
ReThink

User’s Guide
Version 5.1 Rev. 1

ReThink User’s Guide, Version 5.1 Rev. 1

September 2014

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2014 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC075-510

Contents Summary
Preface xxv

Part I Modeling Using ReThink 1

Chapter 1 Running ReThink 3

Chapter 2 Organizing Models and Controlling Simulations 9

Chapter 3 Working with Models 39

Chapter 4 Using Blocks 105

Chapter 5 Using Instruments 205

Chapter 6 Using Resources 261

Chapter 7 Using Work Objects 345

Chapter 8 Using Reports 361

Chapter 9 Accessing External Databases 417

Chapter 10 Using Batch Simulation 445

Chapter 11 Using ReThink in Online Mode 455

Part II ReThink Reference 473

Chapter 12 Blocks Reference 475

Chapter 13 Instruments Reference 639

Glossary 775
iii

Index 783
iv

Contents
Preface xxv

About this Guide xxv

Audience xxvi

Conventions xxvi

Related Documentation xxvii

Customer Support Services xxix

Part I Modeling Using ReThink 1

Chapter 1 Running ReThink 3

Introduction 3

Starting the Server and Connecting the Client 4

Connecting to a Specific Server at Startup 5
Connecting the Client to the Default Server 6
Starting the Server on a Specific Port 6
Connecting the Client to a Specific Server 6

Starting the Server with Your Application Loaded 7

Exiting ReThink 7

Chapter 2 Organizing Models and Controlling Simulations 9

Introduction 9

Working with Projects 11
Creating a New Project 11
Saving a Project 12
Opening a Project 12

Configuring the Model Environment 13
Creating a Model 13
Creating an Organizer 16

Controlling the Simulation 17
Activating and Deactivating the Scenario 18
v

Starting and Stopping the Simulation 18

Configuring the Scenario 20
Configuring the Simulation Mode 20

Running the Simulation in Jump Mode 21
Running the Simulation in Step Mode 21
Running the Simulation in Synch Mode 21

Configuring the Duration of the Simulation 22
Configuring the Simulation Version 23
Configuring the Start Time of the Simulation 23
Configuring Simulation Speed 23
Configuring Animation 24
Configuring Object Tracking 25
Configuring the Behavior of Indicator Arrows 25
Configuring the Computation Behavior 26
Configuring the Scenario to Generate Identical Random Numbers 27

Performing “What-if” Analysis on a Model 28
Comparing Different Versions of the Same Model 28
Using Different Scenarios to Compare the Same Model 30
Using a Single Scenario to Control Multiple Models 31

Working with Large Models 32
Associating Existing Connectors on Task Block Details 32
Associating Connectors on Other Types of Details 35
Replacing Default Details of Model and Organizer Tools 36

Viewing Demo Models 37

Customizing Scenarios 38

Chapter 3 Working with Models 39

Introduction 41

Summary of Common Tasks 41

Using the Project Menu 42
Using the Project Menu 42
Using the Manage Dialog 43
Using the Project Submenus 44

Navigating Applications 44
Using the Navigator 45
Searching for Objects 46

Interacting with Workspaces 46
Displaying a Detail Workspace 47
Hiding a Workspace 47
Deleting a Workspace 47
Creating a Detail Workspace 48
vi

Editing Workspace Properties 48
Scaling a Workspace 49
Shrink Wrapping a Workspace 49
Showing the Superior Object of a Detail Workspace 51
Printing a Workspace 51
Saving a Workspace to a JPEG File 51
Loading Background Images 52
Creating and Accessing Top-Level Workspaces 52

Using the Menus 53
Using the File Menu 54
Using the Edit Menu 54
Using the View Menu 55
Using the Layout Menu 56
Using the Go Menu 57
Using the Project Menu 58
Using the Workspace Menu 60
Using the Simulation Menu 60
Using the Tools Menu 61
Using the Help Menu 62

Using the ReThink Toolbox 63
Basic Activities 66
Constraints 67
Displays 67
Export Tools 67
Instruments 68
Online Activities 69
Reports 70
Resources 70
Tools 71

Using the G2 Toolbox 72

Interacting with Objects 72
Selecting Objects 73
Cutting, Copying, Pasting, and Deleting Objects 73
Controlling the Layout of Objects 74
Displaying the Properties Dialog for an Object 74
Resizing an Object 75
Editing Icon Color Regions 75

Using the Toolbars 75
Standard Toolbar 76
Simulation Toolbar 77
Web Toolbar 78
Layout Toolbar 79
Status Bar 79

Annotating Models 80
vii

Using an Annotation Tool 80
Using Free Text 81
Using Readout Tables 81
Using Attribute Displays 83

Setting and Clearing Breakpoints and Indicators 84

Switching User Modes 85

Viewing Messages 86

Configuring User Preferences 87
Specifying User Preferences for Different Types of Users 88
Configuring User Preferences 90
Delivering Messages by Email 93

Starting the G2 JMail Bridge Process 94
Creating, Configuring, and Connecting the JMail Interface Object

94
Configuring ReThink to Send Email Messages 97
Examples: Sending Email Messages 99
Configuring Startup Parameter for Sending Email Messages 101

Configuring Network Interfaces 102

Configuring Message Browsers 102

Configuring Module Settings 102

103

Chapter 4 Using Blocks 105

Introduction 105

Creating Blocks 107
Creating Blocks 108
Source Block 109
Task Block 109
Sink Block 109
Copy Block 109
Merge Block 109
Branch Block 110
Batch Block 110
Associate and Reconcile Blocks 110
Store and Retrieve Blocks 110
Insert and Remove Blocks 111
Copy Attributes Block 111
Yield Block 111
BRMS Task Block 111

Connecting Blocks 112
Using Stubs to Connect Two Blocks 112
viii

Inserting a Block Between Two Connected Blocks 112
Redisplaying the Paths of Connected Blocks 113
Disabling Path Redrawing 113
Creating and Deleting Stubs 114

Deleting a Stub 114
Creating a New Stub 115

Creating Loops in a Diagram 116
Replacing Blocks 117

Configuring the Type of Work that Blocks Process 118
Configuring the Path Type 118
Using the Default Path Type 119
Creating Work During Processing 120
Configuring the Path Types of Particular Blocks 121
Creating Class Definitions for Work Objects 121
Determining the Output Path Based on Its Type 122
Configuring the Animation of Paths 122
Configuring Path Types of Specific Blocks 123

Configuring Blocks 126
Configuring General Block Parameters 127
Configuring Specific Block Attributes and Features 128
Configuring Path Identity of Specific Blocks 132
Configuring the Duration of Blocks 133
Configuring the Cost of Blocks 135
Configuring the Animation of Blocks 137
Configuring Specific Blocks 138

Source Block 138
Task Block 139
Branch Block 141
Merge Block 141
Insert and Remove Blocks 142
Sink Block 143
Custom Blocks 144

Creating Hierarchical Views 144
Modeling the Detail of a Task 145
Interacting with the Detail 146

Understanding the Activities of Blocks 147
Determining the Current Activities 148
Understanding the Attributes of Activities 150
Customizing the Time Delay of Activities 152
Using Resources to Constrain Concurrent Activities 152
Limiting the Number of Concurrent Activities 153
Showing Work Backups on an Input Path 154
Analyzing the Wait Time Due to Work Backups 155
Showing Work Backups Interactively 157
ix

Working with the Duration of Blocks 157
Specifying a Fixed Duration 158
Specifying a Random Duration 159

Fixed Distribution 162
Random Exponential 162
Random Normal 163
Random Uniform 163
Random Triangular 164
Random Erlang 164
Random Weibull 165
Random Lognormal 165
Random Gamma 166
Random Beta 166

Specifying Duration from a File 167
Specifying Duration Based on an Indexed Report Lookup 168
Specifying Duration Based on an Attribute of a Work Object 173
Specifying Duration Based on an Attribute Report Lookup 176
Using a Graph to Specify Duration 183

Creating an Arrival Rate Input Graph 183
Configuring the Arrival Rate Input Graph 184
Editing the Shape of the Arrival Rate Input Graph 188
Configuring the Block to Use the Graph 189

Specifying a Custom Duration 189
Understanding Total Work Time and Total Elapsed Time 190

Total Work Time 191
Total Elapsed Time 192

Relating Work Time and Elapsed Time of Activities and Blocks 192
How the Block Uses Total Work Time and Total Elapsed Time 193
Updating Duration Metrics for Blocks 194
Computing Duration for Multiple Units of Work 194

Working with Block Costs 196
Configuring the Cost of a Block 196

Specifying a Fixed Cost 196
Specifying a Variable Cost 197

Computing the Total Cost of a Block 198

Debugging Blocks 200
Viewing and Resetting Errors 200
Verifying Model Metrics 203
Testing Every Possible Outcome 203

Customizing Blocks 204

Chapter 5 Using Instruments 205

Introduction 205

Creating Instruments 207
x

Creating Instruments 207
Timestamp Feed 208
Accumulate Feed 208
Increment Feed 208
Change Feed 209
Parameter Feed 209
Attribute Feed 209
Copy Attributes Feed 209
Delta Time Probe 209
Sample Probe 209
Average Probe 210
Moving Average Probe 210
Interval Sample Probe 210
Parameter Probe 210
Copy Attributes Probe 210
Statistics Probe 210
Criteria Probe 211
Update Trigger Probe 211
N-Dimensional Sample Probe 211
Message Probe 211
Acknowledge Message Probe 211
Delete Message Probe 212

Connecting Instruments 212
Connecting Instruments to Objects 212
Replacing Instruments 214
Configuring the Animation of Instruments 214

Probing the Performance of Your Model 215
Configuring the Probe 216
Showing the Current Value of the Probe 220
Probing the Performance of Blocks 222
Probing the Performance of Work Objects 223
Probing the Performance of Resources 225
Three Techniques for Probing Resources 226

Probing the Average Utilization of the Current Resource 226
Probing the Average Utilization of the Top-Level Resource 227
Probing the Average Utilization of a Resource in a Pool 228

Charting Performance Metrics 228
Creating a Remote Chart 229

Exporting Probed Data to a CSV File 230
Exporting Probed Data Based on Model Events 231
Exporting Probed Data at Regular Time Intervals 233
Exporting Historical Data 235

Feeding Values into the Model 236
Configuring the Feed 237
xi

Updating User-Defined Attributes of a Work Object 238
Updating System-Defined Attributes of the Model 240

Creating User Interface Objects for Feeding Values 243
Creating a Slider 243
Creating a Type-in Box 244

Creating a Chart Directly from a Probe 246
Creating a Chart 246
Updating Charts 247

Updating Charts Manually 248
Using an Action Button to Update Charts 248
Using a Rule to Update Charts 249

Configuring the Colors and Data Points of the Chart 251
Configuring the Axes of the Chart 252
Plotting Multiple Values on the Same Chart 254
Scaling the Current Value of a Remote 256
Offsetting the Current Value of a Remote 258
Showing Metrics for a Remote 258

Customizing Instruments 259

Chapter 6 Using Resources 261

Introduction 262

Using Resources to Constrain the Model 264
Creating a Resource 264
Allocating a Resource to a Task 266
Identifying the Associated Resource 268
Associating the Manager with a Different Resource 268
Replacing Resources 268
Showing Work Backups Due to Resource Constraints 268
Showing Currently Allocated Resources 270
Disabling a Resource 271

Creating a Pool of Resources 271
Creating a Pool for Any Resource 272
Creating a Generic Pool 274
Showing Pool Details 274
Deleting Pool Details 274

Computing Utilization and Duration Metrics 275
Computing Utilization Metrics 275
Computing Duration Metrics 276
Computing Metrics for Individual Resources 277
Computing Metrics for the Resource Pool 277
Keeping a History of Resource Utilization 279
Charting Resource Utilization 280
xii

Working with Resource Costs 281
Assigning Costs to Resources in a Model 281
Computing the Cost of Individual Activities 283
Computing Total Costs Based on Resource Costs 283

Allocating Multiple Resources to a Task 285

Allocating the Same Pool to Multiple Tasks 286

Sharing the Same Resource in Multiple Pools 287

Allocating Partial and Multiple Resources 289
Specifying the Utilization of the Resource Manager 289
Specifying the Number of Available Resources 290
Determining the Maximum Number of Activities 291
Determining Whether to Use a Pool or an Individual Resource 291
Example of Allocating Partial Resources from a Pool 292

Computing Metrics for Individual Resources in a Pool 294
Computing Metrics for the Resource Pool 295

Example of Allocating Multiple Resources from a Pool 296
Computing Metrics for Individual Resources in a Pool 298
Computing Metrics for the Resource Pool 299

Allocating the Same Resource for Multiple Sequential Steps 300

Choosing Particular Resources from a Pool 303
Choosing the Lowest Cost Resource 303
Choosing the Resource with the Lowest Utilization 306
Choosing Resources Based on Priority 309

Allocating Resources Associated to Work Objects 312

Allocating the Same Resource to Different Blocks Based on Priority 317

Creating Resources with Different Efficiency Factors 319

Showing the Metrics of Resources 322
Displaying Resource Metrics 322
Example of Allocating Resources 323
Displaying Attributes with a Resource 324

Constraining the Availability of Resources 325
Allocating Resources With Constraints 325
Displaying Constraints 328
Constraining a Resource to Normal Business Hours 328
Configuring the Availability of the Resource 330

Temporal Scheduler Detail 331
Default Configuration of the Temporal Constraint Detail 331
Determining the Availability of Each Type of Constraint

Visually 331
Displaying the Temporal Scheduler Detail 331
Configuring the Monthly Availability 332
xiii

Configuring the Weekly Availability 333
Configuring the Hourly Availability 334
Configuring the Date Availability 336

Using Constraints with Timing Resources 339

Configuring the Animation of Resources 340

Probing the Performance of Resources 341

Populating Resource Pools Dynamically 342

Customizing Resources 343

Chapter 7 Using Work Objects 345

Introduction 345

Configuring Path Types 347
Using the Default Path Type 347
Specifying a Container as the Path Type 347
Specifying a User-Defined Object as the Path Type 348

Automatically Generating the Work Object Class Definition 349
Creating a New Class of Work Object 349
Viewing User-Defined Attributes of Work Objects 351

Comparing Work Objects and Resources 352

Understanding the Activities of Work Objects 353

Computing Utilization and Duration Metrics 354
Computing Utilization Metrics 354
Understanding the Duration Metrics of a Work Object 355
Understanding the Utilization of a Work Object 356
Example of Computing Utilization Metrics With No Constraints 357
Example of Computing Utilization Metrics With Constraints 357
Computing the Cycle Time of a Work Object 358

Working with Work Object Costs 359

Customizing Work Objects 360

Chapter 8 Using Reports 361

Introduction 362

Creating Reports 363
Summary of Input and Output Reports 363
Creating a Report 365
Generating Output Report Data from the Model 368
Applying Input Report Data to the Model 369

Configuring the Time Unit 370
xiv

Updating Output Reports at Regular Time Intervals 372
Configuring Output Reports to Update Regularly 372
Triggering Regular Updates for Multiple Reports 373
Triggering Updates Based on Model Events 377
Triggering Updates Manually 380
Configuring When Clients Refresh Their Data 380

Keeping a History of Data Values 381

Charting Report Data 383

Configuring the Scope of the Report 384

Filtering Report Data 385

Configuring the Attributes to Appear in a Report 392

Creating Reports in Excel 394
Creating a Report in Excel 395
Generating Output Report Data from the Model to Excel 398
Applying Input Report Data to the Model from Excel 400
Filtering Report Data in Excel 401
Controlling the Simulation from Excel 405
Connecting to and Disconnecting from the Server from Excel 405

Writing to and Reading from CSV Files 406
Writing Output Report Data to CSV Files 406
Importing Input Report Data from CSV Files 407

Writing to and Importing from Databases 408

Creating Specialized Reports 408
Creating N-Dimensional Reports 408
Creating Indexed Lookup Reports 411
Creating Attribute Lookup Reports 411
Creating Attribute Change Event Reports 411

Chapter 9 Accessing External Databases 417

Introduction 417

Configuring ReThink for Database Access 418
Creating the Database 419
Configuring the ODBC Data Source 420
Starting the ODBC Bridge Process 421
Creating and Configuring the Database Interface Object 422
Connecting to the Database 424

Creating a Work Object that Represents a Record 425
Creating a Class Definition for a Query Object 425
Using a Query Object in a Model 427

Creating an SQL Query for Accessing the Data 427
xv

Sourcing Records from a Database 428

Retrieving Records from a Database 432

Storing Work Objects to a Database Table 435
Storing New Objects in a Database 435
Updating Existing Records in a Database 437

Using Reports to Access External Databases 438
Configuring Report Objects for Database Access 439
Writing Output Report Data to a Database 442
Importing Input Report Data from a Database 444

Chapter 10 Using Batch Simulation 445

Introduction 445

Using the Batch Simulation Object to Run Simulations 446

Simulation Keywords 451

Report Keywords 452

Setting Attribute Values 453

Chapter 11 Using ReThink in Online Mode 455

Introduction 455

Using ReThink in Online Mode 456

How Online Mode Works 457

Using Interface Pools 458

Using Online Blocks 463
Handling Errors 463
Introduce Delays into the Process 464
Modeling Distributed Workflow Applications 464

Remote Process Source Block 464
Remote Process Task Block 465
Remote Process Sink Block 465

Interacting with Databases 466
DB Function Query Block 467
Database Stored Procedure Block 467
Database Update Object Block 467
Database SQL DML Block 468
Database Query Block 468
Database Commit Block 468
Database Rollback Block 468

Sending Email 468
xvi

Using JMS Messaging 470

Part II ReThink Reference 473

Chapter 12 Blocks Reference 475

Introduction 476

Common Attributes of Blocks 477
General Tab 478
Duration Tab 480
Cost Tab 483
Animation Tab 485

Common Menu Choices for Blocks 486

Common Attributes of Paths 487
General Tab 488
Branch Tab 489
Animation Tab 490

Common Menu Choices for Paths 491

Associate 492
Configuring the Association Mode 493
Creating New Associations 493
Adding Work Objects to Existing Associations 494
Showing Associated Work Objects 495
Specific Attributes 496
Specific Menu Choices 497

Batch 498
Configuring the Batch Mode 498
Batching Objects in a Group 499
Batching Objects By Summing an Attribute of a Work Object 499
Batching Objects Based on a Triggering Work Object 501
Batching Objects At Specified Time Intervals 503
Batching Objects into a Container 505
Showing Work Objects in the Container 506
Specific Attributes 507
Specific Menu Choices 509
Customization Attributes 510

Branch 511
Configuring the Branch Mode 511
Branching Based on Proportion 512
Branching Based on a Dynamic Proportion 513
Branching Based on Type 516
Interactively Selecting the Output Path 518
xvii

Branching Based on Attribute Value 518
Branching Based on a Range of Values 520
Branching Based on Rules that Set the Attribute Value 523
Path Attributes that Pertain Only to Branching 529
Specific Attributes 532
Specific Menu Choices 534
Customization Attributes 534

BRMS Task 535
Configuring the BRMS Rules to Invoke 535
Specific Attributes 536
Specific Menu Choices 536

Copy 537
Creating Copies of a Work Object 537
Identifying the Original Output Path 538
Adding Copies to Associations 539
Configuring the Number of Objects to Create 539
Specific Attributes 540
Specific Menu Choices 541
Customization Attributes 541

Copy Attributes 542
Copying Attributes from One Object to Another 542
Specific Attributes 546
Specific Menu Choices 547

Insert 548
Understanding the Paths of an Insert Block 548
Configuring the Insert Mode 548
Inserting a Single Object Into a Container 549
Inserting Objects into the Container By Looping 550
Inserting Objects Into the Container All at Once 551
Showing Work Objects in the Container 551
Specific Attributes 552
Specific Menu Choices 553

Merge 554
Merging Multiple Streams of Work 554
Merging Work That Loops Around a Process 555
Specific Attributes and Menu Choices 555

Reconcile 556
Reconciling Individual Associated Objects 556
Reconciling All Objects 557
Specific Attributes 560
Specific Menu Choices 561
Customization Attributes 561

Remove 562
xviii

Understanding the Paths of a Remove Block 562
Configuring the Remove Mode 563
Removing Objects from the Container By Looping 563
Removing Objects from the Container All at Once 565
Showing Work Objects in the Container 566
Specific Attributes 567
Specific Menu Choices 568
Customization Attributes 569

Retrieve 570
Configuring the Retrieve Mode 570
Retrieving Objects from a Pool 571
Retrieving Objects from a Pool at Random 571
Retrieving Associated Objects from a Pool 572
Retrieving Objects with a Particular Attribute Value from a Pool 573
Retrieving Based on a Range of Values 576
Retrieving All Work Object 577
Retrieving Copies of Work Objects from a Pool 577
Adding Retrieved Work Objects to Associations 578
Determining How the Block Handles Objects Not Found 578
Specific Attributes 579
Specific Menu Choices 583
Customization Attributes 584

Sink 585
Signalling the End of a Process 585
Specific Attributes and Menu Choices 586

Source 587
Configuring the Source Mode 588
Generating Work Objects Based on the Path Type 588
Configuring the Number of Objects to Generate for Each Output Path

Type 589
Generating Work Objects from an External File 589

Format of Object File 589
Generating Work Objects Continuously 590
Stopping Generating Work Objects at the End of the File 592

Configuring Duration and Objects from an External File 592
Generating Work Objects 594
Configuring the Maximum Number of Objects 594
Configuring the Start and End Times 595
Specific Attributes 596
Specific Menu Choices 598
Customization Attributes 599

Store 600
Configuring the Store Mode 600
Storing Work Objects in a Pool 601
Storing Work Objects to a File 602
xix

Storing Arrival Times to a File 603
Specific Attributes 604
Specific Menu Choices 606
Customization Attributes 607

Task 608
Processing Work and Sending It Downstream for Further

Processing 608
Processing Multiple Streams of Work Synchronously 609
Processing Multiple Streams of Work Sequentially 610
Generating Work in a Process 611
Specifying the Number of Objects to Generate 612
Deleting Work in a Process 613
Modeling the Details of a Task 613
Copying Attribute Values to the Output Object 614
Specific Attributes 619
Specific Menu Choices 620

Yield 622
Configuring the Yield Mode 622
Configuring a Random or Random Triangular Yield 623
Configuring Yield Based on an Attribute of the Work Object 627
Configuring a Proportional Yield 630
Determining the Yield Value 634
Specific Attributes 635
Specific Menu Choices 637
Customization Attributes 638

Chapter 13 Instruments Reference 639

Introduction 640

Common Attributes of Instruments 642
General Tab for Feeds 643
General Tab for Probes 644
Animation Tab for Feeds and Probes 646

Common Menu Choices for Instruments 648
Common Menu Choices for Feeds and Probes 648
Common Menu Choices for Probes 649

Acknowledge Message Probe 650
Specific Attributes 650
Specific Menu Choices 651

Average Probe 652
Determining the Value of the Probe 652
Computing the Average of an Attribute Value 652
Plotting the Minimum and Maximum Values 655
Charting the Average of Quantitative Parameters 656
xx

Specific Attributes 657
Specific Menu Choices 658

Copy Attributes Probe 659
Rolling Up Metrics from the Detail to the Superior Task 659
Specific Attributes 665
Specific Menu Choices 666

Criteria Probe 667
Determining the Value of the Probe 667
Comparing Sampled Values Against a Criteria 667
Specific Attributes 669
Specific Menu Choices 670

Delete Message Probe 671
Specific Attributes 671
Specific Menu Choices 672

Delta Time Probe 673
Determining the Value of the Probe 673
Computing the Cycle Time 673
Computing a Partial Cycle Time 675
Specific Attributes 677
Specific Menu Choices 677

Interval Sample Probe 678
Determining the Value of the Probe 678
Sampling the Model at Regular Time Intervals 678
Specific Attributes 681
Specific Menu Choices 682

Message Probe 683
Generating Text Messages 683
Specific Attributes 685
Specific Menu Choices 687

Moving Average Probe 688
Determining the Value of the Probe 689
Computing a Moving Average of a Probed Value 689
Computing a Moving Average Directly 692
Computing a Moving Average of a Resource Directly 694
Specific Attributes 696
Specific Menu Choices 697

N-Dimensional Sample Probe 698
Collecting N-Dimensional Samples from the Model 698
Specific Attributes 701
Specific Menu Choices 701

Parameter Probe 702
Setting the Value of a Parameter 702
xxi

Specific Attributes 706
Specific Menu Choices 707

Sample Probe 708
Determining the Value of the Probe 708
Probing Attribute Values that the Model Computes 708
Probing Attribute Values of a Resource Directly 710
Charting Quantitative Parameters 711
Specific Attributes 714
Specific Menu Choices 715

Statistics Probe 716
Determining the Value of the Probe 716
Computing Statistics for a Probed Value 717
Specific Attributes 721
Specific Menu Choices 723

Update Trigger Probe 724
Specific Attributes 724
Specific Menu Choices 724

Accumulate Feed 725
Accumulating Values 725
Specific Attributes 729
Specific Menu Choices 730

Attribute Feed 731
Copying Attribute Values 731
Specific Attributes 735
Specific Menu Choices 737

Change Feed 738
Feeding New Values into Attributes of Blocks 738

Feeding Quantitative Values 739
Feeding Symbolic or Textual Values 744

Feeding New Values into Attributes of Resources 746
Generating Random Numbers Based on a Distribution 749
Specific Attributes 752
Specific Menu Choices 754
Customization Attributes 754

Copy Attributes Feed 755
Copying Attributes from a Block to a Work Object 755
Specific Attributes 759
Specific Menu Choices 760

Increment Feed 761
Incrementing a Counter 761
Specific Attributes 764
Specific Menu Choices 765
xxii

Parameter Feed 766
Getting the Value of a Parameter 766
Specific Attributes 769
Specific Menu Choices 770

Timestamp Feed 771
Feeding a Timestamp into a Work Object of the Model 771
Specific Attributes 773
Specific Menu Choices 773

Glossary 775

Index 783
xxiii

xxiv

Preface
Describes this guide and the conventions that it uses.

About this Guide xxv

Audience xxvi

Conventions xxvi

Related Documentation xxvii

Customer Support Services xxix

About this Guide
This guide explains how to use all the features of ReThink to create simulation
models of your business process. It teaches you how to:

• Start the server and connect the client.

• Organize and control your models.

• Work with models through the user interface.

• Create, connect, and configure blocks to describe your business process.

• Use instruments to obtain metrics about your model and feed key parameters
into your model.

• Constrain your model, based on resource availability.

• Track performance based on each unit of work that flows through the model.

• Generate output reports of key metrics and input reports for feeding values
into the model.

• Access external databases for generating, storing, and retrieving work, and for
reporting.
xxv

• Run multiple simulation using a script by configuring a Scenario Manager.

• Communicate with external databases and other systems in real time for
online transaction processing.

It also provides two reference sections:

• Block reference, which describes how to use each block.

• Instrument reference, which describes how to use each instrument.

Audience
This manual is written for ReThink modelers to help them learn how to use
ReThink objects to create models. It explains how each type of ReThink object
works and shows examples of typical uses. This manual also contains a reference
section that describes how to use each type of block and instrument.

For introductory information about modeling using ReThink, see Getting Started
with ReThink.

This manual assumes that you have a basic understanding of the G2 environment
in which ReThink runs. In particular, ReThink modelers interact with
workspaces, objects, classes, and connections. However, this book explains how
to perform most G2 operations that you will need to run ReThink.

If you are a ReThink developer who wants to customize the definition of ReThink
objects, see the Customizing ReThink User’s Guide.

Conventions
This tutorial uses the following typographic conventions:

Example Description

true Parameter and metric values

 task Glossary terms

c:\Program Files\Gensym\
g2-2011\rethink\
kbs\rethink.kb

Pathnames and filenames
xxvi

Related Documentation
Related Documentation

ReThink

• Getting Started with ReThink

• ReThink User’s Guide

• Customizing ReThink User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual
xxvii

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide
xxviii

Customer Support Services
G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxix

xxx

Part I
Modeling
Using ReThink
Chapter 1: Running ReThink

Describes how to start the server and connect the client.

Chapter 2: Organizing Models and Controlling Simulations

Describes how to use models, scenarios, and organizers to organize and control models.

Chapter 3: Working with Models

Describes how to work with models through the menus and toolbars.

Chapter 4: Using Blocks

Describes how to clone, connect, and configure blocks to create a model, and how to specify the
duration and cost of block activities.

Chapter 5: Using Instruments

Describes how to use ReThink instruments to probe and chart the performance of your model,
and how to feed input parameters into your model.

Chapter 6: Using Resources

Describes how to use resources and temporal constraints to constrain your model and
compute cost and utilization statistics.

Chapter 7: Using Work Objects

Describes how ReThink uses work objects, which are objects that blocks create, process, and
delete when a model is running.
1

Chapter 8: Using Reports

Describes how to view metrics and enter parameter values through various types of reports.

Chapter 9: Accessing External Databases

Describes how to access databases.

Chapter 10: Using Batch Simulation

Describes how to use run multiple simulations from a script.

Chapter 11: Using ReThink in Online Mode

Describes how to use ReThink in online mode.
2

1

Running ReThink
Describes how to start the server and connect the client.

Introduction 3

Starting the Server and Connecting the Client 4

Connecting to a Specific Server at Startup 5

Starting the Server with Your Application Loaded 7

Exiting ReThink 7

Introduction
ReThink is a client/server application. ReThink provides a batch file that, by
default, starts the G2 server as a hidden process on the local machine at a default
port (1111).

To run ReThink, you must connect the Telewindows client to the server. By
default, Telewindows automatically connects to the server running on the local
machine on the default port.

You can run ReThink in a secure G2 environment, which means users must
provide a password before ReThink grants access to a KB. User names and
passwords are stored in the g2.ok file. For details on how to configure ReThink to
run in a secure G2 environment, see Chapter 54 “Licensing and Authorization” in
the G2 Reference Manual.
3

Starting the Server and Connecting the Client
You can start the server and connect the client by using the Start menu.

To start the server and connect the client:

1 Choose Start > Programs > Gensym G2 2011 > G2 G2 ReThink >
Start G2 ReThink Server.

This menu choice starts the G2 server, using the StartServer.bat batch file,
located in the g2 directory of your ReThink installation directory. It starts the
server on the local machine on TCP/IP port number 1111, and it automatically
loads the KB named rethink-online.kb.

When the server has been started, the G2 icon appears in the system tray.
When the server is running, the icon looks like this:

2 Once the server is running, connect the client in one of two ways:

 To connect Telewindows to the server running on the default host and
port, choose Start > Programs > Gensym G2 2011 > Telewindows Next
Generation.

or

 To connect Telewindows to the server running on the local host on the
current port, right-click the G2 icon in the system tray and choose Connect
Telewindows.

The Telewindows client is now connected to the G2 server.
4

Connecting to a Specific Server at Startup
When the client is connected and all files have finished loading, you will see this
window:

Connecting to a Specific Server at Startup
You can run the ReThink client and server on different computers, or multiple
ReThink servers on the same computer.

You can:

• Connect the client directly to the server.

• Start the server on a specific port.

• Connect the client to a specific server.
5

Connecting the Client to the Default Server

To connect the client to the default server:

1 Start the ReThink server from the Start menu.

By default, the server starts on the local host at port 1111. Each time you start a
new server on the same machine, the port number increments by one. For
example, if you start another server, the port number would be 1112.

2 To determine the host and port, hover the mouse over the G2 server icon in
the system tray.

For example, MY-HOST:1111 means the server is running on the machine
named MY-HOST at port 1111.

3 Right-click the G2 server icon in the system tray and choose Connect
Telewindows.

The Telewindows client connects to the specific host and port of that server.

Starting the Server on a Specific Port

To start the server on a specific port:

1 Right-click the Start G2 ReThink Server menu choice in the Start menu and
choose Create Shortcut.

2 Rename the shortcut and/or drag it to your desktop, as needed.

3 Display the properties dialog for the shortcut and click the Shortcut tab.

4 Configure the Target property in the dialog to be the specific port on which to
start the server, using the -tcpport command-line option.

For example, to start the server on port 1115, the shortcut would look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb ..\rethink\kbs\rethink-online.kb -nowindow -tcpport 1115

Connecting the Client to a Specific Server

To connect the client to a specific server:

1 Create a shortcut to the twng.exe file located in the g2 directory of your
ReThink product installation, either directly or by creating a shortcut from the
Telewindows Next Generation menu choice in the Start menu.

2 Display the properties dialog for the shortcut and click the Shortcut tab.
6

Starting the Server with Your Application Loaded
3 Configure the Target by appending the host and port of the ReThink server to
which to connect, using this syntax: host:port.

For example, to connect to my-host at port 1115, the shortcut would look like
this:

"C:\Program Files\Gensym\g2-2011\g2\twng.exe"
my-host:1115

Starting the Server with Your Application
Loaded

By default, the server starts up with the default ReThink application running,
rethink-online.kb. Once you create an application, you might want to create a
shortcut to the ReThink server that automatically loads your application at
startup.

To start the server with your application loaded:

1 Copy the Start G2 ReThink Server shortcut from the Start menu.

You can rename the shortcut and drag it to your desktop, as needed.

2 Display the properties dialog for the shortcut and click the Shortcut tab.

3 Configure the application to load by editing the Target.

For example, to load the application named aero.kb located in the
\rethink\examples directory, the Target should look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb "c:\Program Files\Gensym\g2-2011\rethink\examples\aero.kb"
-nowindow

Exiting ReThink
To exit ReThink, you disconnect the client from the server, then shut down the
server. By default, you can only exit the server directly from the client in
Developer mode.

To disconnect the client from the server:

 Choose File > Close.
7

To exit the server:

 Right-click the G2 server icon in the system tray and choose Shut Down G2.

or

1 Choose Tools > User Mode > Developer.

2 Choose File > Exit.

3 Click Yes in the confirmation dialog.
8

2

Organizing Models and
Controlling Simulations
Describes how to use models, scenarios, and organizers to organize and control
models.

Introduction 9

Working with Projects 11

Configuring the Model Environment 13

Controlling the Simulation 17

Configuring the Scenario 20

Performing “What-if” Analysis on a Model 28

Working with Large Models 32

Viewing Demo Models 37

Customizing Scenarios 38

Introduction
The first step in building a ReThink model is to create a new project. ReThink
takes care of loading and saving all the required modules for you; therefore, we
recommend that you always create a new project.

The next step is to create a model, which contains the blocks, resources, and
instruments that describe your business process. You place these objects on the
subworkspace of the model, which is called the detail.
9

A model typically has one or more organizers, which contain various types of
objects that the model requires but that are not directly connected to the model,
such as work object definition classes or resources. You place these objects on the
organizer’s detail.

Each model must define a scenario, ReThink’s discrete event simulation engine,
which tracks events by using a simulation clock. A scenario controls various
aspects of the model, including the mode, status, and simulation time, which
represents the current time at which the simulation is running.

Once you have created a model of your process, you typically experiment with
alternative scenarios and processes to test the performance of the model under
different conditions. For example, you might test the model under a heavy load
and a light load to see how it performs, or you might test the same set of input
parameters against a model with fewer resource constraints. Thus, scenarios serve
as control centers for a model, allowing you to perform “what-if” analysis.

This figure shows the top-level workspace for an order fulfillment process that
defines two alternative models and the detail of one of the models:

Scenario

Models

Organizers

Workspace

Model
detail
10

Working with Projects
This topic describes how to:

• Work with projects.

• Configure the model environment.

• Control the simulation.

• Configure the scenario.

• Perform “what-if” analysis on a model.

• Work with large models.

• View demonstration models.

• Customize scenarios.

Working with Projects
A ReThink project consists of a set of related files that form a knowledge base.
Each file contains a stand-alone module, which together make up a module
hierarchy. Each module is associated with its own .kb file, whose name typically
corresponds to the module name. The module hierarchy consists of a top-level
module and a number of lower-level modules. The top-level module requires the
lower-level modules to run.

You can:

• Create a new project.

• Save a project.

• Open a project.

Creating a New Project

When creating a new project, ReThink creates a new, blank project with the name
you enter. The new project is saved it in the projects directory of your ReThink
installation directory.

Note Creating a new project replaces the existing model in memory. Therefore, before
you create a new project, be sure to save the existing project, as necessary.
11

To create a new project:

1 Choose File > New.

2 Enter the name of the project.

The project name cannot contain spaces.

3 Ensure that ReThink is chosen as the selected library.

4 Check or uncheck any additional libraries, depending on how your
application needs to access external data.

5 Click OK.

ReThink displays the Operator Logbook as it creates a new project with the name
you specify, then loads the new project and all required modules onto the server.
When all modules have been successfully loaded, the menu bar updates. You
must wait until the KB has finished loading in the server before you can access
your project.

Saving a Project

Projects are stored in the projects directory of your ReThink installation
directory.

ReThink saves the top-level module only; it does not save the required modules.
Unless you are customizing ReThink, you do not generally need to save the
required modules.

To save a project:

 To save a project to the project file that was loaded when you started the
client, choose File > Save or click the equivalent toolbar button: ()

or

 To save the project to a different project file, choose File > Save As, enter a
new project name, or choose an existing project name from the list of available
projects on the server.

Opening a Project

To open a project, specify the project name associated with the top-level module
in the module hierarchy.

Note Opening a new project replaces the existing application in memory. Therefore,
before you open a new project, be sure to save the existing project, as necessary.
12

Configuring the Model Environment
To open a project:

1 Choose File > Open or click the equivalent toolbar button () to display the
Open Project dialog.

2 Enter or choose the project to open and click Open.

3 Click Yes in the confirmation dialog.

ReThink displays the Operator Logbook as it loads the project file and all required
modules onto the server. When all modules have been successfully loaded, the
menu bar updates. You must wait until the KB has finished loading in the server
before you can access the application.

Configuring the Model Environment
When you first begin modeling your business process, you typically create a
stand-alone model, which contains all aspects of the complete model: blocks,
resources, instruments, charts, user interface elements, and class definitions.

You create your ReThink model by creating and configuring these objects within
the model environment:

• Model — A container in which you build your ReThink model.

• Scenario — The discrete event simulation engine for controlling the
simulation.

• Organizer — A container in which you place various objects in your model.

Note Every model must have a Scenario; otherwise, you cannot configure certain
aspects of the model.

Creating a Model

You create and organize models through the Projects menu, in which case
ReThink keeps track of where the model is located.

You can also create models directly from the ReThink toolbox and place them on
a top-level workspace.

To create a model:

1 Do one of the following:

 Choose Project > System Models > Business Processes > Manage, then
click the New button () to display the properties dialog for creating a
new model.

or
13

 In the Navigator, expand System Models in the tree, mouse right on the
Business Processes node, and choose New Instance.

2 Configure the Label to name your model.

3 Configure the Best Practice URL, as needed.

The Best Practice URL can reference any HTML file, either on the World Wide
Web or on the file system, or any RTF file on the file system, which describes
the model. When this attribute is configured, choosing Show URL or clicking
the model displays the file in a browser window.

4 Configure the Model Version to be any number to uniquely identify the
model.

5 Click OK to add the model to the Manage dialog and Navigator.

6 In the Manage dialog, select your model and click the Model button () to
show the model detail, or in the Navigator, mouse right on the model and
choose Show Detail.

You create your model on this detail.

7 Choose View > Toolbox - ReThink and click the Tools button:

8 Select a Scenario and click to place it on the model detail.

9 Choose Layout > Shrink Wrap or click the equivalent toolbar button:

The workspace and window size adjust to fit the model. Drag the Scenario to
adjust the borders of the workspace.

Scenario
14

Configuring the Model Environment
The model detail should look similar to this:

Alternatively, to create a model and place it on a top-level workspace:

1 Choose Workspace > New.

For more information, see Creating and Accessing Top-Level Workspaces.

2 Display the ReThink toolbox and click the Tools button.

3 Create a Model object and place it on the workspace.

4 Choose Show Detail on the model to show its detail.

For example, here is a top-level workspace with two models:

Scenario

Model detail
15

Creating an Organizer

When you run a model, ReThink automatically creates class definitions for the
work objects that the model processes. Typically, you place these class definitions
on the detail of an Organizer. You can also store other objects such as resources on
the detail of an organizer. You use an organizer for any object that the model
requires to run but that is not directly connected to the model.

To create an organizer:

1 Choose View > Toolbox - ReThink and click the Tools button:

2 Select an Organizer and click to place it on the model detail.

3 Choose Properties on the organizer.

4 Edit the Label parameter to be any text, then drag the label to the desired
location next to the organizer.

5 Choose Create Detail on the organizer.

The organizer detail appears in its own window. You place objects on this
detail, as needed.

6 Choose Show Detail on the organizer to show the detail.

Organizer
16

Controlling the Simulation
This figure shows a model with a scenario and an organizer on the model detail:

Note If an organizer’s detail contains resources, the organizer must be associated with a
scenario. In this case, we recommend that you place organizers on the model
detail, rather than on the same workspace.

Controlling the Simulation
You control the simulation from the Simulation menu or toolbar. These menu
choices and toolbar buttons affect the scenario, which is the control center for
running the simulation. Every model must contain a scenario.

To control the simulation, you:

• Activate and deactivate the scenario.

• Start and stop the simulation.

The scenario shows the simulation mode, status, and current simulation time,
for example:
17

Activating and Deactivating the Scenario

Before you can run a simulation, you must activate the Scenario. Certain menu
choices, such as Show Scenario, are only available when the scenario is active.

The following figure shows an active and inactive scenario:

Note Starting the simulation automatically activates the scenario; therefore, typically,
you do not need to activate the scenario explicitly.

To activate and deactivate a scenario:

 Display a model that contains a scenario, then choose Simulation > Activate or
click the equivalent toolbar button () to toggle activation.

Starting and Stopping the Simulation

You control the status of the simulation by using menu choices in the Simulation
menu, by using keyboard shortcuts, or by clicking the equivalent toolbar button,
as follows:

active

inactive

Menu Choice/
Shortcut Toolbar Button Status Description

Start All running Start the simulation
running.

Reset resetting Reset the simulation.
18

Controlling the Simulation
By default, the simulation runs in Jump mode, which advances the simulation
clock continuously with each discrete event. For alternative ways to run the
simulation, see Configuring the Simulation Mode.

To start and stop the simulation:

1 Start the simulation by choosing Simulation > Start All or by clicking the
equivalent toolbar button.

Choosing Start All activates the scenario and resets the simulation before
starting.

Resetting the simulation can take a period of time, depending on the size of
the model and the speed of your computer. The status of the scenario is
resetting.

Once the simulation is reset, you will begin to see objects flowing through the
model. You can only see these objects as they flow through the model if
animation is enabled. The model also begins computing metrics. The status of
the scenario is running.

2 To pause the simulation, choose Simulation > Pause or click the equivalent
toolbar button.

Pausing the simulation stops the simulation clock, causes all objects to stop
flowing through the model, and stops computing metrics. The status of the
scenario is paused.

3 To resume running the simulation after pausing, choose Simulation >
Continue or click the equivalent toolbar button.

The simulation clock begins advancing again, objects begin flowing through
the model, and the status of the scenario is running.

4 To reset the simulation, choose Simulation > Reset or click the equivalent
toolbar button.

Resetting the simulation resets the simulation clock, deletes all objects that the
model created, and resets all metrics to their initial values.

Pause paused Pause the simulation.

Continue running Continue running the
paused simulation.

Menu Choice/
Shortcut Toolbar Button Status Description
19

Configuring the Scenario
You can configure these features of the scenario:

• Simulation mode, which determines whether the simulation runs
continuously, step-by-step, in real time, or online.

• Duration of the simulation.

• Version of the simulation.

• Start time of the simulation.

• Simulation speed.

• Animation.

• Speed at which objects flow along paths.

• Indicator arrow behavior.

• Computational behavior of the scenario.

• Random number generation.

Configuring the Simulation Mode

You can run the simulation in one of four modes by using the menu choices in the
Simulation menu or the equivalent toolbar button, as this table describes:

Menu
Choice

Toolbar
Button Mode Description

Jump Mode jump The normal discrete event simulation mode. Events
occur in their normal time sequence while a
simulation is running, but the real-time clock
advances non-linearly relative to the simulation
clock. After each discrete event, ReThink
immediately advances the simulation clock to the
start time of the next event. Objects flow through
the model without stopping.

Step Mode step The mode you use for careful examination of the
model. ReThink pauses after each event so you can
walk through the simulation one step at a time.
When you continue running the simulation, the
clock immediately advances to the start time of the
next event, then stops.
20

Configuring the Scenario
You configure the simulation mode from the Simulation menu or toolbar, or on
the properties dialog for the scenario.

Running the Simulation in Jump Mode

To run the simulation in jump mode:

1 Choose Simulation > Jump Mode, click the equivalent toolbar button, or
display the properties dialog for the Scenario and configure the Mode to
be Jump.

2 Choose Simulation > Start All or click the equivalent toolbar button to start
the simulation

Running the Simulation in Step Mode

To run the simulation in step mode:

1 Choose Simulation > Step Mode, click the equivalent toolbar button, or
display the properties dialog for the Scenario and configure the Mode to
be Step.

2 Choose Simulation > Start All or click the equivalent toolbar button to take a
single step in the simulation, then pause the simulation.

3 Choose Simulation > Continue or click the equivalent toolbar button to take a
single step for each discrete event, then pause the simulation.

Running the Simulation in Synch Mode

When you run the model in synch mode, you must configure the proportion of
simulation time to real time. The larger the number, the faster the overall
execution time of the simulation. By default, the value is 1, which means the
timing parameters contribute exactly the specified amount of simulation time to

Synch Mode synch The mode you use to help visualize the relative
times between events. ReThink scales the
simulation time to real time. For example, you can
use this mode to run the simulation at one hour per
second of real time. Most of the time when you are
running a simulations, however, you let the
simulation clock keep track of the time by using
either jump or step mode.

Online
Mode

N/A online The mode you use to run ReThink for online
transaction processing. For details, see Using
ReThink in Online Mode.

Menu
Choice

Toolbar
Button Mode Description
21

the simulation clock. A value of 2 means they contribute half the amount of time.
For example, if a timing parameter specifies 10 minutes to perform a task, and the
Seconds per Tick is 2, the parameter contributes 5 minutes of simulation time.

