs
selecting

V
validation

creating customized procedures for
of edit boxes

W
window styles of UIL controls
workspaces

adding borders to
adding navigation buttons to
adding separators to
adding UIL objects to
editing borders of
printing
releasing borders from
458

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Organization
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction to G2 GUIDE
	Introduction
	Dialogs for Viewing and Editing Attribute Values
	User Interface Components on Workspaces
	Online Examples and Tutorial: the Demo KB
	Programmatic Support for GUIDE: GUIDE/UIL

	Using a GUIDE User Interface
	Launching Dialogs
	Controlling Dialogs with Push Buttons
	Selecting UIL Controls
	Scrolling a Scroll Area

	Creating a GUIDE User Interface
	Generating Master Dialogs
	Building Customized Master Dialogs
	Editing UIL Controls

	UIL Methods, Actions, and Callbacks

	Getting Started
	Introduction
	Installing GUIDE
	Merging GUIDE into Your KB for the First Time
	Merging GUIDE into a KB with an Earlier Version
	Verifying Your Version of GUIDE
	License Requirements

	The GUIDE/UIL Module Hierarchy
	Module Support for Navigation Buttons

	Removing Unneeded GUIDE Modules from an Application
	Setting G2 Minimum Scheduling Parameter
	Starting GUIDE
	Reinitializing GUIDE
	Choosing a User Mode
	Using the GUIDE Menu Bar
	Removing g2cuidev.kb
	Reusing the GUIDE Submenus

	Resetting the GUIDE Editor
	Enabling and Disabling GUIDE/UIL User Menu Choices
	Enabling and Disabling User Menu Choices for All Objects
	Enabling and Disabling User Menu Choices for Particular Modules

	Using GFR Startup Objects
	Making UIL Controls Permanent
	Printing GUIDE Workspaces
	Suggestions and Cautions

	Creating a User Interface
	Generating Master Dialogs
	Introduction
	Using the GUIDE Dialog Generator
	Master Dialogs with Default UIL Controls
	Master Dialogs with non-Default UIL Controls

	Steps for Generating a Master Dialog
	Generating a Master Dialog with Default UIL Controls
	Generating a Master Dialog with Non-Default UIL Controls

	Launching Generated Dialogs from Push Buttons
	Updating UIL Controls from the Initiating Object When the Dialog is Launched by a Push Button
	Using an Action to Specify an Initiating Object

	Editing Generated Dialogs

	Building Master Dialogs
	Introduction
	Using the GUIDE Palette
	Tools Provided by the GUIDE Palette

	Steps for Building a Master Dialog
	Adding a Dialog Title
	Adding Radio Buttons and Check Buttons
	Adding Scroll Areas and Message Objects
	Changing the Size of a Dialog Subworkspace

	Editing a Tab Dialog
	Lifting a Tab Page to the Top of the Stack
	Adding UIL Controls to a Tab Page
	Changing the Size and Labels of Tab Buttons
	Changing the Placement of Tab Buttons
	Adding New Tab Pages
	Deleting a Tab Page
	Cloning a Tab Page
	Reordering Tab Pages
	Lifting and Dropping Tab Pages with non-UIL Objects
	Moving the Stack of Tab Pages
	Resizing the Stack of Tab Pages
	Transferring Tab Pages

	Manipulating UIL Controls through User Menu Choices
	Moving UIL Controls
	Moving UIL Controls by Dragging Them
	Moving UIL Controls with Labels
	Moving UIL Controls with Borders
	Using the Move Menu Choice

	Resizing UIL Controls
	Transferring UIL Controls
	Specifying Initial Contents of Text Objects, Message Objects, and Edit Boxes
	Specifying Initial Contents of an Array or List Attribute
	Specifying Source and Target Attributes of UIL Controls
	Closing a Finished Subworkspace
	Creating a Customized Dialog Programmatically

	Using UIL Controls on a Workspace
	Introduction
	Examples of UIL Controls Used on Workspaces
	Invoking a Procedure from a Push Button on a Workspace
	Using an Edit Box on a Workspace
	Using a Scroll Area on a Workspace

	Placing UIL Objects on Subworkspaces of G2 Items

	Customizing Dialogs
	Introduction
	Editing Master Dialogs
	Edit Dialog Dialog
	Dialog Options Dialog
	Editor Behaviors Dialog

	Controlling Dialogs with Actions
	Specifying the Actions Run by a Push Button

	Creating Systems of Cascaded Dialogs
	Specifying a Default Button for a Dialog
	Using Dialogs on Multiple Windows
	Creating and Deleting Permanent Dialog Copies
	Internationalization of Dialogs
	GFR Objects that Support Internationalization
	UIL Object Attributes that Support Internationalization
	How the Translation Works
	Creating GFR Objects to Support Internationalization