Note If your model is complex, ReThink may not be able to keep up with the specified
synch rate. For example, if you specify a synch rate such that one minute of
simulation time is equivalent to one year of real time, ReThink might require
more than one minute to process a year-long simulation. If this is the case,
ReThink gives no indication that the synch rate is too slow; however, the metrics
that the simulation computes are correct.

To run the simulation in synch mode:

1 Display the properties for the scenario, click the Scenario tab, and configure
Seconds per Tick to be a number greater than one.

2 Choose Simulation > Synch Mode, click the equivalent toolbar button, or
display the properties dialog for the Scenario and configure the Mode to
be Synch.

3 Choose Simulation > Start All to run the simulation.

4 Choose Simulation > Pause to pause the simulation.

5 Choose Simulation > Continue to continue running the simulation in synch
mode.

Configuring the Duration of the Simulation

Depending on your model, you typically configure the scenario to run for a
specific duration, such as a month, a year, or ten years. You do this by specifying
the ending time of the simulation. A duration of 0 means the simulation will run
for the maximum allowable simulation time, which is 17 years.

Tip To ensure accurate reporting, configure the duration of the simulation to be
slightly longer than the end of the last update period.

To configure the duration of the simulation:

 Display the properties dialog for the scenario, click the Scenario tab, and
configure the Duration to be the amount of time the simulation should run,
for example, 3 months or 2 years.
22

Configuring the Scenario
Configuring the Simulation Version

When performing “what-if” analysis, you often use different scenarios with the
same or with different versions of the model. When using the Scenario Manager
to run multiple simulations from a script, you typically output the data to a
report. To identify which scenario was used to generate the data, you configure
the version of the simulation, using a unique number.

To configure the simulation version:

 Display the properties dialog for the scenario, click the Scenario tab, and
configure the Simulation Version to be a unique number.

For example, you might use 1.0, 1.1, and 1.2 for the scenario associated with three
different versions of a model.

Configuring the Start Time of the Simulation

By default, ReThink uses January 1, 2006 as the start time of the simulation. You
might want to start the simulation at a different time.

To configure the start time of the simulation:

 Display the properties dialog for the scenario, click the Start Time tab, and
configure the Year, Month, Day, Hour, Minute, and/or Second to be the start
time of the simulation.

When you reset the simulation, the new start time appears.

Configuring Simulation Speed

By default, the scenario is configured to run as fast as possible, which means that
when you are running in jump or synch mode, the clock advances with each new
event as fast as it can. This default configuration is desirable when:

• Running simulations from a script, using the Scenario Manager.

• You do not need to interact with the model while the simulation is running.

• You do not need to visualize the animation of objects as they flow through
the model.

Depending on the speed of your computer, running the simulation as fast as
possible often means that you will experience delays when interacting with the
user interface while the simulation is running. For example, when you click the
Pause button to pause the simulation, the simulation clock continues to advance
until the processing has caught up with the user interaction. Similarly, you will
experience delays when configuring values through the dialogs or reports while
the simulation is running.
23

If you want to interact with the user interface while the simulation is running, for
example, to configure parameter values, you should slow the simulation down to
allow more time for the user interface to respond.

To slow the simulation down, you configure the simulation speed to be a larger
number. Depending on the speed of your computer, you might try a simulation
speed of 10 or 15.

Note Once you have configured your model, we recommend that you set the
Simulation Speed to 0 for optimal performance, the default.

To configure the simulation speed:

 Display the properties dialog for the scenario, click the Options tab, and
adjust the Simulation Speed, where the larger the number, the slower the
speed.

Configuring Animation

ReThink animates running simulations by physically moving objects along paths
and highlighting blocks as they become active. You can use your model as a
communication tool to visualize work objects as they flow along paths.

Depending on the speed of your computer, you might need to adjust the
animation speed. In particular, if you have a relatively fast computer, you might
need to slow down the animation speed to better visualize the flow of work
objects. However, keep in mind that performance degrades the slower the
animation speed.

You configure animation speed, based on the number of milliseconds it takes to
move an object from the beginning of a path to the end of a path. By default, it
takes an object 5 milliseconds to move along a path. To slow down the animation,
you might want to move an object along the path in 8 or 10 milliseconds.

Note Once you have configured your model, we recommend that you disable
animation for optimal performance.

To disable animation for a simulation:

 Display the properties dialog for the scenario, click the Options tab, and click
the Enable Animation option off.

To adjust animation speed:

 Display the properties dialog for the scenario, click the Options tab, and
adjust the Animation Speed, where the larger the number, the slower the
speed.
24

Configuring the Scenario
Configuring Object Tracking

You can configure the scenario so that objects that flow through the model keep
track of the blocks through which they have passed since they were created.
When object tracking is enabled, you can pause the simulation and show tracking
for any object. Object tracking is a useful way of verifying the model to ensure
objects flow along the correct paths.

When showing object tracking, ReThink animates all the blocks upstream of the
current block, in order, starting at the current block and ending at the block that
created the object. ReThink repeats this process four times, by default. You can
configure the color used for animating blocks when showing object tracking.

To configure object tracking:

1 Display the properties dialog for the scenario, click the Options tab, and click
the Enable Tracking option on.

2 Configure the Animation Repeat Counter to be the number of times to
animate the blocks when showing object tracking.

3 Configure the Animation Color to be the highlight color to use.

To show object tracking for an object:

 Pause the simulation, then choose Show Flow History on a object in the
model.

Configuring the Behavior of Indicator Arrows

ReThink places indicator arrows next to objects when you show various objects
associated with other objects, such as when you show the scenario associated with
a block.

By default, the indicator arrow remains on the workspace until you explicitly hide
it. You can clear all indicators automatically, or you can configure the scenario to
clear indicators automatically after a certain number of seconds.

Note To clear all indicators, the scenario must be active, as described in Activating and
Deactivating the Scenario.

To clear an individual indicator arrow:

 Left click the indicator arrow.

To clear all indicator arrows:

 Activate the scenario, then choose Simulation > Clear Indicators or click the
equivalent toolbar button:
25

To clear indicators associated with a scenario after a timeout period:

1 Display the properties dialog for the scenario, click the Options tab, and
configure the Indicate Mode by choosing Timeout.

2 Configure the Timeout period after which indicators should automatically
disappear, in seconds.

Configuring the Computation Behavior

By default, ReThink computes metrics for all blocks in the model, including Task
blocks with detail and blocks on the detail itself. Sometimes, you are only
interested in the metrics for blocks on the detail, not the Task block itself.

You can disable the computation of metrics for Task blocks with detail to improve
the performance of a simulation. If your model contains numerous such tasks,
you will notice a significant increase in performance simply by disabling metrics
for these high-level blocks. You control this behavior by configuring the scenario,
which affects all blocks associated with the scenario.

When you disable the computation of Task blocks with detail, ReThink no longer
computes duration, cost, or block metrics for any top-level Task blocks associated
with the scenario. Also, ReThink no longer animates top-level tasks, regardless of
the specification of Enable Animation.

Note If you disable the computation of metrics while a model is running, ReThink stops
computing metrics at that point. If you later resume the computation of metrics,
the computed values will not be accurate for the current simulation. Therefore,
we recommend that you enable and disable metrics before you run the
simulation.

You can configure these parameters related to computation behavior:

Parameter Description

Compute All Blocks Enables the computation of Task blocks with detail.
The default value is off, which means ReThink
computes values for Task block details only; it does
not compute values for the block itself.

Update Charts Enables the updating of charts. The default value is
off, which means that you must update charts
manually or by using a button or a rule. For details,
see Updating Charts.

Enable Metrics
Toolbar Update

Disables the updating of the Metrics toolbars. The
default value is on, which means that the Metrics
toolbars update once every half second.
26

Configuring the Scenario
Note Once you have configured your model, we recommend that you disable updating
of the Metrics toolbar for optimal performance.

To compute metrics for Task blocks with detail:

 Display the properties dialog for the scenario, click the Options tab, and
enable the Compute All Blocks option.

To update charts automatically:

 Display the properties dialog for the scenario, click the Options tab, and
enable the Update Charts option.

To disable metrics toolbar updating:

 Display the properties dialog for the scenario, click the Options tab, and
disable the Enable Metrics Toolbar Update option.

Configuring the Scenario to Generate Identical
Random Numbers

By default, the scenario generates random numbers that vary with each
simulation by generating a new seed number for each simulation. You might
want to run a simulation with identical random numbers to test different model
configurations, using the same set of random numbers.

ReThink generates random numbers to compute mathematical distributions such
as Random Normal, Random Exponential, or Random Triangular. You use these
random distributions to generate values for the Duration attribute of blocks.

To configure the scenario to generate identical random numbers:

1 Display the properties dialog for the Scenario and, on the Scenario tab,
configure the Seed Value to be an integer that holds the seed value, which
ReThink uses as the basis for randomly generated numbers.

By default, it generates a random number as the Seed Value.

2 Disable the Generate New Seed option to use the specified Seed Value for
each simulation.

3 Reset the Scenario to use these new values.

Each time you run the simulation, using this scenario, ReThink uses the same set
of randomly generated numbers.
27

Performing “What-if” Analysis on a Model
Once you have created a stand-alone model of your business process, you will
typically want to perform “what-if” analysis on your model. You do this by
creating and testing alternative scenarios to begin re-engineering your process.

ReThink lets you experiment with alternative scenarios by allowing you to:

• Copy and modify an existing model and compare the results against the
existing model.

• Associate different scenarios with the same model to test different input
parameters against a single model.

• Use the same scenario with different models.

Comparing Different Versions of the Same Model

You might want to compare two versions of the same model to perform “what-if”
analysis. For example, you might test a model by using different resource
constraints, or you might compare the performance of two slightly different work
flows, one that synchronizes work and the other that does not.

To do this, copy an existing model and edit the configuration of one of the
models.

Note You should always reset and deactivate a model before you copy it; otherwise, the
copied model will contain work objects that you cannot delete by resetting.

Caution When you copy a model that has resources or pools that have been assigned to a
block, you must reassign those resources and pools to objects in the new model.
For resources, you must choose the resource associated with the manager;
otherwise, the resource will not be used in the new model. For pools, you must
reassign the pool to the block; otherwise, the block will use the pool in the original
model.

To compare different versions of the same model:

1 Reset the model and deactivate the scenario.

2 Select the model you want to copy and choose Edit > Clone or choose Clone
from the popup menu, then click on a workspace to copy the model.

3 Name the new model to distinguish it from the original.
28

Performing “What-if” Analysis on a Model
4 Display the model’s detail and reconfigure the model.

For example, you might add or remove resources, change the durations or
costs of the blocks, or change the blocks the model uses to describe the
process.

5 If the model contains resources, choose the Choose Resource menu choice on
each Resource Manager in the model, then choose Select on the associated
resource.

6 If the model contains blocks with associated pools, choose the Choose Pool
menu choice on each block, then choose Select on the associated pool.

7 Run the two models independently of each other, either simultaneously or
separately.

8 Compare the results through dialogs and reports.

Once you have copied a model, you can do a side-by-side comparison of the
models. You can run the simulations simultaneously to compare the results while
they are running, or you can run them independently to compare the results at
the end of the simulation.

For example, here are two models, one of which is constrained by resources and
the other of which is not:

Model 1 has no
resource constraints,
while Model 2 does.
29

Using Different Scenarios to Compare the Same
Model

Another way of performing “what-if” analysis on a model is to compare the
outputs of different sets of input parameters against the same model. For
example, you might want to run the same model under light and heavy capacity
and compare the performance results.

To do this, you associate multiple scenarios with a single model, only one of
which can be active at a time:

To use multiple scenarios with a single model:

1 Create two scenarios, either from the toolbox or by copying an existing
scenario.

2 Activate one of the scenarios.

The icon and status value change.

3 While one scenario is active, activate the other scenario.

ReThink automatically deactivates the currently active scenario and activates the
other scenario, because only one scenario can be active at any time.

A model can have
multiple associated
scenarios.
30

Performing “What-if” Analysis on a Model
Using a Single Scenario to Control Multiple Models

In the early stages of developing alternative models, when all you are doing is
controlling the status and mode of each model, you can associate the same
scenario with multiple models, as this figure shows:

If you use this configuration, the scenario now controls both models. For example,
the Start All button starts the sources of both models.

Caution When you copy a model that has resources or pools that have been assigned to a
block, you must reassign those resources and pools to objects in the new model.
For resources, you must choose the resource associated with the manager;
otherwise, the resource will not be used in the new model. For pools, you must
reassign the pool to the block; otherwise, the block will use the pool in the original
model.

When the scenario controls all
the models in the same way,
you can place it on the same
workspace as the models.
31

Working with Large Models
If you have a large model, you might want to use one or both of the following
techniques to break up your model into more manageable pieces:

• Associate two connectors on different details, for example, by:

– Associating connectors on Task block details when the top-level tasks are
not connected.

– Associating connectors on model details.

• Replace the default detail associated with a model or organizer with a top-
level workspace that you create.

By using these features in conjunction with modules, you have a powerful way of
dividing up large models into separate modules so that multiple people can
develop and run different parts of the model simultaneously.

For more information, see Customizing ReThink User’s Guide.

Associating Existing Connectors on Task Block
Details

You might have a model in which connecting two top-level Task blocks with
detail causes paths to overlap in a way that is distracting to the overall readability
of the model. One solution is to delete the top-level connection between the tasks
and associate the connectors on the detail. That way, work objects can flow
between the two tasks even though the top-level Task blocks themselves are not
connected. You can then move the top-level tasks to improve readability, or you
can move one of them to an entirely different workspace.

The following set of steps describe how to associate existing connectors on the
details of two Task blocks.

To associate existing connectors on Task block details:

1 Start with a model in which two Task blocks with detail are connected.

In the following model, suppose you want the details to be connected, but you
do not want the top-level tasks to be connected. For example, you might want
to place each Task block on a different workspace, or you might have a
32

Working with Large Models
complex model on a single workspace in which you want to disconnect the
top-level tasks to make the workspace easier to organize.

2 Delete the connection between the top-level Task blocks, then delete the stubs.

The model should look something like this:

3 In the properties dialogs for the output connector on Task A’s detail and the
input connector on Task B’s detail, configure the Label to identify each
connector, for example, To Task B and To Task A.

4 Choose the Choose Connector menu choice on the output connector on
Task A’s detail.

5 Choose Select from the input connector’s menu on Task B’s detail to select it.

ReThink displays an indicator arrow next to the selected connector. The
details are now connected, even though the high-level tasks are not
connected.

6 To verify that the connectors are connected, click one of the connectors.

Output connector Input connector
33

An indicator arrow points to the connector to which the selected connector is
associated:

When you run the simulation, work objects flow across the details of the two
tasks:

1

2

34

Working with Large Models
Associating Connectors on Other Types of Details

Suppose you have a large model that you want to break up into two different
models. You can do this by associating connectors on the details of two models.
To do this, you use the Connector located on the Tools palette of the ReThink
toolbox.

You can associate connectors on any type of detail with connectors on any other
type of detail, for example:

• A connector on a model detail with a connector on a Task block detail.

• A connector on a Task block detail that is one level deep in the hierarchy with
a connector on a Task block detail that is three levels deep.

Note When adding new connectors to Task block details, always delete the
unconnected paths on the top-level blocks first; otherwise, ReThink creates
additional connectors for you when you show the detail.

The following set of steps and examples show how to associate connectors on two
Model details.

To associate connectors on Model details:

1 Create two models and show their details.

2 Create a model on each detail, such that work objects flow from the last block
on the first model to the first block on the second model.

3 Display the Tools palette of the ReThink toolbox:

Connector
35

4 Create two connectors, connect one to the output path of the first model, and
connect the other to the input path of the second model.

5 Label each connector to indicate the source and destination of the work
objects.

6 Choose the Choose Connector menu choice on the first connector, then choose
Select from the second connector’s popup menu to select it.

The model details are now connected even though no top-level Task blocks are
connected.

For example, here is a simple model that is split across two model details:

Replacing Default Details of Model and Organizer
Tools

You might want to replace the default detail of a model or organizer with a
named, top-level workspace. For example, if you have already developed a model
on a workspace that you created, and you decide later that you want to associate
the workspace with a model or an organizer, you can replace the default detail
with the existing workspace.

You can also assign the workspace to its own module, which means you can split
a model across multiple modules and save them independently. This means
different people can work on different portions of the model simultaneously.

Once you have replaced the default detail of a model or organizer with a top-level
workspace, you can associate connectors on different details so work objects flow
across top-level workspaces.

Finally, once you have replaced the default details with top-level workspaces, you
can assign those workspaces to different modules in the hierarchy to support
team development.
36

Viewing Demo Models
To replace the detail of a model or organizer with a top-level workspace:

1 If you have already created a detail, choose Show Detail on a model or
organizer to display the detail.

2 Select the detail and choose Edit > Delete.

3 Choose Workspace > New Workspace to create a new top-level workspace.

4 Choose Properties on the workspace background and configure the name.

5 Choose the Choose Detail menu choice on the model or organizer, then mouse
right on the background of the new workspace to display its menu and choose
Select.

ReThink highlights the border of the workspace indicating that it has been
selected. The top-level workspace is now associated with the tool as its detail. You
display the new detail normally, by using the Show Detail menu choice.

The following figure shows a model in which the detail is a top-level workspace:

Viewing Demo Models
ReThink provides a number of a tutorial models. For details, see the Getting
Started with ReThink.

ReThink also provides demonstration models that you can view named
rethink-40-doc-examples.kb and rethink-40-online-examples.kb.

These models are all located in the rethink\examples directory of your ReThink
product directory.

To view ReThink demo models:

 Choose File > Open and choose the file to open.
37

Customizing Scenarios
You can customize the procedure that defines the reset behavior of a scenario. For
detailed information, see the Customizing ReThink User’s Guide.
38

3

Working with Models
Describes how to work with models through the menus and toolbars.

Introduction 41

Summary of Common Tasks 41

Using the Project Menu 42

Navigating Applications 44

Interacting with Workspaces 46

Using the Menus 53

Using the ReThink Toolbox 63

Using the G2 Toolbox 72

Interacting with Objects 72

Using the Toolbars 75

Annotating Models 80

Setting and Clearing Breakpoints and Indicators 84

Switching User Modes 85

Viewing Messages 86

Configuring User Preferences 87

Configuring Network Interfaces 102

Configuring Message Browsers 102

Configuring Module Settings 102

103
39

40

Introduction
Introduction
To work with ReThink models, you perform these tasks:

• Use the Project menu.

• Navigate models.

• Interact with workspaces.

• Use the menus.

• Use the ReThink toolbox.

• Use the G2 Toolbox.

• Interact with objects in the model.

• Use toolbars.

• Annotate the model.

• Set and clear breakpoints and indicators.

• Switch user modes.

• View messages.

• Configure user preferences.

• Configure network interfaces.

• Configure message browsers.

• Configure module settings.

You can also view a summary of command tasks.

Summary of Common Tasks
This section summarizes how to perform common tasks in ReThink:

To... Do this...

Display the popup menu for an
object on a workspace

Click the right mouse button on the object.

Display the properties dialog for
an object on a workspace

Double-click the object, select the object
and press the F4 key, or choose Properties
from the object’s popup menu. You can
also select the item, then choose Edit >
Properties or click the equivalent toolbar
button:
41

Using the Project Menu
You create, configure, and interact with ReThink objects to create a model by
using the Project menu.

You can also create and interact with objects through the Navigator, and you can
search for objects once they exist. For more information, see:

• Using the Navigator.

• Searching for Objects.

Using the Project Menu

The Project menu allows you to create and manage the various objects you need
to build a ReThink application.

For details, see Using the Project Menu.

Display the detail for an object,
such as a model or a Task block
with detail

Choose Show Detail from the popup menu
for the object, choose View > Show Details,
enter Ctrl + right click on the object, or
click the equivalent toolbar button:

Display the ReThink toolbox Choose View > Toolbox - ReThink.

Adjust the size of a workspace and
its associated window to fit the
contents of the workspace

Choose Shrink Wrap on the workspace,
choose Layout > Shrink Wrap, or click the
equivalent toolbar button:

Hide a workspace Click the Minimize button on the window,
choose Hide on the workspace, choose
View > Hide, or enter Ctrl + right click on
the workspace.

To... Do this...
42

Using the Project Menu
Using the Manage Dialog

The Manage dialog allows you to create and configure new ReThink objects,
show model details, copy and delete objects, and perform specific operations.

The Manage dialog provides these toolbar buttons:

The buttons in the Manage dialog are enabled or disabled, as appropriate, for the
particular type of object.

The Go To button is disabled in Modeler mode because, typically, you interact
with objects through properties dialogs and model details. You can go to objects
directly through the Navigator or search, if desired.

For information about interacting with objects directly, see Interacting with
Objects in Developer Mode.

To use the Manage dialog:

1 Choose a submenu from the Project menu and choose Manage.

If the submenu has additional submenus, choose one of the submenus. The
Manage dialog appears, which includes all objects in the submenu.

2 To create a new object, click the New button in the Manage dialog.

A properties dialog appears for configuring the object. The default name is a
unique, system-generated name.

3 Configure the properties, depending on the type of object, and click OK.

For information on configuring the properties, see the various chapters in this
guide.

The object now appears in the Manage dialog.

4 Select an object in the list to enable the toolbar buttons, as appropriate for the
type of object.

New

Properties

Model

Go To

Copy

Delete
43

5 To display the properties dialog for an object, click the Properties button.

Note that the only way to configure the properties of a container object once it
has been created is through the Manage dialog.

6 To display the detail associated with a container object, click the Model
button.

This button is only available if the object has detail.

7 To copy an existing object, select the object you want to copy, then click the
Copy button.

A properties dialog appears for configuring the copy. The default name is the
existing object name with -copy appended.

8 To delete an object, select the object you want to delete and click the Delete
button.

Using the Project Submenus

ReThink provides access to the various objects in a model through submenus of
the Project menu. Selecting the menu choice for a configuration object displays the
properties dialog for the object. Selecting the menu choice for a container object
displays its detail.

To use the project submenus:

1 Choose a submenu from the Project menu.

If the submenu has additional submenus, choose a submenu until you see a
submenu that includes the names of all objects of that type.

2 Choose an object from the submenu.

Navigating Applications
To navigate applications, you can:

• Use the Navigator.

• Search for objects.

For information on creating and managing objects through the Project menu, see
Using the Project Menu.
44

Navigating Applications
Using the Navigator

The Navigator displays all the elements of a project.

You can interact with objects in the Navigator, for example, showing its
properties or going to the detail, depending on the type of object. You can also
create new objects from the Navigator.

To display the Navigator:

 Choose View > Navigator or click the equivalent toolbar button () and
expand the tree view to the desired level.

Here is the Navigator for the Aero model with the tree expanded to show the
objects in the As Is model:

To interact with objects in the Navigator:

 Right-click a node in the Navigator and choose the desired menu choice.

In addition to the menu choices that you normally get when you right-click the
object, you can choose Go To to show the selected object. Depending on the type
of object, you might go to the object on a detail or you might go to the object in a
repository.

You can also choose New Instance on the Business Processes folder to create a
new model directly from the Navigator.
45

Searching for Objects

You can search for specific types of objects, by matching text in the label field
and/or the target class, depending on the type of object. You can also go directly
to named objects.

To search for objects:

1 Choose Tools > Search and choose a category of object to be found.

2 Enter the Keyword text to match and, depending on the type of object,
optionally, the Target Class.

3 Configure Search By to search for the keyword only, class only, keyword or
class, or keyword and class.

4 Click the Search button.

The search results include all objects whose label matches the specified text.

5 Select an object and click the Go To button.

An arrow appears next to the found object, if it exists; otherwise, the Search dialog
display No Matches Found.

Depending on the type of object, you might go to the object on a detail or you
might go to the object in a repository. You can interact with the object through its
menu choices, for example, to go its detail or show its properties.

To go to a named object in the model:

 Enter the exact name of an object in the Go To type-in box on the toolbar:

A red arrow points to the named object on a workspace.

Interacting with Workspaces
You place all model objects on detail workspaces, which appear their own
window. You display and interact with workspaces in these ways:

• Display a detail workspace.

• Hide a workspace.

• Delete a workspace.

• Create a detail workspace.

• Edit workspace properties.

• Scale a workspace.
46

Interacting with Workspaces
• Shrink wrap a workspace to fit the enclosed elements.

• Show the superior object for a workspace.

• Print a workspace.

• Save a workspace as a JPEG file.

• Assign a background image to a workspace.

• Create and access top-level workspaces.

Displaying a Detail Workspace

A number of objects define detail, which is a workspace associated with the object
on which you place other objects. For example, models, organizers, and Task
blocks all define detail.

To display detail for an object:

 Right-click the background of a workspace and choose Show Detail, choose
View > Show Details, or click the equivalent toolbar button: ()

or

 Press Ctrl + right-click on the object.

Hiding a Workspace

To hide a workspace:

 Right-click the background of a workspace and choose Hide or press
Ctrl + right-click on the workspace.

Deleting a Workspace

Deleting a workspace permanently deletes it from the server, including all objects
on the workspace.

To delete a workspace:

 Select a workspace and choose Edit > Delete, right-click the background of a
workspace and choose Delete, or click the equivalent toolbar button: ()
47

Creating a Detail Workspace

If you delete a detail workspace associated with a model, you can create a new
detail for an existing model.

To create a detail workspace:

1 Show the detail of a model.

For details, see Displaying a Detail Workspace.

2 Delete the detail workspace associated with the model.

For details, see Deleting a Workspace.

3 Show the Navigator.

For details, see Using the Navigator.

4 Right-click the model whose detail you deleted and choose Create Detail.

The model has a new detail workspace.

Editing Workspace Properties

You can edit the name of the workspace, as well as the background and
foreground colors, and the margins around the objects at the edges of the
workspace. By default, the background color is white and the foreground color is
black.

For information about configuring the background image, see Loading
Background Images.

To edit workspace properties:

1 Select a workspace and choose Edit > Properties, right-click the background of
a workspace and choose Properties, or click the equivalent toolbar button:
()

2 Configure the Names to be any text.

The text is converted to a symbol, with hyphens in place of spaces when you
accept the dialog.

3 Configure the Workspace Margin by entering the number of pixels.

4 Configure the Foreground Color and Background Color by choosing a color.

The name appears at the top of the workspace when you accept the dialog.
48

Interacting with Workspaces
Scaling a Workspace

You can scale a workspace to fit the current window, or zoom a workspace in,
out, or to a specific scale.

To scale a workspace:

 Choose View > Zoom In or Zoom Out, enter Ctrl + = to zoom in or Ctrl + -
(minus) to zoom out, or click the equivalent toolbar buttons: ()

or

 Choose View > Zoom, then choose or enter a zoom scale, or enter a specific
zoom scale in the zoom scale on the toolbar: ()

or

 Choose View > Zoom to Fit or click the equivalent toolbar button: ()

Shrink Wrapping a Workspace

When you move objects on a workspace beyond the visible borders, the borders
adjust to fit the objects. When you move objects on a workspace such that the
workspace contains extra space at its borders, you can adjust the borders by
shrink wrapping the workspace. Shrink wrapping a workspace also adjusts the
window size. You can resize the window to make it smaller to add scroll bars to
the window.

To shrink wrap a workspace:

 Select a workspace and choose Layout > Shrink Wrap or click the equivalent
toolbar button: ()
49

This figure shows a workspace that has extra space around its borders:

This figure shows the result of shrink wrapping the workspace:
50

Interacting with Workspaces
This figure shows the result of dragging the object on the workspace so it has
extra space around its borders, then adjusting the window size to make it smaller,
which adds scroll bars:

Showing the Superior Object of a Detail Workspace

You can show the superior object of a detail workspace, for example, the detail of
or Task block with detail.

To show the superior object of a detail workspace:

 Right-click the background of a workspace and choose Go to Superior, or
select a detail workspace and choose View > Go to Superior or click the
equivalent toolbar button: ()

The workspace with the superior object is now on top with an indicator arrow
next to the object.

Depending on the type of object, you might go to the object in a repository. You
can interact with the object through its menu choices, for example, to show its
properties.

Printing a Workspace

To print a workspace:

 Choose File > Print, or enter Ctrl + P or click the equivalent toolbar button
(), and configure the Print dialog.

Saving a Workspace to a JPEG File

To save a workspace to a JPEG file:

 Choose File > Save as JPEG and specify a file name.
51

Loading Background Images

You can load one or more JPEG, XMB, or GIF files as the background for a
workspace.

To load a single background image:

 Choose Workspace > Load Background Image, navigate to the image to use as
the background, and click Open.

To load multiple background images:

1 Create one or more Image Definition objects from the Displays palette of the
ReThink toolbox.

2 Configure the Image Name and File Name of Image, and optionally click Save
Image Data with KB to save the image data as part of the KB.

3 Show the properties dialog for a workspace, click the Background tab, click
the Add Background Image button to add one or more rows, choose an image
definition from the list of existing definitions, and configure the X-Y position
of each image.

To remove background images:

 Choose Workspace > Delete Background Image.

or

 Show the properties dialog for a workspace, click the Background tab, select a
row, and click the Remove Background Image button.

Creating and Accessing Top-Level Workspaces

Typically, you create new workspaces when you create models through the
Project menu. However, you can also create new workspaces directly through the
Workspace menu, which are top-level workspaces that you can access by name.

To create a new top-level workspace:

1 Choose Workspace > New.

The workspace is assigned a unique number, which starts with unnamed-
workspace.

2 Configure the workspace properties as described in Editing Workspace
Properties.
52

Using the Menus
To access the top-level workspace:

1 Choose Workspace > Get or click the equivalent toolbar button: ()

A list of all top-level workspaces available in the current user mode appears.

2 Select a workspace and click OK.

Using the Menus
The top-level menu bar consists of these menus:

Menu Description

File Standard file operations, and print and export
operations for workspaces.

Edit Standard editing operations for objects on
workspaces.

View Display the various toolboxes and toolbars, display
the Navigator, zoom workspaces, show details, and
show superior objects.

Layout Standard layout operations for objects on
workspaces, including align, distribute, rotate,
reflect, order, nudge, as well as shrink wrapping
workspaces.

Go Standard browser navigation operations and
interaction with the server.

Project Manage system models, object models, reports,
charts, system settings, and user preferences.

Simulation Activate and deactivate scenarios, control the
simulation mode, start, reset, pause, and continue the
simulation, and clear indicators and breaks.

Workspace Create new and get existing workspaces, and edit
background images for workspaces.

Tools Find model objects, show users, and switch user
modes.

Window Control window positioning and choose the active
window.

Help Display online help.
53

The following sections summarize each of these menus.

For information about how to use specific menu choices, see the referenced
sections.

For information about additional menu choices available in Developer mode, see
the Customizing ReThink User’s Guide.

Using the File Menu

The File menu allows you to perform basic file and module operations.

Using the Edit Menu

The Edit menu allows you to perform basic edit operations for objects.

Menu Choice Description

New Creates a new project.

See Working with Projects.

Open Opens an existing project, replacing the one
currently loaded.

Save Saves the top-level module of the current
project.

Save As Saves the top-level module of the current
project to a user filename. You save models to
filenames with a .kb extension.

Save as JPEG Exports the currently selected workspace as a
.jpg file.

Print Prints the currently selected workspace to a
postscript printer.

Close Exits the client.

Menu Choice Description

Delete Deletes the selected object.

Transfer Transfers the selected object to the mouse.
Click on a workspace to transfer the object.

Clone Transfers the selected object to the mouse.
Click on a workspace to clone the object.
54

Using the Menus
Using the View Menu

The View menu allows you to show and hide toolboxes and toolbars, and to
control the zoom scale.

For details about each of the toolboxes, see Using the ReThink Toolbox.

The View menu contains the menu choices in the following table:

Select All Selects all objects on a workspace.

Properties Displays the properties dialog for the selected
object.

Colors Changes the colors of the icon regions of the
selected objects.

Menu Choice Description

Menu Choice Description

Toolbars > Standard Toggles the Standard toolbar, which contains
standard buttons for file and edit operations.

Toolbars > Layout Toggles the Layout toolbar, which contains
buttons for performing standard layout
operations for objects on workspaces.

Toolbars > Web Toggles the Web toolbar, which contains
standard buttons for browsing HTML and
text pages.

Toolbars > Simulation Toggles the Simulation toolbar, which contains
buttons for controlling the simulation run state
and mode.

Status Bar Toggles the status bar, which displays the
connection status to the server.

Message Board Displays the G2 Message Board, which displays
text messages.

Message Browser Displays a message browser of operator
messages.

Navigator Toggles the display of a tree view of all objects in
the current project.

See Navigating Applications.
55

Using the Layout Menu

The Layout menu allows you to interact with objects on workspaces. For details,
see Interacting with Objects.

Toolbox - ReThink Toggles the display of the ReThink toolbox,
which contains all the objects you need to create a
model and run a simulation, including Tools,
Basic Activities, Instruments, Resources, and
Reports.

Zoom

Zoom In

Zoom Out

Zoom to Fit

Scales the selected workspace.

Hide Hides the currently selected workspace.

Go to Superior Displays the superior object of the currently
selected workspace.

Show Details Shows the detail workspace of the currently
selected object.

Menu Choice Description

Menu Choice Description

Order >

Bring to Front

Send to Back

Controls the stacking order of
selected objects on workspaces.

Nudge >

Nudge Up

Nudge Down

Nudge Right

Nudge Left

Micro-adjusts the position of
selected objects in each
direction.
56

Using the Menus
Using the Go Menu

The Go menu allows you to perform standard browser navigation and interact
with the server.

Align or Distribute >

Align Left

Align Center

Align Right

Align Top

Align Middle

Align Bottom

Distribute Horizontally

Distribute Vertically

Aligns two or more selected
objects along various axes.
Distributes three or more
selected objects vertically or
horizontally.

Rotate or Flip >

Normal

90 Clockwise

90 Counterclockwise

180

Flip Horizontally

Flip Vertically

Rotates and reflects the
selected objects.

Shrink Wrap Adjusts the borders of the
selected workspace to just fit
the contained objects.

Menu Choice Description

Menu Choice Description

Back

Forward

Stop

Refresh

Home

Provides standard browser operations for
HTML and text pages.
57

Using the Project Menu

The Project menu allows you to interact with all the objects in the current project,
as follows:

Menu Choice Description

Initialize Application

Uninitialize Application

Clears the Message Browser.

My User Preferences Configures user preferences for the
current user.

See Configuring User Preferences.

System Models >

Business Processes

Creates and manages ReThink
business process models.

Logic >

Business Rules

Creates and manages business
rules.

See the Business Rules Management
System User’s Guide.

Reports Creates and manages a variety of
reports.

Charts Creates and manages various
types of charts.

Object Models >

Business Objects

Business Processes

Creates and manages business
objects and processes for use with
business rules.

System Settings Creates and manages the various
system settings described below.
58

Using the Menus
System Settings >

Interfaces >

SQL

SMTP

JMS

HTTP

Creates and manages network and
database interface objects for
communicating with various types
of external systems.

System Settings >

Interface Pools >

SQL

SMTP

JMS

Creates and manages network and
database interface pools for
communicating with various types
of external systems.

System Settings >

Message Browsers >

Queues

Events

Messages

Access Tables

Templates

Creates and manages custom
message browsers and queues.

System Settings >

Users

Creates and manages user
preferences.

See Configuring User Preferences.

System Settings >

System Performance

Enables, disables, and configures
system performance metrics.

System Settings >

Event and Alarm Metrics

Enables and disables event and
alarm metrics.

Menu Choice Description
59

Using the Workspace Menu

The Workspace menu allows you to interact with workspaces. For details, see
Interacting with Workspaces.

Using the Simulation Menu

The Simulation menu allows you to control the simulation.

Menu Choice Description

New Creates a new workspace.

Get Displays a list of named workspaces, which
you can display.

Load Background Image

Delete Background Image

Loads and deletes background images for
the selected workspace.

Menu Choice Description

Activate Activates or deactivates the current
scenario.

Start All Starts all Source blocks associated with the
current scenario.

Reset Resets the simulation for the current
scenario.

Pause Pauses the simulation for the current
scenario.

Continue Continues running a paused simulation for
the current scenario.

Jump Mode Sets the scenario to jump mode, where the
simulation clock advances continuously
with each discrete event.

Step Mode Sets the scenario to step mode, where the
simulation clock pauses after each discrete
event.

Synch Mode Sets the scenario to synch mode, where the
simulation clock is synchronized with real
time, based on a scale factor.
60

Using the Menus
Using the Tools Menu

The Tools menu allows you to browse objects in the model.

Online Mode Sets the scenario to online mode, where
ReThink performs real-time transaction
processing.

Clear Breaks Clears all break points that have been set in
the model.

Clear Indicators Hides all indicator arrows in the model.

Menu Choice Description

Menu Choice Description

Search Allows you to search for objects in a
model by name or label.

See Searching for Objects.

Show Users Shows the users currently logged into
the server.

User Mode >

Administrator

System-Administrator

Developer

Modeler

Operator

Changes the user mode. The default
user mode is Modeler, which allows
you to create models by copying,
connecting, and configuring objects,
and to run simulations. Operator
mode allows end users to view models
only. Developer mode allows
developers to customize the
application.

Note: In general, you work in Modeler
mode. Very occasionally, modelers
need to switch to Developer,
Administrator, or System
Administrator mode to perform
particular tasks.

See Switching User Modes.
61

Using the Help Menu

The Help menu allows you to access online help that displays as a window within
the client:

You can view PDF versions of the following guides:

• ReThink User’s Guide

• Customizing ReThink User’s Guide

• Getting Started with ReThink

To view the online manuals:

 Choose Start > Programs > Gensym G2 2011 > Documentation > G2 ReThink
and choose the manual you want to view.

Menu Choice Description

G2 Help Topics Display the G2 online help.

ReThink Help Topics Display the ReThink online help.

Server Information Displays version information about the
server.

About G2 Displays the G2 title block, which shows
the current version.

About ReThink Displays the ReThink title block, which
shows the current version.
62

Using the ReThink Toolbox
Using the ReThink Toolbox
The ReThink toolbox contains all of the objects that you use to create a model.

To display and interact with the ReThink toolbox:

1 Choose a toolbox from the View menu.

The toolbox appears with the first palette in the toolbox visible. The palettes
are organized alphabetically. You access the various palettes in the toolbox by
clicking the buttons at the bottom of the toolbox.

Here is the Basic Activities palette of the ReThink toolbox:

Click the buttons to display
the various categories of
objects in the toolbox.

Basic Activities
63

2 To access the various palettes in the toolbox, hover the mouse over a button to
display its tool tip, then click the button to display the palette.

Depending on the size of toolbox, the toolbar at the bottom shows only a
subset of the available buttons in the toolbox.

3 To display the additional buttons in the toolbox, click the configure button at
the far right of the toolbar (), then choose a palette.

4 To configure the buttons that are visible in the toolbar and associated
configuration menu, choose Add or Remove Buttons to display a list of all
palettes, then choose a button to add or remove.

Once you have configured the buttons you want, you can expand the buttons
to show their labels for some or all of the buttons.

5 To show button labels in the toolbox, drag the divider at the bottom of the
toolbox up to expose the buttons with their labels.
64

Using the ReThink Toolbox
For example, here is the ReThink toolbox with button labels showing:

Once you have configured the buttons you want to appear in the toolbox, you
can auto hide the toolbox by clicking the pin in the upper right corner of the
toolbox.

Note Do not close the toolbox or the toolbox reverts to the default set of buttons.

6 Click the pin to autohide the toolbox, and move the mouse over the tab to
display the toolbox after it has been hidden.

You can display, configure, and autohide multiple toolboxes, as needed, each
of which will have its own toolbox tab.

Choose a topic:

Drag the divider up and
down to expose buttons.
65

Basic Activities

Constraints

Displays

Export Tools

Instruments

Online Activities

Reports

Resources

Tools

Basic Activities

See Using Blocks and Blocks Reference.
66

Using the ReThink Toolbox
Constraints

See Constraining the Availability of Resources.

Displays

See Annotating Models.

Export Tools

See Exporting Probed Data to a CSV File.
67

Instruments

See Using Instruments and Instruments Reference.
68

Using the ReThink Toolbox
Online Activities

See Using ReThink in Online Mode.
69

Reports

See Using Reports.

Resources

See Using Resources.
70

Using the ReThink Toolbox
Tools

For information on... See...

Arrival Rate Input
Graph

Using a Graph to Specify Duration

Batch Simulation
Object

Using Batch Simulation

Class Definition Specifying a User-Defined Object as the Path
Type.

Connector Associating Connectors on Other Types of
Details.

Model, Organizer,
and Scenario

Organizing Models and Controlling
Simulations.

Palette Workspace Customizing ReThink User’s Guide.

Remote Chart Creating a Remote Chart.

Resource Utilization
Chart

Charting Resource Utilization.
71

Using the G2 Toolbox
In general, you use the G2 toolbox when customizing models.

In addition, several ReThink features require that you access objects on the G2
toolbox. For details, see:

• Using an Action Button to Update Charts.

• Using Interface Pools.

• Parameter Probe and Parameter Feed.

For details, see the Customizing ReThink User’s Guide.

Interacting with Objects
You can interact with objects in a model by using the Edit menu, the object’s
popup menu, and the Layout menu. Many of the menu choices have shortcuts
and/or equivalent toolbar buttons.

When you create a model, we recommend that first, you place the blocks on the
workspace, then you align and distribute them, using buttons on the Layout
toolbar, then you connect them, as needed.

You configure attributes of objects through properties dialogs.

Rule Branching Based on Rules that Set the Attribute
Value.

Update Trigger • Exporting Probed Data at Regular Time
Intervals.

• Triggering Regular Updates for Multiple
Reports.

For information on... See...
72

Interacting with Objects
Selecting Objects

To select one or more objects:

 Click an object to select it.

or

 Click and drag a rectangular area to select all the objects in the rectangle.

or

 Use Shift key and click on an object to add or remove it to or from an existing
selection.

or

 Use the Alt key and click on a connected network of objects to select all the
connected objects.

To select all objects on a workspace:

 Choose the Edit > Select All or enter Ctrl + A.

Cutting, Copying, Pasting, and Deleting Objects

When you copy an object, the new object has the same property values as the
existing object. If the object has details, the new object has the same details. You
can transfer objects from one workspace to another.

To copy and paste objects:

 Select one or more objects to copy, choose Edit > Clone, then click on any
workspace to paste the selected objects to the workspace.

To cut and paste objects:

 Select one or more objects to cut, choose Edit > Transfer, then click on any
workspace to paste the selected objects to the new workspace.

To delete objects:

 Select an object, then choose Delete from the Edit menu or from the popup
menu, press the Delete key, or click the equivalent toolbar button (), then
click Yes to confirm the deletion.
73

Controlling the Layout of Objects

To adjust the order of objects:

 Select an object, then choose Layout > Order > Bring to Front or Send to Back
or click the equivalent toolbar button: ()

To rotate or flip objects:

 Select an object, choose Layout > Rotate or Flip, then choose the desired action
from the submenu or click the equivalent toolbar button:

To align objects:

 Select two or more objects, choose Layout > Align or Distribute, then choose
the desired align action from the submenu or click the equivalent toolbar
button: ()

To distribute objects:

 Select three or more objects, choose Layout > Align or Distribute, then choose
the desired distribute action from the submenu or click the equivalent toolbar
button: ()

To nudge an object up, down, right, or left:

 Select an object, choose Layout > Nudge, then choose the desired nudge
action from the submenu; or hold down the Ctrl key while pressing the up,
down, right, and left arrow keys to nudge the item in the desired direction; or
click the equivalent toolbar button:

For information on the Shrink Wrap toolbar button on the Layout toolbar, see
Shrink Wrapping a Workspace.

Displaying the Properties Dialog for an Object

To display the properties dialog for an object:

 Double-click the object.

or

 Select the object and press the F4 key.

or

 Choose Properties from the object’s popup menu.

or

 Select the object, then choose Edit > Properties or click equivalent toolbar
button: ()
74

Using the Toolbars
Resizing an Object

You might need to resize an object.

To resize an object:

 Click an object to select it, and drag the selection handles to resize the object.

Editing Icon Color Regions

You can edit the color of any named region of any icon.

To edit icon colors:

1 Click an object to select it, and choose Edit > Colors.

2 Configure the color of the named icon region for the object, as desired.

For example:

Using the Toolbars
ReThink provides a number of toolbars that you can use to interact with models.

The toolbars are all docked, by default. You can drag the toolbar to a new location
or off the toolbar to make it a floating toolbar.

The available toolbars are:

• Standard toolbar

• Simulation toolbar

• Web toolbar

• Layout toolbar

• Status bar
75

Standard Toolbar

The Standard toolbar contains many of the toolbar buttons that you need to work
with the model:

To hide and show the Standard toolbar:

 Choose View > Toolbars > Standard.

Open

Save

Print

Delete

Properties

Go to Superior

Zoom In

Zoom Out

Zoom
Percent

Show Details

Zoom to Fit

User Mode
Go ToNavigator

Message
Browser

Get Workspace

For information
on this button... See...

Open Opening a Project.

Save Saving a Project.

Print Printing a Workspace.

Delete Cutting, Copying, Pasting, and Deleting Objects.

Properties Displaying the Properties Dialog for an Object.

Navigator Using the Navigator.

Message Browser Viewing Messages.

Get Workspace Creating and Accessing Top-Level Workspaces.

Go to Superior Showing the Superior Object of a Detail Workspace.

Show Detail Displaying a Detail Workspace.

Zoom In, Zoom Out,
Zoom Percent, and
Zoom to Fit

Scaling a Workspace.
76

Using the Toolbars
Simulation Toolbar

The Simulation toolbar contains toolbar buttons that you need to configure and
run a simulation:

To hide and show the Simulation toolbar:

 Choose View > Toolbars > Simulation.

User Mode Switching User Modes.

Go To Searching for Objects.

For information
on this button... See...

Start All

Reset
Pause

Continue

Jump
Mode

Step
Mode

Clear
Breaks

Clear
Indicators

Activate

For information
on this button... See...

Activate “Activating and Deactivating the Scenario” on
page 17.

Start All, Reset, Pause,
Continue

“Starting and Stopping the Simulation” on page 18.

Jump Mode and
Step Mode

“Configuring the Simulation Mode” on page 20.

Clear Breaks Debugging Blocks.

Clear Indicators “Configuring the Behavior of Indicator Arrows” on
page 25.
77

Web Toolbar

The Web toolbar provides the standard browser navigation buttons and
commands for browsing HTML pages:

To hide and show the Web toolbar:

 Choose View > Toolbar > Web.