	Summary of Dialog Menu Choices

	Launching Dialogs
	Introduction
	Pooling Reusable Dialogs for Quick Retrieval
	Using Dialogs in the Dialog Bin
	Releasing and Returning Dialogs
	Creating and Deleting Permanent Copies

	Procedures that Launch Dialogs
	uil-control-dialog-callback
	uil-start-dialog
	uil-start-or-refocus-dialog
	uil-start-dialog-processing

	Launching a Dialog from an Action Button
	Launching a Dialog from a User-Defined Procedure
	Processing a Dialog Before Returning it to the Dialog Bin

	Launching a Dialog from a User Menu Choice
	Launching a Dialog from a Push Button
	Creating Push Buttons to Launch Dialogs
	Specifying Source and Target Objects for UIL Controls on a Dialog Launched from a Push Button

	Launching a Dialog from a Rule

	System-Defined Dialogs
	Introduction
	Message, Query, Confirmation, and Notification Dialogs
	Using uil-post-generic-dialog to Post Dialogs
	Message Dialog
	Query Dialog
	Confirmation Dialog
	Notification Dialog

	Delay Notification

	Editing User Interface Components
	Push Buttons
	Introduction
	Adding Push Buttons to a Master Dialog
	Using Push Buttons to Perform Operations on Dialogs
	System-Defined Actions for Dialog Processing
	Creating Actions
	Setting a Target Object for a Push Button
	Specifying Labels for Push Buttons

	Editing Pushbuttons
	Edit Pushbutton Dialog
	Edit Dialog Actions Dialog
	Customize Dialog Actions Dialog
	Create New Action Dialog

	Summary of Push Button Menu Choices

	Radio Buttons
	Introduction
	Selecting Motif or Windows Style Buttons
	Adding Radio Buttons to a Master Dialog
	Moving Radio Buttons
	Resizing Radio Buttons
	Deleting Radio Buttons and Radio Boxes
	Updating and Concluding Radio Buttons
	Specifying Labels for Radio Buttons

	Editing Radio Boxes
	Editing Radio Buttons
	Summary of Radio Box Menu Choices
	Summary of Radio Button Menu Choices

	Check Buttons
	Introduction
	Selecting Motif or Windows Style Buttons
	Adding Check Buttons to a Master Dialog
	Moving Check Buttons
	Resizing Check Buttons
	Updating and Concluding Check Buttons
	Specifying Labels for Check Buttons

	Editing Check Boxes
	Editing Check Buttons
	Summary of Check Box Menu Choices
	Summary of Check Button Menu Choices

	Toggle Buttons
	Introduction
	Selecting Motif or Windows Style Buttons
	Adding Toggle Buttons to a Master Dialog
	Updating and Concluding Toggle Buttons
	Specifying Labels for Toggle Buttons

	Editing Toggle Buttons
	Edit Toggle Button Dialog

	Summary of Toggle Button Menu Choices

	Edit Boxes, Combo Boxes, and Spin Controls
	Introduction
	Setting the Initial Contents of Edit Boxes
	Edit Styles for Edit Boxes
	Validating the Contents of Edit Boxes
	Keyboard Navigation to Edit Boxes
	Disabling Keyboard Navigation to an Edit Box
	Customizing Before and After Method Processing (Optional)
	Updating and Concluding Edit Boxes

	Editing Edit Boxes
	Edit Edit Box Dialog
	Select Edit Style Dialog
	Creating and Editing an Edit Field Edit Style
	Specifying a Password-Style Block Font

	Background Color and Text Color Dialogs
	Combo Boxes
	Editing Combo Boxes

	Spin Control Boxes
	Creating Spin Control Boxes
	Editing Spin Control Boxes

	Summary of Edit Box, Combo Box, and Spin Control Menu Choices
	Summary of Spin Control Box Menu Choices
	Summary of Combo Box Menu Choices

	Scroll Areas and Message Objects
	Introduction
	Adding Scroll Areas and Message Objects
	Resizing Scroll Areas and Message Objects
	Moving Scroll Areas and Message Objects
	Updating and Concluding Scroll Areas
	Specifying Formats for Message Objects
	Specifying Configurations for Scroll Areas and Message Objects
	Specifying Selection and Unselection Methods for Scroll Areas
	Managing Message Size in Scroll Areas
	Specifying User-Defined Methods for Message Objects
	Appending Items to Message Objects

	Editing Scroll Areas
	Edit Scroll Area Dialog
	Scroll Area Options Dialog

	Edit Message Dialog
	Multiple Column Scroll Areas
	Creating a Multiple-Column Scroll Area
	Creating Methods Required by Multiple-Column Scroll Areas

	Summary of Scroll Area Menu Choices
	Summary of Message Object Menu Choices

	Sliders
	Introduction
	Using Sliders
	Creating Sliders
	Editing Sliders

	Summary of Slider Menu Choices

	Text Objects
	Introduction
	Setting the Initial Contents of Text Objects
	Updating the Contents of Text Objects
	Specifying Formats for Text Objects
	Editing Text Objects
	Edit Text Dialog

	Summary of Text Object Menu Choices

	Title Bars, Borders, and Separators
	Introduction
	Title Bars
	Using the Hide Button on Title Bars

	Borders
	Adding Borders
	Deleting Borders
	Moving Objects with Borders
	Resizing Borders
	Edit Border Dialog
	Edit Border Margins Dialog

	Separators
	Summary of Title Bar Menu Choices
	Summary of Border Menu Choices
	Summary of Separator Menu Choices

	Navigation Buttons and Other Tools
	Introduction
	Navigation Buttons
	Classes of Navigation Buttons
	Modules Supporting Navigation Buttons

	Edit Navigation Button Dialog
	The Print Workspace Button
	The GUIDE Garbage Pail
	Summary of Navigation Button Menu Choices

	Advanced Features
	Formats and Validation Criteria
	Introduction
	Formatting Rules for Edit Boxes, Message Objects, and Text Objects
	Validation Criteria for Edit Boxes
	Creating Customized Validation Procedures or Functions

	Creating Formats
	Applying and Editing Formats
	Select Format Dialog
	Edit Format Specification Dialog
	Float Formatting Options Dialog
	Text Formatting Options Dialog
	Edit Legal Values Dialog
	Date & Time Options Dialog

	Specifying Source and Target Objects
	Introduction
	Specifying Source and Target Objects
	Source and Target Objects of Different UIL Controls

	Edit Source Object & Attribute Dialog
	Edit Target Object & Attribute Dialog
	Updating from and Concluding to Embedded Objects

	Creating Temporary Storage Objects
	Introduction
	How Temporary Storage Objects Work
	How Temporary Storage Objects Are Created
	Steps for Defining a Temporary Storage Object for a Dialog
	Creating this Example

	Methods, Actions, and Callbacks
	Introduction
	UIL Methods
	UIL Methods for Application Development
	UIL Methods for Runtime Operations

	How UIL Methods Work
	Object Attributes that Reference UIL Methods

	UIL Actions
	UIL Callbacks
	Callbacks on Push Buttons and Other Kinds of Buttons
	Callbacks in GUIDE 3.0 and GUIDE 4.0

	Creating Methods, Actions, and Callbacks
	Creating UIL Methods Using the Edit Method Dialog
	Creating Callbacks, Methods, Procedures, Functions, and Actions Using the GUIDE Method Help Dialog

	Help Dialog
	Introduction
	Opening the GUIDE Help Dialog

	Displaying Argument Signatures of UIL Methods, Callbacks, and Actions
	Displaying Help for UIL Methods
	Finding the UIL Help System File

	Generating Master Dialogs
	Using UIL Examples
	Using the GUIDE Online Tutorial
	Using the GUIDE Debugging Utility

	Creating Custom UIL Subclasses
	Introduction
	Creating and Using Customized Subclasses
	Choosing a Parent Class for a Customized Subclass
	Customizing the Behavior and Appearance of Subclasses of uil-grobj or uil-grmes

	Creating a Customized Object Definition
	Creating a Customized Message Definition
	Creating Instances of Customized Subclasses and Adding them to Master Dialogs
	Creating Subclasses of uil-object and uil- message
	Deciding What Attributes to Add to a Subclass of uil-object or uil-message

	Specifying the Colors of UIL Objects
	Introduction
	Creating Configurations
	Using The GUIDE Configuration Editor
	Deleting Configurations
	Copying Configurations
	Editing Configurations
	Applying Configuration Edits to All Buttons in a Group

	Upgrading GUIDE Applications
	Introduction
	Upgrading 5.0 KBs
	4.0 and 5.0 Conversion Tools
	Editing the Label Text of Generic Dialogs
	Extending Context-Sensitive Help
	How to Extend Context-Sensitive Help for Dialogs and Items on Dialogs
	Steps for Extending Help

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