You can go to any URL, including any HTML file on the World Wide Web or on
the file system, or any RTF file.

To go to an HTML file on the World Wide Web, you use the standard HTTP
protocol, for example, http://www.gensym.com.

To go to an HTML or RTF file on the file system, you use this protocol:

file:\<drive>:\<directory>\<filename>

For example, to go to the readme file, you would use:

file:\C:\Program Files\Gensym\g2-2011\doc\rethink\rethink-readme.html

You navigate by using standard buttons in the Web toolbar or in the Go menu.

You configure the Home button URL in your user preferences. For more
information, see Configuring User Preferences.

Refresh

Home AddressBack

Forward

Stop
78

Using the Toolbars
Layout Toolbar

The Layout toolbar contains toolbar buttons that you need to control the visual
layout of objects on a workspace:

To hide and show the Layout toolbar:

 Choose View > Toolbars > Layout.

Status Bar

The status bar shows various status information, such as the host and port of the
client, the current file being loaded, and the progress bar.

By default, the status bar also shows the current message in the operator Message
Browser. For information on how to disable this feature, see Configuring User
Preferences.

To hide and show the status bar:

 Choose View > Status Bar.

Nudge Align Distribute

Bring to Front
Send to Back

Shrink
Wrap

Rotate

Flip

For information
on this button... See...

Shrink Wrap Shrink Wrapping a Workspace.

Send to Front, Send to
Back, Nudge, Align,
Distribute, Rotate, Flip

Controlling the Layout of Objects.

“Aligning and Distributing Blocks” on page 89.
79

Annotating Models
You can annotate a model by:

• Placing an annotation next to the object and entering text on its detail.

• Adding free text anywhere on a workspace.

• Using a readout table to display the current value of metrics that update
while the model is running, for example, the values of paths.

• Adding attribute displays for the various attributes of an object.

You find Annotation tools, free text, and readout tables on the Displays palette of
the ReThink toolbox. Attribute displays appear next to most ReThink objects.

To show displays in the toolbox:

 Choose View > Toolbox - ReThink and show the Displays palette:

Using an Annotation Tool

You use an Annotation tool to create icons that display information about the
model.

To annotate a model:

1 Select an Annotation tool from the Displays palette of the ReThink toolbox
and place it next to the object you want to annotate.

2 Display the properties dialog for the Annotation tool and configure the
Annotation Text.

3 Choose Show Annotation on the tool to show a detail workspace with the text,
or simply click and hold the mouse button on the tool to show the annotation
text.

4 To move the Annotation tool, drag it by using the right mouse button.
80

Annotating Models
Here is an example of an Annotation tool:

Using Free Text

You can label any part of your model by using free text or free text with a border.

To label a model, using free text:

1 Select a Free Text or Borderless Free Text from the Displays palette of the
ReThink toolbox and place it anywhere on a workspace.

2 Double-click the ellipses (...), edit the text, and press Ctrl + Return, or choose
Properties on the text and edit the Text.

3 Click the Appearance tab and configure the background color, foreground
color, font size, and font scale, as needed.

Here is an example of a free text and a borderless free text:

Using Readout Tables

You can use a readout table to display the current value of an attribute of any
ReThink object. You can specify how frequently the readout table updates its
current value. You can also choose to format time values, using hours, minutes,
and seconds.

You typically use readout tables to display path attributes, since you cannot probe
the attributes of a path.

To use a readout table, you must name the object whose attributes you want to
display, which you must do in Developer mode.

Caution Be careful when you copy models that contain readout tables because the readout
in the copied model will be displaying data about the original model. Be sure to
update the Expression to Display of the readout tables in the copied model to
refer to objects in the copied model.
81

To create a readout table:

1 Name the object whose value you want to display in the readout table:

a Choose Tools > User Mode > Developer.

b Display the properties dialog for the object and click the Customize tab.

c Configure the Names to be a unique name.

d Choose Tools > User Mode > Modeler.

2 Select a Readout Table from the Displays palette of the ReThink toolbox and
place it on a workspace near the objects whose value you want to display.

3 Display the attribute table for the readout table and edit the label-for-display
to be the text label.

4 Configure the expression-to-display to specify a G2 expression that refers to
the name of the attribute whose value you want to display.

For example, to display the value of the Current Waiting metric of a path
whose name is source-path-1, you would use this expression:

the current-waiting of source-path-1

5 Configure the default-update-interval to be the frequency with which the
readout table updates its value.

6 Configure the display-format to be interval to display time values using days,
hours, minutes, and seconds, as opposed to seconds.

The readout table begins updating immediately according to the update interval
you specify.

For example, this readout table shows the value of the Inventory Days of Supply
metric of the Base Manufacture role’s output path:
82

Annotating Models
For example, this readout table shows the value of the Current Waiting metric of
the Task block’s input path:

Using Attribute Displays

By default, ReThink objects include attribute displays that show the Label of the
item. When you edit an object’s Label through the properties dialog, the attribute
display updates. You can drag the attribute display to a new location next to the
object.

You might want to add attribute displays to the layout to show the value of other
parameters and/or metrics next to the object. You can also display the name of
the parameter or metric with its value.

Note Many of the attributes that you want to display are available in Developer mode
only. However, many of the attributes that you configure through dialogs are
stored in subtables, for example, the cost-subtable and duration-subtable, which
you cannot display as attribute displays.

To edit attribute displays for an object:

1 Choose Tools > User Mode > Developer.

2 Choose Table on the item whose attribute you want to display.

3 In the attribute table, mouse right on the attribute you want to display and
choose show attribute display.

The attribute value appears next to the object.

4 To display the name of the attribute with its value, mouse right on the
attribute display and choose add name of attribute.
83

The following figure shows a resource with the Current Activities attribute visible
as an attribute display:

Setting and Clearing Breakpoints and
Indicators

You can set breakpoints to pause the simulation at various points in the model.
When you run the simulation with a breakpoint set, the simulation pauses at that
point and an indicator arrow appears at the breakpoint.

To set a breakpoint:

 Choose Set Break on a block.

When you run the simulation, an indicator arrow appears at the breakpoint you
set, and the simulation pauses. Click the indicator to continue running the
simulation until it reaches the breakpoint again.

For information on controlling the behavior of indicators, see Configuring the
Behavior of Indicator Arrows.

To clear breakpoints:

 Choose Simulation > Clear Breaks or click the equivalent toolbar button:

To clear all indicators:

 Choose Simulation > Clear Indicators or click the equivalent toolbar button:
84

Switching User Modes
Switching User Modes
You build and run applications in one of four built-in user modes, or you can
define you own user mode. The user mode determines what you can and cannot
do when you create your application and run it. For example, the user mode
determines whether you can move, edit, and delete objects, and whether you can
use the full set of G2 features in your model. For example, the user mode
determines the parameters that you can configure.

ReThink supports the following user modes for these classes of users:

End users of fully developed applications generally work in Operator mode.
Operator mode is restricted so that users may run a model but may not create,
configure, or delete objects.

As a model developer, you will almost always be working in Modeler mode. This
manual assumes you are working in Modeler mode, unless otherwise stated.
Occasionally, as a model developer, you will also need to go into Developer mode
to perform certain tasks.

If you are an expert who is customizing ReThink, you will be working mostly in
Developer mode. The Customizing ReThink User’s Guide assumes you are working
in Developer mode.

The user mode that is available to you depends on your login privileges.

To switch to a different user mode:

 Choose Tools > User Mode or configure the User Mode on the toolbar.

This type of user...
Works in this user
mode... Which allows you to...

Managers and
end users

Operator View pre-built applications without
damaging them in any way. Operators
cannot open, save, run, or configure
applications.

Business analysts
who create
applications

Modeler Create, connect, and configure blocks,
instruments, resources, and reports to
create models and run simulations. This is
the default user mode.

ReThink experts and
G2 programmers

Developer

System-
Administrator

Administrator

Create customized versions of ReThink
blocks, instruments, and resources to
provide functionality that is not part of the
basic tool set.
85

Viewing Messages
Various messages might occur when running a simulation, which you can view in
the Message Browser or Message Board, depending on the type of message. By
default, operator messages appear in the Message Browser, whereas error
messages appear in the Message Board.

You can configure your ReThink model to generate operator messages in the
Message Browser. For details, see Message Probe, Acknowledge Message Probe,
and Delete Message Probe.

You can configure how the browser handles messages by configuring the module
settings. For more information, see Configuring Module Settings.

To view the Message Browser:

 Choose View > Message Browser or click the equivalent toolbar button: ().

Here is the Message Browser with a message that occurs when you choose Show
Scenario on an object:

To interact with messages in the Message Browser:

 Select the message and click a button in the toolbar.

You can delete and acknowledge the message, show properties, show the target
and initiator of the message, configure filters, and lock the view.

To delete all messages in the Message Browser:

 Choose Project > Initialize Application.

To view the Message Board:

 Choose View > Message Board.

The Message Board remains open until you close it. You can also auto hide it by
clicking the pin in the upper-right corner.
86

Configuring User Preferences
Here is the Message Board with an error message:

Configuring User Preferences
ReThink allows you to configure different levels of access and default behavior
for different categories of users. When a particular user starts ReThink, the user
preference associated with that user restricts the access and provides default
behavior, as appropriate for the given user.

You can configure the following preferences:

• The default user mode, which determines the level of access to ReThink
features.

• Subscription to queues.

• Message filter to subscribed queues, for filtering messages based on priority,
process map, type, category, target, assigned to, age, and acknowledgement
status.

• Acknowledgement and deletion permission and behavior in the Message
Browser.

• Client disconnection, server shutdown, and modeling configuration
permissions, and whether the user is an administrator.

• The default behavior for interacting with objects through menus and showing
the logbook.

• Email and mobile email addresses for use with the JMail interface.
87

Specifying User Preferences for Different Types
of Users

ReThink creates a default user preference for the ReThink server to determine the
level of access and default behavior for all users that log into the server. Similarly,
ReThink creates one user preference for each user associated with a G2 login
account. The name of the user preference corresponds with the user name
specified in the g2.ok file. For more information, see Chapter 62 “Licensing and
Authorization” in the G2 Reference Manual.

If you are logged in as the user named administrator, you are automatically
configured to be the Administrative User and can create and configure user
preferences for all users. If you are logged in as any other user, you can only
configure your own user preferences. You can be logged in either to your
windowing system or to the ReThink server through a secure G2 as administrator.

We recommend that the user preference for the server provide access to all
available features, and that it use either Modeler or Developer mode. The user
preferences for the clients should provide appropriate levels of access and should
use the appropriate user mode, depending on the type of user. For example, you
might configure user preferences as follows for these types of users:

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...

Operators, who interact
with messages only

operator • Disconnect permission

• Acknowledge message
permission

• Show message in operator
mode by default

• Subscribe to appropriate
queues, depending on the
model

Modelers, who create
models

modeler • Disconnect permission

• Configuration permission

• Acknowledge message
permission

• Delete message permission

• Subscribe to Messages
queue
88

Configuring User Preferences
Developers, who use G2 to
customize models

developer • Indicate items upon menu
selection

• Disconnect permission

• Shutdown permission

• G2 Logbook

• Acknowledge message
permission

• Delete message permission

• Subscribe to all queues

Administrators, who
configure user preferences
for all users, using the
ReThink user interface

system-
administrator

The same as developers, plus
Administrative User.

Administrators, who
configure user preferences
for all users, using G2’s
user interface

administrator Note: You must log in as
administrator to enable the
Administrative User option.

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...
89

Configuring User Preferences

In Modeler mode, you can configure these attributes for each user preference. For
information about additional attributes that you can configure in administrator
mode, see the Customizing ReThink User’s Guide.

Attribute Description

General

User Name The user name of the user that starts either the
server or the client, which is read-only.

If you are an administrative user, you can create
new user preferences for specific users. For details,
see Configuring User Preferences.

Default User Mode The default user mode for the specified user, which
is modeler, by default. The options are: operator,
modeler, developer, system-administrator, and
administrator.

User Interface Theme The Windows user interface theme. The default
value is window-theme-2003.

Email Address
Mobile Email

E-mail and mobile e-mail address of the specified
user for sending email when a message occurs. For
more information, see Delivering Messages by
Email.

Home Process Map A process map to use as the background in the
operator interface. The default process map is
default view, which is associated with the process
map named guif-default-main-view. Click Select to
display a list of all process maps in the KB and
choose a map to use as the default background.

Telnet Command The command for launching a Telnet session.

Default Web Location The default URL when clicking the Home button in
the Web toolbar.

Set Default User
Mode

Whether the default user mode should be set upon
startup.
90

Configuring User Preferences
Indicate Items Configures the behavior when choosing items from
the Project menu. By default, ReThink displays the
properties dialog or the model detail, depending on
the type of item.

Developers who are familiar with G2 and prefer to
work with the iconic representations of items might
want to enable the Indicate Items option, in which
case, choosing items from the Project menu goes
directly to the item.

Extended Menus Whether to display the complete list of objects in
the Project submenus, the default. If your project
has many domain models, for example, you might
want to disable this option, in which case, selecting
Project > System Models > Business Models
displays the Manage dialog for interacting with
object.

Show Logbook Whether to show the G2 Logbook when errors
occur. By default, the G2 Logbook does not appear.
Modelers or developers who are familiar with G2
might want to enable the Show Logbook option. We
recommend that you disable this option for
operators and modelers who are not familiar with
G2.

Tabbed Mdi Mode Whether to display workspaces in tabs in the
window.

Restore Last Pane
Settings

Whether to restore the settings for panes upon
connection.

Message Browser

Email Notification
Mobile Email
Notification

The format when sending e-mail and mobile e-mail
messages. By default, the value is never, which
means email messages are not sent. For details, see
Delivering Messages by Email.

Modeler Browser The browser to use in Modeler mode. The default is
gevm-modeler-message-view-template, which is
the browser that appears when you choose View >
Message Browser.

Attribute Description
91

Operator Browser The browser to use in Operator mode. The default
is gevm-operator-message-view-template, which is
the browser that appears when you are in Operator
mode.

Acknowledge
Messages Upon
Selection

Whether to acknowledge messages automatically
when the operator selects a message in the Message
Browser view of the operator interface. By default,
messages are not automatically acknowledged.
When Ack Msg Upon Selection is enabled, Ack Msg
Permission must also be enabled.

Show Browser in
Operator Mode

Whether to show the Message Browser by default
view in the operator interface, or whether to show
the process map view. By default, the Message
Browser appears as the default view in the operator
interface.

Enable Status Bar
Message Browser

Whether to show the most recent message in the
status bar.

Beep Enabled Whether to enable beeping when new messages
arrive in the Message Browser, as well as when they
are acknowledged and deleted. By default, beeping
is enabled.

Attribute Description
92

Configuring User Preferences
To configure user preferences for yourself:

 Choose Project > My User Preferences and configure the user preferences,
as needed.

For example, here is the default user preferences dialog appears for the user
named nrs:

To configure user preferences for other users:

 Choose Project > System Settings > Users and choose the user whose
preferences you want to configure.

For information on creating new user preferences, see Customizing ReThink User’s
Guide.

Delivering Messages by Email

You can configure the user preference for individual users to provide an email
address and a mobile email address, then configure rules for when to send email
messages when an event occurs.

You can configure ReThink to format the message as short plain text, suitable for
cell phones, for example, plain text with full message contents, or as an HTML
document. You can also configure when to send a message, based on when it was
created or updated, whether the user is currently connected to the server, and the
priority of the message.
93

To deliver messages by email, you:

• Start the G2 JMail Bridge process.

• Create, configure, and connect a JMail Interface object.

• Configure ReThink to send email messages.

• View examples.

• Configure startup parameter for sending email.

Starting the G2 JMail Bridge Process

To deliver messages by email, you must start the G2 JMail Bridge process. You
identify the host and port to which the bridge is connected for configuring in the
JMail Interface object.

To start the G2 JMail Bridge process:

 Choose Start > Programs > Gensym G2 2011 > Bridges > G2 JMail Bridge.

The G2 JMail Bridge process appears in the command window.

To determine the bridge port:

 Open the command window for the bridge process.

The last line indicates the TPC/IP host and port number, for example:

TCP_IP:NSALVO-1165:22080

Creating, Configuring, and Connecting the JMail Interface Object

To deliver messages by email, you must create and configure a JMail Interface
object, which specifies:

• A name.

• The host and port of the machine running the G2 JMail Bridge.

• Information about the SMTP mail server, including the user name, password,
incoming and outgoing SMTP mail host, and SMTP protocol.

If the bridge process is running on the local machine, the host is localhost. The
default port number is 22080, 22081, 22082, etc., depending on the number of
clients that are currently connected on that port.

Note To configure a JMail Interface object, you must be in Developer mode.

Once you have configured the JMail interface object, you can connect it to the
G2 JMail bridge process.
94

Configuring User Preferences
To create, configure, and connect a JMail Interface object:

1 Choose Tools > User Mode > Developer.

2 Choose Project > System Settings > Interfaces > SMTP > Manage and click the
New button to create a new JMail Interface object.

Alternatively, you can choose View > Toolbox - G2, click the Network
Interfaces tab, and create a JMail Interface object.

3 In the properties dialog for the JMail Interface object, configure the Interface
Name attribute to be any symbol, for example, my-jmail-interface.

4 Configure the Bridge Host and Bridge Port to be the host and port of the
machine on which you started the G2 JMail Bridge process.

5 Configure the following additional information:

Attribute Description

User Name The user name of the account to which
email should be sent.

Password The password of the user account to
which email should be sent.

Incoming Host The name of the host computer used
for incoming email.

Incoming Port The port number of the host computer
used for incoming mail.

Incoming Protocol The SMTP protocol that the incoming
mail host uses. The default is pop3.

Incoming Folder The folder name of the user account to
which to send email. The default is
inbox.

Delete Messages on Server Whether to delete the email message
on the mail server after it is sent. By
default, messages are not deleted.

Outgoing Host The name of the host computer used
for outgoing email.

Outgoing Port The port number of the host computer
used for outgoing mail.
95

6 Click Apply to apply these values.

7 Click the Connect button in the dialog to connect the interface to the bridge.

8 Choose Tools > User Mode > Modeler to return to Modeler mode.

For example:

Outgoing From The name to use as the From address
when the email message is sent, which
cannot contain spaces.

Auto Reconnect to Bridge Whether to automatically reconnect if
the connection goes down.

Shutdown Bridge Upon
Disconnect

Whether to shutdown the bridge when
the connection is closed.

Launch Bridge Upon Connect Whether to launch the bridge when a
connection is made.

Bridge Launch Shell Script Pathname to script for launching the
bridge.

Attribute Description
96

Configuring User Preferences
Configuring ReThink to Send Email Messages

You configure ReThink to send email messages through the user preferences
dialog.

To configure ReThink to send email messages:

1 Choose Project > My User Preferences.

2 Configure Email Address and/or Mobile Email.

3 Choose the rule to use for each of the configured email addresses, as follows:

• never — Do not send e-mail messages. This is the default rule.

• send-as-text — Send the message text and details as plain text.

• send-as-short-text — Send the message text only as plain text.

• send-as-html — Send the message text and details as HTML.

• only-high-priority-as-text — Send the message text and details as plain text
only if the priority is 1.

• only-high-priority-as-short-text — Send the message text as plain text only
if the priority is 1.

• only-high-priority-as-html — Send the message text and details as HTML
only if the priority is 1.

• if-not-connected-send-short-text — Send the message text as plain text
only if the user is not connected to the server.

• if-not-connected-send-as-text — Send the message text and details as
plain text only if the user is not connected to the server.

• if-not-connected-send-as-html — Send the message text and details as
HTML only if the user is not connected to the server.

4 Configure the model to send a message, using the Message probe.

For details, see “Message Probe” on page 653.
97

When a message occurs, ReThink also sends an email to the specified addresses.

Here is the User Preferences dialog with both email addresses and rules
configured:
98

Configuring User Preferences
Examples: Sending Email Messages

Here is an example of a message that includes the message text only in plain text:
99

Here is an example of a message that includes the message text and details in
plain text:
100

Configuring User Preferences
Here is an example of a message that includes the message text and details in
HTML format:

Configuring Startup Parameter for Sending Email Messages

You can configure the following startup parameter in the configuration file:

JMAIL-INTERFACE-NAME=none

Specifies the default JMail interface to use for sending email messages.

For details about using the configuration file, see the G2 Run-Time Library User’s
Guide.
101

Configuring Network Interfaces
ReThink allows you to configure various types of network interfaces for
communicating with external systems, using the Project > System Settings >
Interfaces menu.

Note To configure network interfaces, you must be in Developer mode.

SQL interfaces provide communication with databases. For details, see Accessing
External Databases.

You configure SMTP interfaces to send email when a message occurs. For details,
see Delivering Messages by Email.

ReThink also allows you to send email messages, using a JMail Connection pool
and to send messages to JMS message servers, using a JMS Connection pool. For
details, see Sending Email and Using JMS Messaging.

Configuring Message Browsers
By default, all messages go to the Messages Browser, which you access by
choosing View > Message Browser.

ReThink allows you to create and configure different message browsers and
message queues. You do this by using the Project > System Settings > Message
Browsers menu.

For details, see the G2 Event Manager User’s Guide.

Configuring Module Settings
You can configure the default module settings object to customize various
features of ReThink.

To configure BPR module settings:

1 Choose Tools > User Mode > Developer.

2 Choose Get Workspace > bpr-top-level.

3 Click the Settings button.

4 Clone the bpr-module-settings object and place it on a workspace in your top-
level module.

5 Configure its attributes, as needed.
102

Here is the default BPR module settings objects:

Attribute Description

bpr-indicate-enabled Whether to show indicator arrows when errors occur.

bpr-indicate-and-mesage-
to-browser

Whether to add indicator messages to the Message Browser.

bpr-indicate-message-type The message type when adding indicator messages to the
Message Browser.

bpr-indicate-message-
category

The message category when adding indicator messages to
the Message Browser.

bpr-indicate-message-
priorities

The message priority when adding indicator messages to the
Message Browser.

default-bpr-path-line-
pattern

The default line pattern for paths between blocks.

default-bpr-path-arrows The default arrow style for paths.

bpr-allow-dot-notation Whether to allow dot notation for specifying attributes of
subobjects in various blocks, for example, my-subobject.
my-attr.
103

104

4

Using Blocks
Describes how to clone, connect, and configure blocks to create a model, and how to
specify the duration and cost of block activities.

Introduction 105

Creating Blocks 107

Connecting Blocks 112

Configuring the Type of Work that Blocks Process 118

Configuring Blocks 126

Creating Hierarchical Views 144

Understanding the Activities of Blocks 147

Working with the Duration of Blocks 157

Working with Block Costs 196

Debugging Blocks 200

Customizing Blocks 204

Introduction
You can use ReThink to model various types of business processes. For example,
an order fulfillment process creates orders and invoices and ships products, and a
manufacturing process manufactures widgets, places them in inventory, removes
them from inventory, and replenishes the inventory.
105

You use a ReThink block to represent each step in the process, for example,
billing or manufacturing. You use ReThink Task blocks to represent a high-level
view of the process, which you can then break down into greater and greater
levels of detail. The blocks at the lowest level in the process represent the
individual tasks, which are value-added steps in the process that perform an
action, contribute to costs, and/or have a duration.

This model shows a high-level view of an order fulfillment process, which
consists of four basic tasks: Order Processing, Manufacturing, Distribution, and
Payment. Two of the tasks have greater levels of detail: Order Processing and
Payment.

The basic steps in creating a model are to:

• Create blocks from the ReThink toolbox.

• Connect the blocks together.

• Configure the parameters of the block.

The various tasks in the process operate on different work objects. They create
them, delete them, copy them, establish associations between them, assemble
them, disassemble them, and so on. Work objects flow along directed paths,
which you use to connect blocks in the model, and represent the inputs and
outputs of a business process.

When you run a model, work objects flow into and out of the blocks in the model
by traveling on connection paths. Depending on the resource constraints you
place on the model, work objects can flow freely through the model, or they can
back up on an input path to a block.

When a block processes its work objects, it creates an activity object, which
represents the amount of work required to process the work objects on the input

Blocks with detail High-level blocks
106

Creating Blocks
paths of a block. Each activity has an associated duration and cost, which you can
view.

Each type of block computes summary metrics, including the number of
activities, the total duration, and the total cost. You use ReThink instruments to
do performance analysis on the model, based on these block metrics.

Creating Blocks
The first step in creating a model is to create blocks from the Basic Activities tab of
the ReThink toolbox and place them on a model detail.

Following is a summary of each ReThink block.

See also Blocks Reference.

For more information on... See...

Work Object Using Work Objects.

Resources Using Resources.

Instruments Using Instruments.
107

Creating Blocks

To create blocks:

1 Display the Basic Activities palette of the ReThink toolbox:

2 Select a block in the toolbox, then click on a workspace to place the block.

ReThink creates default stubs, depending on the type of block.

3 Display the properties dialog for the block and configure the Label as a text,
then drag the label to the desired location next to the block.

The following figure shows a Source, Task, and Copy block, and two Store blocks:
108

Creating Blocks
You connect various blocks together to form a model. For more information, see
Connecting Blocks.

Source Block

You use a Source block to create objects that are the inputs to a process. For
example, you might use a Source block to create orders, service calls, or any other
kind of external stimulus or impetus. You specify the frequency with which work
flows into a model from a Source block, using a distribution, a file, or a database.

Task Block

You use a Task block to represent any activity that adds value in a process. It can
have any number of inputs and outputs. It represents a primitive activity, a
collection of activities, or a subprocess. You can decompose a Task block into
multiple levels of detail, as needed. For example, you use a Task block to model
each high-level stage in an order fulfillment process, such as order processing,
manufacturing, and delivery, where each high-level task describes the details of
each subtask.

Sink Block

A Sink block is the counterpart to a Source block. You position it at the end of a
process. ReThink does not require that you use a Sink block, but it is useful for
indicating the end of a particular line of processing when you do not need to save
the work objects.

Copy Block

You use a Copy block to create multiple copies of an object. A Copy block can
have any number of inputs or outputs. Whenever a Copy block receives an input,
it outputs as many copies as it has output paths. For example, you use this block
to make multiple copies of a document in a process.

Merge Block

You use a Merge block to combine different types of objects onto a single output
path. The block can have any number of inputs, but it typically has only one
output. Whenever it receives an object, it sends the object onto its output path for
sequential processing. You use this block, for example, to merge two separate
streams of orders.
109

Branch Block

You use a Branch block to implement any kind of decision-making operation, for
example, routing, sorting, collating, or any other kind of branching. A Branch
block supports several kinds of decision-making. For example, you can branch
work based on probability, based on the type of object that the Branch receives,
based on the value of an attribute of an object, or based on the output path the
user selects. You can also implement more complex types of branching by
specifying proportions based on the number of times a work object loops around
a process, or by specifying rules that test the values of multiple model attributes.

Batch Block

You use a Batch block to gather a batch of items before sending them downstream
in a process. A Batch block supports several types of batching. You can batch
work by waiting for a critical threshold of objects to arrive at the block before
passing them downstream in the process, such as batching items into a box or
boxes onto a truck. You can batch work by waiting until the sum of values of an
attribute of an input work object exceeds a threshold, such as the weight of a box.
You can batch work by waiting until a trigger work object arrives at the block,
such as a truck. Finally, you can batch work objects according to a schedule, such
as once an hour between the hours of 9:00 and 5:00 on weekdays.

Associate and Reconcile Blocks

You use an Associate block to associate two objects that the model processes at
different rates. For example, you use an Associate block to associate an order and
its invoice so you can match them again later in the process. You can create a new
association between objects, add objects to an existing association, or remove
objects from an association. You can also choose to associate all of the objects on
the input path.

You use the Reconcile block to match together associated objects. For example,
you use this block to match associated orders and invoices. Orders and invoices
form input queues, waiting for their associates. When the associated invoice for
an order arrives, the Reconcile block outputs the order and the invoice together,
each on its own output path. If the input work object is associated with multiple
work objects, you can require that the Reconcile block wait until all associated
objects arrive at the block before reconciling them all.

Store and Retrieve Blocks

You use the Store block to model any kind of storage operation. This block can
store its inputs in a resource pool, where they wait until a Retrieve block retrieves
them. For example, you use a Store block to model a customer database, an order
database, or a manufacturing inventory. It is a versatile block; you use it to model
any place in the process that represents off-line storage. You can also store objects
110

Creating Blocks
to a file or to a database and then use a Retrieve or Source block to create objects
from this file or database.

You use the Retrieve block to retrieve items from a pool or from a database, for
example, to retrieve an object from inventory to fill an order. You can retrieve
objects from a pool at random, based on an object being associated with another
object, or based on an attribute value of the retrieved object. You can also retrieve
objects one at a time or all at once, or you can retrieve a copy of the object, rather
than the actual object.

Insert and Remove Blocks

You use an Insert block to insert objects into a container object, and you use a
Remove block to remove the inserted objects from the container. For example,
you use the Insert block to add line item objects to an order, and you use the
Remove block to remove those line items at a later time. You can insert and
remove objects one at a time or all at once.

Copy Attributes Block

You use the Copy Attributes block to copy attribute values from one object to
another object. For example, you use this block to copy tracking information from
an existing invoice to a purchase order when the purchase order is created.

Yield Block

You use the Yield block splits the input work object into two objects and
computes the yield, based on an attribute of the input work object. The block
copies the computed yield into the attribute of the output work objects that
represent manufactured products. It copies the balance into the attribute of the
output work objects that represent defective products. You can configure the
block to compute the yield, based on a random function, a specific proportion, or
an attribute of the input work object.

BRMS Task Block

You use the BRMS Task block to invoke Business Rules Management System
(BRMS) rules on the work objects it processes. BRMS rules provide a mechanism
for easily editing, organizing, analyzing, and executing business rules.
111

Connecting Blocks
You have a number of ways to connect blocks together to form a model,
depending on the current configuration of the blocks.

Using Stubs to Connect Two Blocks

All blocks on the ReThink toolbox have default stubs, which you use to create
connections between blocks. The basic way of connecting blocks is to connect the
default stub from one block to the default stub of another block.

To connect two blocks, using stubs:

1 Click the output stub of one block to attach it to the mouse.

2 Drag the stub into the input stub to which you want to connect.

3 Click with the mouse to connect the stubs.

Inserting a Block Between Two Connected Blocks

Sometimes, you have to insert a block between two blocks that are already
connected. To do this, first you delete the connection between the blocks, then
you connect the new block between them.

To insert a block between two connected blocks:

1 Choose Delete on the path between the two blocks and click OK to confirm
the deletion.

ReThink disconnects the blocks:

2 Move one block out of the way to make room for the new block.

3 Create a new block from the Basic Activities palette of the ReThink toolbox
and place it between the two blocks.

4 Align and distribute the blocks, as needed.

Before After

Before After
112

Connecting Blocks
5 Connect the stubs of all blocks:

Redisplaying the Paths of Connected Blocks

When you move connected blocks to a new location, ReThink logically redisplays
the paths automatically for you along the existing side of the block. For example:

Disabling Path Redrawing

Sometimes, you might not want the path to adjust its location along the existing
side of a block when you move the block. You can disable path redrawing to
create a bend in the path rather than adjusting its location along the block.

To disable path redrawing:

1 Display the properties for the connection path between two blocks.

2 Click the Redraw Path option off.

Drag the right-most block up
until the path is near the top
of the connected block.

Before

After
113

Creating and Deleting Stubs

Often, you need to add input or output stubs to a block. For example, when a
Task block processes multiple work objects, you need to add stubs to the block.
Typically, you delete the existing stub first so you can space the stubs evenly
along the side of the block.

Deleting a Stub

You might need to delete a stub on a block. For example, to evenly space a
number of stubs that you create, you might first delete the existing stub.

To delete a default stub on a block:

 Click the stub to attach it to the mouse, drag the stub into the center of the
block, and click to delete the stub.

Redraw Path
option is off.

Before After
114

Connecting Blocks
Creating a New Stub

Sometimes, you need to create new input and output stubs on a block. Once you
have created the stub, you can drag it to a new location on the block.
Alternatively, if you need to create a new stub in a different location on the block,
you can simply drag a stub from another block into the block, then delete the
connection.

To create a new input stub:

 Choose Create Input on the block.

ReThink adds a stub to the left-hand side of the block:

To create a new output stub:

 Choose Create Output on the block.

ReThink creates an output stub on the right-hand side of the block. It places the
first new output stub above the existing stub and the next output stub below the
existing stub.

Sometimes, you need to create stubs that come out of the top or bottom of the
block instead of out of the left or right side of the block. For example, when
making loops in a diagram, it is often useful to have the paths leading out of the
bottoms of the connected blocks.

To create an output stub coming out of the bottom of a block:

1 Clone a Task block from the Basic Activities palette of the ReThink toolbox
and place it below the block on you want create an output stub.

2 Drag the input stub of the Task block into the bottom of the block.
115

3 Delete the connection between the blocks.

You now have an output stub coming out of the bottom of the block.

4 Delete the Task block.

You can use this same technique to create output stubs coming out of the top of
the block, or input stubs coming out of the top or bottom of the block.

For an example, see Creating Loops in a Diagram.

Creating Loops in a Diagram

Often you need to create loops in a diagram. For example, the output path of a
Branch block might loop back into a Merge block based on some probability, or
the output path of an Insert block might loop back into a Merge block to insert
objects into a container object.

For example, suppose you wanted to make a loop from a downstream Branch
block to an upstream Merge block.

To create a loop in a diagram:

1 Create an output stub leading out of the bottom (or top) of the downstream
block.

For details, see Creating and Deleting Stubs.

The model should look like this:

2 Click the output stub of the downstream block and drag it down (or up) and
across to create the first bend in the loop.

The model should look like this:
116

Connecting Blocks
3 With the stub still connected to the mouse, click the mouse again and move
the stub up (or down) to create the second bend in the loop.

The model should look like this:

4 Move the stub to the upstream block and click to connect.

The model should look like this:

Replacing Blocks

You can drop a new block on top of an existing connected block to replace the
block. ReThink maintains all existing connections. The new block copies the
configuration information from the existing block and uses it in the new block’s
configuration. For example, if the Mean of the original block is 1 hour, the Mean
of the new block will also be 1 hour, even if they are different types of blocks.

Note If you replace a Task block that has detail with a block other than another Task
block, the new block no longer has detail; however, if you swap a task that has
detail with another task, the new task still has detail.
117

To replace an existing connected block with a new block:

 Create a new block from the Basic Activities palette of the ReThink toolbox,
place it exactly on top of the existing connected block, and click to replace.

Note You might need to adjust the blocks slightly to redisplay the paths.

The model might look like this:

Configuring the Type of Work that Blocks
Process

ReThink blocks process work objects, which ReThink automatically creates when
you run a simulation. To configure the type of work that a model processes, you
specify the name of a work object class as the path type for the various blocks in
the model, or you use the default. The type you specify depends on the type of
block and the requirements of the model.

By default, ReThink work objects are a subclass of bpr-object, which is an internal
class definition that ReThink provides. If the class of work object that you specify
on a path does not already exist, ReThink automatically creates a class definition
and places it on the current workspace.

You can also configure the color of the various paths in the model.

For general information on work objects, see Using Work Objects.

Configuring the Path Type

You configure the path types of blocks by specifying a new or existing work
object class as the value of the Type parameter of a path.

The default path type is bpr-object, which allows any work object that is an
instance of bpr-object or its subclasses, to travel on the path. If you do not specify
the path type for a path, ReThink uses the default path type when it determines
how to process the object. This behavior varies depending on the type of block.

Before

After
118

Configuring the Type of Work that Blocks Process
Tip In general, you should be as specific as possible when you specify the path type,
depending on the requirements of the model.

If you are configuring the output path of a Branch block, the properties dialog
contains additional parameters. For more information on path parameters of a
Branch block, see Path Attributes that Pertain Only to Branching.

To configure the type of work object that a block processes:

1 Display the General tab of the properties dialog for the path whose type you
want to configure to display this dialog:

2 Configure the Type to be the class name of the work object that the block
processes.

The following sections show examples of configuring path types.

Using the Default Path Type

Often, it is not necessary to configure the path types of a block. For example,
when you configure a Task block to process a work object whose type has already
been specified by an upstream block, you do not need to specify the input or
output path types. The task passes the work object on its input and output paths,
using the default path type.
119

The following simple model illustrates this concept, where the second Task block
uses the default path types for both its input and output paths:

In this example, the Source block generates an order, as specified by its output
path type. The order then flows to the two Task blocks, whose path types are both
bpr-object. The order can flow on the output paths of the two Task blocks because
order is a subclass of bpr-object.

Creating Work During Processing

Sometimes, you need to specify only the output path type. For example, when
you configure a Task block that deletes the input object and generates a new
output object, you only need to specify the output path type.

The following model is a slight variation on the previous model, where the
second Task block deletes the order and generates an invoice:

It is important to understand when ReThink creates a work object in a process
and when it deletes the work object. Knowing this, you can interpret the metrics
that ReThink computes for work objects, such as the creation time and the total
amount of work applied to that object. In the example above, the creation time of
the order is the start time of the simulation plus the deviation of the Source block,
whereas the creation time of the invoice is the simulation time at the moment the
second task creates the invoice.

Note that because the second task deletes the order, by default, the metrics
associated with the order are not longer available to the model, and the metrics
associated with the invoice are based on a different creation time from that of the
order. However, you can configure the Task block to copy attribute values from
the input to the output work object. For details, see Copying Attribute Values to
the Output Object.
120

Configuring the Type of Work that Blocks Process
Configuring the Path Types of Particular Blocks

For certain types of blocks, you need to configure both the input and output path
types. For example, when you configure an Associate block, you must configure
both the input and output path types to identify the two associated objects, as this
model illustrates:

With the Associate block, as with other blocks with multiple input and output
paths, it is important that you configure the output path types so that the inputs
travel down the appropriate output path. In the example above, if you used the
default output types for the two output paths of the Associate block, ReThink
would process both the order and the invoice on the same path.

Certain blocks require input work objects that are a subclass of another built-in
ReThink class, bpr-container.

When you configure the output paths of a Branch block, you also need to specify
various path parameters relating to branching.

For specific information on how each block handles input and output path types,
see the description of each block in Blocks Reference.

For an example of specifying a container output path, see Specifying a Container
as the Path Type.

For information on specifying the output path types of a Branch block, see
Branch.

Creating Class Definitions for Work Objects

If the type of work object you configure does not exist, ReThink automatically
creates a class definition for the object and places it on the model workspace. For
certain blocks and instruments, you must pre-define work object class definitions
with specific attributes. For example, when you use a Timestamp feed, you feed
values into a user-defined attribute of a work object, which you must define in a
class definition.

For more information on creating work object class definitions, see Creating a
New Class of Work Object.
121

Determining the Output Path Based on Its Type

Whenever you specify the path type of an output path of a block with multiple
output paths, work objects pass onto the output path whose type most closely
matches the object or a superior class of the object. This is true for all blocks with
multiple output paths.

For example, if the input work object type is order, and the two output path types
are order and bpr-object, the work object will flow on the output path whose type
is order. Similarly, if the input work object type is order, which is a subclass of
form, and the two output path types are form and invoice, the work object will
flow on the output path whose type is form.

If no output path is capable of carrying the input work object, ReThink deletes the
work object.

If two or more output paths are capable of carrying the same type of input work
object, the output path of the work object is unpredictable.

Configuring the Animation of Paths

You might want to configure the color of paths to represent different categories of
objects, for example: blue for physical materials and yellow for information, or
red for phone calls, yellow for faxes, and blue for mail.

You can configure these colors of a path when it animates:

Animation Parameter Description

Waiting Color The color the path uses when there are work
backups.

Empty Color The color the path uses when no work
backups exist.

Error Color The color the path uses when it is in an error
state.

Selected Color The color the path uses when you select it for
certain operations, such as when you use the
Choose Original Output Path of a Copy block.
122

Configuring the Type of Work that Blocks Process
To configure the colors of a path when it animates:

1 Display the properties dialog for a path and click the Animation tab:

2 Choose a color from the dropdown list for the path color.

Configuring Path Types of Specific Blocks

When using blocks with multiple output paths, you must configure the output
path types correctly. For example, when you use a Remove block to remove an
invoice from a file container object, you must configure the output path types to
carry an invoice object and a file object.

For information on... See...

Work backups Showing Work Backups on an
Input Path.

Configuring the animation of all
paths

Customizing ReThink User’s Guide.
123

The following table lists each block that requires that you specify an output path
type:

In general, you should always use the most specific class available as the output
path type to ensure that only the desired types of work objects travel on a
particular path. Remember, if a block has several output paths, a work object
travels on the path that mostly closely matches the object’s type in the object class
hierarchy.

For example, suppose an object of type invoice passes to a Branch block that has
two output paths, one whose type is invoice and the other whose type is
bpr-object. Further suppose that invoice inherits not from bpr-object but from
document, which in turn inherits from bpr-object. The invoice will pass onto the
output path whose type most closely matches its class, which is invoice.

Now suppose the output path types were document and bpr-object. In this case,
the invoice would pass onto the output path whose type is document, because
invoice inherits its definition from document.

If no output path type named invoice or document exists, the invoice would pass
onto the output path whose type is bpr-object, because bpr-object is at the top of
the object class hierarchy of the invoice object.

This block... Requires that you configure the output path types of...

Branch The various objects that the branch block processes
when Branch Mode is Type.

Associate The objects to be associated.

Reconcile The objects to be reconciled.

Retrieve The objects to be retrieved and the objects that do not
meet the criteria.

Remove The container, the empty container, and the objects in
the container.

Copy Attributes The object whose attributes are being copied and the
target object.
124

Configuring the Type of Work that Blocks Process
The following figure illustrates this concept, using three different models:

To provide another example, suppose a Task block has two input paths, one of
type invoice and the other of type order, and only a single output path of type
bpr-object. Because bpr-object is at the top of the object class hierarchy, both
invoices and orders travel on the output path.
125

The following figure shows two steps in such a model:

Configuring Blocks
Once you have created a block and placed it on your workspace, connected it to
other blocks in the model, and configured the type of work object the block will
process, you typically configure various aspects of the block.

To configure a block, you specify one or more of the following aspects of the
block, either through the properties dialog or by using a specific menu choice:

• Common block parameters, such as the block label.

• Specific block parameters, such as the block mode.

• Path identity of specific blocks, such as the original output path of a Copy
block.

• Block duration, such as the mean time between activities, using a random
normal distribution.

• Fixed and variable block costs.

• Block animation and colors, such as active and inactive colors.

While all blocks behave similarly in terms of how you configure them, each block
has unique requirements. The following sections describe how to configure blocks
in general, as well as how to configure and use specific blocks.

2

1

126

Configuring Blocks
Configuring General Block Parameters

Every block defines these parameters on the General tab of the properties dialog:

• Block Label, which is a mixed-case text string that identifies the block.

• Comments, which is a mixed-case text string that provides information about
the purpose of the block in the model.

• Maximum Activities, which is an integer that represents the maximum
number of activities the block can process concurrently.

• URL, which is a reference to an HTML file, either on the World Wide Web or
on the file system, or to an RTF file, which describes how the model uses the
block. When this attribute is configured, choosing Show URL or clicking the
block displays the file in a browser window.

The Block Label appears next to the block as an attribute display.

For information on hiding the label associated with the block, see Using Attribute
Displays.

For information on configuring Maximum Activities, see Limiting the Number of
Concurrent Activities.

For information on configuring the URL, see Using the Go Menu.

To configure the general block parameters:

1 Display the properties dialog for the block and click the General tab.

2 Configure the Block Label, Comments, Maximum Activities, and URL of the
block.
127

For example, this dialog shows the general parameters of a Task block:

Configuring Specific Block Attributes and Features

Many blocks provide additional parameters that pertain only to the particular
block. For example, a number of blocks provide a parameter for specifying the
mode in which the block operates.

When you configure the mode of a certain block, you are often required to
configure mode-specific parameters of the block. Depending on the mode, this
typically involves configuring additional parameters in the dialog. However,
certain modes require that you use a menu choice to configure a mode-specific
feature of the block, for example, when storing work to a resource pool, you use a
menu choice to identify the pool. In addition, certain blocks provide menu choices
for configuring other specific features of the block, such as creating detail for a
Task block.
128

Configuring Blocks
Blocks provide default values for most of their specific parameters; thus, in
general, you do not need to configure the specific block parameters unless you
want the block to use non-default behavior.

Certain parameters do not provide a default value, which means you must
configure them for the block to operate correctly. If you run the simulation
without configuring a required parameter of the block, ReThink displays an
indicator arrow next to the block when it attempts to execute.

You configure specific block parameters on the Block tab of the properties dialog,
and you configure specific block features by using menu choices on the block.

The following table lists all the blocks, their specific parameters, and their specific
menu choices, which you use to configure specific features of the block. All
parameters and menu choices are optional unless identified as required. Unless
otherwise stated, the specific parameters appear on the Block tab and in Modeler
mode. For specific menu choices that pertain to configuring path identify, see
Configuring Path Identity of Specific Blocks.

This block... Provides these specific parameters...
And these
specific menu choices...

Source Source Mode as type, object file,
database, or custom

Maximum Starts

Start Time and End Time

Output Count

In object file mode, Object File Name
and Repeat Object File

In database mode, Database
Interface Name and SQL Query
(Database tab)

In custom mode, Source Procedure
Name (Developer mode only)

Single Shot

Start

Task Output Count

Copy Attributes

Copy All Attributes

Detail Color
(Animation tab)

Create Detail

Show Detail

Enable Detail

Disable Detail

Copy Output Count

Add to Associations as true or false

None
129

Branch Branch Mode as proportion,
dynamic proportion, type, prompt,
attribute value, or custom

In prompt mode, Branch Prompt
Message and Branch Timeout Period

In attribute value mode, Rules Wait
Interval, Branch Attribute, and
Operation

In custom mode, Branch Procedure
Name (Developer mode only)

In attribute value mode,
Create Rules lets you
branch work based on
multiple attribute values,
and Show Rules show the
rules workspace.

Batch Batch Mode as number, sum, trigger,
interval, or custom

Container List Attribute

Threshold

In sum mode, Attribute Name and
Minimum Threshold

In interval mode, Start Time, End
Time, Period, and Days

In custom mode, Batch Procedure
Name (Developer mode only)

None

Associate Association Name (required)

Mode as new, add, or remove

Associate All as true or false

None

Reconcile Association Name (required)

Reconcile All as true or false

None

This block... Provides these specific parameters...
And these
specific menu choices...
130

Configuring Blocks
Store Store Mode as pool, file, database, or
custom

In file mode, Object File Name and
Duration File Name

In database mode, Database
Interface Name, Database Table,
Database Key, and SQL Query
(Database tab)

In custom mode, Store Procedure
Name (Developer mode only)

In pool mode, Choose Pool
identifies the storage pool
(required), and Show Pool
shows the pool.

Retrieve Retrieve Mode as random,
association, database, attribute
value, or custom

Retrieve All as true or false

Retrieve Copy as true or false

Add to Associations as true or false

In association mode, Association
Name.

In attribute value mode, Retrieve
Attribute, Attribute Value, Range
Upper, Range Lower, and
Operation.

In database mode, Database
Interface Name and SQL Query
(Database tab)

In custom mode, Retrieve Procedure
Name (Developer mode only)

In random mode, Choose
Pool identifies the pool
(required), and Show Pool
shows the pool.

Insert Container List Attribute

Mode as false, last, or all

This block... Provides these specific parameters...
And these
specific menu choices...
131

For information on these specific block parameters and menu choices, see the
headings entitled “Specific Attributes” and “Specific Menu Choices” for
individual blocks in Blocks Reference.

For information on using database mode, see Accessing External Databases.

To configure specific block parameters:

1 Display the properties dialog for the block and click the Block tab.

2 Configure the parameters on this tab, as needed.

Note When configuring the Source, Store, and Retrieve blocks in database mode, you
configure database-related parameters on the Database tab.

Configuring Path Identity of Specific Blocks

A number of blocks require that you identify particular input and/or output
paths of the block, by using menu choices on the block.

In most cases, configuring path identity for a block is a required feature of the
block. Thus, if you run the simulation without configuring the path identity,
ReThink displays an indicator arrow next to the block when it attempts to
execute.

Remove Container List Attribute

Mode as false, last, or all

Yield Yield Mode

Attribute to Split

In random mode, Minimum
Random Value and Maximum
Random Value

In random triangular mode,
Minimum Random Value, Mode
Random Value, and Maximum
Random Value

In work object mode, Work Object
Yield Attribute Name

In custom mode, Yield Procedure
Name (Developer mode only)

This block... Provides these specific parameters...
And these
specific menu choices...
132

Configuring Blocks
The following table lists all the blocks that define menu choices for configuring
path identity. In addition to the menu choices listed in the table, each block
defines corresponding menu choices for showing the identified path. All menu
choices are required unless identified as optional.

For information on these specific menu choices, see the heading entitled “Specific
Menu Choices” for individual blocks in Blocks Reference.

Configuring the Duration of Blocks

You determine the timing of events in the model by specifying the duration of
blocks. The duration of a block determines the length of time that each activity in
the model processes. An activity is the amount of work time applied to an object
as a block processes it in the model. The duration of each activity in turn
determines the:

• Duration of each block, work object, and resource.

• Total cost of each block, work object, and resource.

• Utilization of each resource.

If you do not specify the duration of a block, the values of the above metrics are
all zero.

This block...
Provides these specific menu
choices for configuring path identity...

Batch In trigger mode, Choose Trigger Input Path

In trigger mode, Choose Trigger Output Path
(optional)

Copy Choose Original Output Path

Copy Attributes Choose Original Input Path

Insert Choose Container Input Path

Remove Choose Empty Container Output Path

Choose Nonempty Container Output Path

Retrieve Choose Not Found Output Path (optional)

Yield Choose Reject Path

Show Reject Path
133

Typically, you specify a duration for these two types of blocks, at a minimum:

• Source blocks, to determine the frequency with which work objects flow into
the model.

• Task blocks, to determine the duration of activities of all the value-added
tasks in the model.

Depending on your model, it might or might not be necessary to configure the
duration of other types of blocks, such as Branch blocks, Copy blocks, and Batch
blocks.

You can specify a fixed or variable duration, depending on the requirements of
the model.

For details on configuring the duration of a block, see Working with the Duration
of Blocks.

For information on activities, see Understanding the Activities of Blocks.

To configure the duration of a block:

1 Display the properties dialog for the block and click the Duration tab.

2 Configure the duration parameters of the block, as needed.
134

Configuring Blocks
For example, this dialog shows the duration parameters of a Task block that is
configured to process work, using a random triangular distribution:

Configuring the Cost of Blocks

You might want to associate a fixed or variable cost with a block. You can also
associate a fixed and variable cost with the resources associated with a block.
ReThink adds the block costs and the resource costs, per activity, to compute the
total cost of the block.

For details on configuring fixed and variable block costs, see Working with Block
Costs.

For information on specifying fixed and variable resource costs, see Assigning
Costs to Resources in a Model.
135

To specify the cost of a block:

1 Display the properties dialog for the block and click the Cost tab.

2 Configure the cost parameters of the block, as needed.

For example, this dialog shows the cost parameters of a Task block that is
configured to have a $10 fixed cost and a $5 per hour variable cost:
136

Configuring Blocks
Configuring the Animation of Blocks

You might want to use color to visually identify related blocks, such as blocks
within the same organizational department.

You can configure these colors of a block when it animates:

To configure the colors of a block when it animates:

1 Display the properties dialog for the block and click the Animation tab.

Note Detail Color is available for the Task block only.

2 Choose a color from the dropdown lists for each block color, as needed.

Animation Parameter Description

Active Color The color the block uses when it is processing.

Inactive Color The color the block uses when it is idle.

Error Color The color the block uses when it is in an error
state.

Detail Color The color a Task block uses when it has detail.
137

For example, this dialog shows the animation parameters of a Task block that is
configured use non-default colors:

Configuring Specific Blocks

This section provides suggestions on how to use several of the most common
blocks. For details on how to configure specific blocks, see Blocks Reference.

Source Block

All models begin by introducing some kind of work object. In most cases, you use
a Source block to generate work in a process, which you typically place on the left
side of the workspace as the first block.

To determine the type of work object the Source block generates, you configure
the Type parameter of the block’s output path. If you do not specify a path type,
the Source block generates a bpr-object, which is the default work object type.
138

Configuring Blocks
The Source block can generate work objects by using the path type combined with
a duration, by using an object file, or by using a database query.

Task Block

You use a Task block for synchronized processing, which means the block
processes its incoming work objects only when every input path has a work
object. For example, if the Task block has two input paths and an object arrives at
the block on only one of its input paths, the block waits to process the object until
an object arrives on the other input path. While the block is waiting to
synchronize its inputs, the path with the work object turns green, as the following
figure shows:

If you do not want the block to synchronize its inputs when it has multiple input
paths, use a Merge block or a junction block instead, as shown in Merge Block.

In particular, a common modeling mistake occurs when you attempt to create a
loop in a diagram by feeding an output path of a downstream block into a Task
block, as the following figure shows:

In this example, Task A must wait until an object arrives on the path that loops
around the model from Task B before it can process the initial work object, which
means Task A never processes.

Path waiting for input turns green.
139

If the desired behavior is to process work objects as they arrive at the block, feed
the loop into a Merge block upstream of the Task block, as the following figure
shows:

Another feature of a Task block is that it generates as many kinds of output work
objects as it has output paths, regardless of the number of input paths, as this
figure illustrates:

In this example, an order arrives at a Task block that has three output paths. The
Task block processes the order and passes it to the output path of the
corresponding type. At the same time, the Task block generates both an invoice
and a bpr-object, and passes them onto the output paths with the corresponding
type. If you do not specify an output path whose type is order, the Task block
would send the order onto the bpr-object path because order inherits its definition
from bpr-object. You can configure the Task block to copy attributes from the
input to the output work objects.

When one task consists of several steps, it is good modeling practice to model the
subtasks as detail. Creating Task blocks with detail makes the model cleaner to
look at and easier to explain. However, it is still important to label the Task block
with detail to provide someone viewing the model a high-level description of the
subtasks without requiring them to look at the detail.

For more information on creating detail for Task blocks, see Creating Hierarchical
Views.
140

Configuring Blocks
Branch Block

A Branch block can sort work objects by proportion, dynamic proportion, type,
prompt, attribute value, or rule.

You can configure duration, cost, and resources for a Branch block, just as you can
for a Task block. Therefore, when you need to branch work in a process, it is more
efficient to use just a Branch block rather than a Task block followed by a Branch
block.

It is also helpful to use free text to label the output paths of a Branch block so that
someone viewing the model can understand the implication of each branch.

For example:

Merge Block

You use a Merge block for sequential processing to bring together work objects
coming from different blocks when the process actually performs a value-added
task of gathering together separate pieces of data. Unlike a Task block, a Merge
block does not synchronize its inputs; instead, it processes work objects as they
arrive at the block.

The following model merges work from Task A and Task B:
141

Insert and Remove Blocks

A Remove block removes items from a bpr-container, which you insert by using
an Insert block. By default, a Remove block has the following three output paths:

• Nonempty container path, which is the path that carries the container when it
still has items in it. The block must identify this path when you configure it to
remove objects one at a time, using a loop of some kind; if you configure the
block to remove objects all at once, you can delete this path.

• Empty container path, which is the path that carries the container when all the
items have been removed. The block must identify this path.

• The path that carries the items that the block removes from the container.

In order for the block to function properly, you must set the path types of these
paths, and you must identify these paths by using the appropriate menu choices
on the block.

If the container has more than one type of object, you have two options for setting
the path that carries the items:

• Use the default path type of bpr-object so all types of objects pass onto a single
output path.

• Create as many output paths as there are types of objects in the container and
set each output path type accordingly.

The following figure shows two versions of a model that fills and then empties
containers. The first model uses a single output path for the objects removed from
the container, whose type is bpr-object. The second model uses multiple output
paths for the objects removed from the container, one for each type of object in the
container. In the first model, the objects removed from the container have been
moved on the path to show both objects.
142

Configuring Blocks
Note that in the first model, if the container had a part-c, the Remove block would
pass the part onto the bpr-object output path along with the other parts, whereas
in the second model, the Remove block would delete the part-c object because no
path of type part-c is specified.

Sink Block

You use a Sink block to eliminate work objects in a model when they are no
longer needed. In the following example, an order and a license arrive at a Copy
Attributes block named Copy Data. The order continues to a Task block and
ultimately to a Store block, whereas the license is explicitly deleted, using a Sink
block.

1

2

143

Custom Blocks

You can create custom blocks from standard blocks by customizing the
procedures and methods that implement the blocks’ behavior. For example, you
might create a custom Retrieve block that retrieves two items from a pool each
time it executes, rather than a single item.

Because the parent of a custom block is typically an existing block, by default,
instances of custom blocks look identical to their parent. To avoid this, you should
always edit the icon of a custom block to distinguish it from the standard block.
The new icon should indicate the function that the block is performing. For
example, you might add the number “2” to the custom Retrieve block’s icon to
distinguish it from the standard Retrieve block icon.

You store custom blocks in different locations, depending on how the model uses
them. For more information, see the Customizing ReThink User’s Guide.

Creating Hierarchical Views
When you create a model of a process, it is best to start at a very high level,
understand the basic inputs and outputs for each process, then add the detail of
each process. Rethink allows you to create hierarchical views in a model by
creating progressively greater level of detail for a block.

For example, a Billing task might consist of several subtasks, processing the order
and filing the order. You model these subtasks by creating blocks on the detail of
the Billing task and configuring their parameters.

Note Once you create detail for a task, the duration and cost for the top-level task have
no effect.

You create details for Task blocks only.

ReThink computes summary metrics for a task with detail. For example, each
subtask computes its Total Work Time, which is the total amount of time the task
spends processing work objects. The Total Work Time of the superior task is the
sum of the Total Work Time values of each subtask. Similarly, Total Cost is the
sum of the Total Cost values of all subtasks on the detail.

Note You cannot probe a Task block with detail. Probe the individual blocks on the
detail instead.

For more information on how blocks compute total work time and total cost, see
Working with the Duration of Blocks and Working with Block Costs.

When you create a task with detail, ReThink computes metrics for both the blocks
on the detail, as well as for the Task block. If you have many blocks with detail in
144

Creating Hierarchical Views
your model, performance can be affected. You can disable the detail so ReThink
computes metrics for only the Task block.

For information about how to improve performance in a model that has Task
blocks with detail, see Configuring the Computation Behavior.

When you create block summary reports, you can control whether the report
includes metrics on all blocks in the model or just the blocks on the detail.

For information about controlling the contents of a report for blocks with detail,
see Configuring the Scope of the Report.

Modeling the Detail of a Task

You model the details of a task by creating a detail subworkspace for the task. The
task on the detail has the same specification as the top-level task, including its
parameters, input and output path types, and label.

The detail has input and output connectors for each input and output path on the
block. A connector on a detail causes work objects to flow from the input path of
the superior task, to the blocks on the detail, and back up to the superior task.

When a Task block has detail, the color of the superior Task block changes to
indicate that it has detail.

Note The path type of the output path leading into the right-most connector determines
the path type of the object the superior task passes to the downstream block; the
output path type of the superior task has no effect.

It is often useful to specify time delays in the superior task before you specify the
detail so that the subtask on the detail inherits the specification of the superior
task. That way, if you delete the task’s detail, the superior task still has a
meaningful specification. However, note that the duration and cost specifications
in the superior task have no effect when the task has detail.
145

To model the detail of a task:

1 Choose Create Detail on the Task block.

ReThink displays the detail for the task. The detail contains input and output
connectors, which are connected to a Task block with the same specification as
the superior task.

Here is the detail for a Billing task with one input and one output path:

2 Create, connect, and configure other blocks on the detail.

For example, you might create a File Order subtask between the Process Order
subtask and the connector at the right side of the detail.

To do this, you must delete the existing connection, as described in Inserting a
Block Between Two Connected Blocks.

The detail might look like this, where the labels indicate the path types that you
configured for each path:

When you run the simulation, the work objects flow to the blocks on the detail of
the Task block and up again.

Interacting with the Detail

You can hide and show the detail, and go to the connected path of the connectors
on the detail. You can also enable and disable the detail, which allows you to run
the simulation as if no detail existed for a task.

To display the detail of a task:

 Choose Show Detail on the block or click the equivalent toolbar button.

To show the connected paths of the detail:

 Click any connector on the detail.
146

Understanding the Activities of Blocks
ReThink displays an indicator arrow on the superior workspace next to the path
to which the connector is connected and a label that indicates whether the
connector is an input or output path, for example:

To disable detail:

 Choose Disable Detail on a Task with detail.

The top-level Task block with detail behaves as if it had no detail, and its icon
changes to indicate the detail is disabled:

To enable detail:

 Choose Enable Detail on a Task with detail.

Work objects flow to blocks on the detail.

To delete the detail:

 Select the detail workspace and choose Edit > Delete.

Understanding the Activities of Blocks
When a block processes its input work object or objects, it creates a single activity
object. An activity represents the amount of work associated with processing all
the inputs of a single block. You can view the activities associated with a task
while the model is running by using a menu choice on the block.

The duration of an activity is determined by the duration mode and associated
parameter values of the block. The number of concurrent activities depends on

Clicking this
connector...

... displays an indicator
arrow next to the output
path of the top-level
Task with detail.
147

the duration, the frequency with which work objects flow into the block, and the
constraints associated with the block. If too many work objects exist for the given
constraints on the block, work backs up on the input path to the block.

When a block processes multiple work objects, it creates multiple related activity
objects, one for each set of inputs. Each activity computes the amount of work
required to process a single block event, which includes all of the block’s inputs,
and the cost of processing that event.

The block sums the duration and cost of each activity to provide summary metrics
for all the activities that the block processes.

Determining the Current Activities

ReThink keeps track of the activities of a block, using these metrics:

Each time the block starts processing a work object and creates a new activity, it
increments Total Starts and Current Activities by one. Each time the block stops
processing a work object and deletes the associated activity, it increments Total
Stops by one and decrements Current Activities by one.

The Current Activities metric represents the number of activities associated with
the block, which you can visualize while the model is running.

To see the metrics of a block related to activities:

 Display the properties dialog for the block and click the General tab.

Attribute Description

Total Starts The total number of activities that the block has
started processing since the start of the
simulation.

Total Stops The total number of activities that the block has
finished processing since the start of the
simulation.

Current Activities The number of work objects that the block is
currently processing. The Total Stops plus the
Current Activities equals the Total Starts.
148

Understanding the Activities of Blocks
The General tab of the properties dialog might look like this for a Task block with
two current activities, given a pool of worker resources:
149

To visualize the current activities of a block:

 Choose Snapshot Activities on a block.

ReThink displays a workspace that contains the current activities for the block:

This workspace can contain zero or more activities. As the block finishes
processing an activity, ReThink dynamically deletes the activity from the
workspace. However, ReThink does not dynamically add new activities to the
workspace; you must take another snapshot to see the current activities of the
block after the block processes another event.

Understanding the Attributes of Activities

Each activity has associated metrics, which compute the duration and cost
associated with the individual activity. This table summarizes the metrics of an
activity:

By default, the block is busy processing work for the entire duration of each
activity. Thus, the Work Time and the Elapsed Time of an activity are the same.
However, you can customize the time delay of an activity.

Attribute Description

Phase The status of the activity, which is active when
the activity exists and inactive when the activity
is deleted.

Work Time The amount of simulation time that a particular
activity is active processing work.

Elapsed Time The amount of simulation time that represents
the entire duration of the activity.

Cost The cost associated with processing the activity,
which includes costs assigned to the block and
costs assigned to any associated resources.
150

Understanding the Activities of Blocks
To display the metrics of an activity:

1 Run the simulation in step mode.

2 While a block is processing a work object, choose Snapshot Activities on the
block.

3 Display the properties of an activity.

ReThink displays the General tab of the properties dialog for an activity that
is active:

4 To see the metrics of the activity related to duration, click the Duration tab:

5 To see the metrics of the activity related to cost, click the Cost tab:
151

Customizing the Time Delay of Activities

You can customize the way ReThink calculates the time delay of activities. You do
this to create variation in the amount of time that work is actually being processed
(the Work Time) versus the amount of time that work is in the system (the
Elapsed Time). For example, you might customize the time calculation to take
into account the fact that work is only processed during normal business hours.

To illustrate, suppose an order takes three hours to process and it enters the
system at 4:00 PM on a Monday. The total work time for the order would be three
hours (assuming no deviation), however, the total elapsed time would include the
hours from 5:00 PM on Monday to 9:00 AM on Tuesday, when the order was in
the system but not being processed.

For information on customizing the duration of activities, see Constraining the
Availability of Resources and see the Customizing ReThink User’s Guide.

Using Resources to Constrain Concurrent Activities

If the block has no resource constraints, the block can process any number of
activities concurrently. For example, if the block receives objects once an hour on
average, and the block takes two hours to process on average, the block can
process two concurrent activities.

If the block has associated resources, it can only process one activity for each
available resource, assuming default resource utilization. Thus, the number of
current activities is constrained by the number of available resources.

If a block has resource constraints, and if more work objects flow into the block
than there are available resources, work backs up on the input path to the block.

For more information on... See...

Assigning resources to a task Using Resources to Constrain the
Model.

Analyzing the work backups due
to resource constraints

• Showing Work Backups on an
Input Path

• Analyzing the Wait Time Due
to Work Backups
152

Understanding the Activities of Blocks
Limiting the Number of Concurrent Activities

You can limit the number of concurrent activities a block can process, regardless
of the available resources.

To limit the number of concurrent activities:

1 Display the properties dialog for a block and click the General tab.

2 Configure the Maximum Activities to be the number of concurrent activities.

If a block has specified a maximum number of activities, and if more work objects
flow into the block than the maximum, work backs up on the input path to the
block. In the following properties dialog, notice that the Current Activities plus
the Total Stops equals the Total Starts, regardless of the specification for
Maximum Activities; the block does not actually start processing the work objects
that are waiting on the input path.

Total Stops +
Current Activities
= Total Starts
153

You can analyze the work backups that result from limiting the maximum
activities, as described in Showing Work Backups on an Input Path and
Analyzing the Wait Time Due to Work Backups.

Showing Work Backups on an Input Path

When you run a model, work objects can back up on the input path of a block
creating a work backup. Work backups occur for one of two reasons:

• The block does not have enough resources to process all the work objects that
are waiting on the input path.

See Using Resources to Constrain Concurrent Activities.

• The block has specified a maximum number of activities that it can process at
one time.

See Limiting the Number of Concurrent Activities.

When work backups exist, ReThink colors the input path green and inserts the
work objects into the path queue. You can visualize work backups by taking a
snapshot of the path queue.

You can customize the color the path uses to indicate work backups, as described
in Configuring the Animation of Paths.

Note Input paths can turn green for one of two reasons: work backups due to
constraints on the model or path synchronization. For example, a Task block with
two input paths synchronizes its inputs by waiting to process until all the inputs
have arrived at the block. This input path turns green for a different reason than
work backing up on the input path.

To show work backups in the path queue:

 Choose Snapshot Queue on a green input path that has work backups.

ReThink displays a temporary workspace that shows the work objects waiting in
the path queue. ReThink transfers the work objects from the path to the
workspace.
154

Understanding the Activities of Blocks
For example, here is a model where the task limits the number of current activities
to two. When more than two work objects arrive at the block, the input path to the
task turns green and the work objects appear in the queue.

For an example of work backups due to resource constraints, see Showing Work
Backups Due to Resource Constraints.

Analyzing the Wait Time Due to Work Backups

ReThink computes summary metrics that report the total amount of time that
work objects have spent waiting in the path queue. This table describes the
metrics that relate to the path queue:

The number of work objects that the
task can process is limited to 2. When
more than 2 work objects arrive at the
block, they back up on the path queue.

Snapshot Queue

Input path turns green when work objects are in the queue.

Attribute Description

Total Insertions The total number of work objects that have ever
been in the path queue.

Current Waiting The current number of work objects in the
queue.
155

You can create a summary report that includes metrics for all paths in the model.
For more information, see Summary of Input and Output Reports.

Another common technique for obtaining path metrics is to create a readout table.
For details, see Using Readout Tables.

To analyze the wait time due to work backups:

 Display the properties dialog for a green input path that has work backups
and click the General tab.

The properties dialog for a path contains various metrics that compute the wait
time of work objects due to work backups. The dialog also shows the total
number of work objects in the queue.

Here is the properties dialog for a path with eight work objects in the path queue:

Total Wait Time The total amount of time that all work objects
have spent in the path queue since the start of
the simulation.

Mean Wait Time The total amount of time that all work objects
have spent in the path queue (Total Wait Time)
divided by the total number of work objects that
have ever been in the path queue (Total
Insertions).

Attribute Description
156

Working with the Duration of Blocks
Showing Work Backups Interactively

To visualize where work backups occur most often in the model, you can
interactively show the busiest path, the most used path, and the path with the
longest wait time. To do this, you run, then pause the simulation.

To show work backups in the model interactively:

 To show the path with the largest value for Current Waiting, choose Indicate
Busiest Path from the popup menu for the workspace.

or

 To show the path with the largest value for Total Insertions, choose Indicate
Most Used Path from the popup menu for the workspace.

or

 To show the path with the largest value for Total Wait Time, choose Indicate
Longest Wait Time Path.

ReThink indicates the path and provides information. For example, here is the
result of choosing Indicate Busiest Path on a path with 14 work objects waiting:

Working with the Duration of Blocks
Each block has an associated duration, which is the amount of time that the block
spends processing its input work objects. Each block also computes summary
duration metrics, which allow you to analyze the block’s performance.

With the exception of the Source block, all ReThink blocks use a random normal
distribution to compute duration, by default. A random normal distribution is a
bell-shaped curve with a mean and a standard deviation. The Source block uses a
random exponential distribution, by default, which uses just the mean. In
addition, you can choose from among a number of additional distributions to
compute duration, such as uniform and triangular, or you can specify a fixed
duration.

By default, ReThink computes duration for a single work object. If your work
object represents more than one object, you can configure an attribute of the work
object that represents the number of units, which the block multiplies by the
sampled duration to produce the overall duration.
157

You configure the duration of a block on the Duration tab of the properties dialog.
You specify the duration by using an interval, which is an expression such as 10
seconds, 30 minutes, 3 hours, 5 days, or 4 weeks.

You view metrics related to block duration in the properties dialog for a block or
in the Metrics toolbar. You can also create a Block Summary Report, which
displays duration metrics for all blocks in your model.

Note The duration of an individual block cannot exceed 17 years; however, the Total
Elapsed Time of the simulation can be any length of time.

Specifying a Fixed Duration

You might want to specify a fixed duration for an activity as a way of verifying
the model. With no variation, you can more easily cross-check metrics that the
model computes.

To specify a fixed duration:

1 Display the properties dialog for the block and click the Duration tab.

Use the default Distribution Mode, which is Fixed Distribution.

2 Configure the Mean to be a time interval.
158

Working with the Duration of Blocks
Here is the Duration tab of the properties dialog with a fixed duration:

Specifying a Random Duration

Most models simulate real-world durations, which are random, based on some
standard distribution. Depending on the activity, you might specify a random
normal, random exponential, random triangular, or some other random
distribution.

To specify a random duration:

1 Display the properties dialog for the block and click the Duration tab.

2 Choose a Distribution Mode from the dropdown list.

3 Configure the parameters associated with the Distribution Mode you specify.

For details on configuring each of the distribution modes, see the descriptions of
each distribution below.
159

Here is the Duration tab for a Source block, which specifies a random exponential
distribution, by default:
160

Working with the Duration of Blocks
Here is the Duration tab for a Task block that specifies a random triangular
distribution:

You can choose from the following random distributions for computing the
duration of a block:

• Fixed Distribution

• Random Exponential

• Random Normal

• Random Uniform

• Random Triangular

• Random Erlang

• Random Weibull

• Random Lognormal
161

• Random Gamma

• Random Beta

Fixed Distribution

Parameters: Mean

Specifies a fixed distribution given a mean, which results in the same value being
used for each sample.

Random Exponential

Parameter: Mean

Specifies a random sample with a built-in deviation, where the likelihood is
greatest that the value will be less than the Mean or somewhat greater than the
Mean; however, some small percentage of the time, the value is significantly
greater than the Mean. A random exponential function most closely models the
frequency with which a process receives inputs in the real world.
162

Working with the Duration of Blocks
Random Normal

Parameters: Mean, Standard Deviation

Specifies that the value varies around the Mean, based on the Standard Deviation.
For example, if the Mean is two hours and the Standard Deviation is one hour,
then, on average, the value is two hours. The value varies from some amount less
than two hours to some amount greater than two hours, based on a normal
distribution, where 95% of the sample points fall within two standard deviations
of the Mean.

You can configure the Standard Deviation to be zero, in which case the model
uses the same value each time.

Random Uniform

Parameters: Min, Max

Specifies that every value between the Min and the Max is equally likely. The use
of this distribution often implies a complete lack of knowledge about the shape of
the data, other than the minimum and maximum values.
163

Random Triangular

Parameters: Min, Mode, Max

Appropriate when a most likely value, called the Mode, is known, and a linear
distribution between the Min and the Mode and between the Mode and the Max
can be assumed. Random-Triangular is the default Mode Type.

Random Erlang

Parameter: Mean

The sum of independent and identically distributed exponential samples with the
specified Mean. This distribution is a special case of the Random-Gamma
distribution where the Beta parameter is an integer that represents the number of
samples.
164

Working with the Duration of Blocks
Random Weibull

Parameters: Shape, Scale

Often used for modeling the time to failure, called the reliability, of independent,
identical components. When the Shape equals 1, the Random-Weibull
distribution reduces to the Exponential distribution.

Random Lognormal

Parameters: Mean, Standard Deviation

The distribution of data whose natural logarithm follows the normal distribution,
given a Mean and Standard Deviation. This distribution is appropriate for
situations where the value of a data point is a random proportion of the previous
data point, for example, the distribution of personal incomes.
165

Random Gamma

Parameters: Alpha, Beta

A generalization of the Erlang distribution where conceptually the number of
exponential samples need not be an integer value. With different parameter
settings, the Random-Gamma distribution can take on many different shapes and
can, therefore, represent a wide variety of different physical processes.

Random Beta

Parameters: Alpha, Beta, Min, Max

Takes on a wide variety of different shapes for different values of the Alpha and
Beta parameters, including bell-shaped, U-shaped, symmetric, or asymmetric.
The Random-Beta distribution is defined over a finite range (0, 1) that is then
scaled, using the Min and Max parameter values.
166

Working with the Duration of Blocks
Specifying Duration from a File

You might know exactly when an activity occurs in your model, based on
durations in a file. The file should be a list of numbers, separated by a carriage
return, representing the difference in arrival times between each subsequent
object that the block processes, interpreted as seconds. For example:

720
650
640
620
840

By default, the block continues processing work objects when it reaches the end of
the file by looping back to the beginning of the file.

To specify duration from a file:

1 Display the properties dialog for the block and click the Duration tab.

2 Choose Duration File as the value of the Distribution Mode.

3 Configure the Duration File Name to specify a text file that contains the
durations.

4 To cause the block to stop processing work objects when it reaches the end of
the file, disable the Repeat Duration File option.

Note If you disable the Repeat Duration File option, be sure that the upstream block
does not continue to send work objects to the block that obtains its durations from
a file; otherwise, work objects will accumulate on the input path of the block
without being processed.
167

For example, here is the Duration tab for a Task block that determines its duration
from a file:

Specifying Duration Based on an Indexed Report
Lookup

You might know exactly when an activity occurs in your model, based on
durations in a report. You can create an Indexed Lookup Report with a column
that is a list of numbers representing the difference in arrival times between each
subsequent object that the block processes, interpreted in the time unit of the
168

Working with the Duration of Blocks
report. For example, the following values would be interpreted as hours, the
default time unit:

2
3
4.5
3.5
2
5

To do this, you create a work object definition that defines an attribute that
specifies the duration. You then use an Indexed Lookup Report to specify the
durations. By default, the block stops processing work objects when it reaches the
end of the report.

To specify duration, based on an indexed report lookup:

1 Create a work object with an attribute whose value you want to look up in a
report, for example, order-processing-time.

2 Configure the model to create work objects of this type.

3 Display the Reports palette of the ReThink toolbox:

4 Create an Indexed Lookup Report with a column that is the name of the
attribute of the work object that defines the durations you want to look up.

In this example, the column would be order-processing-time.

Indexed Lookup Report
169

For details, see:

• Creating Reports.

• Configuring the Attributes to Appear in a Report.

5 Create as many rows as needed in the report and enter values for each
duration you want to look up.

For details, see Applying Input Report Data to the Model.

6 Display the properties dialog for the block whose durations you want to look
up in the report and click the Duration tab.

7 Choose Report Indexed Lookup as the value of the Distribution Mode.

8 Configure the Report Title to be the name of the Indexed Lookup Report you
created above.

9 Configure the Lookup Attribute Name to be the name of the column to use as
an index when looking up values in the report.

In the example above, the Lookup Attribute Name would be order-
processing-time.

10 To cause the block to continue processing work objects when it reaches the
end of the report, enable the Repeat Indexed Lookup option.

Here is a model that looks up durations in the report named Indexed Lookup
Report:

Here is the class definition for the work object that defines the order-processing-
time attribute, whose values the model will look up:
170

Working with the Duration of Blocks
Here is the Attributes tab of the Indexed Lookup Report, which specifies order-
processing-time as the attribute of the work object whose values to look up:

Here is the contents of the Indexed Lookup Report with values for order-
processing-time, which are given in hours, the default time unit of the report:
171

Here is the Duration tab for a Task block that determines its duration by looking
up values for the order-processing-time attribute in the report named Indexed
Lookup Report:
172

Working with the Duration of Blocks
When you run the simulation, the first work object uses a duration of 2 hours:

Specifying Duration Based on an Attribute of a Work
Object

You might define a class of work objects that specify their own durations. For
example, you might define the Packing Time for different types of boxes, or you
might feed the packing time into the model, using a feed. When different types of
objects arrive at a block that packs boxes, it determines the duration of the
activity, based on the value of the Packing Time.

To specify durations, based on an attribute of a work object, you must first define
the class or classes of objects that define the duration.

To specify duration, based on an attribute of a work object:

1 Create one or more class definitions for objects that the model will use to
determine duration.

For example, you might define two classes named small-box and big-box, each
with a packing-time attribute, where the initial values depend on the type of
box.

2 Configure the model to generate the user-defined objects such that they arrive
at the input path of the block whose duration should be based on an attribute
of a work object.
173

For example, you might create one Source block that generates small boxes
and another Source block that generates large boxes.

3 Display the properties dialog for the block and click the Duration tab.

4 Choose Work Object Duration as the value of the Distribution Mode.

5 Configure the Work Object Duration Attribute to be the attribute value of the
user-defined work object that determines the duration of the block.

Here is the Duration tab for the Pack Boxes task in the following model, which
determines duration by using the packing-time attribute of the work objects it
processes:

This diagram shows the result of running a model where the Pack Boxes task uses
the packing time of the small-box or large-box to determine the duration of the
activity. The class definitions show the class-specific attributes, which specify the
packing-time attribute with different initial values, as well as the associated icons.
In the running model, the Pack Boxes task is currently processing a big-box and
174

Working with the Duration of Blocks
just finished processing a small-box. The properties dialog for the small-box on
the output path of the Pack Boxes task show a Total Work Time of 15 minutes or
900 seconds, which is the initial value for the packing-time attribute of the
small-box class. When the Pack Boxes task finishes processing the big-box, the
Total Work Time for the big-box will be 30 minutes or 1800 seconds, the initial
value for the packing-time of the big-box class.
175

Specifying Duration Based on an Attribute Report
Lookup

You might have a block that processes several different types of objects, where an
attribute of the work object is an index that the block uses for looking up the
duration in a report. For example, you might define an order object with a carrier
attribute, which you feed into the model. The value of the carrier is the index that
the block uses to look up its duration in a report, where mail would take 3 days,
ups would take 2 days, and fedex would take 1 day.

You can use multiple attributes as indexes for the report lookup, for example, the
lookup might be based on a combination of the carrier attribute and the priority
attribute. You can also perform arithmetic tests that compare the attribute value
of the work object with values in the report. For example, you might define a
distance attribute on the order, which you feed into the model as a random value.
To determine which value for distance to use as an index in the report, the block
would compare the actual distance of the work object with a distance value in the
report, where if the distance is less than 1000 miles, it uses one value and if the
distance is 1000 miles or greater, it uses a different value.

To specify durations, based on an attribute report lookup, you must first define
the class or classes of objects that define the attribute to use as the index for the
report lookup. You must then define an Attribute Lookup Report with the
appropriate columns to use for the lookup. You can use the same report for
multiple blocks. Finally, you must configure the duration of the block specify the
report name, the column to use as the duration, the column to use as the label,
and the search criteria.

To specify duration, based on a report lookup:

1 Create one or more class definitions for objects that the model will use to
determine the attribute or attributes to use as an index for a report lookup.

For example, you might define a class named order with a carrier attribute and
a distance attribute, whose values you will feed into the model.

2 Configure the model to generate the user-defined objects such that they arrive
at the input path of the block whose duration should be based on an attribute
report lookup.

For example, you might create a Source block that generates orders, which
feeds the value of the carrier attribute and the duration into each order, then
passes the orders to a downstream Task block.
176

Working with the Duration of Blocks
3 Display the Reports palette of the ReThink toolbox:

4 Create an Attribute Lookup Report and configure the report to have the
following columns:

Note When configuring the report columns in the report, you must use symbols; do
not use spaces.

Attribute Lookup Report

Column Description Example

Lookup Attribute
Name

The report column that the
block uses for the duration.

transportation-time

Lookup Label
Attribute Name

The report column that
uniquely identifies the block.

block-label

Search Criteria
Report Column(s)

The report column or columns
that the block uses as the index
for comparing with the Work
Object Attribute value.

carrier-value
distance-min-value
distance-max-value
177

5 Create as many rows as needed and provide values for each column of the
report.

For example, you might enter these values for different distances for three
types of carriers:

Note You must enter the value for duration in the time unit of the report, whose
default is 1 hour.

6 Display the properties dialog for the block and click the Duration tab.

7 Choose Report Lookup as the value of the Distribution Mode.

8 Choose the Report Title from the dropdown list to be the report you created
above.

Note You must create the report before you configure the Report Title; otherwise, it
will not appear in the list.

9 Configure the Lookup Attribute Name to be the report column that the block
uses as its duration.

In the example above, the Lookup Attribute Name would be transportation-
time.

10 Configure the Lookup Label Attribute Name to be the report column that
uniquely identifies the block.

In the example, the Lookup Label Attribute Name would be block-label.

11 Configure the Search Criteria by editing the Work Object Attribute, Operator,
and Report Column to specify the index to use for the report lookup, adding
search criteria, as needed.

Block Label Carrier
Value

Distance Min
Value

Distance
Max Value

Transportation
Time

Ship Orders mail 1000 10000 120

Ship Orders mail 0 1000 72

Ship Orders ups 1000 10000 72

Ship Orders ups 0 1000 48

Ship Orders fedex 1000 10000 48

Ship Orders fedex 0 1000 24
178

Working with the Duration of Blocks
In the example, you would create these three criteria for determine the index to
use for the report lookup:

This model generates orders and feeds values for the carrier and distance into
each order, using Change feeds. The Ship Order task looks up values in the
Attribute Lookup Report, based on the specified criteria. The order class defines
the carrier and distance attributes.

Work Object Attribute Operator Report Column

CARRIER = CARRIER-VALUE

DISTANCE >= DISTANCE-MIN-VALUE

DISTANCE < DISTANCE-MAX-VALUE
179

Here is the Attributes tab of the Attribute Lookup Report:

Here is the Attribute Lookup Report for the model, which specifies values for
each attribute in the report:
180

Working with the Duration of Blocks
Here is the Duration tab for the Ship Order task in the following model, which
determines duration by looking up the transportation-time in the Attribute
Lookup Report, based on the carrier and distance attributes of an order:
181

Here is the User tab for a work object on the output path of the Ship Order block:

Here is the Utilization tab for the work object, which shows that the Total Work
Time is 3 days (72 hours), which the Ship Order task looked up in the report,
based on the Carrier (UPS) and Distance (1000 < 1950 < 10000):
182

Working with the Duration of Blocks
Using a Graph to Specify Duration

You might have a general picture of the frequency with which work objects arrive
into your process. For example, you might know that in the morning there are a
moderate number of calls per hour, a peak before lunch, a lull at midday, a large
number of calls in the afternoon, and a moderate number of calls approaching the
end of the day. You can represent this visually in ReThink by using an Arrival
Rate Input Graph.

To use an Arrival Rate Input Graph, you must:

• Create the graph.

• Configure the graph.

• Edit the shape of the graph.

• Configure the Source block to use the graph.

Creating an Arrival Rate Input Graph

To create an Arrival Rate Input Graph:

1 Display the Tools palette of the ReThink toolbox:

2 Select an Arrival Rate Input Graph and place it on the model detail.

3 Choose Create Input Graph on the tool.

Arrival Rate
Input Graph
183

ReThink creates a special-purpose graph for specifying the input arrival rate of
work objects:

Note This graph represents the input arrival rate of work objects to a block; it does not
represent the time between arrival of the objects. ReThink interprets this graph to
compute arrival times.

Configuring the Arrival Rate Input Graph

The horizontal axis of an Arrival Rate Input Graph represents the time period
over which the Source block generates objects. The default is 1 day, represented in
seconds.

The vertical axis represents the number of objects that arrive per hour. The default
maximum is 60 objects.

By default, a point at the maximum vertical position on the graph means that 60
objects will arrive per hour. ReThink interprets this point as an arrival time of
1 minute (60 objects per 60 minutes = 1 object per minute).

A point in the exact middle vertical position on the graph means that 30 objects
will arrive per hour, which ReThink interprets as an arrival time of 2 minutes
(30 objects per 60 minutes = 1 object every 2 minutes).

A point at the minimum vertical position on the graph means that 1 object will
arrive per hour, which ReThink interprets as an arrival time of 60 minutes.
184

Working with the Duration of Blocks
To configure the graph:

1 Choose properties on the Arrival Rate Input Graph.

Here is the General tab:

By default, ReThink interprets the value of the y axis as the number of objects
that arrive per hour. You can change this attribute to interpret the arrival rate
by using some other time interval, such as per day.

2 Configure the Time Unit attribute to be the time unit that ReThink uses to
interpret the arrival rate.

Tip If you edit the Time Unit, edit the Label attribute of the X and Y axes to reflect
the unit you specify.

By default, the graph allows you to model the arrival rate of objects over a
24 hour period.
185

3 To specify the time range over which the block creates objects, click the X Axis
tab and configure the X Range attribute.

Here is the default X Axis tab:

For example, if you are modeling a 10-hour period during the work day, as
opposed to a 24-hour day, specify the Range of the x axis to be 10 hours.

4 To specify a starting time other than 0, configure the X Min attribute.

5 To specify the default number of points in the graph, configure the X Step
attribute.

For the x axis, the X Step attribute in combination with the Range attribute
determine the default number of points that ReThink uses to generate the
graph. The number of points is the X Range minus the X Min divided by the
X Step, plus one. For example, if the X Step is 2 hours and the Range is 10
hours, the graph will have 6 points (36000/7200 + 1).
186

Working with the Duration of Blocks
6 To specify the maximum number of objects per time period, click the Y Axis
tab and configure the Y Range attribute.

Here is the default Y Axis tab:

For example, if you want the block to emit a maximum of 10 objects per hour
instead of 60 objects per hour, specify the Y Range to be 10.

7 To specify a minimum number other than 0, configure the Y Min attribute.

The default size of a graph is 200 pixels along the x axis by 100 pixels along the
y axis.

8 To specify the size of the graph in pixels, click the X Axis tab and configure the
X Size attribute and click the Y Axis tab and configure the Y Size attribute.

To update the graph after configuring it:

 Choose Update Input Graph on the Arrival Rate Input Graph.
187

For example, here is a graph configured to generate a maximum of 10 objects per
hour, over a 10-hour period, with only six points by default:

ReThink adds and deletes points based on the values of the Range and Step
attributes of the x axis.

Note If you have already edited the shape of the graph by moving or editing points,
you might want to choose the Create Input Graph menu choice instead of Update
Input Graph to regenerate the graph according to the new specification.

Editing the Shape of the Arrival Rate Input Graph

Once you have configured the graph, you edit its shape by manually dragging
points to new locations. You can also edit the exact location of each point by
specifying the x, y coordinates as attributes. You add and delete points, as
necessary.

To adjust the position of points on the graph manually:

 Click a point in the graph and drag it to a new location.

For example, the following graph represents the arrival rate of calls described at
the beginning of this section:
188

Working with the Duration of Blocks
To specify the x, y coordinates of the point directly:

1 Click a point in the graph and choose Set Point.

2 Edit the X and Y attributes to specify the exact coordinates of the point.

To add points to the graph:

1 Click a point in the graph near where you want a new point to appear to
display its table.

2 Choose New Point to add a point on top of the old point.

3 Drag the new point off the existing point to adjust the shape of the graph.

To delete points from the graph:

 Drag an existing point on top of another point.

or

 Click a point and choose Delete.

Configuring the Block to Use the Graph

Now that you have configured the graph, you must configure the block to use the
Arrival Rate Input Graph for its durations.

To configure the block to use a graph:

1 Display the properties dialog of the block whose duration you want to
configure and click the Duration tab.

2 Configure the Distribution Mode to be Arrival Rate Input Graph.

3 Choose the Choose Input Graph menu choice, then choose Select on the
Arrival Rate Input Graph that is to supply duration times for the block to
select the graph.

ReThink displays an indicator arrow next to the selected graph, which is now
available as input for the block.

4 Choose Show Source on the Arrival Rate Input Graph to show the block that
uses the graph.

Specifying a Custom Duration

You can specify a custom duration by creating your own procedure that specifies
exactly how to compute the duration. To do this, you work in Developer mode
and you must be familiar with creating G2 procedures.

For more information, see the Customizing ReThink User’s Guide.
189

To specify a custom duration:

1 Create a custom procedure that computes duration.

2 Choose Tools > User Mode > Developer.

3 Display the properties dialog for the block and click the Duration tab.

4 Choose Custom as the value of the Distribution Mode.

5 Configure the Procedure Name to be the name of the procedure you created
above.

Understanding Total Work Time and Total Elapsed
Time

The Total Work Time and Total Elapsed Time of a block are related to the Work
Time and Elapsed Time metrics of the block’s activities, as follows:

The block also computes the Average in Process, which is based on the Total
Work Time and Total Elapsed Time.

For an explanation of Average in Process, see How the Block Uses Total Work
Time and Total Elapsed Time.

You can view the Total Work Time and Total Elapsed Time of a block in the
properties dialog for the block.

To display the total work time and total elapsed time of a block:

 Run the simulation, then display the properties dialog for the block and click
the Duration tab.

Attribute Description

Total Work Time The sum of all the Work Time values for
each activity currently scheduled by the
block, as of the current simulation time.

Total Elapsed Time The amount of time that has elapsed
since the simulation began or since you
created the block in a running
simulation.
190

Working with the Duration of Blocks
Here is the Duration tab of the properties dialog for a block that is currently
processing:

Total Work Time

The Total Work Time of a block depends on the number of concurrent activities
the block is processing. If the block is processing more than one activity, it
updates the Total Work Time of the block each time an activity is created and each
time an activity ends. Thus, depending on the frequency with which work objects
flow into a block, as well as the duration of the block, the Total Work Time can
include partial work times for some of its activities.

For an example of how the block computes Total Work Time, see Relating Work
Time and Elapsed Time of Activities and Blocks.
191

Total Elapsed Time

The Total Elapsed Time of a block is a measure of the total processing time of a
block from the beginning of the simulation. The Total Elapsed Time is the same
for each block in the simulation, assuming they were all created at the same time.
Note that the block does not update the duration metrics that are based on the
Total Elapsed Time unless the block is currently processing work objects.

During the course of the simulation, you can update the Total Elapsed Time of the
block and the metrics that depend on it, as described in Updating Duration
Metrics for Blocks.

If you create a block and add it to the model while the model is running, the Total
Elapsed Time for that block begins when you connect it to the model, and the
Creation Time is the simulation time at which the block was created.

Relating Work Time and Elapsed Time of Activities
and Blocks

Suppose a Source block generates an object exactly once every 15 seconds, and a
Task block takes exactly 30 seconds to complete. The task updates every 15
seconds, each time it receives a new work object. The Total Work Time is a
cumulative measure of the amount of work applied by each activity at each
update interval.

The following time line shows the Total Work Time and Total Elapsed Time for
the Task block at the point when each new work object arrives at the block. It also
shows a snapshot of the associated activities at the same point in time. The Work
Time of each activity is always 30 seconds.

At 15 seconds of Total Elapsed Time, one activity is associated with a single work
object. At the point at which the work object arrives at the block, the activity has
not yet contributed any work time to the task, thus the Total Work Time is zero.

At 30 seconds, two activities are associated with work objects 1 and 2. The Total
Work Time represents the amount of work time that each activity has contributed

Activities

Work objects

Total Work Time

Total Elapsed Time

1

1 1 2

2

2 3

3

3 4

4

0

0

0

15

15

30

45

45

75

60
192

Working with the Duration of Blocks
at 30 seconds. The first activity has only contributed half of its total work time,
which is 15 seconds, and the second activity has contributed nothing.

At 45 seconds, the block has finished processing the first work object, and now
two activities are associated with work objects 2 and 3. The Total Work Time
represents the total work that the first activity has contributed, which is 30
seconds, plus the partial work that the second activity has contributed, which is
15 seconds, for a total of 45 seconds.

Finally, at 60 seconds, the block is processing work objects 3 and 4. The Total
Work Time represents the total work of the first and second activities, which is 30
seconds each, plus the partial work of the third activity, which is 15 seconds, for a
total of 75 seconds.

How the Block Uses Total Work Time and Total
Elapsed Time

ReThink uses the Total Work Time and Total Elapsed Time metrics to compute
the Average in Process, which is the Total Work Time divided by the Total
Elapsed Time. The Average in Process gives an indication of the average number
of concurrent activities that a block has performed since the start of the
simulation.

To see the Average in Process of a block:

 Run the simulation, then display the properties dialog for the block and click
the Duration tab.

The following table shows the Average in Process at each time interval:

For example, if the Average in Process of a block is less than one, you know that
the block has been processing less than one activity on average over the course of
the simulation. On the other hand, if the Average in Process is a number greater
than one, you know that on average the block has been processing more than one
activity concurrently over the course of the simulation.

When Total
Elapsed Time is...

And Total
Work Time is…

Average in
Process is...

0 0 0

15 seconds 0 0

30 seconds 15 seconds .5

45 seconds 45 seconds 1

60 seconds 75 seconds 1.25
193

Updating Duration Metrics for Blocks

ReThink does not update the Total Elapsed Time for all blocks in a model, by
default; it only updates the Total Elapsed Time of the block currently processing
work objects. Thus, the Total Elapsed Time and the Average in Process, which is
computed based on the Total Elapsed Time, do not always reflect the current
values for all blocks in the model. For example, the Total Elapsed Time of a block
is zero until it starts processing.

To update the duration metrics for a block:

 Choose Update on the block or click the Update button in the properties
dialog.

Computing Duration for Multiple Units of Work

If the work object your model is processing represents multiple units of work,
ReThink can compute the duration by multiplying the sampled duration by the
number of units to produce the overall duration. The time unit is hours.

To compute the duration for multiple units of work:

1 Create an attribute of the work object that represents the number of units of
work.

For example, if a work object represents a set of documents, you might call the
attribute number-of-documents.

2 Display the properties dialog for a block and click the Duration tab.

3 Configure the Time per Unit Attribute to be the name of the attribute of the
work object that specifies the number of units.

Working with the Duration of Blocks
When the block computes its duration, it multiplies the duration computed, based
on the Distribution Mode by the number of units to produce the overall block
duration, as this example shows:
195

Working with Block Costs
One way of analyzing cost is to assign fixed and variable costs directly to a block.
You use this technique as a quick way of representing cost, when you are not
modeling the resources associated with a task.

For information on modeling costs associated with resources, see Working with
Resource Costs.

Note You typically assign costs to either the resources associated with a particular
block or to the block itself; you do not typically specify costs for both a block and
the block’s resources.

You configure fixed and variable costs by using the Cost tab of the properties
dialog. Each block also computes the total cost of the block, which you can view in
the properties dialog for a block or in the Metrics toolbar. You can also create a
Block Summary Report, which displays cost metrics for all blocks in your model.

Configuring the Cost of a Block

You can specify a fixed cost or a variable cost for a block. The variable cost is
based on the duration of the block and a time unit, which is 1 hour, by default.

You can specify both a fixed and variable cost for a block, in which case ReThink
sums the two costs to compute the cost of the activity.

Specifying a Fixed Cost

To specify a fixed cost for a block:

1 Display the properties dialog for the block and click the Cost tab.

2 Configure the Cost Per Use to be the fixed cost for the block.

Each time ReThink creates an activity for the block, it assigns the specified fixed
cost to the activity.
196

Working with Block Costs
Here is the Cost tab of the properties dialog with a fixed cost specified:

Specifying a Variable Cost

ReThink computes variable cost by multiplying the specified cost per time unit by
the duration of the activity, given a time unit. For example, if the Cost Per Use is
$20 per hour and the task takes one hour, the cost of the activity is 20. However, if
the task only takes 30 minutes, the cost of the activity is only 10.

By default, ReThink computes variable costs based on an hourly cost. You can
specify a different time unit for computing variable cost. For example, you might
specify the cost per day of operating a particular piece of equipment.
197

To specify a variable cost for a block:

1 Display the properties dialog for the block and click the Cost tab.

2 Configure the Cost Per Time Unit to be the variable cost for the block.

3 Configure the Time Unit to be the time unit for computing variable cost.

ReThink computes the variable cost based on the time unit you specify.

Computing the Total Cost of a Block

The total cost of a block includes the cost of all of its individual activities, which
includes the fixed and variable costs assigned to the block and the fixed and
variable costs assigned to any resources associated with the block.

As mentioned earlier, you typically assign costs to either the block or the
resources, but not to both. However, keep in mind that total cost takes both of
these costs into account.

For information on assigning costs to resources, see Working with Resource
Costs.

To display the total cost of a block:

 Run the simulation, then display the properties dialog for the block and click
the Cost tab.
198

Working with Block Costs
Here is the Cost tab of the properties dialog for a block with a fixed cost of $10
and a variable cost of $5 that has processed three work objects:

ReThink updates the Total Cost of a block each time the block processes a work
object. Thus, the total cost of a block at a particular moment depends upon the
frequency with which the block receives work objects and the block’s duration.

In the above example, suppose the Source block generates work objects once
every hour exactly and a Task block takes exactly one hour to process each work
object. If the Task block has a $10 fixed cost and a $5 hourly cost, the cost per
199

activity of the Task block is $15. The block updates the Total Cost every hour,
as follows:

The current total cost of a block depends on the number of activities the block is
processing at a given time, which in turn depends on the duration of the current
block and the arrival rate of the work objects.

For information on displaying the cost of an individual activity, see
Understanding the Attributes of Activities.

Debugging Blocks
When you build a model, the blocks sometimes do not behave as intended. You
might encounter an error in the configuration of a block, or the block metrics
might produce unexpected results. You can use various techniques to reset errors
and verify that the model is behaving as expected.

Viewing and Resetting Errors

If you have not configured a block correctly, one of two things can happen:

• An indicator arrow appears next to the block with a message telling you what
you need to configure. For example, if you do not choose a pool for the Store
block when the Store Mode is Pool, you would receive this message:

• The block turns yellow and an indicator arrow appears next to the block with
the word Error. For example, if you have configured a block’s Mode Type to
be Duration File and you have not specified a Duration File Name, you would
receive this type of error:

When Total
Elapsed Time is...

Total Cost is...

0 0

1 hour 15

2 hours 30

3 hours 45
200

Debugging Blocks
You can view the error message for a block in the properties dialog. Depending
on the type of error, sometimes errors also appear in the Logbook or on the
Message Board. For information about viewing these types of errors, see Viewing
Messages.

To view an error message in the properties dialog:

1 Display the properties dialog for the block and click the General tab.

2 Scroll to the top of the Error scroll area to view the message.
201

For example:

To reset an error condition:

 Click the indicator arrow to remove it, reset the simulation, then configure the
block correctly to fix the error condition.
202

Debugging Blocks
Verifying Model Metrics

Much of the computation that ReThink performs is based on the duration of the
activities associated with a block. Because of deviation in the duration of an
activity, it is not always easy to tell how ReThink computes a particular metric.

Before you put a model into operation, you will probably want to verify the
metrics that the model computes. You have several strategies for doing this.

You can verify metrics that the model computes by:

• Choosing Single Shot on the Source block to track the performance of a single
work object to verify the results.

• Setting the maximum number of work objects a Source block creates by
specifying a value for Maximum Starts to control the number of work objects
that flow into the model.

• Running the model in Step mode, analyze summary metrics for blocks, work
objects, and resources at various stages of the process, and compare against
expected results.

• Running the model in jump mode and set a break point in the model where
you want to analyze metrics by choosing Set Break on a block.

• Run the simulation by using a fixed duration by configuring the Distribution
Mode to be Fixed Distribution. You can also use a Random Normal distribution
and set the Standard Deviation to 0.

For more information on configuring these types of durations, see Specifying a
Fixed Duration and Random Normal.

Testing Every Possible Outcome

When you branch work in a model, one of the output paths might be used very
rarely, due to probabilities. To test every possible outcome in a model, you might
want to identify explicitly the path onto which you want a work object to flow.
For example, you might want to do this when you are branching work objects
based on probabilities to test the lowest probability outcome.

To branch work onto an explicit output path:

 On the Block tab of the properties dialog of a Branch block, configure the
Branch Mode to be Prompt.

When you run the simulation, you identify the output path interactively by
clicking on the desired output path. For more information, see Interactively
Selecting the Output Path.
203

Customizing Blocks
All ReThink block definitions are available to you for viewing and customizing.
You can also create directly a subclass of an existing ReThink block by using a
menu choice on the block.

You can also customize the default behavior of the path queue.

For detailed information about how to customize blocks and path, see the
Customizing ReThink User’s Guide.
204

5

Using Instruments
Describes how to use ReThink instruments to probe and chart the performance of
your model, and how to feed input parameters into your model.

Introduction 205

Creating Instruments 207

Connecting Instruments 212

Probing the Performance of Your Model 215

Charting Performance Metrics 228

Exporting Probed Data to a CSV File 230

Feeding Values into the Model 236

Creating User Interface Objects for Feeding Values 243

Creating a Chart Directly from a Probe 246

Customizing Instruments 259

Introduction
ReThink instruments allow you to obtain performance metrics from your model
and to control key parameters in your model, both while the model is running.
Using instruments, you can create a complete user interface for performing
“what-if” analysis on your model.

Here is the detail of a Take Order task, which details the credit check approval
process. The detail uses instruments to feed a timestamp into the model at the
205

beginning of the subprocess and to probe the model at the end of the subprocess
to compute a partial cycle time for the subtask.

ReThink provides these two categories of instruments:

• Feeds, which supply values to your model, such as the mean time of a block,
the hourly wage of a resource, or the timestamp at a particular point in the
model’s processing. When you use feeds to supply duration and cost, you
typically create type-in boxes and sliders from your feeds to provide a user
interface for supplying values to your model.

• Probes, which obtain information from your model, such as the total work
time of a work object, the total cost of a block, the average utilization of a
resource, the cycle time from one point in time to another, or the moving
average of any value. Because probes maintain a history of their values, you
can easily chart these values over time to provide a visual representation of
key performance metrics in your model.

To use ReThink instruments, first you connect the instrument to a block, resource,
or another instrument, depending on the type of instrument. You then configure
the instrument to specify the object to which the instrument applies and the
attribute or attributes that the instrument is either feeding a value into or probing.

You can create charts to plot the current values of probes over time. To create the
chart, you create a remote from a probe, which keeps a history of probed values.
You configure the chart to plot the history of one or more remotes, using a variety
of chart types.

Feeds timestamp
into the model.

Computes the cycle
time of the subtask.
206

Creating Instruments
You can also create a simple chart directly from a probe. Note that this technique
has been superseded by remote charts.

Creating Instruments
You create instruments from the Instruments palette in the ReThink toolbox.

You can also copy existing instruments. For details, see Cutting, Copying,
Pasting, and Deleting Objects.

You connect instruments to blocks, resources, other instruments, or variables,
depending on the requirements of the model. For more information, see
Connecting Instruments.

Creating Instruments

To create instruments:

1 Display the Instruments palette of the ReThink toolbox:
207

2 Select an instrument in the toolbox, then click just above the object on which it
will operate to place it on the workspace.

3 Connect the instrument to the object on which it will operate.

For details, see Connecting Instruments.

4 Display the properties dialog for the instrument and configure the Label as a
text, then drag the label to the desired location next to the instrument.

Here is a Sample probe connected to a Task block that probes the total cost of the
work object that it processes:

Following is a summary of each ReThink instrument.

See also Instruments Reference.

Timestamp Feed

The Timestamp feed supplies a timestamp into an attribute of a work object at a
particular point in the process. You use the Timestamp feed with a Delta Time
probe to compute a partial cycle time for a model. For example, you might want
to compute the cycle time of the distribution subtask of an order fulfillment
model.

Accumulate Feed

The Accumulate feed increments an attribute of a work object by the value
specified in another attribute of the object, thereby accumulating its value. For
example, suppose you are modeling a sales process that processes local and
regional sales calls, where each type of sales call has an associated mileage
attribute. You use an Accumulate feed to increment a total mileage attribute of
each sales call object by each specific mileage amount.

Increment Feed

The Increment feed increments a counter of the feed by a value specified in the
feed. For example, you use this feed to report on the number of times a work
object has gone around a loop in the model.
208

Creating Instruments
Change Feed

The Change feed modifies an attribute of the model by using a new value. For
example, you use a Change feed to modify the frequency with which work objects
flow into a model from a Source block or the hourly wage of a resource allocated
by a task. You can configure the Change feed to generate random values, unique
IDs, or random values, based on a function. You can also create sliders and type-
in boxes from a Change feed, thereby creating a user interface for supplying input
parameters to the model.

Parameter Feed

The Parameter feed gets the value of a parameter and sets its current value as the
value of an attribute of the model. You can create the parameter from the feed.

Attribute Feed

The Attribute feed copies the value of an attribute of one object to another
attribute, either in the same object or in a different object. For example, you might
want to copy the work time of an activity of a block into an attribute of the output
work object.

Copy Attributes Feed

The Copy Attributes feed copies attributes from a source object to the object to
which the feed applies. You can use the Copy Attributes feed to copy metrics
computed in a higher-level Task block to work objects on the detail.

Delta Time Probe

The Delta Time Probe compares a timestamp of an object with the current
simulation time. You use this probe to compute cycle times in your model. For
example, you can probe the creation time of an object and compare it to the
current time at the end of the process to obtain the cycle time of the overall
process.

You often use the Delta Time probe with a Timestamp feed to compute a partial
cycle time. The probe compares the timestamp you feed into the model to the
current simulation time.

Sample Probe

A Sample probe obtains any attribute value that the model computes. For
example, you use the Sample probe to obtain the total work time of a block, the
total cost of a work object, or the average utilization of a resource. You can also
use a Sample probe to probe the current value of a quantitative parameter.
209

Average Probe

The Average probe computes an average of all sampled values. The probe keeps
track of the minimum and maximum values. You use the Average probe to
compute the average of an attribute of a ReThink object, whose value does not
depend on how long it has persisted, such as the average duration of a block. You
can also use an Average probe to probe the current value of a quantitative
parameter.

Moving Average Probe

The Moving Average probe computes a time-weighted average of any attribute in
the model whose value depends on how long it has persisted, such as the number
of activities of a block. You can specify the time period over which the probe
computes the average.

You typically use the Moving Average probe to probe another probe. For
example, you can use a Delta Time probe to compute a cycle time and then probe
the Delta Time probe to obtain a moving average of the cycle time.

Interval Sample Probe

The Interval Sample probe averages or sums the value of an attribute of the model
at regular time intervals, based on simulation time. You use an Update Trigger to
determine when to sample the model. For example, you would use an Interval
Sample probe to chart on a weekly basis the average total cost of work objects at a
particular point in the model.

Parameter Probe

The Parameter probe sets the value of a parameter to the value of an attribute of
the model. You can create the quantitative parameter from the probe.

Copy Attributes Probe

The Copy Attributes probe copies attributes from the object to which the probe
applies to a destination object. You can use the Copy Attributes probe to “roll up”
metrics computed on a detail to the higher-level Task block. For example, you
might want to “roll up” the Total Cost of the task on the detail to the superior
task.

Statistics Probe

The Statistics probe obtains any attribute value that the model computes and
computes various metrics on the value, given a time window. You can compute
210

Creating Instruments
the average, moving average, time-weighted average, standard deviation,
minimum, and maximum.

Criteria Probe

The Criteria probe compares a sample value in the model against criteria you
configure in the probe to determine the percentage of time the sampled value
meets the criteria. You configure the value to compare and the operator to use in
the comparison. For example, you would use a Criteria probe to determine the
percentage of time that the total cost of a work object goes above a certain value.

Update Trigger Probe

The Update Trigger probe triggers updates in the model, based on model events.
You connect the Update Trigger probe to a block, instrument, or resource in the
model. When the attached object evaluates, the Update Trigger probe triggers
updates for all its associated objects. Compare an Update Trigger probe with an
Update Trigger tool, which triggers updates, based on simulation time.

N-Dimensional Sample Probe

You use an N-Dimensional Sample probe to obtain multiple sample values from
the model, using a single probe, and optionally keep a history of those values over
time. To view the sampled data, you export the n-dimension samples to Excel by
using an Excel Export tool.

For example, you might use an N-Dimensional Sample probe to collect a history
of the Total Cost of a task, the Total Cost of a work object, and the Average
Utilization of a resource. You could then export this data to Excel to create a
report and a graphical representation of the data over time.

Message Probe

You use a Message probe to pause the model at a particular location and display a
message. ReThink displays an indicator arrow with the message text next to the
probe when the Message probe triggers. For example, you might want to pause
the model and display a message when the Retrieve block retrieves an object from
a pool. You can also use this probe to generate messages in the Message Browser.

Acknowledge Message Probe

You use an Acknowledge Message probe to acknowledge messages generated by
the Message probe in the Message Browser.
211

Delete Message Probe

You use a Delete Message probe to delete messages generated by the Message
probe in the Message Browser.

Connecting Instruments
You connect instruments to objects in your model in the same way you connect
blocks, using the wire attached to the instrument. Wires on instruments are
similar to input and output stubs on blocks.

Connecting Instruments to Objects

You can connect instruments to these types of objects in your model:

• Blocks

• Instruments

• Resources

• Parameters and variables

Parameters and variables are objects that maintain a history of values over time,
which you create from a Parameter feed or Parameter probe. You can only attach
a Sample probe or an Average probe to a quantitative parameter.

For more information on connecting instruments to parameters, see:

• Average Probe.

• Sample Probe.

• Parameter Probe.

• Parameter Feed.

By default, instruments probe attributes and feed values after the attached block,
instrument, or resource evaluates and applies its duration metrics to the
simulation. You can also configure any instrument to probe and feed values before
the attached object evaluates and applies its duration. Thus, when connecting
instruments to blocks, consider carefully where you connect the instrument and
when you want it to evaluate depending on the object you want to feed or probe.

wire
212

Connecting Instruments
For information on specifying when an instrument evaluates, see:

• Configuring the Probe.

• Configuring the Feed.

To connect an instrument to an object:

 Click the wire attached to the instrument, move it to the middle of the object,
and click to connect.

These examples show a Delta Time probe connected to a block, a Moving Average
probe connected to a Delta Time probe, and a Sample probe connected to a
resource:

Note If you attach a probe to a Sink block to obtain metrics about work objects, you
must probe the Sink block before the attached block applies its duration to the
simulation by configuring the Phase to be Start.

Probe connected to
another instrument.

Probe connected to a bloc

Probe connected to a resource.
213

To redraw the connection between an instrument and an object:

 Drag the instrument to a new location on the connected object.

ReThink reconfigures the connection:

If you delete the connection stub on an instrument, you can create it again, using a
menu choice. The menu choice is only available if you have deleted the
connection stub.

To create a new connection stub on an instrument:

 Choose Create Connection on the instrument.

Replacing Instruments

You can drop a new instrument on top of an existing connected instrument to
replace the instrument. ReThink maintains all existing connections. The new
instrument copies the common configuration information from the existing
instrument. For example, if the Apply to Class Name of the original instrument is
order, the Apply to Class Name of the new instrument will also be order, even if
they are different types of instruments.

Configuring the Animation of Instruments

You can configure these colors of an instrument when it animates:

Before After

Instrument is
shifted to the left.

Animation Parameter Description

Active Color The color the instrument uses when it is
processing.

Inactive Color The color the instrument uses when it is idle.

Error Color The color the instrument uses when it is in an
error state.
214

Probing the Performance of Your Model
To configure the colors of an instrument when it animates:

1 Display the properties dialog for the instrument and click the Animation tab
to display this dialog:

2 Choose a color from the dropdown list for each instrument color.

Probing the Performance of Your Model
ReThink lets you obtain performance metrics of various aspects of the model,
which you present to the end user in the form of charts.

You can obtain performance metrics about these categories of objects:

• Blocks

• Activities

• Input and output paths

• Work objects

• Resources

• Instruments

• Parameters
215

For example, you might want to know the total number of concurrent activities
performed by the current task, the total cost of all activities applied to the current
work object at the end of a process, or the average utilization of the current
resource allocated by a task.

To obtain performance metrics about the model, you use probes.

You can connect a probe to these types of objects to obtain these metrics:

• A block to obtain metrics of:

– The block itself.

– The current activity of the block.

– The input or output path of the block.

– The current work object the block is processing.

– The resource that the block is currently using.

• Another probe to obtain metrics about the probe, for example, to compute a
moving average of a probed value.

• A resource to obtain metrics about the resource directly.

Note When you probe the performance of work objects, keep in mind that if the model
creates and deletes work objects as part of processing, the performance metrics
reflect only the duration of the simulation during which the work object exists.

Configuring the Probe

Once you have connected a probe to an object, you must configure:

• The class of objects to which the probe applies.

• The name of the attribute of the class to probe.

• The phase, which determines when the probe evaluates relative to the
attached block.

By default, probes evaluate after the blocks computes its duration.
216

Probing the Performance of Your Model
Depending on the Phase you choose, the probe evaluates at different times and
can probe different types of objects, as this table describes:

Note If you are probing the output object and the Phase is set to Stop, and if the output
object is different from the input object, the probe obtains its values from the
output object just after the object is created.

To configure the probe:

1 Connect the probe to a block, probe, or resource, depending on the needs of
your model.

2 Display the properties dialog for the probe and click the General tab.

3 Configure the Apply to Class Name to refer to one of the following classes or
any user-defined subclass of these classes:

Tip Be as specific as possible when you specify the class name. For example, if you
are probing a work object, be sure to specify the subclass; do not use
bpr-object.

This Phase... Causes the probe to evaluate...
And means you can probe
these types of objects...

Start Before the connected block
applies its duration to the
simulation

Input work objects, resources,
blocks, activities or input
paths.

Stop After the connected block
applies its duration to the
simulation

Output work objects,
resources, blocks, activities, or
output paths.

To probe a...
Configure Apply to Class Name
as this class or any subclass...

Block bpr-block

Work object bpr-object

Resource bpr-resource

Instrument bpr-instrument

Activity bpr-activity

Path bpr-path
217

Note If you are probing the bpr-object of a block and the block you are probing has
an attached Resource Manager, the probe will update each time a work object
or a resource becomes active, because a resource is a subclass of bpr-object.

4 Configure the Source Attribute Name to be the attribute of the specified class
that you want to probe, as a symbol.

For example, if you are using a Delta Time probe to compute the cycle time
from the creation time of a work object to the end of the process, the Source
Attribute Name is creation-time.

To determine the attribute name to probe, use the attribute name as it appears
in the properties dialog and insert hyphens in place of spaces in the attribute
name.

5 Configure the Phase to determine when the probe evaluates, and, when
probing work objects and paths, whether the probe applies to the input or
output work object or path.
218

Probing the Performance of Your Model
This simple example probes the creation-time of the sales-call object that the Task
block processes to compute the cycle time. The Delta Time probe specifies sales-
call as the class and creation-time as the attribute to probe, where sales-call is a
subclass of bpr-object and creation-time is an attribute of the sales call.
219

Showing the Current Value of the Probe

Each probe has a metric that shows the current probed value, which appears as an
attribute display of the probe. The name of this metric depends on the type of
probe, as follows:

The current value of this metric is the current probed value. You can display the
current value in a dialog to observe the value as it changes. The dialog also
displays the number of work objects that the probe has processed.

You can also create a Probe summary report to create a report on all the probed
values in the model.

To display the current value of the probe:

 Run the simulation, then display the properties dialog for the probe and click
the Instrument tab.

This type of probe...
Defines this metric(s)
that shows the current value...

Delta Time probe Delta Time

Sample probe Sample Value

Interval Sample probe Sample Value

Average probe Average Value
Minimum Value
Maximum Value

Moving Average probe Moving Average
Moving Standard Deviation

Statistics probe See Statistics Probe.

Criteria probe Criteria True Count
Criteria True Percent
220

Probing the Performance of Your Model
This example shows the current value of the Delta Time probe:
221

Probing the Performance of Blocks

You can obtain performance metrics about the following attributes of blocks,
using the following types of probes:

For a complete description of each of these attributes, see Using Blocks.

Note You cannot probe a Task block with detail. Probe the individual blocks on the
detail instead.

To obtain performance
metrics on the... Use a... To probe the...

Total amount of work
performed by a block

Sample probe Total-work-time of the
block.

Total cost of all
activities performed
by a block

Sample probe Total-cost of the
block.

Average number of
concurrent activities
performed by the
block

Sample probe Average-in-process
of the block.

Total number of
concurrent activities
performed by a block

Sample probe Current-activities of
the block.

Total number of
activities that a block
processes

Sample probe Total-starts of the
block.

Average, minimum
value, and maximum
value of any metric
listed above that is not
time-persistent, such
as Total-work-time

Average probe Sample-value of the
Sample probe, or any
non-time-persistent
metric listed above
directly.

Time-weighted
average and standard
deviation of any time-
persistent metric listed
above, such as
Current-activities or
Total-starts

Moving Average probe Sample-value of the
Sample probe or any
time-persistent
metrics listed above
directly.
222

Probing the Performance of Your Model
Probing the Performance of Work Objects

You can obtain performance metrics about the following attributes of work
objects, using the following types of probes:

To obtain performance
metrics on the... Use a... To probe the...

Cycle time from the
creation of a work object
to a particular point in the
process

Delta Time probe Creation-time of the work
object.

Cycle time of a subprocess
within the overall model

Delta Time probe Timestamp that you feed
into the model, using a
Timestamp feed.

Total amount of work
time applied to a work
object

Sample probe Total-work-time of the
work object.

Total amount of time that
the work object has been
waiting for resources or
other work objects

Sample probe Total-idle-time of the
work object.

Total amount of time that
a work object has been
worked on compared with
the total amount of time
that it has been waiting for
resources, over the entire
simulation

Sample probe Average-utilization of the
work object.

Total cost of all activities
applied to a work object

Sample probe Total-cost of the work
object.

Total number of activities
that have been applied to
a work object

Sample probe Total-starts of the work
object.
223

For a complete description of these attributes, see Using Work Objects.

Be sure to take the following precautions when you probe the performance of
work objects:

• When you probe the performance of work objects, keep in mind that if the
model creates and deletes work objects as part of processing, the performance
metrics reflect only the duration of the simulation during which the work
object exists.

• Do not attach a probe to a Task block with detail to probe the performance of a
work object; the probe will not obtain any values. Instead, attach the probe to
the last block on the detail.

• When probing work objects, be as specific as possible when you specify the
class name, especially if the block to which the probe is attached also has an
attached Resource Manager. If you probe the bpr-object of a block, rather than
a subclass of bpr-object, and the block you are probing has an attached
Resource Manager, the probe will update each time a work object or a
resource becomes active, because a resource is a subclass of bpr-object.

Average, minimum value,
and maximum value of
any metric listed above
that is not time-persistent,
such as Total-work-time

Average probe Sample-value of the
Sample probe, or any
non-time-persistent
metric listed above
directly.

Time-weighted average
and standard deviation of
any time-persistent metric
listed above, such as
Current-activities or Total-
starts

Moving Average probe Sample-value of the
Sample probe or any
time-persistent metrics
listed above directly.

To obtain performance
metrics on the... Use a... To probe the...
224

Probing the Performance of Your Model
Probing the Performance of Resources

You can obtain performance metrics about the following attributes of resources,
using the following types of probes:

For a complete description of each of these attributes, see Using Resources.

To obtain performance
metrics on the... Use a... To probe the...

Total cost of all activities
performed by a resource

Sample probe Total-cost of the resource.

The amount of the
resource currently
allocated by a task

Sample probe Current-utilization of the
resource.

Average amount of the
resource allocated by a
task over the entire
simulation

Sample probe Average-utilization of the
resource.

Amount of time that the
resource has been
allocated

Sample probe Total-work-time of the
resource.

Amount of time that the
resource has been idle

Sample probe Total-idle-time of the
resource.

Total number of activities
that the resource has
performed

Sample probe Total-starts of the
resource.

Average, minimum value,
and maximum value of
any metric listed above
that is not time-persistent,
such as Total-work-time

Average probe Sample-value of the
Sample probe, or any
non-time-persistent
metric listed above
directly.

Time-weighted average
and standard deviation of
any time-persistent metric
listed above, such as
Current-activities or Total-
starts

Moving Average probe Sample-value of the
Sample probe or any
time-persistent metrics
listed above directly.
225

Three Techniques for Probing Resources

When you probe the performance of resources, you have three options:

Probing the Average Utilization of the Current Resource

By probing a block that requires a resource, you obtain performance metrics
about the currently allocated resource. Because the instrument probes the block at
the end of processing its work objects, the probe updates its value at same time
that the model deallocates the resource.

This figure shows a running model that probes the average utilization of the
resource previously allocated by the task. The next time the probe updates, the
sample value will be for the person resource currently allocated.

To obtain performance
metrics about... Probe the...

The resource that is currently
allocated by an activity

Block that requires the
resource.

The sum of all resources in a
resource pool

Top-level resource that is the
pool.

A particular resource in a
resource pool

Individual resource in the
pool.
226

Probing the Performance of Your Model
Probing the Average Utilization of the Top-Level Resource

By probing the top-level resource in a pool, you obtain performance metrics about
the sum of all resources in the pool. This figure shows a running model that
probes the average utilization of the top-level resource in a resource pool. Notice
that the average utilization is greater than 1, which means that on average, the
task uses more than one resource.
227

Probing the Average Utilization of a Resource in a Pool

By probing individual resources in a pool, you obtain performance metrics about
each resource in the pool. This figure shows a running model that probes the
average utilization of the each resource in the pool:

Charting Performance Metrics
One common output of a ReThink model is a visual representation, in the form of
a chart, of the performance metrics that the probes in the model obtain. Charts
provide visual feedback about the performance of the model, which you can use
to perform “what-if” analysis.

Note If you have many charts in your model or charts with many data points, you
should not update them too frequently; otherwise, the performance of your
simulation can be adversely affected.

Note We recommend that you use remote charts for charting performance metrics,
which allows you to create a wide variety of chart types that are visually
appealing. You can also create simple line charts directly from probes, as
described in Creating a Chart Directly from a Probe. Currently, remote charts do
not support all the functionality of the simple line charts; therefore, line charts
continue to be supported. However, in a future release when remote charts are
fully supported, classic charts may no longer be supported.
228

Charting Performance Metrics
You place the remote charts associated with a model:

• On the same workspace as the model.

• On the detail of an Organizer associated with the model.

Creating a Remote Chart

You can create a remote chart to plot the history of one or more probes. Each time
the probe receives new data, the chart updates. To chart probed data, first you
must create a remote from each probe whose history you want to plot. You then
configure the remote chart to specify which remotes to plot. You can also
configure various properties of the chart, including labels and colors.

To create a remote chart:

1 Create one or more probes whose history you want to plot.

2 Choose Create Remote on each probe.

ReThink creates a remote, which keeps a history of the probed data.

3 Create a Remote Chart from the Tools palette of the ReThink toolbox:

4 Display the properties dialog for the Remote Chart, and choose the remotes
you want to chart.

A list of all remotes associated with the scenario appears in the Remotes list.

5 Choose Show Chart to show the chart view.

6 Run the simulation to view the remote data in the chart.

Remote Chart
229

To configure chart views:

 To configure the chart, mouse right on the chart and choose Properties.

You can configure the title, subtitle, type, colors, grid, margins, axes, subsets, line
annotations, and graph annotations.

For more information about configuring chart views, see the G2 Reporting Engine
User’s Guide.

Here is a remote chart that plots the history of two remotes:

Exporting Probed Data to a CSV File
You can export probed data to a .csv file. To do this, you connect an Excel Export
tool to the probe whose data you want to export. If the probe to which the export
tool is connected has an associated remote, the export tool exports the history of
probed values contained in the remote. You can export data from one or multiple
objects to the same sheet in Excel.

To determine when to export the probed data, you must associate the Excel
Export tool with an Update Trigger tool or probe. You use an Update Trigger tool
to export data at regular time intervals, based on simulation time. You use an
Update Trigger probe to export data, based on model events. This means that you
can collect the data, using the probe, and export the probed data, using the export
tool, at different time intervals.

The first time the Excel Export tool updates, it creates the specified sheet in the
currently connected Excel spreadsheet, then exports the data. Thereafter, it
exports the data each time the export tool is triggered.
230

Exporting Probed Data to a CSV File
Exporting Probed Data Based on Model Events

To export probed data, based on model events, you use an Update Trigger probe.

To export probed data based on model events:

1 Create an Update Trigger probe from the Instruments palette of the
ReThink toolbox:

2 Connect the Update Trigger probe to an object in the model that should
trigger updates.

For example, to trigger updates when the block updates or when a work
object arrives at the block, connect the probe to a block. To trigger updates
when a resource is allocated, connect the probe to a resource.

3 Display the properties dialog for the Update Trigger probe and configure the
Apply to Class Name to be the class that triggers updates.

The default value is bpr-object, which means the probe is configured to trigger
updates when a work object arrives at the block to which the probe is
attached.

Update
Trigger probe
231

If the probe is attached to a block, configure the class to be bpr-block to trigger
updates when the block updates. If the probe is connected to a resource,
configure the class to be bpr-resource to trigger updates when the resource is
allocated.

4 Create and configure a probe whose data you want to export to Excel, and
connect it to an object in the model whose attributes you want to probe and
export.

5 Display the Export Tools palette of the ReThink toolbox:

6 Create an Export Excel tool and connect it to the probe whose data you want
to export.

7 Choose the Choose Update Trigger menu choice on the Excel Export tool, then
choose Select on the Update Trigger probe.

The Excel Export tool is now configured to export data each time the Update
Trigger probe updates.

8 Display the properties dialog for the Excel Export tool and configure the Sheet
Name to be the name of a worksheet within the current Excel spreadsheet in
which to create the data.

By default, the export tool begins inserting data into the upper-left cell. If you
are exporting data from multiple probes to the same spreadsheet, you must
configure the starting column and row to use for inserting the data.

9 Configure the Column and Row to be the starting column and row in which to
insert the data, as needed.

For example, if you are exporting data from two export tools, you might
specify the Column and Row of one to be 0 and 0, and the other to be 1 and 0,
respectively, which would result in two columns of data.

10 Configure the Excel File Name to be a .csv file to which to export the data.

11 Enable the Excel CSV File Reporting Enabled option to export data when the
Update Trigger updates.

12 Enable the Date and Time as Durations option to export the update time as a
time interval as opposed to seconds, as needed.
232

Exporting Probed Data to a CSV File
When you run the simulation, ReThink writes the data to this sheet each time the
associated Export Excel tool updates, based on the Update Trigger probe.

This figure shows a model that exports the Total Cost of a work object when a
work object arrives at the Task block. The Update Trigger probe is configured to
trigger updates each time the work object arrives at the block. The Sample probe
is configure to probe the total-cost of a bpr-object.

Exporting Probed Data at Regular Time Intervals

To export probed data at regular time intervals, you use an Update Trigger tool.

To export probed data to Excel at regular time intervals:

1 Create an Update Trigger tool from the Tools palette of the ReThink toolbox:

Triggers updates when a
bpr-object arrives at the block.

Samples the total-cost
of a bpr-object.

Exports the probed data when
the Update Trigger updates.

Update Trigger tool
233

2 Display the properties dialog for the Update Trigger tool, click the Block tab,
and configure the Start Time and End Time, as needed.

You configure the Start Time to probe the model and export the data after a
delay.

3 Click the Duration tab and configure the Period to be the frequency with
which the Update Trigger should trigger updates, for example, 1 day or
1 week.

4 Create, connect, and configure a probe whose data you want to export to
Excel.

5 Display the Export Tools palette of the ReThink toolbox:

6 Create an Excel Export tool and connect it to the probe whose data you want
to export.

7 Choose the Choose Update Trigger menu choice on the Excel Export tool, then
choose Select on the Update Trigger tool.

The Excel Export tool is now configured to export data each time the Update
Trigger tool is scheduled to update.

8 Display the properties dialog for the Excel Export tool and configure the Sheet
Name to be the name of a worksheet within the current Excel spreadsheet in
which to create the data.

9 Configure the Column and Row to be the starting column and row in which to
insert the data, as needed.

10 Configure the Excel File Name to be a .csv file to which to export the data.

11 Enable the Excel CSV File Reporting Enabled option to export data when the
Update Trigger updates.

12 Enable the Date and Time as Durations option to export the update time as a
time interval as opposed to seconds, as needed.

For details on how to open the default spreadsheet and how Excel connects to the
server, see Creating Reports in Excel.

When you run the simulation, ReThink creates the specified worksheet in the
currently connected Excel spreadsheet if it does not exist and writes the data to
this sheet each time the associated Excel Export tool updates, based on the Update
Trigger tool.
234

Exporting Probed Data to a CSV File
This figure shows a model that exports the Total Cost of a work object once a day.
The Update Trigger tool is configured to trigger updates once a day. The Sample
probe is configure to probe the total-cost of a bpr-object.

Exporting Historical Data

Instead of exporting a single probed value each time the Excel Export tool
updates, you can export a history of probed values. To do this, you create a
remote from the probe whose data you want to export, and the Excel Export tool
exports the history.

You can export historical data, based on model events or at regular time intervals,
depending on whether you use an Update Trigger probe or tool, respectively.

For details, see:

• Exporting Probed Data Based on Model Events.

• Exporting Probed Data at Regular Time Intervals

To export historical data:

1 Create a model that uses an Excel Export tool to export probed data.

You do not need an Update Trigger probe or tool to trigger updates.

For details, see:

• Exporting Probed Data Based on Model Events.

• Exporting Probed Data at Regular Time Intervals.

2 Choose Create Remote on the probe.

Triggers updates once a day.

Collects the total-cost of a
bpr-object when the Update
Trigger updates.

Exports the probed data when
the Update Trigger updates.
235

This figure shows a model that exports a history of the Total Cost of a work object
once a day. The Update Trigger tool is configured to trigger updates once a day.
The Sample probe is configure to probe the total-cost of a bpr-object. The remote
was created from the Sample probe.

Feeding Values into the Model
One powerful use of ReThink is to perform “what-if” analysis on a model. For
example, you might want to test:

• Different arrival rates of work objects into a process to see the effect on cycle
time and performance.

• Different hourly wages for workers to see the effect on total cost of work
objects.

To supply values to the model, you use feeds. Typically, you create sliders or
type-in boxes from feeds to facilitate entering values into the model.

For a description of creating user interface objects for feeds, see Creating User
Interface Objects for Feeding Values.

You also use feeds to timestamp a work object as it passes through a particular
task, to count the number of times that an object executes, or to accumulate values
in an attribute of an object.

You can connect a feed to these types of objects to feed these types of values:

• Blocks to feed values into attributes of:

– The block, for example, the Mean time of a source.

– The current work object the block is processing, for example, a timestamp.

Keeps a history of the total-
cost of a bpr-object when the
Update Trigger updates.

Collects the total-cost of a
bpr-object.

Exports the historical data.
236

Feeding Values into the Model
– The current resource the block is using, for example, the variable cost of
the resource.

– The input or output path, in particular, its type.

• Resources to feed values directly into a particular resource.

Configuring the Feed

Once you have connected a feed to a block, you must configure:

• The class to which the feed is supplying a value.

• The target attribute whose value the feed is supplying.

• The phase, which determines when the feed evaluates relative to the attached
block.

By default, feeds evaluate after the duration of the block is computed.

Depending on the Phase you choose, the feed evaluates at different times and can
feed values into different types of objects, as this table describes:

Note If you are feeding values into the output object and the Phase is set to Stop, and if
the output object is different from the input object, the instrument feeds its values
into the output object just after the object is created.

Depending on the type of feed, you might also be required to supply additional
attribute values, such as the source of the information for the feed.

You use a feed to update these types of attributes:

• A user-defined attribute of a work object or resource, for example, the arrival
time of a work object at a particular task.

• A system-defined attribute of the model, for example, the mean time of a
Source block.

This Phase... Causes the feed to evaluate...
And means you can feed values
into these types of objects...

Start Before the connected block
applies its duration to the
simulation

Input work objects, resources,
blocks, or input paths.

Stop After the connected block
applies its duration to the
simulation

Output work objects,
resources, blocks, or output
paths.
237

Updating User-Defined Attributes of a Work Object

To update user-defined attributes of a work object, you must first create a class
definition for the object and declare class-specific attributes for the attribute to
update. You can view the value of the user-defined attribute on the User tab of the
properties dialog for the work object.

For information about how to create a work object, see Creating a New Class of
Work Object.

To update a user-defined attribute of a work object:

1 Create a class definition that is a subclass of bpr-object with a class-specific
attribute whose value the feed will update.

For example, if you are feeding a timestamp into a sales-call object at the
beginning of a credit check subtask, the name of the class-specific attribute
might be begin-credit-check.

2 Connect the feed to a block.

3 Display the properties dialog for the feed and click the General tab.

4 Configure the Apply to Class Name of the feed to refer to the name of the
user-defined subclass of bpr-object.

Tip Be as specific as possible when you name the class.

5 Configure the Destination Attribute Name to specify the attribute of the class
whose value the feed will update.

For example, if you are feeding a timestamp into the begin-credit-check
attribute of a sales call, the Destination Attribute Name is begin-credit-check.

6 Configure the Phase to determine when the feed evaluates, and, when feeding
values into work objects and paths, whether the feed applies to the input or
output work object or path.
238

Feeding Values into the Model
This simple model uses a Timestamp feed to supply a timestamp into the begin-
credit-check attribute of a sales-call, which is a subclass of bpr-object. The model
then computes the credit check cycle time by probing the begin-credit-check
attribute of the sales-call with a Delta Time probe.
239

Here is the User tab of the properties dialog of the sales call before the end of the
simulation, which shows the value of the user-defined attribute, Begin
Credit Check:

Updating System-Defined Attributes of the Model

You can update system-defined attributes of a block, resource, or path. To do this,
you use a Change feed, which allows you to feed values, either directly or
through a slider or type-in box, into the attribute. When feeding values directly,
you can feed individual values, random values, unique IDs, or random values,
based on a distribution.

For details, see Change Feed.

To update system-defined attributes of the model:

1 Connect a Change feed to the object whose attribute you want to update.

2 Display the properties dialog for the feed and click the General tab.

3 Configure the Apply to Class Name of the Change feed to refer to one of the
following classes or any subclass of these classes:

To feed
values into a...

Configure Apply to
Class Name as...

Block bpr-block

Resource bpr-resource

Path bpr-path
240

Feeding Values into the Model
Tip Be as specific as possible when specifying the class name.

4 Configure the Destination Attribute Name to specify the attribute of the class
whose value the feed will update.

For example, if you are using a feed to update the Mean of a Source block, the
Destination Attribute Name is mean.

5 Click the Instrument tab and configure the New Value to specify the value to
feed into the system-defined attribute.
241

This simple model feeds the mean time into the Source block. The Apply to Class
Name is bpr-block, which feeds values into the attached block, and the
Destination Attribute Name is mean, which is the attribute of the block to update.
The New Value is interpreted as seconds.
242

Creating User Interface Objects for Feeding Values
Creating User Interface Objects for Feeding
Values

When you use a Change feed to update attributes of the model, you typically
create a user interface object to feed the value.

For example, if you are feeding the time mean into a Source block to control the
rate at which work objects flow into the model, you might create a slider or a
type-in box for entering the value.

You place sliders and type-in boxes:

• On the same workspace as the model.

• On the detail of an organizer associated with the model.

You create a slider or type-in box directly from the feed, using a menu choice.

Note ReThink also creates a remote that is associated with the feed and places it on the
feed’s detail. You do not need to use the remote associated with a feed.

Creating a Slider

You create a slider for feeding numeric values into a Change feed. When you
specify a number on the slider, the number is in units of seconds.

To configure the slider, you specify the minimum and maximum values for the
slider and the initial value.

If you specify an initial value for the slider, the slider uses this default value when
you initially run the simulation. If you do not specify an initial value, the slider
uses the current slider value when you run the simulation.

To create a slider from a Change feed:

1 Display the properties dialog for the Change feed and click the Instrument
tab.

2 Choose Value as the value of Change Mode.

3 Choose Create Slider on the Change feed.

4 Display the properties dialog for the slider.

5 Configure the Minimum Value and Maximum Value to set the minimum and
maximum values for the slider.

The values must be in seconds.
243

6 Configure the initial value in the Value on Activation.

If you specify a number, the value must be in seconds. ReThink uses this value
as the default when you reset the model. If you specify a value of none,
ReThink uses the current slider value as the default when you reset the model.

7 Using the right mouse button, move the slider to the desired location.

8 Set the value of the slider by moving the arrow.

When you run the simulation, the Change feed uses the value of the slider for the
value of the attribute you specify.

This example provides a slider for entering the time mean of the Source block:

Creating a Type-in Box

You create a type-in box for feeding numeric, symbolic, or textual values. When
you specify a number, the number is in units of seconds. The default value of the
Change feed’s New Value determines the data type of the type-in box.

To configure the type-in box, you specify the initial value. If you specify an initial
value for the type-in box, the type-in box uses this default value when you
initially run the simulation. If you do not specify an initial value, the type-in box
uses the current type-in box value when you run the simulation.

To create a type-in box from a Change feed:

1 Display the properties dialog for the Change feed and click the Instrument
tab.

2 Choose Value as the value of Change Mode.

3 Configure the New Value to be the default value for the feed.
244

Creating User Interface Objects for Feeding Values
4 Choose Create Type In on the feed.

The type-in box accepts values whose type corresponds with the default value
you specified.

5 Display the properties of the type-in box.

6 Configure the Value on Activation to be the initial value.

If you specify a number, the value must be in seconds. ReThink uses this value
as the default when you reset the model. If you specify a value of none,
ReThink uses the current type-in box value as the default when you reset the
model.

7 Using the right mouse button, move the type-in box to the desired location.

8 Enter a value in the type-in box.

When you run the simulation, the Change feed uses the value of the type-in box
for the value of the attribute you specify.

Here is the same example with a type-in box for entering the time mean of the
Source block:
245

Creating a Chart Directly from a Probe
You can create a chart directly from any type of probe except the Parameter
probe. To view the plot, you must update the chart, using one of several
techniques.

Note This technique for creating charts has been superseded by remote charts.

When you create a chart from a probe, ReThink creates a remote, which keeps a
history of the values of the probe. You use remotes to:

• Display multiple plots on a single chart.

• Configure various aspects of the chart, such as the line color of plot, the
background color of the chart, or the x and y axes.

• Perform computation on the probed values.

The remote shows the current value for the probe, which it stores in its Latest
Value metric. The default label for the remote also includes the label for the probe
and the type of probe.

The chart does not begin plotting automatically. For information on updating the
chart, see Updating Charts.

Note If you have many charts in your model or charts with many data points, you
should not update them too frequently; otherwise, the performance of your
simulation can be adversely affected.

Creating a Chart

To create a chart from a probe:

1 Choose Create Chart on a probe.

ReThink creates a chart and a remote and places them on top of the probe. The
x axis is the amount of time that has passed in the simulation, and the y axis is
the probed value. Depending on what the instrument is probing, the vertical
axis is measured in seconds or in the time unit of the probed value, for
example, total cost or average utilization.

2 Move the chart to a new location on the workspace to expose the remote.

The remote appears just above the probe.

3 Move the probe near the chart, if desired.
246

Creating a Chart Directly from a Probe
Here is a model of a sales process with a probe that computes the sales cycle time
from the creation of the Sales Call work object to the Take Order task. In this
example, the y axis is the number of seconds that correspond to the sales cycle
time, or the delta time.

Updating Charts

If your model contains many charts or charts with many data points, the
performance of your simulation can be significantly degraded by redrawing the
chart each time a new value is added. Therefore, by default, the scenario does not
update charts automatically.

You can update charts manually, using a menu choice or an action button, or you
can create rule to update charts on a regular basis.

For information on configuring the update behavior of charts, see Configuring the
Computation Behavior.

Vertical
axis
measures
cycle
time. Horizontal axis measures

simulation time.

Remote keeps a history of probed values.
247

Updating Charts Manually

To update charts manually:

 Choose Update Chart on the chart.

or

 Choose Update Chart on the remote associated with the chart.

Using an Action Button to Update Charts

You can create an action button that updates charts in the model when you click
the button.

To create an action button that updates charts:

1 Choose View > Toolbox - G2 and click the Buttons tab:

2 Select an Action Button and place it on the workspace that contains the chart
you want to update.

3 Display the properties dialog for the action button.

4 Configure the Label to be the name of the button, surrounded by quotation
marks, for example, "Update Charts".

5 Configure the Action to specify the following action statement:

update every chart

Tip If you want to create an action button that updates every chart on a particular
workspace, rather than every chart in the model, use this action statement:
update every chart upon this workspace.

You can now click the action button to update every chart in the model.

Action Button
248

Creating a Chart Directly from a Probe
Here is an action button with its table, which updates every chart in the model:

Using a Rule to Update Charts

You can create a rule that updates charts in the model at a periodic interval.

To create a rule that updates charts:

1 Display the Tools palette of the ReThink toolbox:

2 Select a Rule and place it on a workspace.

Typically, you place a rule on the detail of an Organizer.

3 Double-click the rule to display the text editor.

4 Enter the following rule:

unconditionally update every chart

Rule
249

Tip If you want to create a rule that updates every chart on a particular
workspace, rather than every chart in the model, use this rule: unconditionally
update every chart upon this workspace.

5 Display the properties dialog for the rule.

6 Configure the Scan Interval to be the time interval at which you want to
update every chart, for example, 10 seconds or 1 minute.

Every chart now updates according to the scan interval you specify.

Here is a rule with its properties table, which updates every chart in the model
every ten seconds:
250

Creating a Chart Directly from a Probe
Configuring the Colors and Data Points of the Chart

You can configure the line color of the plot in the chart and the maximum number
of data points to display at one time. To do this, you configure the associated
remote.

To configure the colors of the chart:

1 Display the properties dialog for the remote associated with the probe whose
values you are plotting.

2 Click the Chart tab and edit the Line Color to specify the color of the plot.

3 Configure the Background Color to specify the color of the background of the
chart.

The icon for the remote shows the line color of the plot.

To configure the maximum number of points to plot:

1 Display the properties dialog for the remote associated with the probe whose
maximum values you want to configure.

2 Click the Chart tab and edit the Maximum Values to be the maximum number
of data points to show on the chart at any one time.
251

Here is a chart and associated properties dialog for a Delta Time probe, whose
Line Color is red, whose background color is wheat, and which shows only the
last 100 data points:

Configuring the Axes of the Chart

You can configure the scale and offset that the chart uses to compute data, as well
as the minimum and maximum values along the x and y axes. To do this, you
configure the associated remote.

By default, the chart plots data in hours along the x axis. Depending on the
durations that your model uses, you might want to use a different time scale as
the default.
252

Creating a Chart Directly from a Probe
To configure the time scale of the x axis:

1 Display the properties dialog for the remote associated with the probe whose
x axis you want to configure.

2 Click the Chart tab.

3 Configure the X Scale to be the time unit of the x axis.

The horizontal axis of the chart now shows the number of minutes, hours,
days, or weeks that have passed since the start of the simulation.

When you are plotting time data, the chart plots the y value in seconds, by
default. Similarly, these values can be difficult to interpret, depending on
what you are plotting.

4 Configure the Y Scale as a number by which to divide the current plotted
value.

The chart divides the current probed value along the y axis by the Y Scale you
specify.

For example, if you are probing time values and you want to plot hourly values,
specify the Y Scale as 1 hour. If you want to plot values in minutes, specify Y Scale
as 1 minute.

Note The associated remote computes its value in seconds.

For information on how to scale the value of the remote, see Scaling the Current
Value of a Remote.

For example, here is a plot for a Delta Time probe, whose X Scale is 1 hour and
whose Y Scale is 1 hour. The chart has been plotting for approximately 130 hours
along the x axis, and the maximum delta time plotted so far along the y axis is 1.9
hours.
253

If you are plotting values other than time values, for example, the number of
activities or the cost of an object, you might or might not want to scale the y axis.
For example, suppose you are probing the Average Utilization of the top-level
resource of a pool with two resources. This probed value yields the sum of the
Average Utilization values of the two resources in the pool. By setting the Y Scale
to 2, you can plot the average of this sum on the chart.

To configure the data offsets for the plotted values:

1 Display the properties dialog for the remote.

2 Click the Chart tab and configure the X Shift and Y Shift to be a number to
which the current x or y value, respectively, is added.

The plotted values are offset by the specified number.

To configure the minimum and maximum values along an axis:

1 Display the properties dialog for the remote.

2 Click the Chart tab and configure the X Minimum or Y Maximum to be the
minimum or maximum value along the x or y axis, respectively.

Any values that fall outside the specified range do not appear on the chart.

Plotting Multiple Values on the Same Chart

Often you need to plot multiple values on the same chart. For example, when you
probe the sales cycle time of a process, you might also want to probe and plot a
moving average of the sales cycle time on the same chart. To do this, you create a
remote from a probe and associate the remote with an existing chart.
254

Creating a Chart Directly from a Probe
To plot multiple values on the same chart:

1 Create, connect, and configure two probes whose values you want to plot on
the same chart.

2 Choose Create Chart on one of the probes to create a chart that plots a single
probed value.

3 Choose Create Remote on the second probe to create a remote only.

ReThink displays the remote above the probe, without creating the associated
chart.

4 Choose Add Remote on the chart, then choose Select on the remote associated
with the second probe to add it to the chart.

An indicator arrow appears next to the remote you select. The additional
values begin plotting immediately.

5 To distinguish the plots from one another using color, configure the Line
Color on the Chart tab of the properties dialog for the remote.

ReThink plots the values of both the original and the new remote on the same
chart.
255

This example shows a running sales process model with a Moving Average probe
and a Delta Time probe, and the associated remotes and chart. The chart plots
both the sales cycle time and average sales cycle time.

Scaling the Current Value of a Remote

You might want to scale the current value of a remote, for example, to compute
the value in hours instead of seconds or to average the probed value.

To scale the current value of a remote:

 Display the properties dialog for the remote and configure the Scaling Divisor
to be a number by which the current probed value is divided.

The probed values of the remote are now scaled by the Scaling Divisor.

The same chart plots two
probed values.
256

Creating a Chart Directly from a Probe
Note The Scaling Divisor of a remote has no effect on the probed or plotted value; it
only affects the value of the remote.

When you edit the Scaling Divisor of the remote, you typically also edit the Scale
of the y axis to match the scaled values. For details, see Configuring the Axes of
the Chart.

Note If you set the Scaling Divisor to be a number that is too large, the ReThink model
might produce somewhat inaccurate results when it computes very large
numbers. This inaccuracy is due to round-off errors when computing large
numbers, which is unavoidable.

For example, here is the properties dialog for the remote associated with a Delta
Time probe that divides the current probed value by 3600, which causes the
remote to compute the delta time in hours instead of seconds:

For another example, suppose you are probing the average utilization of a
resource by connecting a Sample probe to a top-level resource with three
resources in the pool. By default, the remote obtains values for the sum of all the
resources in the pool. Suppose you want the remote to compute the average of all
the average utilizations of the resources in the pool. To do this, you would edit the
Scaling Divisor of the remote to be 3 to compute an average.
257

Offsetting the Current Value of a Remote

You might want to offset the current value computed by a remote.

To offset the current value of a remote:

 Display the properties dialog for the remote and configure the Scaling Offset
to be a number to which the current probed value is added.

The probed values of the remote are now offset by the Scaling Offset.

Note The Scaling Offset of a remote has no effect on the probed or plotted value; it only
affects the value of the remote.

When you edit the Scaling Offset of the remote, you typically also edit the Shift of
the y axis of the remote to match the scaled values. For details, see Configuring
the Axes of the Chart.

Showing Metrics for a Remote

The remote computes a number of time-weighted metrics, for example, a time-
weighted mean and a time-weighted standard deviation. The default time unit on
which these metrics are based is one hour.

To view metrics for a remote:

 Display the properties dialog for the remote and click the General tab.
258

Customizing Instruments
Here is the properties dialog for the remote associated with a Delta Time probe:

Customizing Instruments
All ReThink instrument definitions are available to you for viewing and
customizing.

For detailed information about how to customize instruments, see the Customizing
ReThink User’s Guide.
259

260

6

Using Resources
Describes how to use resources and temporal constraints to constrain your model
and compute cost and utilization statistics.

Introduction 262

Using Resources to Constrain the Model 264

Creating a Pool of Resources 271

Computing Utilization and Duration Metrics 275

Working with Resource Costs 281

Allocating Multiple Resources to a Task 285

Allocating the Same Pool to Multiple Tasks 286

Sharing the Same Resource in Multiple Pools 287

Allocating Partial and Multiple Resources 289

Allocating the Same Resource for Multiple Sequential Steps 300

Choosing Particular Resources from a Pool 303

Allocating Resources Associated to Work Objects 312

Allocating the Same Resource to Different Blocks Based on Priority 317

Creating Resources with Different Efficiency Factors 319

Showing the Metrics of Resources 322

Constraining the Availability of Resources 325

Configuring the Animation of Resources 340

Probing the Performance of Resources 341

Populating Resource Pools Dynamically 342

Customizing Resources 343
261

Introduction
One important element of process modeling involves modeling the resources that
individual activities require. By modeling resource requirements, you can analyze
the overall performance of your process.

For example, in a sales process model, the activity of processing an order might
require a clerk; in a distribution process model, a delivery task might require a
truck; and in a financial model, a task might require capital.

In this model, the Load Trucks task requires two different sets of resources,
people and trucks.

You use these types of objects to model resource requirements:

• Resources, which constrain the amount of work that a model can process
based on available personnel, equipment, or cash.

• Resource pools, which represent a set of available resources on the detail of a
resource.

• Resource managers, which associate a particular resource with a particular
task in the model.

• Temporal constraints, which constrain the availability of resources.

Resource
Managers

Resource

Pool
262

Introduction
By default, a Resource Manager allocates the first available resource from the
pool when the associated block begins processing, which makes the resource
unavailable for other activities. When the block has finished processing, the
Resource Manager deallocates the resource, which makes it available for other
block activities.

You can use resources and Resource Managers to constrain a ReThink model in
various other ways:

• A task can require one or more resources. For example, in a distribution
process model, a delivery task might require a truck and a driver.

• A task can require one or more different resources. For example, a delivery
task might require a pool of available trucks and drivers. The more resources
that are available, the more concurrent activities the task can perform; the
fewer resources that are available, the more the resources constrain the model.

• A task can require a partial resource, such as half of a computer.

• A task can require multiple identical resources, for example, $50.

• Two tasks can share the same resource, for example, a person might work
half-time for two different departments.

• The same resource might be allocated for several sequential steps in a process,
for example, a loading task and a delivery task.

• A Resource Manager can allocate resources based on cost, utilization, or
priority.

You can assign fixed and variable costs to resources, which you use to compute
costs in a model. Resources also compute various metrics that report on their
performance, such the average amount of time that the resource is allocated over
the course of the simulation and its overall cost. You obtain key performance
metrics about your model by probing the resources that the model requires.

You can constrain the amount of time that a resource is available by using
temporal constraints. You can constrain the availability of resources on a
monthly, weekly, and hourly basis.

In addition to using resources to constrain a model, you can use resources to
model database operations or inventory fluctuations by storing objects in a
resource pool and retrieving objects from the pool.
263

Using Resources to Constrain the Model
To constrain the model by using resources, you create a resource from the
Resources palette of the ReThink toolbox, then associate the resource with the
task, using a Resource Manager. When you run the simulation and too few
resources are available to process the work that flows into the block, work backs
up on the input path to the task requiring the resource.

When you create a resource, you place the resource:

• On the same workspace as the blocks.

• On the detail of an organizer that contains all the resources for a model.

• On the detail of a resource pool.

For large models, you typically place all resources on the detail of an organizer.

Note When you place resources on the detail of an organizer, the organizer must be on
the same workspace as the scenario or on a detail; the organizer should not be at
the same level as the model.

For more information about using organizers, see Creating an Organizer.

Creating a Resource

The Resources palette of the ReThink toolbox provides several default types of
resources, depending on the type of model. The first step is to create a resource
from the toolbox. You can also copy existing resources on a workspace, in which
case ReThink copies the selected resource, including all of its configured
attributes.

The toolbox also contains a Pool resource, which you can use when the resource
does not fall into any other category. The only difference between a Pool resource
and the other resources on this tab is the fact that a Pool resource defines a detail
by default, whereas the other resources do not. You can add a detail to any
resource on this tab.

For information about creating resource pools, see Creating a Pool of Resources.
264

Using Resources to Constrain the Model
To create a resource:

1 Display the Resources palette of the ReThink toolbox:

2 Select a resource and click to place it on the workspace.

If you place a resource on the same workspace as the model, you typically
position it near the block that requires it.

3 Display the properties for the resource and configure the Label, as needed.

For information on how to display other attributes of the resource with the
resource, see Using Attribute Displays.

In the following sales process model, a sales clerk resource is positioned above the
Take Order task:

So far, the model does not yet use the resource. To do this, you create a Resource
Manager and attach it to the task that requires the resource to allocate the
resource to a task.

Person resource
265

Allocating a Resource to a Task

You use Resource Managers to choose, allocate, and deallocate resources for a
task. You create Resource Managers directly from a resource, using a menu
choice.

By default, the Resource Manager allocates a single resource at the beginning of
each activity of the block and deallocates the resource at the end of each activity.

You can change the default behavior of a Resource Manager to allocate the
resource at the beginning of one task and deallocate the resource at the end of a
different task. You can also specify the amount of the resource that the manager
allocates to a task. For example, you might want the manager to allocate only a
half of the resource or two resources.

For more information, see Allocating the Same Resource for Multiple Sequential
Steps and Allocating Partial and Multiple Resources.

To allocate a resource to a task, using a Resource Manager:

1 Choose Create Manager on a resource.

ReThink creates a Resource Manager and places it just above the resource on
the workspace.

The label for the Resource Manager corresponds to the label for the resource.
If you edit the resource label, the label associated with the Resource Manager
changes, assuming the associated Scenario is active.

The wire leading out of the Resource Manager serves as a connection path.

2 Position the Resource Manager just below the block that requires the
associated resource and connect the manager to the block.

Tip You can reconfigure the connection between the Resource Manager and the block
by dragging the Resource Manager to a new location along the edge of the block.
266

Using Resources to Constrain the Model
In this example, the Take Order task of the sales process model now requires the
sales clerk resource to process orders:

When the model is running and a work object arrives at the Take Order task, the
resource turns red, indicating that it is currently allocated by the task:

Resource Manager

Resource

Sales call requires a resource.

Allocated resource turns red.
267

Identifying the Associated Resource

Once you create a Resource Manager from a resource, the Resource Manager adds
the Show Resource menu choice to its menu, which identifies the resource from
which the manager allocates and deallocates resources.

To show the resource associated with a manager:

 Choose Show Resource on the Resource Manager.

ReThink places an indicator arrow next to the associated resource.

Associating the Manager with a Different Resource

When you first create a Resource Manager, ReThink automatically associates the
manager with the resource from which it was created. You might want the
Resource Manager to allocate resources from a different pool after you have
already connected the manager to the task.

To associate the manager with a different resource:

1 Click the Resource Manager and choose the Choose Resource menu choice.

2 Click a new resource to display its menu and choose Select.

ReThink places an indicator arrow next to the new resource.

The manager allocates resources from the new resource instead of the original
resource.

Tip You should make the resource and manager labels match so you can easily
identify which resource corresponds to which manager.

Replacing Resources

You can drop a new resource on top of an existing resource to replace the
resource. Any associated Resource Managers point to the new resource. The new
resource copies the configuration information from the existing resource,
including its label and its detail. For example, if the Cost per Use of the original
resource is 10, the Cost per Use of the new resource will also be 10.

Showing Work Backups Due to Resource
Constraints

When a task does not have any resource constraints, it can process any number of
work objects concurrently. The number of concurrent activities depends on
frequency with which work objects flow into the task. When a task requires a
resource, however, it can only process as many work objects as there are available
268

Using Resources to Constrain the Model
resources, up to the maximum activities of the block. If only one resource exists,
for example, it can only process one work object at a time. This assumes the
default Utilization of the Resource Manager, the default Maximum Utilization of
the resource, and the default Maximum Activities of the block.

If work flows into a block more frequently than the block has resources to handle,
work objects back up on the input path of the block, and the input path turns
green.

The input path to the block keeps track of the work objects that are waiting for
resources. By default, ReThink allocates the resource to the first work object in the
queue.

You can visualize work backups on the input path to a block to see how many
objects are waiting for resources.

To visualize work backups due to resource constraints:

 Choose Snapshot Queue on the input path to a block that has turned green
due to resource constraints.

ReThink displays a temporary workspace that shows the work objects waiting for
resources as of the moment you choose Snapshot Queue. ReThink dynamically
removes work objects from this workspace when a resource becomes available;
however, it does not dynamically add work objects to the workspace when new
work objects arrive at the block and are waiting for resources.

This figure shows the input path queue for the Take Order task, which has one
order waiting to be processed:

Input path turns green when work backs up.

One work object is waiting in the path queue.
269

For information about the other reason for work backups in a model, see Showing
Work Backups on an Input Path.

Showing Currently Allocated Resources

You can show the resources that are currently allocated to an activity.

You can also show the resources that are currently allocated to a work object.
However, because work objects are associated with resources only when the
resource has been allocated by an upstream block but not yet deallocated, you can
only show allocated resources for a work object when you allocate and deallocate
the resource as independent steps.

To show allocated resources for an activity:

 Choose Snapshot Activities on an active block, then choose Show Resources
on the activity.

ReThink displays an indicator arrow next to the resources that are currently
allocated. For example, this figure shows the result of choosing Show Resources
on an activity:

To show allocated resources for a work object:

1 Create two Resource Managers, one of which allocates resources upstream in
a process, and the other of which deallocates the resources downstream in the
process.

For information on how to do this, see Allocating the Same Resource for
Multiple Sequential Steps.

2 Choose Show Resources on a work object when the resource has been
allocated but not yet deallocated.
270

Creating a Pool of Resources
The following example shows the result of choosing Show Resources on a work
object when the resource has been allocated but not yet deallocated:

Disabling a Resource

By default, a resource is always available for allocation. You might want to
disable it temporarily, for example, to model a broken down truck in a fleet of
trucks.

To disable a resource:

1 Show the properties dialog for a resource.

2 Click the Utilization tab.

By default, the State is active.

3 Configure the State to be inactive or failed.

Creating a Pool of Resources
Often, more than one resource is available for a task. For example, you might
have a fleet of delivery trucks, a department of sales clerks, or a supply of
computers. One way to model this is to create a resource pool, which is a resource
with detail that contains other resources. You often use resource pools to model
organizational departments, where a resource within a pool is itself a pool that
contains other resources.

Another common way of modeling multiple resources is by configuring the
Maximum Utilization of an individual resource and the Utilization of the
associated Resource Manager. You often use resource pools in conjunction with
resource utilization to model hierarchical views of multiple resources.

Resource is
currently allocated.
271

When a task requires a pool of resources, as opposed to an individual resource,
the task can process as many work objects as there are resources in the pool. For
example, if you have a pool of five trucks available for a delivery task, the task can
deliver a maximum of five truckloads concurrently before work backs up on the
input path to the task. This assumes the default Utilization of the Resource
Manager and the default Maximum Utilization of the resource.

When a task requires a pool of resources, by default, the Resource Manager
chooses resources at random from the pool. If resources in the pool are currently
allocated, the manager chooses an idle resource at random. If there are no
resources available, ReThink places the work object that is waiting for a resource
in the path queue of the block requiring the resource.

You can customize the way in which a Resource Manager chooses resources from
a pool. For example, a manager can choose the lowest cost, lowest utilization, or
highest priority resource that is available.

Creating a Pool for Any Resource

To create a pool of resources, you create a detail subworkspace for the resource
and add resources to the detail. You can use any resource on the Resources palette
of the ReThink toolbox to create a pool.

For more information on... See...

Configuring Maximum Utilization
of resources and Utilization of
managers

Allocating Partial and Multiple
Resources.

Determining whether to use a
resource pool or specify individual
resource utilization

Determining Whether to Use a
Pool or an Individual Resource.

Customizing the way ReThink
allocates resources

Choosing Particular Resources
from a Pool.
272

Creating a Pool of Resources
To create a pool of resources from any resource:

1 Display the Resources palette of the ReThink toolbox:

2 Select a resource and place it on the model detail.

You can create a person, truck, computer, or machine resource and use it as
a pool.

3 Click the resource and choose Create Detail.

ReThink creates detail for the resource.

4 From the Resources tab, select as many resources as needed and place them in
the pool.

5 Once you have added resources to the pool, shrink wrap the pool detail.

This running model shows a pool of two sales clerks available for the Take Order
task, one of which is currently allocated. The Resource Manager allocates the
resources from the pool at random. The allocated resource and pool both turn red.

Allocated
resource
273

Creating a Generic Pool

If you do not want to use one of the standard resource icons to represent a
resource, you can use the Pool resource. You use this icon to represent any type of
generic resource pool. A pool has detail by default.

To create a generic pool:

1 Display the Resources palette of the ReThink toolbox:

2 Select a pool and place it on the model detail.

3 Choose Show Detail on the resource pool.

4 Select as many resources as needed from the Resources tab and place them in
the pool.

5 Once you have added resources to the pool, shrink wrap the pool detail.

Showing Pool Details

To display the detail of a resource pool:

 Choose Show Detail on a pool with detail.

Deleting Pool Details

You might decide you only want to allocate a single resource to a task when a
pool already exists for the resource. To do this, simply delete the pool detail.

To delete pool details:

 Show the pool detail and choose Edit > Delete.

Resource Pool
274

Computing Utilization and Duration Metrics
Computing Utilization and Duration Metrics
ReThink computes utilization and duration metrics for:

• Individual resources in the pool.

• The resource pool itself.

The metrics for individual resources depend on the amount of time the resource is
allocated over the life of the simulation. The metrics for the resource pool depend
on the number of resources in the pool.

• Compute utilization history.

• Charting resource utilization.

Computing Utilization Metrics

ReThink computes the following utilization metrics for individual resources and
resource pools:

The value of the Current Utilization and Maximum Utilization metrics in the table
above assumes the default Utilization of the Resource Manager and the default
Maximum Utilization of the resource.

If you specify non-default values for the Utilization of a manager or for the
Maximum Utilization of a resource, ReThink computes the Current Utilization

Computes this value...

This metric... For an individual resource... For the resource pool...

Maximum
Utilization

A default value of 1, which
means the entire resource is
being allocated.

The sum of the Maximum
Utilization values of all the
resources in the pool. You can
also edit this value manually.

Current
Utilization

The amount of the resource
currently allocated, which is 0,
by default, when the resource
is idle, and 1, by default, when
the resource is allocated.

The sum of the Current
Utilization values of all the
resources in the pool.

Average
Utilization

The amount of time the
resource is allocated compared
to the amount of time it is
available for allocation, which
is the Total Work Time divided
by the Total Elapsed Time of
the resource.

The sum of the Average
Utilization values of all the
resources in the pool.
275

and Average Utilization metrics based on the specified utilizations. This means,
for example, that when you allocate multiple resources to a task, the Average
Utilization of an individual resource can be a number greater than 1.

Note The value of the Average Utilization metric is an average over the entire duration
of the simulation. This implies that the metric might take some time to increase,
even when the resource is allocated most of the time.

For more information on how to specify non-default utilizations for resources and
Resource Managers, see Allocating Partial and Multiple Resources.

Computing Duration Metrics

ReThink computes the following duration metrics for individual resources and
resource pools:

Assuming Maximum Utilization is 1, Total Work Time + Total Idle Time + Not
Available Time = Total Elapsed Time.

Computes this value...

This metric... For an individual resource... For a resource pool...

Total Work
Time

The total amount of time that
the resource has been
allocated.

The sum of the Total Work
Time values of all resources in
the pool.

Total Elapsed
Time

The total amount of simulation
time that a resource has
existed.

The total amount of simulation
time that the resource pool has
existed.

Total Idle Time The total amount of simulation
time that the resource has not
been allocated.

The sum of the Total Idle Time
values of all resources in the
pool.

Not Available
Time

The amount of time that the
resource is not available
during the course of the
simulation, due to temporal
constraints on the resource.

The total amount of time that
all resources in the pool are not
available during the
simulation, due to temporal
constraints on any of the
resources.

Creation Time The simulation time at which
the resource was created.

The simulation time at which
the resource pool was created.
276

Computing Utilization and Duration Metrics
Computing Metrics for Individual Resources

ReThink computes utilization metrics for each individual resource in a pool.

For information about the Efficiency Factor, see Creating Resources with Different
Efficiency Factors.

To display utilization metrics for an individual resource:

 Display the properties dialog for a resource in a pool and click the
Utilization tab.

The Utilization tab contains utilization metrics, as well as duration metrics. In the
following example, the Maximum Utilization is 1, which means the resource can
process one activity, assuming the default configuration of the Resource Manager.
Here is the Utilization tab for a resource in the pool that is currently allocated by a
task:

Computing Metrics for the Resource Pool

ReThink computes utilization metrics for the resource pool, which shows the sum
of all the resources in the pool.

For example, if two resources are in the pool, the Current Utilization is 0 when no
resources are allocated, 1 when one resource is allocated, or 2 when both

Current Utilization is 1,
which means the resource
is currently allocated.
277

resources are allocated. These metrics assume the default utilization of the
Resource Manager.

The Average Utilization of the resource pool reflects the sum of the average
utilizations of each resource in the pool. Thus, if two resources are in the pool, the
Average Utilization will never be greater than 2.

The Maximum Utilization of the resource pool is the sum of the maximum
utilizations of each resource in the pool, which is 2, in this example. The
Maximum Utilization of the resource pool is read-only in the dialog.

For information about the Efficiency Factor, see Creating Resources with Different
Efficiency Factors.

To display utilization metrics for a resource pool:

 Display the properties dialog for a resource in a pool and click the Utilization
tab.

In the following example, the Maximum Utilization is 2 because two resources are
in the pool. Here is the Utilization tab for a resource pool when both resources are
currently allocated:

Current Utilization is 2, which
means both resources in the
pool are currently allocated.
278

Computing Utilization and Duration Metrics
Keeping a History of Resource Utilization

You can configure resources to keep a history of current utilization over time.

To keep a history of resource utilization:

1 Display the properties dialog for a resource and click the Utilization History
tab.

2 Enable the Collect Utilization History option.

By default, ReThink shows timestamps, based on simulation time. You can
also show timestamps in absolute time.

3 Enable the Show History as Absolute Time, as needed.

4 Accept the dialog and run the simulation.

5 Display the Utilization History tab again.

The utilization history updates each time the resource is allocated. For example:
279

Charting Resource Utilization

You can chart the utilization (Current Utilization / Maximum Utilization) of one
or more resources when a simulation runs. The chart represents utilization using
colors, where 100% utilization in red, 50% utilization is yellow, 1%utilization is
green, and 0% utilization is black. The color is interpolated, for example, 75%
utilization is halfway between yellow and red.

To chart resource utilization:

1 Display the Tools palette of the ReThink toolbox and create a Resource
Utilization chart:

2 Display the properties dialog for the Resource Utilization Chart, and choose
the resources you want to chart.

3 Choose Show Chart to show the chart view.

4 Run the simulation to view the resource utilization in the chart.

To configure chart views:

 To configure the chart, mouse right on the chart and choose Properties.

For more information about configuring chart properties, see the G2 Reporting
Engine User’s Guide.

Resource Utilization Chart
280

Working with Resource Costs
For example, here is a resource utilization chart that shows % utilization for
Trucks, Drivers, and Loaders, where utilization is very high:

Working with Resource Costs
One way you can assign cost in a model is to assign costs to the resources that
tasks allocate. You can assign fixed and variable costs to individual resources in
the model; you cannot assign costs to resource pools with detail.

Each activity that requires a resource keeps track of the cost of the activity, based
on its duration. If you have assigned costs to the resources, the activity tracks the
cost of using the resource, based on the duration of the activity. The cost of each
activity, in turn, contributes to the total cost of work objects, blocks, and resources
themselves.

For information on how to assign fixed and variable costs to blocks, see
Configuring the Cost of a Block.

Assigning Costs to Resources in a Model

Suppose you assign a fixed cost of $10 each time you allocate a truck for a delivery
task and a variable cost of $20 per hour. Each time a resource is allocated, ReThink
assigns the fixed cost to the activity and computes the variable cost, based on the
duration of the activity.
281

If the delivery task takes exactly one hour, the cost of the activity is $30. This $30
contributes to the total cost of the delivery task, the truck load object, and the
truck resource.

To assign fixed and variable costs to a resource:

1 Display the properties dialog for the resource whose costs you want to assign
and click the Cost tab.

If you are assigning costs to resources in a pool, click a resource in a pool, not
the resource pool.

2 Configure the Cost Per Use to be a fixed cost.

3 Configure the Cost Per Time Unit to be a variable cost.

ReThink computes the variable cost on an hourly basis, by default.

4 To compute variable cost based on some other time unit, configure the
Time Unit.

For example, to compute costs on a per minute basis, enter 1 minute.

Here is the Cost tab for a resource with fixed and variable costs assigned:
282

Working with Resource Costs
Computing the Cost of Individual Activities

Using the sales process model shown under Creating a Pool of Resources, assume
the Take Order task takes exactly 30 minutes. This figure shows the activity for
the Take Order task and its dialog. The Work Time of the activity is 30 minutes,
which is the duration of the activity. The Cost of the activity is $10, which is the $5
fixed cost plus half of the $10 variable cost, because the activity took half an hour.

Computing Total Costs Based on Resource Costs

ReThink computes the individual cost of an activity based on the duration of the
activity and the fixed and variable costs of the resource. The cost of an activity in
turn contributes to the total cost of:

• Work objects, which is the sum of the costs of each activity that contributes to
the work object.

• Blocks, which is the sum of the costs of each activity that the block performs.

• Individual resources in a pool, which is the sum of the cost of each activity for
which a resource was allocated.

• Resource pools, which is the sum of the cost of each resource in the pool.

Assume you have specified a $5 fixed cost, a $10 per hour variable cost for each of
the two resources in the pool, and a 30 minute duration for the Take Order task

Result of choosing
snapshot activities
on the Take Order
task block.

5 + 10(1800/3600)
283

that requires the resources. This table shows the total cost for each type of object
when the Take Order task has processed two sales calls:

The total cost of the individual sales clerks in the resource pool assumes that each
resource was allocated once.

To display the total cost of a resource:

 Display the properties dialog for the resource and click the Cost tab.

For example, here is the Cost tab of the properties dialog for an individual
resource in the pool after it has been used to process one sales calls:

For this object... The Total Cost is...

Sales call work object 10

Take Order Task block 20

Individual sales clerk
resource in pool

10

Sales clerk resource pool 20

Individual
resource in pool
284

Allocating Multiple Resources to a Task
Here is the Cost tab of the properties dialog for the resource pool after the Take
Order task has processed two sales calls:

Note ReThink computes the Total Cost each time a new activity is created or deleted.
Thus, Total Cost sometimes reflects the cost of partial activities.

For an explanation of when ReThink updates the metrics of blocks, see Relating
Work Time and Elapsed Time of Activities and Blocks.

Allocating Multiple Resources to a Task
A single task can require multiple resources from different pools. For example, a
load truck task might require a truck and a driver.

To allocate multiple resources to a task:

1 Create two resources from the Resources palette of the ReThink toolbox and
place them on the model detail.

2 Create a Resource Manager for each resource by choosing Create Manager on
each resource.

3 Attach each Resource Manager to the same task.

Resource pool
285

The task now requires both resources to perform the task.

This model of a loading process batches boxes before loading them onto trucks.
The Load Truck task requires truck resources and driver resources:

When you run the simulation, the Load Truck task is constrained by both
resources. Notice that the resource pools have the same number of resources.

Tip To optimize the resources in the model, place a similar number of resources in
each pool. If more trucks exist than loaders, some trucks will be underused,
because not enough loaders exist, and vice versa.

Allocating the Same Pool to Multiple Tasks
Often, two different tasks require the same resource. For example, in a model of a
delivery process, the task that loads trucks might require the same truck resources
as a task that delivers the trucks.

To allocate the same pool of resources to more than one task:

1 Create a resource from the Resources palette of the ReThink toolbox and place
it on your model workspace.

2 Create a Resource Manager for each resource by choosing Create Manager.

3 Attach the Resource Manager to a task that requires the resource.

The Load Truck task
requires one resource
from two different pools.
286

Sharing the Same Resource in Multiple Pools
4 Create another Resource Manager for the same resource by choosing Create
Manager again.

5 Attach the second manager to another task.

Two different tasks now require the same resource.

This model shows a delivery process that batches boxes, loads trucks, and
delivers boxes. The Load Truck task and the Deliver Truck task require the same
truck resources and different people resources.

The resource keeps track of which blocks are waiting for resources. If multiple
blocks are waiting for the same resource, by default, ReThink allocates the
resource at random to the blocks that are waiting, so that the resources are evenly
distributed.

You can change the default behavior so that ReThink allocates resources to blocks
that are waiting based on priority. For more information, see Allocating the Same
Resource to Different Blocks Based on Priority.

When multiple blocks are waiting for the same resource, the Blocks Waiting on
the General tab of the properties dialog indicates the number of blocks that are
waiting. For more information, see Showing the Metrics of Resources.

Sharing the Same Resource in Multiple Pools
Sometimes, an individual resource is available for more than one task. For
example, in a model of a delivery process, a truck loader might also act as a truck
driver.

You can model this in ReThink by creating surrogates, which are different
manifestations of the same resource that appear in multiple pools.
287

To share the same resource in more than one pool:

1 Create two resources from the Resources palette of the ReThink toolbox and
place them on a workspace.

2 Create detail for one of the resources by choosing Create Detail.

3 Create individual resources from the toolbox and place them on the detail of
the pool.

4 Create detail for the other resource.

5 Choose Create Surrogate on each individual resource that will be shared.

ReThink creates a surrogate object and attaches it to the mouse.

6 Click to place the surrogate in the empty pool.

The surrogate’s label corresponds to the resource label.

This example shows a delivery process in which loader resources for the Load
Truck task also act as driver resources for the Deliver Truck task:

When the Deliver Truck task processes, ReThink allocates resources from the
Loaders pool, highlighting both the surrogate and the associated resource.

The Drivers resource pool computes summary utilization and cost metrics based
on the resource allocation of the surrogates by the Deliver Truck task. Similarly,
the Loaders resource pool computes summary utilization and cost metrics based
on the allocation of the loader resources by the Load Truck task.

The loader resources themselves compute summary metrics based on the
allocation by both the Load Truck task and the Deliver Truck task. Thus, when

The two driver resources are identical to the loader resources.
288

Allocating Partial and Multiple Resources
you use surrogates, because the resources are shared, the current and average
utilization of the resource pool that contains the original resources will be less
than the sum of the current and average utilization of the resources in the pool.

To show the resource associated with a surrogate:

 Choose Show Original on the surrogate.

Allocating Partial and Multiple Resources
Often, a task requires only part of a resource to process a work object. For
example, a person might work 50% of the time for two different departments, or a
computer resource might be shared between two individuals.

Alternatively, certain tasks might require multiple identical resources. For
example, a truck loading task might require two loaders, as opposed to just one.
Another example is a financial model in which your resources represent cash,
where a task might require $50 to process a work object.

To allocate partial or multiple resources to a task, you specify the Utilization of
the Resource Manager.

You determine how many resources are available for each activity by specifying
the Maximum Utilization of individual resources. The Maximum Utilization of a
resource represents the amount of the resource that is available for a task.

ReThink computes summary metrics for individual resources and the resource
pool based on the utilization you specify.

Specifying the Utilization of the Resource Manager

The default Utilization of a Resource Manager is 1, which means the manager
allocates a single resource to each activity, by default.

To allocate a partial resource to an activity:

1 Display the properties dialog for a Resource Manager and click the General
tab.

2 Configure the Utilization of the Resource Manager to be a number less than 1.

To allocate multiple resources to an activity:

1 Display the properties dialog for a Resource Manager and click the General
tab.

2 Configure the Utilization of the Resource Manager to be a number greater
than 1.

3 Ensure that the resource pool has at least the specified number of resources.
289

For example, when you want to allocate half of a computer resource, set the
Utilization of the Resource Manager to 0.5, and when you want to allocate two
loaders, set the Utilization to 2.

Here is the properties dialog with the Utilization set to 0.5, which allocates half a
resource to an activity:

Specifying the Number of Available Resources

You determine how many resources are available for an activity by specifying the
Maximum Utilization of an individual resource. Depending on the requirements
of the model, you specify a pool of resources or a single resource. You can specify
any number for the Maximum Utilization of the resource, depending on how
many resources are available.

To specify the availability of a resource:

 Display the properties dialog for an individual resource, click the Utilization
tab, and specify a number for the Maximum Utilization of the resource.

Typically, you specify the Maximum Utilization of a resource to be a number that
is greater than or equal to the Utilization of the associated manager and evenly
divisible by the Utilization. Thus, if the manager allocates half of a resource to a
task, the Maximum Utilization of each resource in the pool could be 0.5, 1, 1.5, 2,
and so on.

However, you can also specify the Maximum Utilization to be a number that is
less than the Utilization of the manager and/or not evenly divisible by the
Utilization of the manager. In this way, ReThink can obtain partial utilizations
from more than one resource to obtain the total utilization that the manager
requires. For example, if the Utilization of the Resource Manager is 0.5, and the
Maximum Utilization of the two resources in the pool are 0.2 and 0.3, ReThink can
obtain the required utilization by combining these two resources.

Similarly, suppose you have two resources with a Maximum Utilization of 1 each,
and they are each being partially allocated by another manager for another
290

Allocating Partial and Multiple Resources
activity such that they each have a Maximum Utilization of 0.4 available. ReThink
will allocate 0.4 from one and 0.1 from another to obtain a Utilization of 0.5.

Determining the Maximum Number of Activities

ReThink determines the maximum number of concurrent activities for which the
model can allocate each resource as follows:

The Maximum Utilization of available resource divided by the Utilization of
Resource Manager, rounded down to the nearest integer

The following table illustrates the results of different combinations of Resource
Manager Utilization and resource Maximum Utilization when you have two
resources in the pool:

Determining Whether to Use a Pool or an Individual
Resource

You specify a pool of resources in which individual resources each specify a
Maximum Utilization, under these circumstances:

• When you are modeling a relatively small number of resources.

• When you want to visualize the allocation of individual resources by a task.

• When each resource has a different cost associated with it.

• When each resource has a different availability.

If the Utilization of the
Resource Manager is...

And the Maximum
Utilization of the
resource is...

Then the maximum
number of activities
the block can process
concurrently is...

0.5 0.5 1

0.5 1 2

0.5 2 4

1 1 1

1 2 2

2 2 1

2 4 2

2 5 2
291

You specify an individual resource with a Maximum Utilization, under these
circumstances:

• When you are modeling large numbers of resources, such as financial
resources, when it would be cumbersome to create individual resources in a
pool; for example, a financial model where a single resource represents
$50 cash.

• When you do not care about visualizing the allocation of individual resources.

• When no cost is associated with each allocated resource or when the cost of
each resource is the same.

• When each allocated resource has the same availability.

Example of Allocating Partial Resources from a Pool

To allocate partial resources, you configure the Utilization of the Resource
Manager to be a number less than one, and you configure the Maximum
Utilization of either a single resource or several individual resources in a pool.

To allocate partial resources to a task:

1 Display the properties dialog for a Resource Manager and click the General
tab.

2 Configure the Utilization to be the amount of each resource that the manager
will allocate for each task.

The number should be less than one.

3 Create a single resource or create a resource pool, depending on how you
want to specify the available resources.

4 Display the properties dialog for each resource, click the Utilization tab, and
configure the Maximum Utilization to be the amount of the resource that is
available for the task.

For information on how to specify the availability of resources, see Specifying the
Number of Available Resources.
292

Allocating Partial and Multiple Resources
Here is the properties dialog for a Resource Manager that allocates half a resource
for each activity and the Utilization tab of the properties dialog for a resource
where the availability of the resource is also one half:

When the Maximum Utilization of a resource is less than one, you can model the
use of the balance of the partial resource by allocating the balance of the resource
to another task. For example, you might have a pool of clerks that split their time
equally between taking orders and generating invoices.

To model this, create two resource pools, where each resource in each pool has a
Maximum Utilization of 0.5 and specify the utilization of the associated manager
as 0.5. Although the resources in each pool represent two halves of a complete
resource, they are in fact different resources, each with a Maximum Utilization
of 0.5.

This model of a sales process has two tasks that require resources: the Take Order
task and the Generate Invoice task, each of which uses half of a clerk resource.
293

The Utilization of the manager is 0.5, and the Maximum Utilization of each clerk
resource is 0.5. Although the labels of the resources in each pool are the same, the
resources are in fact unique resources that represent the same person.

ReThink computes utilization metrics for all resources in the model, based on the
Utilization of the Resource Manager and the Maximum Utilization of the
individual resources.

For general information on displaying and computing utilization metrics for
resources and managers, see Computing Utilization and Duration Metrics.

Computing Metrics for Individual Resources in a Pool

If the Utilization of the manager is 0.5, and the Maximum Utilization of a resource
is 0.5, the Current Utilization of an individual resource is 0 when it is not
allocated, and 0.5 when it is. The Average Utilization in turn will always be less
than 0.5.

The Maximum
Utilization of
each clerk is 0.5.

The Utilization of
each Resource
Manager is 0.5.
294

Allocating Partial and Multiple Resources
Here is the Utilization tab of the properties dialog for a resource that is currently
allocated:

Computing Metrics for the Resource Pool

If two resources are in the pool, the Current Utilization of the resource pool is 0
when the model does not allocate any resources, 0.5 when the model allocates one
resource, and 1 when the model allocates both resources.

The Average Utilization will be greater than 0.5 if the model allocates both
resources concurrently on average, but it will always be less than 1.

The Maximum Utilization of the resource pool is 1, which is the sum of each
resource’s Maximum Utilization.

Current Utilization is .5, which
means that half a resource is
currently allocated.
295

Here is the Utilization tab of the properties dialog for the resource pool in the
previous model, when the model is currently allocating both resources, each of
which has a Maximum Utilization of 0.5:

Example of Allocating Multiple Resources from a
Pool

To allocate multiple resources to a task, you configure the Utilization of the
Resource Manager to be a number greater than one, and you configure the
Maximum Utilization of either a single resource or several individual resources in
a pool.

To allocate multiple identical resources from a pool to a task:

1 Display the properties dialog for a Resource Manager and click the General
tab.

2 Configure the Utilization of the Resource Manager to be the number of
resources that the task requires.

This number should be greater than 1.

3 Create a single resource or create a resource pool, depending on how you
want to specify the available resources.

Current Utilization is 1, which
means that both resources in
the pool are allocated, where
each individual resource in the
pool represents half a resource.
296

Allocating Partial and Multiple Resources
4 Display the properties dialog for each resource, click the Utilization tab, and
configure the Maximum Utilization to be the amount of the resource that is
available for the task.

For information on how to specify the availability of resources, see Specifying the
Number of Available Resources.

Here is the properties dialog for a Resource Manager that allocates two resources
at a time and the Utilization tab of the properties dialog for a resource where the
availability of the resource is also 2:
297

This model of a delivery process requires two resources: a single truck and a team
of loaders, where each team of loaders represents two identical resources:

ReThink computes utilization metrics for all resources in the model based on the
utilization of the Resource Manager and the Maximum Utilization of the
individual resources.

For general information on displaying and computing utilization metrics for
resources and Resource Managers, see Computing Utilization and Duration
Metrics.

Computing Utilization and Duration Metrics.

Computing Metrics for Individual Resources in a Pool

If the Utilization of the manager is 2 and the Maximum Utilization of each
resource in a pool is 2, the Current Utilization of each resource is 0 when the
model does not allocate any resources, or 2 when it does.

The Average Utilization is computed based on the Current Utilization. Thus,
depending on the duration of the task that requires the resource, the Average
Utilization of the resource will be between 0 and 2.

The Maximum
Utilization of each
loader team is 2.

The Utilization of the
Resource Managers is 2.
298

Allocating Partial and Multiple Resources
Here is the Utilization tab of the properties dialog for the Team-1 resource, which
represents two identical resources that are currently allocated:

Computing Metrics for the Resource Pool

ReThink computes utilization metrics for the resource pool, which reflects the
sum of the utilizations of each resource in the pool.

If the Utilization of the manager is 2, the Current Utilization of the resource pool
is 0 when the model does not allocate any resources, 2 when the model allocates
one physical resource, or 4 when the model allocates two physical resources.
Again, the current utilization depends on the utilization of the manager.

The Average Utilization reflects the sum of the average utilizations of the
resources in the pool. Thus, depending on the duration of the task, the Average
Utilization of the resource pool will be between 0 and 4.

The resource pool computes its Maximum Utilization based on the sum of the
Maximum Utilizations of each resource in the pool, which is 4.

Current Utilization is 2, which
means that the equivalent of
two resources are allocated.
299

Here is the Utilization tab of the properties dialog for the Loaders resource pool
when both resources are allocated:

Allocating the Same Resource for Multiple
Sequential Steps

Often you need to allocate a resource for several sequential steps in a process. For
example, the same clerk might process the order and file the order. When you
allocate the same resource for several sequential steps in a process:

• The resource remains allocated for the duration of both tasks, which means
the resource is unavailable to any other block in the model during the time it
is allocated.

• You guarantee that the same resource is allocated to each sequential step in a
process, as opposed to allocating potentially different resources.

One way to model this is to allocate the resource at the beginning of one task and
deallocate the resource at the end of another task. You model this by configuring
attributes of the Resource Manager.

Be aware that if a work object arrives at a block that allocates a resource, and the
work object flows to a downstream block that is required to wait for an input

Current Utilization is 4, which
means that both resources are
allocated, where each individual
resource in the pool represents
two resources.
300

Allocating the Same Resource for Multiple Sequential Steps
from some other block while the resource is still allocated, the Total Work Time of
the resource includes the time the block spent waiting for the other input.

Note You must explicitly deallocate every resource in the model; deleting work objects
at the end of processing does not automatically deallocate resources.

To allocate the same resource for multiple sequential steps in a process:

1 Create a resource that a task will allocate for multiple sequential steps in a
process.

2 Create two Resource Managers from the same resource by choosing Create
Manager twice on the resource.

3 Connect one Resource Manager to the task that will allocate the resource.

4 Connect the other Resource Manager to the task that will deallocate the
resource.

5 Display the properties dialog for the Resource Manager that will allocate the
resource.

6 Click the Deallocate tab and click the Deallocate Resource option off.

The first Resource Manager allocates the resource for the task, but it does not
deallocate it at the end of processing.

7 Display the properties dialog for the Resource Manager that will deallocate
the resource.

8 Click the Allocate tab and click the Allocate Resource option off.

The second Resource Manager deallocates the resource at the end of
processing; the resource is already allocated when it arrives at the block.

For example, suppose your model allocates and deallocates the same resource for
each of two tasks, using the default behavior:
301

In this model, the Resource Managers allocate the resource twice, once for each
task. The first manager allocates the clerk resource when the Process Order task
processes an order, and it deallocates the clerk resource when the order passes to
the input path of the File Order task. The second manager allocates the clerk
resource again when the File Order task processes the order, and it deallocates the
clerk resource when the order passes to the input path of the Sink block.

Now, compare the previous model to this model, which specifies two Resource
Managers that allocate the same clerk resource for two sequential tasks:

In this model, the Allocate Clerk manager allocates the resource only once, at the
beginning of the Process Order task. The clerk resource remains allocated when
the order passes to the input path of the File Order task. The Deallocate Clerk
manager deallocates the clerk resource when the order passes to the input path of
the Sink block.

Your model might create work object in between allocating and deallocating the
resource. In the model above, you might have a Task block with two output paths
or a Copy block between the Process Order and File Order tasks. In this case, be
sure to specify the output path types such that the same work object that caused
the resource to be allocated also causes the resource to be deallocated.

Here is the Deallocate tab of the properties dialog for the Allocate Clerk Resource
Manager:

Deallocate Resource is
off for the manager that
allocates resources.
302

Choosing Particular Resources from a Pool
Here is the Allocate tab of the properties dialog for the Deallocate Clerk Resource
Manager:

Choosing Particular Resources from a Pool
By default, ReThink allocates available resources at random from a pool. If a pool
contains multiple resources, all of which are allocated, ReThink chooses the first
resource to become available.

You might want to allocate a particular resource for an activity, based on some
other criteria. For example, you might want to allocate the available resource with
the lowest cost. You might also want to allocate the available resource with the
lowest utilization. Alternatively, you might have some other criteria for
determining which available resource to choose first. In all cases, ReThink
chooses the first available resource that meets the criteria.

You can configure the Resource Manager to choose resources from a pool, based
on one of these criteria:

• Lowest cost

• Lowest utilization

• Highest or lowest priority

You can also choose resources from a pool, based on a custom procedure. For
details, see the Customizing ReThink User’s Guide.

Choosing the Lowest Cost Resource

Each resource computes its cost based on the fixed and variable cost of the
resource and the duration of the activity for which it is allocated. You can choose
to allocate the resource with the lowest cost per activity before you allocate
resources with higher cost per activity by configuring the Resource Manager. The
resource cost of the activity is:

Cost Per Use + Cost Per Time Unit/Time Unit

Allocate Resource is off
for the manager that
deallocates resources.
303

To choose the lowest cost resource:

1 Create a resource pool and associated Resource Manager and connect the
manager to a task.

For information on how to do this, see Creating a Pool of Resources and Using
Resources to Constrain the Model.

2 Display the properties dialog for each resource in the pool, click the Cost tab,
and configure the fixed and variable costs.

For information on how to do this, see Working with Resource Costs.

3 Display the properties dialog for the Resource Manager, click the Allocate tab,
and configure Choose Resource to be Lowest Cost.

Here is the Allocate tab of the properties dialog for a Resource Manager
configured so that it chooses the available resources with the lowest cost from the
pool first:
304

Choosing Particular Resources from a Pool
This example shows how ReThink chooses the lowest cost resource in the pool.
The label of each resource in the pool indicates the value of the Cost Per Use of the
resource. The example shows the same resource pools at different points in the
simulation. The arrows show the allocated resources.

ReThink allocates the resource with
the lowest cost first.

Arrow points to the
allocated resource.

ReThink allocates the resource with
the next lowest cost next, because
the lowest cost resource is already
allocated.

ReThink deallocates the lowest cost
resource.
305

Choosing the Resource with the Lowest Utilization

Each resource computes its average utilization, which is the average amount of
time that the resource has been allocated over the course of the simulation.
Specifically, the Average Utilization of a resource is the amount of time the
resource has been allocated (Total Work Time) divided by the duration of the
simulation (Total Elapsed Time).

If you compare the average utilization of the resources in a pool, you can tell
which resources have been allocated relatively less frequently over the course of
the simulation. You can choose to allocate resources with a relatively lower
average utilization before resources with a relatively higher utilization by
configuring the Resource Manager.

To choose the resource with the lowest average utilization:

1 Create a resource pool and associated Resource Manager, and connect the
manager to a task.

For information on how to do this, see Creating a Pool of Resources and Using
Resources to Constrain the Model.

2 Display the properties dialog for the Resource Manager, click the Allocate tab,
and configure Choose Resource to be Lowest Utilization.

Here is the Allocate tab of the properties dialog configured so that it chooses the
resource with the lowest utilization from the pool first:

ReThink allocates the lowest
cost resource again because it
is available.
306

Choosing Particular Resources from a Pool
This example shows how ReThink chooses the resource with the lowest average
utilization from the pool before other resources. The example shows the
Utilization tab of the properties dialog for each resource at a particular point in
the simulation. Notice that ReThink allocates the resource with the lowest
utilization first.

ReThink allocates the resource with
the lowest utilization first.
307

Lowest average utilization

Person-1

Person-2

Person-3
308

Choosing Particular Resources from a Pool
Choosing Resources Based on Priority

You might have certain criteria for choosing resources from a pool other than cost
or utilization. For example, you might always want to choose one worker over
another worker based on skills, or you might want to choose one truck over
another based on the mileage of the truck.

You can assign priorities to each resource in a pool and choose resources from the
pool based on priority. You can allocate resources with the highest priority over
resources with the lowest priority, or vice versa.

You assign the priority of a resource by configuring the resource, and you specify
which resource to allocate by configuring the Resource Manager.

To choose a resource based on priority:

1 Create a resource pool and associated Resource Manager, and connect the
manager to a task.

For information on how to do this, see Creating a Pool of Resources and Using
Resources to Constrain the Model.

2 Display the properties dialog for each resource in the pool, click the General
tab, and configure Resource Priority.

You can specify any number as the priority, where 1 is the highest priority; the
larger the number, the lower the priority.

3 Display the properties dialog for the Resource Manager, click the Allocate tab,
and configure Choose Resource to be either Lowest Priority or Highest Priority,
depending on your needs.

Here is the Allocate tab of the properties dialog configured so that it chooses the
resource with the highest priority from the pool first:
309

Here is the properties dialog for the resource with the highest priority:

Resource Priority is 1
for the resource with
the highest priority.
310

Choosing Particular Resources from a Pool
This example shows how ReThink chooses the highest priority resource in the
pool. The label of each resource in the pool indicates the value of the Priority of
the resource. The example shows the same resource pools at different points in
the simulation. The arrows point to the allocated resources.

ReThink allocates the highest
priority resource first.

Arrow points to the
allocated resource.

ReThink allocates the resource with the
next highest priority next, because the
highest priority resource is already
allocated.

ReThink deallocates the highest
priority resource.
311

You can also add the current value of the Priority as an attribute display of a
resource. For information on how to do this, see Using Attribute Displays.

Allocating Resources Associated to Work
Objects

In some cases, you might have a process in which resources are associated with a
particular type of work object. You can associate resources with work objects by
using an Associate block, then allocate only the associated resources to a task. To
do this, you generate resources as part of the process, associate them with the
designated type of work objects, then store the resources in a pool. A downstream
task then allocates resources from the pool based on the association name.

You can allocate associated resources from a pool, using any of the standard
methods for choosing a resource: random, lowest cost, lowest utilization, or
priority. You specify the name of the association in the Resource Manager.

The Utilization of the Resource Manager determines how many of the associated
resources to allocate to the task, as follows:

• A positive Utilization allocates the specified number of associated resources to
the task.

• A Utilization of 0 allocates all associated resources to the task.

• A negative Utilization allocates all but the specified number of associated
resources to the task.

You can use this feature in conjunction with resource priorities to determine
which specific associated resources the manager allocates first.

ReThink allocates the highest priority
resource again (Priority 1) because it is
now available.
312

Allocating Resources Associated to Work Objects
For example, suppose you have a POR (purchase order request) approval process
that allocates to an approval task different approving managers, depending on
the POR amount:

• For amounts $100 or under, the approval task requires one approval
signature.

• For amounts between $101 and $2500, the approval task requires two
approval signature.

• For amounts $2500 or over, the approval task requires signatures from all
approving managers, plus the CFO.

The model might associate three levels of approving managers with a POR, then
store these resources in a pool. The model would also store a CFO resources in the
pool, although this resource would not be associated with the others.

The Resource Managers associated with each approval task would specify the
association name and the number of required signatures from approving
managers. The approval task for POR amounts over $2500 would also allocate the
CFO resource.

The following set of steps describe how to build such a model.

To allocate resources associated to work objects:

1 Create class definitions for one or more resources, which inherit from the
bpr-resource class, or any subclass.

2 Build a model that associates the resources with a work object and store the
resources in a pool.

To do this, use an Associate block.

3 Create one or more Resources Managers from the pool and connect them to
tasks that require those resources.

4 Display the properties dialog for the Resource Manager, click the Allocate tab,
and configure the Association Name to be the name of the association created
in step 2.

5 Configure Choose Resource on the Allocate tab to determine how the
manager allocates resources from the pool.

6 Click the General tab and configure the Utilization to determine how many
associated resources to allocate.

The following figures show three runs of a model for such a POR approval
process. The model associates three categories of approving managers, a
manager, vice president, and purchasing resource, with a POR, using the
approvals association name. The model then stores the approving managers and a
CFO resource in a pool. A Branch block tests the POR amount against a range of
values to determine which POR approval task to execute.
313

The Approve POR tasks allocate associated resources based on priority, where
each associate resource has a different priority.

In the first simulation, the POR amount is $50, which requires a single approving
manager. The Manager resource has a priority of 1, thus the approval task
allocates this associated resource to the task.
314

Allocating Resources Associated to Work Objects
In the second simulation, the POR amount is $150, which requires all but one
approving manager. To specify this, the Utilization of the Resource Manager is -1.
The Purchasing resource has a priority of 2, thus the approval task allocates the
Manager and the Purchasing associated resources to the task.
315

In the third simulation, the POR amount is $3500, which requires all approving
managers, plus the CFO. To specify this, the Utilization of the Resource Manager
that allocates associated resources is 0. Thus, the approval task allocates all
associated resources plus the CFO to the task.
316

Allocating the Same Resource to Different Blocks Based on Priority
Here are the class definitions for the resources, the superior class of which inherits
from the bpr-resource class, and the POR, which is a bpr-object:

Allocating the Same Resource to Different
Blocks Based on Priority

You can allocate resources from the same pool to different blocks, using separate
Resource Managers. For example, you might have two separate inventory tasks
that require resources from the same clerks pool. By default, ReThink allocates
resources at random to each block that requires the same resource.

You might have two tasks that require the same resources, one of which has a
higher priority. You can specify the priority of each Resource Manager and
allocate resources to the block with the highest priority first. If work objects are
waiting on the input path of two tasks that allocate resources from the same pool,
ReThink will always allocate resources to the task whose manager has the highest
priority. This configuration ensures that the highest priority work is always
performed first.

To allocate resources to different blocks based on priority:

1 Create a resource pool, then create and connect multiple Resource Managers,
one for each task that requires resources from this pool.

For information on how to do this, see Creating a Pool of Resources and
Allocating the Same Pool to Multiple Tasks.

2 Display the properties dialog for each Resource Manager, click the Deallocate
tab, and configure Choose Manager to be Priority.

The default value of Choose Manager is Random.
317

Note The value of Choose Manager for each manager should be the same.

3 Configure Manager Priority for each Resource Manager.

The smaller the number, the higher the priority. The manager with the highest
priority allocates resources before the manager with a lower priority.

Note ReThink can only choose blocks based on the highest priority. If you want to
allocate resources to blocks in the reverse order, redefine the priorities in the
Manager Priority of each manager.

The following example illustrates how you can control the order in which various
tasks execute. In this simple model, a Branch block passes orders to two separate
tasks, each of which allocates resources from the same pool.

The Resource Manager connected to the Process Orders task specifies a Manager
Priority of 1, and the Resource Manager connected to the File Orders task
specifies a Manager Priority of 2. This means that the Process Orders task has a
higher priority than the File Orders task; when resources become available, they
will process orders before they file orders.

Both Resource Managers specify Choose Manager as Priority, which means the
resources will go to the block with the highest priority, in this case, the Process
Orders block.

This running model shows that when work is backed up on the input path to both
the Process Orders task and the File Orders task, ReThink allocates resources to
the Process Orders task first:

ReThink allocates
resources to the Process
Orders task first because its
Resource Manager has the
highest priority.
318

Creating Resources with Different Efficiency Factors
Creating Resources with Different Efficiency
Factors

You might have a pool of resources in which certain resources are more efficient
than others. You can set the efficiency factor of individual resources, which
ReThink multiplies by the duration of the block to determine the duration of work
objects and the utilization of resources. Combining the efficiency factor with
priorities, you can cause ReThink to allocate the most efficient resources first in a
model.

To specify the efficiency of individual resources in a pool:

1 Create a resource pool.

2 Display the properties dialog for each resource in the pool, click the
Utilization tab, and specify the Efficiency Factory of each resource.

The Efficiency Factor is a multiplier that modifies the duration of the block to
which the resource is allocated.

The following model shows how you can use efficiency factors combined with
priorities to model the network speed of a pool of computer resources. The
network consists of three networks:

• A Fast Network, whose Efficiency Factor is .75 and whose Priority is 1.

• A Medium Network, whose Efficiency Factory is 1.0 and whose Priority is 2.

• A Slow Network, whose Efficiency Factor is 1.25 and whose Priority is 3.

The Resource Manager is configured to choose the highest priority resource first,
which means the fastest available network is always used first.

The duration of the task is set to exactly 10 seconds. The variation in the actual
duration of the block is due to the allocated resource.
319

In the first step of the simulation, all resources are currently allocated. In the
second step, the Fast Network is deallocated, and the work object that used this
resource passes to the downstream block.

All resources are
currently allocated.

The Fast Network
is deallocated.
320

Creating Resources with Different Efficiency Factors
Here is the Utilization tab of the properties dialog for the Fast Network:

Here is the Utilization tab of the properties dialog of the work object on the
output path of the Task block. The Total Work Time reflects network speed of the
chosen resource, which is the duration of the task times the Efficiency Factor,
rounded to the nearest second.

Efficiency Factor
is .75

(10 x .75) rounded
321

Showing the Metrics of Resources
Just as you can show the metrics of a block, instrument, or work object, you can
show the metrics of a resource in a dialog. The system-generated metrics of a
resource are the same as those of a block or work object, with the addition of one
metric.

Displaying Resource Metrics

The General tab of the properties dialog computes these metrics:

Computes this value...

This metric... For an individual resource... For the resource pool...

Total Starts The total number of activities
to which the resource has been
allocated so far.

The sum of the total number of
activities to which all the
resources in the pool have been
allocated so far.

Total Stops The total number of activities
to which the resource has been
allocated and deallocated so
far.

The sum of the total number of
activities to which all the
resources in the pool have been
allocated and deallocated so
far.

Current
Activities

The current number of
activities to which the resource
is currently allocated.

The sum of the current number
of activities to which all the
resources in the pool are
currently allocated.

Blocks Waiting The total number of blocks that
are waiting for that particular
resource. In general, this metric
will be 0 for a resource in a
pool.

The total number of blocks that
are waiting for any resource in
the pool. The value of this
metric is 0 when no blocks are
waiting. The value is 1 when a
single task is waiting for the
resource. The value is 2 or
greater when multiple tasks
are allocating resources from
the same pool, and more than
one task is waiting for the
resource.
322

Showing the Metrics of Resources
To show the metrics of a resource:

 While the model is running, display the properties dialog for a resource and
click the General tab.

ReThink displays a dialog similar to this:

For information on how to allocate the same resource pool to more than one task,
see Allocating the Same Pool to Multiple Tasks.

Note The Utilization of the Resource Manager does not affect any of these metrics for a
resource.

Example of Allocating Resources

The following figure shows the General tab of the properties dialog for a running
model in which two different tasks allocate the same individual resource. The
resource has started processing 135 activities since the model started, and it has
finished processing 134 activities. The difference between the Total Starts and the
Total Stops is the Current Activities, which is always either 0 or 1 in this example.
Because the resource is currently allocated, the Current Activities is 1.

Notice that the input path to the Generate Order task is green, indicating that it
has work objects waiting in the queue for a resource. Thus, there is one block that
323

is waiting for the resource, which is indicated by Blocks Waiting. If a resource is
allocated to a single task, Blocks Waiting will always be either 0 or 1, depending
on whether the block is waiting for the resource.

Displaying Attributes with a Resource

You can add the current value of any attribute on the General tab of the properties
dialog as an attribute display of a resource. For example, you might want to show
the Priority of the resource as an attribute display.

For information on how to do this, see Using Attribute Displays.

Blocks Waiting
indicates that
a single block
is waiting for a
resource.

The green input path
indicates that the Generate
Order task is waiting for a
resource.

Current
Activities is 1,
which means
the resource is
allocated.

The resource is
currently allocated.
324

Constraining the Availability of Resources
Constraining the Availability of Resources
Typically, resources are only available for certain hours during the day and for
certain days during the week. For example, most human resources work a nine to
five work day and a five day work week. While hardware resources might be
available twenty-four hours a day, they might be down for maintenance on a
periodic basis.

You can constrain the availability of any resource in your model by using
Temporal Constraints, or constraints, to specify the hours, days, months, and
dates during which a resource is available. To do this, you attach a Temporal
Scheduler to any individual resource and configure the constraints on the detail
of the scheduler.

Note You can only constrain the availability of individual resources, not resource
pools.

Allocating Resources With Constraints

ReThink takes into account temporal constraints when determining which
resource to allocate. If a work object arrives at a block and no resources are
available due to temporal constraints, ReThink allocates the resource that is
available soonest. For example, suppose you have a pool of two resources, where
Worker 1 is available from 8:00 to 4:00 and Worker 2 is available from 10:00 to
6:00, and suppose a work object arrives at 7:00 AM at the task requiring a
resource. ReThink allocates Worker 1 to the task when the simulation time is
greater than or equal to the first available time of the resource. The following
figure shows this situation:

When work objects arrive at the block and no resource is available due to
temporal constraints, ReThink assigns one work object to each resource that is not

1

325

currently allocated. ReThink places the rest of the work objects in the path queue
until the simulation time matches the available time of the resource. For example,
in the above model, between the hours of 6:00 PM and 8:00 AM, ReThink assigns
two work objects to each resource in the pool, and it places the rest of the work
objects that arrive during these hours in the path queue. The work objects that are
assigned to the resources wait on the input path for the resources to become
available.

If a work object arrives when both resources are available due to temporal
constraints and when neither resource is currently allocated, ReThink allocates
the resource according to the value of Choose Resource on the Allocate tab of the
Resource Manager’s properties dialog. For example, suppose the Resource
Manager chooses resources based on the lowest cost, and suppose a work object
arrives at 11:00 when both resources are available due to temporal constraints. If
neither resource is currently allocated, the Resource Manager allocates the lowest
cost resource, regardless of which resource is available soonest.

If both resources are available due to temporal constraints but are currently
allocated, ReThink allocates the first resource in a pool to become available,
regardless of how the Resource Manager chooses resources. For example,
suppose you have a pool of resources, each of which is available from 9:00 to 5:00
and each with a different hourly cost, and suppose the Resource Manager chooses
resources based on lowest cost. If all resources are currently allocated and a work
object arrives at the block, ReThink allocates the first available resource to the
waiting work object, regardless of the resource cost.

The following three steps in a model illustrate this situation, where each resource
in the pool has a different cost. In the first model, both resources are currently
allocated. In the second model, the resource that costs $12 per hour becomes
available. In the third model, the Resource Manager allocates the first available
resource, even though it is the more expensive resource.
326

Constraining the Availability of Resources
If a resource is currently allocated to a task and that resource becomes unavailable
due to temporal constraints, ReThink does not switch the allocation of the current
resource to use a different resource. The current resource remains allocated to the
current task, even if a new resource is available due to temporal constraints and is
not currently allocated or becomes deallocated.

1

2

3

327

For example, if a resource is available from 9:00 to 5:00 and a work object arrives
at a 2 hour task at 4:00, ReThink does not switch the allocation of the current
resource to use a resource that is available from 5:00 to 12:00, even if that resource
is not currently allocated or becomes deallocated after 5:00. Instead, the work
object waits on the input path of the task until 9:00 the next day when the
currently allocated resource is again available.

Displaying Constraints

The temporal constraints are located on the Constraints palette of the ReThink
toolbox.

To display the Constraints tab of the ReThink toolbox:

 Display the Constraints palette of the ReThink toolbox:

The Temporal Scheduler contains a Monthly, Weekly, and Hourly Constraint on
its detail, by default. You configure these constraints by showing the Temporal
Scheduler detail. You can also create additional constraints and place them on the
detail of a Temporal Scheduler to configure the date availability of a resource.

Constraining a Resource to Normal Business Hours

By default, the Temporal Scheduler object is configured to constrain the
availability of the attached resource to normal business hours: eight o’clock to
twelve o’clock and one o’clock to five o’clock, five days a week, fifty-two weeks a
year. To constraint the model by using normal business hours, you simply attach
a temporal scheduler object to a resource and run the simulation.

To constrain a resource by using normal business hours:

1 Create a resource and associated Resource Manager, and connect the manager
to a block in the model.

2 Create a Temporal Scheduler from the Constraints palette of the ReThink
toolbox and place it to the right of the resource.
328

Constraining the Availability of Resources
Note You can also use the Make Temporal Connector menu choice on a resource to
create a connection for a temporal scheduler.

3 Connect the temporal connector stub from the scheduler to the resource.

4 Run the simulation.

ReThink constrains the resource according to the default configuration of the
scheduler, which has the following effect on the utilization metrics for the
resource:

• The Total Work Time now only includes work time when the resource is
allocated during normal business hours.

• The Total Elapsed Time includes the time when the resource is unavailable.

• The Not Available Time is the total amount of time that the resource was not
available during the simulation.

• The Total Idle Time is the time that the resource was available but not
allocated.

Thus, the utilization metrics of a resource relate to one another somewhat
differently when the model uses constraints. With constraints, the relationship is:

Total Work Time + Not Available Time + Total Idle Time =
Total Elapsed Time

Keep in mind that the model can be constrained for reasons other than those due
to temporal constraints: work backups and path synchronization can also cause
Total Work Time to be less than Total Elapsed Time. Also, this relationship
assumes the Maximum Utilization of the resource is 1.

This simple model shows a resource that is constrained by using normal business
hours:

Here is the Utilization tab of the properties dialog for the resource after the model
has been running for approximately one month. Notice that the Total Work Time
is less than the Total Elapsed Time, because the resource was only available

Temporal constraint
329

during normal business hours. Also notice the Not Available Time, which reflects
the amount of time the resource was not available to be allocated, and the Total
Idle Time, which is the amount of time that the resource could have been
allocated but wasn’t.

Configuring the Availability of the Resource

You configure the availability of the resource by configuring the constraints on
the detail of the temporal scheduler. You can configure these constraints to
determine when the resource is available:

• Hourly Constraint to determine the hours during the day when the resource is
available.

• Weekly Constraint to determine the days of the week when the resource is
available.

• Monthly Constraint to determine the months during the year when the
resource is available.

• Date Constraint to determine the dates during the month when the resource is
available.
330

Constraining the Availability of Resources
Temporal Scheduler Detail

By default, the temporal scheduler detail contains three constraints: a Monthly
Constraint, a Weekly Constraint, and a Hourly Constraint. You can attach a Date
Constraint to the Monthly Constraint to configure the days during the month that
the resource is available.

The constraints on the scheduler detail are connected in a particular order
according to the colored temporal connector stubs. You can only connect
constraints to other constraints with like-color stubs. Thus, you can only connect a
Date Constraint to a Monthly Constraint, using the red stub.

Default Configuration of the Temporal Constraint Detail

By default, the constraints are configured so that the resource is available from
8:00am to 5:00pm, with one hour for lunch at 12:00pm, Monday through Friday,
every month of the year.

Determining the Availability of Each Type of Constraint Visually

Each type of temporal constraint has a small dot in the lower-right corner of the
icon. The color of the dot indicates the availability of resource for the particular
constraint, according to this table:

Displaying the Temporal Scheduler Detail

To configure the availability of resources, you must first display the detail of the
temporal scheduler.

To display the detail of a temporal scheduler:

 Choose Show Constraint on a temporal scheduler.

This color... Means the resource is...

Red Completely unavailable.

Yellow Partially available.

Green Completely available.
331

ReThink displays this detail:

The detail contains a Monthly Constraint, a Weekly Constraint, and a Hourly
Constraint, all connected together using the colored temporal connector stubs.
The constraint icons contain letters indicating the type of constraint.

Configuring the Monthly Availability

The Monthly Constraint allows you to configure the months during the year
when the resource is available. The dot in the lower-right corner of the icon
visually indicates the availability of the resource for the month, as described in
Determining the Availability of Each Type of Constraint Visually.

To configure the monthly availability of the resource:

1 Choose Show Constraint on the Monthly Constraint on the temporal
scheduler detail, which is the first constraint from the left.

ReThink displays the detail of the Monthly Constraint:

Each month has an associated colored region, which is green by default; the
resource is available twelve months a year.

Monthly Constraint

Weekly Constraint

Hourly Constraint
332

Constraining the Availability of Resources
2 Do a combination of one or more of the following to specify the availability of
the resource for the month:

 To make the resource unavailable for an entire month, click the right
mouse button on the Options area at the top of the workspace and choose
Set All Not Available.

The regions turn gray, indicating the resource is unavailable, as this figure
shows:

 To make the resource available for an entire month, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Available.

The regions turns green, indicating the resource is available.

 To make the resource available or unavailable for particular months, click
the colored region above a month to toggle its availability.

3 Click OK to accept the changes.

Configuring the Weekly Availability

The Weekly Constraint allows you to configure the days during the week when
the resource is available. The dot in the lower-right corner of the icon visually
indicates the availability of the resource for the week, as described in Determining
the Availability of Each Type of Constraint Visually.

Note When using the Weekly and Hourly constraints together, you should set all the
weekly constraints (Monday - Sunday) to true. Otherwise, the Hourly constraint
might indicate that a resource is available on a certain day when the Weekly
constraint indicates that it is not available. ReThink would actually jump ahead 1
year in the simulation.
333

To configure the weekly availability of the resource:

1 Click the Weekly Constraint on the detail of the temporal scheduler, which is
the middle constraint, and choose Show Constraint.

ReThink displays the Weekly Constraint’s detail:

Each weekday has an associated colored region. The regions associated with
the five work days are green, which means the resource is available during the
five work days of the week; the resource is unavailable on the weekend.

2 Do a combination of one or more of the following to specify the availability of
the resource for the week:

 To make the resource unavailable for an entire week, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Not Available.

The regions turn gray, indicating the resource is unavailable.

 To make the resource available for an entire week, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Available.

The regions turn green, indicating the resource is available.

 To make the resource available or unavailable for particular days, click the
colored region above a day to toggle its availability.

3 Click OK to accept the changes.

Configuring the Hourly Availability

The Hourly Constraint allows you to configure the hours during the day when
the resource is available. The dot in the lower-right corner of the icon visually
indicates the availability of the resource for the day, as described in Determining
the Availability of Each Type of Constraint Visually.
334

Constraining the Availability of Resources
Note When using the Weekly and Hourly constraints together, you should set all the
weekly constraints (Monday - Sunday) to true. Otherwise, the Hourly constraint
might indicate that a resource is available on a certain day when the Weekly
constraint indicates that it is not available. ReThink would actually jump ahead 1
year in the simulation.

To configure the hourly availability of the resource:

1 Click the Hourly Constraint on the detail of the temporal scheduler, the last
constraint on the right, and choose Show Constraint.

ReThink displays the Hourly Constraint’s detail:

Each hour of the day has an associated colored region. The hours from
9:00 AM to 12:00 PM and from 1:00 PM to 5:00 PM are green. The detail uses a
24-hour clock.

2 Do a combination of one or more of the following to specify the availability of
the resource for the day:

 To make the resource unavailable for an entire day, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Not Available.

The regions turn gray, indicating the resource is unavailable.

 To make the resource available for an entire day, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Available.

The regions turn green, indicating the resource is available.

 To make the resource available or unavailable for particular hours, click
the colored region above a hour to toggle its availability.

3 Click OK to accept the changes.
335

You might want a resource to become available on the half hour or some other
fraction of an hour.

To indicate the minutes in the hour that the resource is available:

1 Click the right mouse button on the Options area at the top of the detail.

2 Choose the desired time interval in minutes that the resource is available.

For example, choose +30 to specify that the resource is available on the half
hour.

ReThink creates a time token and places it on the detail.

3 Drag the time interval to the desired hour to associate it with that hour.

For example, to make the resource available at 8:30 AM, drag the +30 time
token so that it is on the 8:00 hour.

4 Repeat this process for whatever hours you need to specify minutes.

For example, here is the Hourly Constraint detail such that the resource is
available from 8:30 AM to 5:30 PM with an hour for lunch:

5 Click OK to accept the changes.

To delete a time token:

 Choose Remove on the time token.

Configuring the Date Availability

For any given Monthly Constraint, you can configure the individual days during
the month when the resource is available by using a Date Constraint. For
example, you might want to schedule vacation time during a particular month
when a resource is unavailable.

You connect a Date Constraint to a Monthly Constraint, using the red temporal
connector stub.
336

Constraining the Availability of Resources
If you use a Date Constraint to constrain the availability of a resource in a single
month, you must create a separate Monthly, Weekly, and Hourly Constraint for
the month whose dates you want to constrain. Otherwise, if you want to constrain
the date availability of all months identically, you can use a Date Constraint with
a single Monthly Constraint.

The dot in the lower-right corner of the icon visually indicates the availability of
the resource for the month, as described in Determining the Availability of Each
Type of Constraint Visually.

To configure the date availability of a resource:

1 On the detail of a temporal scheduler, connect a Monthly Constraint to the
path between the connection post and the existing Monthly Constraint, using
a junction.

2 Configure the availability of the Monthly Constraint whose dates you want to
constrain.

For example, if you are configuring a two week vacation in December, click
the colored region above the month of December.

3 Connect a Date Constraint below the Monthly Constraint.

4 Connect a Weekly Constraint and an Hourly Constraint in sequence to the
Date Constraint and configure the weekly and hourly availability of the
resource during the dates when the resource is available.

5 Configure the availability of the other Monthly Constraint to make the
resource available for the remaining months of the year.

In this example, you would click the highlighted regions above all months
except December.
337

The temporal scheduler detail looks like this:

6 Click the Date Constraint and choose Show Constraint to display its detail:

Each date during the month has an associated colored region, which is gray
by default; the resource is unavailable on every day of the month.

Monthly
constraint for
month of
December.

Date constraint for the
month of December, which
specifies the days in
December when the
resource is available.

Monthly
constraint for all
months except
December.

Weekly and hourly constraints for
the month of December.
338

Constraining the Availability of Resources
Note If the Weekly Constraint is configured so that the resource is unavailable on a
particular day, and the Date Availability constraint is configured so that the
resource is available on the same day, or vice versa, the Weekly Constraint
takes precedence.

7 Do a combination of one or more of the following to specify the availability of
the resource for the month:

 To make the resource available for an entire month, click the right mouse
button on the Options area at the top of the workspace and choose Set All
Available.

The regions turn green, indicating the resource is available.

 To make the resource unavailable for an entire month, click the right
mouse button on the Options area at the top of the workspace and choose
Set All Not Available.

The regions turn green, indicating the resource is unavailable.

 To make the resource available or unavailable for particular days, click the
colored region above a day to toggle its availability.

8 Click OK to accept the changes.

Using Constraints with Timing Resources

You can use resources in conjunction with Temporal Constraints strictly for
timing purposes.

When a model requires this type of resource, you should not place it in either the
Resource and Storage Pool organizers. Instead, we recommend that you place it
near its associated Resource Manager with a brief text description of how the
model uses it.

For example, suppose you wanted to model a meeting that takes place at exactly
four o’clock. To do this, you would create a resource named Timing Resource
with a Temporal Constraint. You would then attach the Resource Manager
associated with the Timing Resource to a Task block, which limits the availability
of the resource to four o’clock. You would then create a second Task block that
would represent the meeting. When an object arrives at the first Task block, it
waits until the Timing Resource is available, which is at four o'clock. It then
passes the object to the 4:00 Meeting task.
339

The following example illustrates this process:

Note An alternative way of accomplishing the same task is to use a Batch block whose
Batch Mode is Interval.

Configuring the Animation of Resources
You can configure these colors of a resource or a surrogate when it animates:

For information on using surrogates, see Sharing the Same Resource in Multiple
Pools.

Animation Color Description

Active Color The color the resource or surrogate
uses when it is processing.

Inactive Color The color the resource or surrogate
uses when it is idle.

Error Color The color the resource or surrogate
uses when it is in an error state.
340

Probing the Performance of Resources
To configure the colors of a resource or surrogate when it animates:

1 Display the properties dialog for the resource or surrogate and click the
Animation tab to display this dialog:

2 Choose a color from the dropdown list for each resource color.

The Animation tab of the properties dialog for a surrogate has the same attributes.

Probing the Performance of Resources
When you are creating models with resources, you often want to obtain
performance metrics regarding the resources in the model. For example, you
might want to create a chart that plots a history of the:

• Average utilization of the current resource allocated by a task.

• Total cost of all the resources in a pool.

• Average total cost of all resources in a pool.
341

To probe the performance of resources, you have three options:

For information about and examples of these three techniques of probing
resources, see Three Techniques for Probing Resources.

To obtain performance metrics that represent the average of the sum of all
resources in a pool, you perform computations on the probed values, using the
remote. For example, if three resources are in a pool and you want to compute the
average total cost of all the resources, you probe the resource pool and divide the
resulting values by 3.

Populating Resource Pools Dynamically
Rather than manually adding resources to a pool, you might want to add
resources to a pool dynamically as part of processing. For example, the number of
computer resources that are available to a task might depend on financial factors
that the model determines upstream in the process.

Once the model populates a pool with resources, the model allocates the
resources to tasks, using Resource Managers.

Note When you reset the model, ReThink deletes dynamically created resources.

To populate a resource pool dynamically, you must create a new resource class
definition with the desired appearance. You then store these resources
dynamically to a pool.

To store resources to a pool dynamically:

1 Create a resource pool from the Resources palette of the ReThink toolbox.

2 Create an object definition for a new class of resource, whose Direct Superior
Classes is bpr-resource.

This object will serve as the resource the model will store dynamically in the
pool.

To obtain performance
metrics about... Probe the...

The resource that is currently
allocated by a task

Block that requires the
resource.

The sum of all resources in a
pool

Resource pool.

A specific resource in a pool Individual resource.
342

Customizing Resources
By default, subclasses of bpr-resource automatically include an attribute
display for their Label.

3 Configure the Attribute Displays of the class definition to be none so that the
label will not display with the resource as it moves through the model.

4 Edit the icon for the resource, as needed.

This figure shows a class definition for a dynamically created resources named
computer. The attribute displays show the attributes whose values are specified in
the class definition. You can add computer resources to a pool dynamically.

Customizing Resources
You can customize how a Resource Manager allocates and deallocates resources
from a pool. You can also customize how ReThink computes duration and cost
metrics for resources.

For detailed information about how to customize these objects, see the
Customizing ReThink User’s Guide.
343

344

7

Using Work Objects
Describes how ReThink uses work objects, which are objects that blocks create,
process, and delete when a model is running.

Introduction 345

Configuring Path Types 347

Comparing Work Objects and Resources 352

Understanding the Activities of Work Objects 353

Computing Utilization and Duration Metrics 354

Working with Work Object Costs 359

Customizing Work Objects 360

Introduction
The basic mechanics of a ReThink model involves creating, processing, and
deleting objects in a business process. For example, a model of a sales process
might:

• Generate leads.

• Create orders based on those leads.

• Generate invoices associated with the orders.

In such a model, the lead, order, and invoice are all work objects.
345

This running model shows several work objects. The active work objects are red
and the work objects that are waiting are black. The model processes orders,
generates invoices, then associates the orders and invoices.

Work objects, like other objects in ReThink, compute various metrics, which help
you determine the overall performance of a model. For example, a work object
keeps track of the total cost of all activities that the model has performed on it
since it was created. By charting the total cost of a work object, you can get a sense
of the total value-added that all the tasks in a process have contributed to a work
object.

A work object also keeps track of the total amount of time that it is being worked
on over the course of the simulation. By comparing these two numbers to
compute the average utilization of the work object, ReThink can report on the
overall performance of the model.

For example, if the average utilization of a work object is very low, you know that
bottlenecks in the process are causing inefficiencies.

You obtain key performance metrics about your model by probing the work
objects that the model processes.

For general information about using ReThink probes, see Probing the
Performance of Your Model.

For specific information about probing work objects, see Probing the Performance
of Work Objects.

Object that block is actively
processing turns red.

order

invoice
346

Configuring Path Types
Configuring Path Types
When you configure a model, you identify the kind of work the block processes
by specifying the output path types of the block:

You can specify any one of three categories of work objects as the path type for a
block:

• The default work object type, which is bpr-object.

• A container object, which is bpr-container, for use when you insert and batch
objects into a container.

• A user-defined work object, which inherits its definition from bpr-object or
bpr-container.

Using the Default Path Type

By default, the value of the Type parameter of a path is bpr-object, which allows
any type of work object to flow on the path. If an upstream block specifies a user-
defined object as the path type, the downstream block can generally use the
default path type to process the user-defined object.

For examples of using the default path type, see Configuring the Type of Work
that Blocks Process.

Specifying a Container as the Path Type

Certain blocks operate on a container, which defines an item-list attribute that
stores objects that the model processes.

Order Invoice
347

For example, this running model shows how you would use containers to pack
and unpack boxes, using the Insert and Remove blocks, respectively:

You also use containers with the Batch blocks to insert batches of objects into a
container. For more information on these blocks, see the Insert block, the Remove
block, and the Batch block.

To use a container object in your model:

 Display the properties dialog for a path and configure the Type to be
bpr-container.

The container object defines an attribute named container-list, which is an
instance of an item-list. When you specify the Container List Attribute of an
Insert, Remove, or Batch block, the default value is the container-list attribute of
the container object.

To view the objects in the container:

 Choose Snapshot Container on the container.

ReThink displays a workspace with all the objects in the container.

You can create a subclass of bpr-container, as described in Creating a New Class
of Work Object.

Specifying a User-Defined Object as the Path Type

When you create a model, you can specify any type of work object as the value of
the Type parameter of the path. For example, your model might process orders
and invoices.

When you specify a user-defined object, you can either let ReThink create the
class definition for you automatically, or you can create your own class definition,
depending on the requirements of the model.
348

Configuring Path Types
To use a user-defined object in your model:

 Display the properties dialog for a path and configure the Type to be any
user-defined class name.

Automatically Generating the Work Object Class Definition

The first time ReThink encounters a user-defined work object as the path type that
is not defined, it dynamically creates a class definition for the work object and
places it on the model workspace. This new class definition is a subclass of
bpr-object.

Once the user-defined class definition exists, ReThink uses that definition for the
work objects that the model creates and processes. You can edit the class
definition to specify user-defined attributes, as needed. For details, see Creating a
New Class of Work Object.

Typically, you transfer these class definitions to the detail of an Organizer to keep
the definitions separate from the model.

Creating a New Class of Work Object

In some cases, the model requires that you create your own work object class
definition or modify the default work object. You need to do this whenever you
use a non-default attribute in a model, for example, when you use certain feeds to
supply values to user-defined attributes of work objects or when you branch
work objects based on a user-defined attribute of the model.

For an example of feeding values to user-defined attributes of a model, see
Updating User-Defined Attributes of a Work Object.

The classes you define for the ReThink model can have a rich set of attributes,
substructure, relations to other classes, and other detailed complexity. Once you
have created an alternative model of your process, you can use those same classes
as the basis for implementing the information systems you will use to support
your reengineered business process.

Typically, you edit the icon for the work object to distinguish it from the default
work object icon.

For an example of the properties dialog for a user-defined class of work object, see
Viewing User-Defined Attributes of Work Objects.
349

To create a class definition for a work object:

1 Display the Tools palette of the ReThink toolbox:

2 Create a Class Definition and place it on a workspace.

Tip You typically place class definitions on the detail of an organizer.

3 Display the properties dialog for the Class Definition.

4 Configure the Class Name of the definition to be a unique symbol.

Note The class name of a definition cannot contain spaces; use hyphens in place of
spaces, for example, sales-order.

5 Configure the Direct Superior Classes to specify the superior class.

The options are bpr-object or bpr-container or any subclass.

ReThink automatically fills in the table for the class, using inherited attributes.

6 Configure the Class Specific Attributes to create one or more user-defined
attributes.

When you specify multiple attributes, separate each attribute specification
with a semi-colon. You can specify any valid value type that G2 supports,
including subobjects.

Here is an example of a Class Specific Attributes specification:

mileage is an integer, initially is 0;
total-mileage is an integer, initially is 0

Class Definition
350

Configuring Path Types
In general, you should specify a type and/or default value for class-specific
attributes so ReThink can choose the correct control for the dialog.

If the model is feeding values into a user-defined attribute or accessing values
from an external file, it is not necessary to configure the attribute type;
ReThink can determine the type from the external source. For example, you
do not need to specify the type when sourcing objects from an external file,
using a Source block, or when feeding a timestamp into a user-defined
attribute of an object, using a Timestamp feed.

If the model is accessing values from a database for a database record, you
should not configure the type; otherwise, ReThink will create an instance of
the record with the attribute values you specify rather than accessing the
record from the database. See Creating a Work Object that Represents a
Record.

7 Edit the icon for the work object, as needed.

For details on configuring class-specific attributes and icons, see the G2 Reference
Manual.

Here is a fully specified ReThink work object class definition:

For general information on how to create G2 class definitions, see the G2 Reference
Manual.

Viewing User-Defined Attributes of Work Objects

You can view class-specific attributes of a user-defined object in the properties
dialog of the object as it moves through the model during a simulation.

By default, the user-defined attributes appear on the User tab of the dialog. The
type of control that appears depends on the value type of the attribute, as follows:

• Quantity, integer, and float values appear as spinner controls.

• Text values appear as scrollable text boxes.

• Symbolic values appear in type-in boxes.

• Truth values appear as check boxes.

• Subobject appear with an ellipses button, which the user can click to view the
attributes of the subobject.

If the object has too many class-specific attributes, they appear on multiple User
tabs, for example, User (1) and User (2).
351

To view user-defined attributes of a work object:

1 Run the simulation in step mode until you see a work object.

2 Display the properties dialog of the work object whose attributes you want to
display and click the User Tab.

For example, here is the User tab for the sales-call class, which defines class-
specific attribute:

Comparing Work Objects and Resources
In most ways, a work object is identical to a resource. Work objects have
essentially the same attributes as a resource. In fact, in the ReThink class
hierarchy, a resource is a subclass of a work object, as this hierarchy shows:

These differences exist between work objects and resources:

• Work objects are typically transient and resources are typically permanent.

• You can set the utilization and cost of a resource, whereas it does not make
sense to set these values for a work object.

ResourceWork object
352

Understanding the Activities of Work Objects
• A Resource Manager can only allocate and deallocate resources, not work
objects.

• A resource computes the Not Available Time based on temporal constraints.

When you start a model running, ReThink generates and processes work objects.
These objects are transient, which means they exist only during the simulation;
when you reset the model, ReThink deletes all the work objects.

However, when you manually create a resource and place it on a workspace or in
a pool, the resource remains in the model even when you reset. This is because
resources are permanent objects in the model.

When you dynamically store resources in a pool for allocation and deallocation
by a Resource Manager, you should only use objects that are a subclass of
bpr-resource.

Note If you add resources to a pool dynamically and you reset the model, ReThink
deletes the dynamically created resources.

Understanding the Activities of Work Objects
The General tab of the properties dialog shows these attributes related to
activities of the work object:

To show the attributes of a work object:

1 Run the simulation in step mode.

2 Display the properties dialog for the work object whose attributes you want to
analyze and click the General tab.

Attribute Description

Total Starts The total number of activities that have been
started for the work object since the start of the
simulation.

Total Stops The total number of activities that have finished
for the work object since the start of the
simulation.

Current Activities The number of activities that are currently
applied to the work object.
353

ReThink displays the General tab of the properties dialog:

Computing Utilization and Duration Metrics
Work objects compute a number of metrics relating to utilization, which you can
use to analyze the performance of your business model. You can also compute
certain metrics, using instruments. For example, you can analyze the:

• Total work applied to a work object by all activities in the process.

• Average utilization of the work object, which is the amount of time that the
work object has been active over the total life of the simulation.

• The difference in the creation of a work object and a timestamp downstream
in the process, which is called cycle time.

Computing Utilization Metrics

All information related to the utilization of a work object is contained on the
Utilization tab of the properties dialog.

To display utilization metrics for a work object:

1 Run the simulation in step mode.

2 Display the properties dialog for the work object whose duration you want to
analyze and click the Utilization tab.
354

Computing Utilization and Duration Metrics
Here is the Utilization tab of the properties dialog for a work object that is
currently active:

The following headings explain these metrics and give examples under
conditions of no constraints and under conditions of constraints.

Understanding the Duration Metrics of a Work
Object

Each work object computes these duration metrics:

If the model has no constraints, the Total Work Time is equal to the Total Elapsed
Time, and the Total Idle Time is zero.

Attribute Description

Total Work Time The sum of all the work times for each activity
that has processed the work object so far in the
simulation.

Total Elapsed Time The total amount of time that the work object
has existed during the simulation.

Total Idle Time The amount of time that the work object has
been idle due to constraints on the model. The
Total Idle Time is the difference between the
Total Elapsed Time and the Total Work Time.

Creation Time The current simulation time at which the work
object was created.
355

If the model has constraints, the Total Work Time can be less than the Total
Elapsed Time due to work backups, and the Total Idle time is a positive number.
If the Total Idle Time is high, the process is not very efficient because the work
object is waiting for resources too much of the time.

For more information on how to constrain the model and detect work backups,
see Showing Work Backups on an Input Path.

Understanding the Utilization of a Work Object

The Utilization tab of the properties dialog of a work object computes these
utilization metrics:

If the model has no constraints, the Average Utilization is 1.0.

If the model has constraints, the Average Utilization can be a fraction when the
Total Work Time is less than the Total Elapsed Time.

If the Average Utilization is low, this implies that work backups exist due to
constraints on the model, which means that the process is not very efficient.

For more information on constraining the model and detecting work backups, see
Showing Work Backups on an Input Path.

Attribute Description

Current Utilization The current status of the work object. If the
work object is currently being worked on by a
block, the value is 1; if the work object is waiting
due to constraints on the model, the value is 0.

Average Utilization The amount of time that the work object has
been active compared to the amount of time that
it has been idle, over the entire time that the
work object has existed. Specifically, it is the
ratio of the Total Work Time and the Total
Elapsed Time.
356

Computing Utilization and Duration Metrics
Example of Computing Utilization Metrics With No
Constraints

If the model has no constraints, the Total Work Time of a work object is always
equal to the Total Elapsed Time, and the Total Idle Time is zero, as this example
shows:

Here is the Utilization tab of the properties dialog for a sales call work object at
the end of the process when the model has no constraints. Notice that the Total
Work Time and the Total Elapsed Time are equal, and the Total Idle Time is 0. The
Average Utilization is the ratio of Total Work Time to Total Elapsed Time, which
is 1.0.

Example of Computing Utilization Metrics With
Constraints

If a model has constraints and if the duration of the activities are such that a work
object is required to wait on the input path to a block, the Total Work Time will be
357

less than the Total Elapsed Time for the work object, and the Total Idle Time will
be a positive number as this model shows:

Here is the Utilization tab of the properties dialog for a sales call work object at
the end of the process, when the Total Work Time is less than the Total Elapsed
Time due to resource constraints, and the Total Idle Time is a positive number.
Notice that now the Average Utilization is a fraction.

For more information on how to constrain the model and detect work backups,
see Showing Work Backups on an Input Path.

Computing the Cycle Time of a Work Object

One common measure of performance in a model is the cycle time from the
creation of a work object to a point downstream in the process. You can easily
compute the cycle time by probing the creation-time of a work object, using a
Delta Time probe.

A Delta Time probe compares the creation time of a work object to a timestamp
downstream in the process. For example, if you probe the work object at the end
358

Working with Work Object Costs
of a process, you can compute the overall cycle time to accomplish all of the tasks
applied to the work object in the model.

This model shows how you probe and chart the overall sales cycle time of each
sales call in a sales process:

For information on how to probe and chart performance metrics, using ReThink
instruments, see Probing the Performance of Your Model and Charting
Performance Metrics.

Working with Work Object Costs
Each work object keeps track of its total cost, which is the sum of the cost of each
activity applied to the work object in the process. You assign fixed and variable
costs to individual blocks or individual resources.

For information on specifying costs, see:

• Working with Block Costs.

• Working with Resource Costs.
359

All information related to cost is contained in the Cost tab of the properties dialog
of the work object.

To display the total cost of a work object:

1 Run the simulation in step mode.

2 Display the properties dialog for the work object whose total cost you want to
analyze and click the Cost tab.

ReThink displays the Cost tab of the properties dialog, which computes the total
cost of the work object:

Customizing Work Objects
You can customize how work objects look, and you can customize how ReThink
computes duration and cost metrics for work objects.

For detailed information about how to customize work objects, see the
Customizing ReThink User’s Guide.
360

8

Using Reports
Describes how to view metrics and enter parameter values through various types
of reports.

Introduction 362

Creating Reports 363

Configuring the Time Unit 370

Updating Output Reports at Regular Time Intervals 372

Keeping a History of Data Values 381

Charting Report Data 383

Configuring the Scope of the Report 384

Filtering Report Data 385

Configuring the Attributes to Appear in a Report 392

Creating Reports in Excel 394

Writing to and Reading from CSV Files 406

Writing to and Importing from Databases 408

Creating Specialized Reports 408
361

Introduction
You determine the performance of your ReThink model by viewing metrics,
which are attributes that the model computes, based on parameters, which are
attributes that you configure. You can perform the following reporting tasks:

• Create reports, including output reports for viewing metrics and input reports
for configuring parameters.

• Update output reports at regular time intervals.

• Keep a history of data values.

• Chart report data.

• Filter the data to appear in a report.

• Configure the attributes to appear in a report.

• Create reports in Excel.

• Write to and read from CSV files.

• Write to and read from databases.

• Create specialized reports:

– N-Dimensional Reports

– Indexed Lookup Reports

– Attribute Lookup Reports

– Attribute Change Event Reports

Note When creating reports in Excel, be sure you have Excel installed on your
computer before you attempt to create a report.

For information on reports that you can create through the Navigator, see the
G2 Reporting Engine User’s Guide.

The toolbars appear in separate tabs at the bottom of the window.
362

Creating Reports
Creating Reports
To create a report, you:

• Create a report for the desired type of input or output report.

• Depending on the type of report:

– Generate output report data from the model.

– Apply input report data to the model.

Summary of Input and Output Reports

This table summarizes the input and output reports you can create:

Report Description

Block Input Report Duration and cost parameters of blocks, and
parameters relating to activities and
animation.

Block Summary Report Duration and cost metrics of blocks, and
metrics relating to activities.

Resource Input Report Resource priority, utilization, efficiency, cost,
and animation parameters.

Resource Summary
Report

Duration, utilization, and cost metrics of
resources, and metrics relating to resource
activities.

Path Input Report Path type and parameters related to
branching.
363

Path Summary Report Metrics relating to wait times and number of
insertions of paths.

Object Input Report User-defined parameters of work objects.

Object Summary
Report

Duration, utilization, and cost metrics of work
objects.

Probe Input Report Parameters for configuring the class to which
the probe applies, the source attribute, and
specific probe parameters.

Probe Summary Report Metrics that probes sample and compute.

N-Dimensional
Input Report

Individual parameters for any number of
objects of any type in the model.

N-Dimensional
Output Report

Individual metrics for any number of objects
of any type in the model.

Report Description
364

Creating Reports
Creating a Report

The first step in creating a report is to determine where to place the report in your
model. By default, reports include data for all objects of the specified type on the
current workspace and all details. You can place reports in a number of locations
in the model, as follows:

You place report objects on an organizer when you have many reports and
placing them on the model detail would make the detail too cluttered. For
information on creating organizers, see Creating an Organizer.

Once you place the report object in the appropriate location in your model, you
can create the report. The report has a row for each object in the model that
corresponds to the type of report. For example, a Block Summary Report has a
row for each block in the model, and a Resource Summary Report has a row for
each resource.

Indexed Lookup Report Duration parameter values for a block whose
Mode is Report Indexed Lookup.

Attribute Lookup
Report

Duration parameter values and index values
for a block whose Mode is Report Lookup.

Attribute Change Event
Report

Durations and corresponding attribute names
and values for one or more objects in the
model, used to schedule attribute value
changes during the simulation.

Report Description

To include data for... Place the report object on...

All objects of the specified type in the
model

The model detail.

All objects of the specified type associated
with a particular workspace and any
details

The detail of an organizer and
choose the root workspace for the
report object.
365

The report includes a column for each parameter or metric that the report defines,
depending on whether it is an input or output report. For example, the Block
Input Report contains columns for configuring the Maximum Activities, Mean,
Standard Deviation, and other block parameters, and the Block Summary Report
contains columns for viewing the Current Activities, Total Work Time, Total
Elapsed Time, and other block metrics.

The report identifies each object by its label; therefore, be sure to configure labels
for all objects in the model before you create the report.

To create a report:

1 Display the Reports palette of the ReThink toolbox:

2 Create an input or output report object, based on the type of data you want to
enter or compute, and place it in the desired location in the model.

For information on the types of reports you can create, see Summary of Input
and Output Reports.

If you place the report object on the model detail or some other detail, you can
skip the following step. Otherwise, if you place the report object on the detail
of an organizer, you must choose the root workspace for the report object.

3 If necessary, choose Choose Root Workspace on the report object, then select
the workspace to which the report object should apply and choose Select.
366

Creating Reports
The report object applies to all objects of the specified type on the selected root
workspace and all details.

4 To create the report, choose Show Report on the report object.

This figure shows a model with a Block Summary Report and a Block Input
Report on the same workspace as the model:

Here is the report for the Block Summary Report:
367

Here is the report for the Block Input Report:

Generating Output Report Data from the Model

To generate output report data, you simply run the simulation and update the
report. Each time the report updates, new data appears in the report.

By default, output reports are configured to update manually and output static
data.

You can configure the report to update automatically, as described in Updating
Output Reports at Regular Time Intervals.

You can also configure the report to output time-series data, as described in
Keeping a History of Data Values.

To generate output report data from the model:

1 Run the simulation.

For details, see Controlling the Simulation.

2 Update the report manually, using one of these techniques:

 Click the Update button at the top of the report.

or

 Choose Update Report on the report object.
368

Creating Reports
Here is a Block Summary Report after running the simulation for a period of time:

Applying Input Report Data to the Model

To apply input report data, you enter data in the input report and apply the
values to the model. Each time you apply new values, the parameters in the
model update.

Configuring parameters through input reports provides an alternative to
configuring the same parameters through properties dialogs and has these
advantages:

• Configuring parameters for the same types of items in a single spreadsheet,
for example, all block durations or all resource costs.

• Running different configurations of the model, using different sets of input
parameters and comparing the results.

To apply input report data to the model:

1 Configure the report data for the specified parameters of the report objects.

2 Click the Apply button at the top of the report to apply the data to the model.

ReThink applies the values from the report to the appropriate parameters in the
model.
369

Here is a Block Input Report with values specified:

Configuring the Time Unit
By default, reports display all time-based values in hours, which means:

• All time-based metrics display in units of an hour in output reports.

• You must enter all time-based parameter values in units of an hour in input
reports.

For example, a value of 3 days displays in an output report as 72 hours, and you
must enter 72 hours in an input report as the value for 3 days.

Depending on your model, you might want to use a different time unit, such as
minutes, days, or weeks. Alternatively, you can configure the report to display all
time-based parameters and metrics as durations, for example, one week, one day,
one hour, one minute, and one second would be 001:001:001:001:001.

The report displays the current time unit at the top of the report.
370

Configuring the Time Unit
To configure the time unit:

 Display the properties dialog for the report and, on the General tab, configure
the Time Unit to be seconds, minutes, hours, days, or weeks, or configure the
Time Unit to be none to use a duration.

The following figure shows a Block Input Report that is configured for entering
time-based parameter values in units of a day, rather than in units of an hour, the
default:

Here is the resulting report with values entered in units of a day:

The time unit is 1 day,

You enter time-based values in
units of one day, rather than in
units of one hour, the default.
371

Updating Output Reports at Regular Time
Intervals

By default, you update output report data manually. You can configure reports to
update automatically at regular time intervals, based on:

• Simulation time.

• Clock time.

For example, you might want report data to update once a day or once a week,
based on the amount of simulation time that has passed. Alternatively, you might
want the report data to update once every five seconds of real time, based on the
computer clock.

To ensure that the report includes data for the last update period, you should run
the simulation for slightly longer than the last update interval. For example, to
include data from four weeks of simulation time, you should run the simulation
for 29 days, which is four weeks plus a day. You can also trigger updates by using
an:

• Update Trigger tool, which allows you to configure in a single location the
update interval for multiple reports.

• Update Trigger probe, which allows you to configure when a report updates,
based on model events.

By default, output reports refresh their values each time the report updates. To
improve performance, you can configure output reports to refresh at the end of
the simulation and when you manually request an update only.

• Trigger regular updates for multiple reports.

• Trigger updates based on model events.

Configuring Output Reports to Update Regularly

The easiest way to trigger updates at regular time intervals is by configuring the
report object.

To configure an output report to update regularly:

1 Display the properties dialog for the output report whose data you want to
update regularly.

2 On the General tab, configure the Update Mode to be clock-time or simulation-
time, depending on how you want to update the report.

3 Configure the Update Interval to be the time interval at which to update the
report, based on the Update Mode.
372

Updating Output Reports at Regular Time Intervals
This figure shows how to configure a Block Summary Report to update once a
week, based on simulation time:

Triggering Regular Updates for Multiple Reports

You might want to trigger multiple reports to update at the same time. The easiest
way to do this is to associate each report with an Update Trigger tool, which
triggers updates for all associated reports.

Another advantage of using an Update Trigger tool is that you can configure a
time delay before the first update.
373

To trigger regular updates for multiple reports:

1 Display the Tools palette of the ReThink toolbox:

2 Select an Update Trigger tool and place it on the workspace that contains the
report object you want to update.

3 Display the properties dialog for the Update Trigger and on the General tab,
configure the Block Label.

For example, you might label the Update Trigger “Hourly Update.”

By default, the Update Trigger tool triggers updates continuously.

4 Click the Block tab and configure the Maximum Starts to be the maximum
number of times the trigger should update.

You might want to begin triggering updates after a time delay or stop
triggering updates after a certain simulation time. Leaving the field blank
means there is no limit.

5 Configure the Start Time and End Time to be the time at which the trigger tool
should start and finish triggering updates.

Enter the value as a duration, such as 1 minute and 30 seconds, 1 hour, or
1 day. The value you enter is converted to seconds.

Tip To ensure that the report computes metrics for the current update interval,
click the Block tab and configure the Start Time of the Update Trigger to be
1 second, which causes the report to trigger one second after the end of the
update interval.

Update Trigger tool
374

Updating Output Reports at Regular Time Intervals
6 Click the Duration tab and configure the Period to be the frequency with
which to trigger updates.

For example, to update the reports once an hour of simulation time, enter
1 hour.

7 Choose the Choose Update Trigger menu choice on a report object, then
choose Select on the Update Trigger.

An indicator arrow appears indicating that you have selected the trigger.

8 Repeat Step 7. for each report whose data you want to update, based on the
Update Trigger.

This figure shows how you use a single Update Trigger tool to update two
reports. The Role Output Report and Category Output Report are both associated
with the Financial Period Update Trigger, which is configured to update once per
financial period. By configuring the Start Time of the trigger to be 1 second, the
reports update one second after each update period, which means the report
shows the most current values.

Both reports are
associated with the
Update Trigger tool.
375

This figure shows how you use a single Update Trigger tool to update two
reports. The Block Summary Report and the Resource Summary Report are both
associated with the Daily Update trigger, which is configured to update its
associated reports once a day. By configuring the Start Time of the trigger to be
1 second, the reports update one second after each update period, which means
the report shows the most current values.

Both reports are
associated with the
Update Trigger tool.
376

Updating Output Reports at Regular Time Intervals
Here are both reports after several update cycles. Notice that Data Update Time of
each report is 1-7-2006 12:01 am, which is one day and one second after the start of
the simulation.

Triggering Updates Based on Model Events

You might want to trigger reports to update, based on model events, rather than
based on a simulation time or real time. To do this, you connect an Update
Trigger probe to an object in the model that should trigger updates, then you
associate the report with the probe.

For example, you might want to update a Block Summary Report when a work
object arrives at a block; you might want to update a Resource Summary Report
when the resource is allocated; or you might want to update a Path Input Report
when the block updates.

Report updates one second after the start
of each day so values are always current.
377

To trigger updates, based on model events:

1 Display the Instruments palette of the ReThink toolbox:

2 Select an Update Trigger probe and place it on the workspace that contains
the report object.

3 Connect the Update Trigger probe to an object in the model that you want to
trigger updates.

You can connect an Update Trigger probe to these types of objects:

• Block

• Resource

• Instrument

4 Display the properties dialog for the Update Trigger probe and configure the
Label.

For example, you might label the Update Trigger probe “Update Block
Report.”

Update
Trigger probe
378

Updating Output Reports at Regular Time Intervals
5 Configure the Apply to Class Name attribute of the probe to be the object that
should trigger updates.

The default value for Apply to Class Name is bpr-object. When the Update
Trigger probe is connected to a block, this configuration means it triggers
updates when a work object arrives at the block.

You can configure the Apply to Class Name to be any of these classes or a
subclass, depending on the object to which the probe is attached:

6 Choose the Choose Update Trigger menu choice on a report object, then
choose Select on the Update Trigger probe.

7 Repeat Step 6. for each report whose data you wish to update, based on the
model event.

When you run the simulation, the selected reports update when the model event
occurs.

If the probe
is attached to a...

Configure Apply to
Class Name to be...

To trigger
updates when...

Block bpr-object A work object arrives
at the block.

Block bpr-block The block updates.

Block bpr-path The input path
updates.

Block bpr-activity An activity of the
block is active.

Resource bpr-resource The resource is
allocated.

Instrument bpr-instrument The instrument
updates.
379

This figure shows how you use two Update Trigger probes to update two reports.
The Update Block Report probe triggers updates of the Block Summary Report
each time the Source block creates a work object by configuring the Apply to
Class Name to be bpr-object. The Update Path Report triggers updates of the Path
Summary Report each time the Task block updates by configuring the Apply to
Class Name to be bpr-block.

Triggering Updates Manually

When using an Update Trigger tool or Update Trigger probe, you can trigger the
update of all associated reports manually. You can also show all the items to
update.

To trigger the update of all associated items manually:

 Choose the Update All Related Items menu choice on the Update Trigger.

To show items associated with the Update Trigger:

 Choose the Show Items to Update menu choice on the Update Trigger.

Configuring When Clients Refresh Their Data

By default, clients refresh their data each time the report updates. This means that
reports that appear within the client, reports that are generated in CSV files and
Excel, and reports that output their data to a database all refresh their data
automatically each time new data is collected in the server.

Depending on the number of reports in your model, the number of clients of the
server’s data, and the interval at which reports update, performance can be
degraded. To improve performance, you can disable the automatic refreshing of
380

Keeping a History of Data Values
client data. When automatic refreshing is disabled, ReThink refreshes client data
only when explicitly requested, using the Update menu choice or button, and
automatically at the end of the simulation.

To disable automatic refreshing of client data:

1 Display the properties dialog for the output report object for which you want
to disable client refreshing.

2 On the General tab, disable the Auto Refresh Clients option.

Keeping a History of Data Values
By default, output reports generate static data. To generate time-series data for
any type of output report, you configure the report to keep a history of data
values. Typically, you configure reports that keep a history to update at regular
time intervals. Each time the report updates, ReThink outputs new values to the
report for each metric so you can compare values over time. You can then output
the data to a CSV file, to Excel, or to a database to perform analysis on the time-
series data. For example, you might configure a Resource Summary Report to
output cost data once per month to track monthly salary expenses.

Each data value in the history has an associated timestamp that indicates when
the value was generated. You can format the timestamp as an absolute date and
time or as a relative duration.

When using the Scenario Manager to perform multiple simulations for the same
model, you can configure the report to keep a history across all simulations.
When keeping a history across multiple simulations, the output report has an
additional column named Simulation Counter, which indicates the number of the
simulation run. For details, see Using Batch Simulation.

To keep a history of data values:

1 Display the properties dialog for the output report object for which you want
to keep a history.

2 Configure the report to update at regular time intervals.

For details, see Updating Output Reports at Regular Time Intervals.

3 On the General tab, enable the Keep History option.

By default, the timestamp the report generates uses an absolute time and date,
based on simulation time. For example:

1/1/02 0:00
381

You can configure the timestamp to use a relative duration from the start of
the simulation. For example:

1 weeks, 2 days, 1 hour, 30 minutes, and 10 seconds
2 weeks, 1 day, 30 minutes, and 30 seconds
3 weeks and 1 hour
etc.

4 Enable the Date/Time as Duration option to use relative timestamps,
if desired.

5 When running batch simulations on the same model, using the Batch
Simulation object, enable the Batch Simulation History option to keep a
history across multiple models, if desired.

This figure shows how to configure a Block Summary Report to generate time-
series data once every week of simulation time, where the timestamps appear as
durations:

Report generates time-series
data each Update Interval,
based on the Update Mode.

Report displays timestamps
as relative durations.
382

Charting Report Data
Here is the resulting report after running the simulation for 15 days, which
includes data for two weekly time periods:

Charting Report Data
You can chart the data in a report in various types of charts. The chart updates
according to the update setting of the report.

To chart report data:

1 Create and configure an output report.

For details, see Creating a Report.

2 Configure the update interval for the report.

For details, see Configuring Output Reports to Update Regularly.

3 Ensure that the Enable Charting option on the General tab of the properties
dialog for the report is enabled, the default.

4 Enable the Update Charts option in the Scenario.

For details, see Configuring the Computation Behavior.

5 Choose Show Report on the report to create the report.

6 Choose Show Chart on the report to show a chart of the report data.
383

For example, here is a chart for a Block Summary Report:

Configuring the Scope of the Report
By default, the Block Summary Report and the Block Input Report include objects
on details, as well as the Task block with details itself. Depending on the model,
you might want to limit the scope of the report to include only the objects on
details or only the Task block with details.

To limit the scope of the report include Task blocks with detail only:

1 Display the properties dialog for the report whose scope you want to
configure.

2 On the General tab, disable the Include All Details option and enable the
Include Tasks with Detail option, the default.

To limit the scope of the report include blocks on details only:

1 Display the properties dialog for the report whose scope you want to
configure.

2 Disable the Include Tasks with Detail option and enable the Include All
Details option, the default.
384

Filtering Report Data
This figure shows how to configure a Block Summary Report to include blocks on
details only:

Filtering Report Data
The default report include data for all types of objects included in the report. For
example, a Block Summary Report includes data for all categories of blocks, an
Object Summary Report includes data for all types of work objects, and a
Resource Summary Report includes data for all types of resources.

You can filter the data that appears in a report. For example, you might want to
generate separate reports for each category of block or resource, or you might
prefer to configure input reports separately for each category of object of a
particular type.

To filter report data, you configure the class or classes of objects to which the
report applies. You can configure a specific class or a superior class, which
includes all classes below it in the hierarchy. For example, you could filter the
385

report data, based on the bpr-task class to include data for Task blocks only or you
could filter it based on bpr-feed to include all feeds.

You can also filter report data, based on user-defined classes, such as user-defined
work objects that you specify as the path type for a block. For more information,
see Specifying a User-Defined Object as the Path Type.

The following table shows the class names for all the built-in classes of each type:

Block Classes

Class Name Description

bpr-block Superior class for all blocks

bpr-source Source block

bpr-sink Sink block

bpr-task Task block

bpr-copy Copy block

bpr-merge Merge block

bpr-branch Branch block

bpr-batch Batch block

bpr-associate Associate block

bpr-reconcile Reconcile block

bpr-store Store block

bpr-retrieve Retrieve block

bpr-insert Insert block

bpr-remove Remove block

bpr-copy-attributes Copy Attributes block

bpr-yield Yield block
386

Filtering Report Data
Probe Classes

Class Name Description

bpr-instrument Superior class for all instruments

bpr-probe Superior class for all probes

bpr-delta-time-probe Delta Time probe

bpr-sample-probe Sample Value probe

bpr-average-probe Average probe

bpr-moving-average-probe Moving Average probe

bpr-interval-sample-probe Interval Sample probe

bpr-parameter-probe Parameter probe

bpr-copy-attribute-probe Copy Attributes probe

bpr-statistic-probe Statistic probe

bpr-criteria-probe Criteria probe

bpr-update-trigger-probe Update Trigger probe

bpr-n-dim-sample-probe N-Dimensional Sample probe

bpr-message-probe Message probe

bpr-acknowledge-
message-probe

Acknowledge Message probe

bpr-delete-message-probe Delete Message probe

Work Object and Resource Classes

Class Name Description

bpr-object Superior class for all work objects

bpr-resource Superior class for all resources

person Person resource

truck Truck resource

computer Computer resource
387

To filter report data by object class:

1 Create as many report objects as needed, depending on the classes of objects
to which each report should apply.

2 Display the properties dialog of each report object and click the Filters tab.

3 Configure the class to which the report data should apply.

4 Add and remove classes to and from the filter, as needed:

• Click Add Row to add a row to the end of the list.

• Click Delete Row to delete the selected row or rows.

machine Machine resource

bpr-pool Pool resource

bpr-container Container work object that defines a
container list attribute that is an item-
list

bpr-surrogate A resource surrogate

Path Class

Class Name Description

bpr-path Superior class for all paths

Work Object and Resource Classes

Class Name Description
388

Filtering Report Data
This example shows a model with separate output reports that report on weekly
Salary Costs for people resources and weekly Truck Costs for truck resources:
389

Here are the Filter tabs of the properties dialogs for the Salary Cost report and the
Truck Cost report, which filter report data based on the person and truck classes,
respectively:
390

Filtering Report Data
This figure shows the Salary Costs and Truck Costs reports after a week of
simulation time has past, where only the Total Cost attribute is visible:
391

Configuring the Attributes to Appear in a
Report

Each type of report includes a default set of parameters and/or metrics,
depending on the type of report. You can configure the list of visible attributes
through the report object.

Note In addition to the default set of attributes, all input report include the GFR-UUID
attribute, which uniquely identifies the object. This attribute must appear when
creating reports in .csv files; otherwise, you cannot apply values to the model.
When you create reports locally, this attribute is only required if the object labels
are not unique.

To configure the list of visible attributes, you choose from a list of available
attributes within a group. The groups correspond to the tab pages in the
properties dialog for each type of object. For example, the Block Summary Report
contains groups named duration-subtable, cost-subtable, and animation-subtable,
where the attributes within each group correspond to the parameters or metrics
on the Duration, Cost, and Animation tabs, respectively. The column headers that
appear in the report refer to both the group name and the attribute name, for
example, duration-subtable.mean and cost-subtable.total-cost.

To configure the list of visible attributes in a report:

1 Display the properties dialog for the report object and click the Attributes tab.

The dialog shows the attribute in the left column and the column label in the
right column.
392

Configuring the Attributes to Appear in a Report
Here is the Attributes tab of the properties dialog for the default Block
Summary Report:

2 Add and remove attributes to and from the list, as needed:

• Click the Add Row button to add a row above the currently selected row.

• Click Delete Row to delete the selected row or rows.

Tip You can use the Shift key to select multiple rows.

3 To configure the attribute to appear in the report, double-click the attribute
name in the left column to display a dropdown list of available attributes and
their associated groups, where relevant, then choose an attribute.

Tip Double-click the border between the column headers to expand the column
width to just fit the longest attribute name.

By default, the attribute name and its associated group appear as the column
header when you display the report. You can also enter a label for the column
header.

4 Enter a Column Label for the attribute, if desired.

The report contains the attributes and column labels you configured.
393

For example, this figure shows a Resource Summary Report with just the Total
Cost attribute visible and the column label configured:

Here is the resulting report for a model with a number of resources:

Creating Reports in Excel
You might want to create reports in Excel so you can perform further analysis on
the data and generate graphics. Creating a report in Excel is similar to creating a
report in the client, as follows:

• Create a report in Excel for the desired type of input or output report.
394

Creating Reports in Excel
• Depending on the type of report, you:

– Generate output report data from the model to Excel.

– Apply input report data to the model from Excel.

When creating reports in Excel, you can:

• Filter report data in Excel.

• Control the simulation from Excel.

• Connect to and disconnect from the server from Excel.

Creating a Report in Excel

Before you can generate output report data or apply input report data, you must
create a report in Excel. To do this, first, you create a report object in the model,
then you create the report from the report object. You create the report in the
following default Excel spreadsheet:

\rethink\data\ReThink-Summary-Reports.xls

Each time you open the default Excel spreadsheet or a spreadsheet that is based
on this default, the Excel client automatically attempts to establish a connection
with the ReThink server. Excel can be running on the same computer as the server
or on a different computer. By default, you must configure the location of the
server each time you open the spreadsheet.

The ReThink server keeps track of which Excel spreadsheet corresponds to which
report object, based on a unique identifier, called a UUID. The Excel spreadsheet
need not be open to update an existing spreadsheet. The spreadsheet updates the
next time you open it, based on changes cached in the server.

When you create a report, Excel formats the tab page associated with the report
object to include the appropriate columns and rows for the particular report
object and model. For example, if you create a Block Summary Report, the
spreadsheet includes columns for all the block, duration, and cost metrics
associated with a block, and rows for each block in the model.

Once you have created the report, you typically format the rows and columns
manually to suit your needs, then save the default spreadsheet to a new name.
When you are ready to generate output report data or apply input report data,
you simply open the spreadsheet you saved, which is automatically configured to
communicate with the correct report in the server.
395

The following figure illustrates the process of creating a report in Excel:

To create a report in Excel:

1 Create an input or output report, based on the type of data you want to enter
or compute, and place it in the desired location in the model.

For details, see Creating Reports.

If you place the report object on the model detail or some other detail, you can
skip the following step. Otherwise, if you place the report object on the detail
of an organizer, you must choose the root workspace for the report object, as
the next step describes.

2 If necessary, choose Select Root Workspace on the report object, then select the
workspace to which the report object should apply and choose Select.

The report object applies to all objects of the specified type on the selected root
workspace and all details.

3 Display the properties dialog for the report object and configure the Report
Title on the General tab to be a unique name.

4 In Excel, open ReThink-Summary-Reports.xls, located in the rethink\data
directory of your installation directory.

Shortcut You can open the default report by choosing Start > Programs >
Gensym G2 2011 > Examples > G2 ReThink > ReThink Default Summary
Reports.

Choose Create Report
on the report to create
a report in Excel.

Open the default Excel
spreadsheet to establish a
connection to the server.

UUID

UUID

ReThink Client

ReThink Server

Excel Client

The server keeps track
of which report data
goes with which report,
through its UUID.
396

Creating Reports in Excel
The report uses a default macro to format the cells. You must enable macros
each time you open the default spreadsheet.

Tip To configure Excel to enable macros automatically, choose Options from the
Excel Tools menu, click the General tab, and click the Macro Virus Protection
option off.

5 Click the Enable Macros button in the confirmation dialog that appears.

The Excel client attempts to establish a connection to the ReThink server. By
default, ReThink prompts you for the location of the server by displaying this
dialog:

6 Enter the location of the computer on which the server is running, using the
following syntax:

<host>:<port>

You only need to edit the value if you are running the server on a computer
other than localhost:1111, such as my-host:1112.

The Excel client is now connected to the server.

7 In ReThink, choose Show Report on the report to create the report in the
default Excel spreadsheet.

Excel formats the tab page associated with the report for the particular model
by creating the appropriate rows and columns.

8 Reset the scenario.

9 In Excel, format the rows and columns of the report to suit your needs.

For example:

• Choose Format > Row > Hide and Format > Column > Hide to hide rows
and columns whose data you do not need to see.

• Choose Format > Column > Autofit Selection to adjust the column width
to match the column headers.

• Click a cell and choose Window > Freeze Panes to define column and row
borders that always remain visible, even when scrolling.
397

10 In Excel, save the report to a new file name, such as My-Model-Summary-
Report.xls.

This figure shows how to create a Block Summary Report in Excel:

This figure shows the resulting in the default Excel report:

Generating Output Report Data from the Model to
Excel

Before you can generate output report data from the model, you must create a
report in Excel for the output report whose data you want to generate.

To generate output report data, you simply run the simulation and update the
report. Each time the report updates, new data appears in the report.

By default, output reports are configured to update manually and output static
data.

You can configure the report to update automatically, as described in Updating
Output Reports at Regular Time Intervals.

You can also configure the report to output time-series data, as described in
Keeping a History of Data Values.
398

Creating Reports in Excel
By default, Excel does not format the data when the report updates. You can
create a macro in Excel to format report data. For details, see the Customizing
ReThink User’s Guide.

For information about reducing the amount of data that appears in the report, see
Filtering Report Data in Excel.

To generate output report data from the model to Excel:

1 Open an Excel report that is based on the ReThink-Summary-Reports.xls
spreadsheet.

For details, see Creating a Report in Excel.

2 Run the simulation.

For details, see Controlling the Simulation.

3 Update the report manually, using one of these techniques:

 In Excel, choose Report > Update from the ReThink floating toolbar:

or

 In Excel, enter Ctrl + U.

or

 In ReThink, choose Update Report on the report.

or

 In ReThink, select the report whose values you want to update and choose
Reports > Update.

4 When you have finished running the simulation, sort the report data, as
needed, by choosing Data > Sort in Excel.

Note Do not attempt to sort report data before the simulation has finished, because
updating the report reverts to the default sort order.
399

Here is a Block Summary Report for a model with three blocks:

Applying Input Report Data to the Model from Excel

Before you can apply input report data to the model, you must create a report in
Excel for the input report whose data you want to apply.

To apply input report data, you simply enter data into the input report and apply
the values to the model. Each time you apply new values, the parameters in the
model update.

To apply input report data to the model from Excel:

1 Open an Excel report that is based on the ReThink-Summary-Reports.xls
spreadsheet.

For details, see Creating a Report in Excel.

2 Edit the spreadsheet cells for the specified parameters of the specified objects.

3 Apply the report data to the model, using one of these techniques:

 In Excel, choose Report > Apply from the ReThink floating toolbar:

or

 In Excel, enter Ctrl + A.

or

 In ReThink, select the report whose values you want to apply and choose
Reports > Apply.
400

Creating Reports in Excel
Excel applies the parameter values from the spreadsheet to the appropriate
parameters of the appropriate objects in the model.

For example, here is the Block Input Report for a model with three blocks:

Filtering Report Data in Excel

If you have many objects in a model, you might want to filter report data to view
or configure a subset of the data. You can filter the report data, based on values in
any column of the report. For example, you might want to show the rows
associated with particular resources or the rows with the Total Cost greater than a
certain number.

Note Unlike filtering report data by object class, filtering data in Excel simply hides
certain data from view; the data still exists and can be displayed at any time.

To filter report data in Excel:

 Click the dropdown list for a column header and choose the filter criterion,
based on available column data.

Here is the column header dropdown list for the Blocks column of a Block
Summary Report:

To show all report data:

 Click the dropdown list for a column header and choose All.

To show only the top ten rows of data:

 Click the dropdown list for a column header and choose Top 10.
401

To filter report data based on custom criteria:

 Click the dropdown list for a column header, choose Custom, and configure
the custom filter criteria.

For example, here is how you would configure the report data to show only those
rows whose Total Cost is greater than 100:

Here is a model that contains three resource pools with multiple individual
resources of each type in each pool:
402

Creating Reports in Excel
By default, the Resource Summary Report would look like this, with all resources
visible:

To show report data for individual drivers, you would click the dropdown list for
the Resource column header and choose Driver:

The resulting report shows report data for Driver resources only:
403

To toggle the dropdown list buttons:

 Choose Report > Filter from the ReThink floating toolbar:

Here is a Block Input Report with the dropdown list buttons hidden:
404

Creating Reports in Excel
Controlling the Simulation from Excel

When creating Excel reports, you might want to control the simulation from
Excel, rather than switching back to ReThink. You can activate, deactivate, start,
reset, pause, or continue the simulation from Excel.

To control the simulation from Excel:

 In Excel, choose Simulation from the ReThink floating toolbar, then choose the
command to control the simulation:

Connecting to and Disconnecting from the Server
from Excel

When you first open the default report, ReThink automatically attempts to
connect to the server. Exiting Excel automatically disconnects from the server.

You can manually connect and disconnect to the server, as well, for example, if for
some reason you need to shut down ReThink while Excel is still open.

To connect to and disconnect from the server from Excel:

 In Excel, choose Server > Connect or Disconnect from the ReThink floating
toolbar:

or

 Enter Ctrl + Shift + C to connect to the server.
405

Writing to and Reading from CSV Files
For any output or input report in the model, you can:

• Write output report data to an CSV file.

• Import input report data from an CSV file.

You use CSV (comma separated values) files to import report data into a graphics
program or to perform further analysis on the data.

You also use CSV files when using the Batch Simulation object to run multiple
simulations from a script. For more information, see Using Batch Simulation.

Writing Output Report Data to CSV Files

You can create a CSV file for any output report.

Caution Do not attempt to edit the CSV file while the simulation is running; otherwise, the
model cannot write the data to the file.

To write output report data to an CSV file:

1 Display the properties dialog for the output report whose data you want to
write to a CSV file and click the Excel tab.

2 Enable the Excel Report Enabled option.

3 Configure the report to update at the desired intervals.

For details, see Updating Output Reports at Regular Time Intervals.

4 Configure the report to keep a history, if desired.

For details, see Keeping a History of Data Values.

5 Configure the attributes to appear in the report.

For details, see Configuring the Attributes to Appear in a Report.

6 Configure the time unit, as needed.

For details, see Configuring the Time Unit.

7 Generate the output report data.

For details, see Generating Output Report Data from the Model.

For details, see Generating Output Report Data from the Model to Excel.

When you run the simulation and the report updates, ReThink writes the report
data to a CSV file located in the Output directory of your installation directory
with this format:
406

Writing to and Reading from CSV Files
model-label Vmodel-version - report-title Vscenario-version.csv

For example, for the model named My Model, the default CSV file name for a
Block Summary Report report is:

My Model V0.0 - Block Summary Report V0.0.csv

The model-version is the Model Version of the Model object, and the scenario-
version is the Scenario Version of the Scenario object.

ReThink creates this file in the Output directory of your product installation
directory.

Importing Input Report Data from CSV Files

You can import data into the model from a CSV file.

To import data into the model from an CSV file:

1 Display the properties dialog for the input report whose data you want to
import from a CSV file and click the Excel tab.

2 Enable the Excel Report Enabled option.

3 Configure the attributes to appear in the report.

For details, see Configuring the Attributes to Appear in a Report.

4 Configure the time unit, as needed.

For details, see Configuring the Time Unit.

5 Create the input report, which also creates the CSV file.

For details, see Creating a Report in Excel.

Tip To create a new CSV file, you must first delete the existing CSV file by
choosing Delete CSV Report File on the report.

ReThink creates a CSV file located in the Output directory with this format:

model-label Vmodel-version - report-title Vscenario-version.csv

For example, for the model named My Model, the default CSV file name for a
Block Input Report report is:

My Model V0.0 - Block Input Report V0.0.csv

ReThink creates this file in the Input directory of your product installation
directory.

The report contains a header row that identifies each input parameter to
configure and rows for each object in the report. Each row contains default
values for each parameter in the report.
407

6 Open the CSV file, edit the input report data, and save the data in CSV file
format.

Note Be sure to save the file in CSV format; do not save the file in Excel format.
Also, do not edit the first row of the report or the object labels that identify
each row of the report.

7 Choose Import Data from File on the report.

Importing data from the CSV file automatically applies the data to the model.

Writing to and Importing from Databases
For any output or input report in the model, you can:

• Write output report data to a database.

• Import input report data from a database.

For details, see Using Reports to Access External Databases.

Creating Specialized Reports
You can create the following specialized reports:

• N-Dimensional Report, which includes individual attributes for any number
of objects of any type.

• Indexed Lookup Report, which allows you to configure the duration of a
block in a report.

• Attribute Lookup Report, which allows you to configure the duration of a
block, based on the attribute value of a work object that the block uses as an
index to look up the duration in a report.

• Attribute Change Event Report, which allows you to schedule parameter
value changes during the simulation, similar to a Scenario Manager.

Creating N-Dimensional Reports

To facilitate data entry and analysis, you can create an N-Dimensional Input
Report that includes the key parameters you need to configure and an
N-Dimensional Output Report that includes the key metrics you want to analyze.

An N-Dimensional Input or Output Report includes a single attribute value for
any number of objects of any type in the model. You might need to create such a
report when the attributes you want to configure or output exist in individual
objects of different types, rather than in objects of the same type.
408

Creating Specialized Reports
For example, you might create an N-Dimensional Output Report that includes the
Average in Process for several key blocks in the model and the Average
Utilization of each resource pool. You might create an N-Dimensional Input
Report that includes the Mean and Standard Deviation for key blocks in the
model and the Cost per Time Unit of key resources.

When configuring the attributes to appear in an N-Dimensional Input or Output
Report, you must uniquely identify the object by its label or by its UUID. If you
are entering labels, the labels must be unique and cannot contain carriage returns.

For example, to include the Mean parameters for several Task blocks, you must
configure the labels to be unique, for example, Pack Boxes, Load Boxes, and Load
Trucks.

To create an N-Dimensional Input or N-Dimensional Output Report:

1 Display the Reports palette of the ReThink toolbox:

2 Select an N-Dimensional Input or Output Report, and place it on the model
detail.

3 Display the properties dialog for the report and configure the parameters on
the General tab.

For details, see:

• Updating Output Reports at Regular Time Intervals.

• Keeping a History of Data Values.

N-Dimensional
Input Report

N-Dimensional
Output Report
409

If you are creating reports in Excel, see Creating Reports in Excel.

4 Configure the attributes to appear in the report.

You configure the subtable and attribute names separately. For example, to
include the Label attribute, the subtable is general and the attribute is label. To
include the Average Utilization attribute of a resource, the subtable is
duration-subtable and the attribute is average-utilization. To include the Total
Cost of a block, the subtable is cost-subtable and the attribute is total-cost.

For more information, see Configuring the Attributes to Appear in a Report.

Tip You can use Ctrl + X, Ctrl + C, and Ctrl + V, respectively, to cut, copy, and
paste values, as needed.

5 Create the report, then generate the output report data or apply input report
data to the model.

For details, see one of the following, depending on where you are creating the
report:

• Creating Reports.

• Creating Reports in Excel.

Here is the Attributes tab for an N-Dimensional Output Report that includes the
labels for all objects, the Average in Process of the Load Trucks task, the Total
Cost for the Drivers and Loaders resources.
410

Creating Specialized Reports
Here is a sample N-Dimensional Output Report after running the simulation for a
period of time:

Creating Indexed Lookup Reports

You might know exactly when an activity occurs in your model, based on
durations in a report. To do this, you create an Indexed Lookup Report with a
column that defines the durations, then you configure the duration of the block to
use the data in the report.

For details, see Specifying Duration Based on an Indexed Report Lookup.

Creating Attribute Lookup Reports

You might have a block that processes several different types of objects, where an
attribute of the work object is an index that the block uses for looking up the
duration in a report. To do this, you create an Attribute Lookup Report with
columns that define the attribute to use as the index and the durations, then you
configure the duration of the block to use the data in the report.

For details, see Specifying Duration Based on an Attribute Report Lookup.

Creating Attribute Change Event Reports

You might want to schedule parameter value changes to the model while the
simulation is running. For example, over the course of the simulation, the
411

manufacturing time might decrease as the process becomes more efficient, or the
frequency of orders might decrease over the life cycle of a product.

If you have a relatively large number of parameter changes, you can use an
Attribute Change Event Report to configure those changes. Alternatively, if you
have a relatively small number of parameter changes, you can use a Scenario
Manager.

An Attribute Change Event Report includes these predefined columns:

Column Description

Duration The time at which the scheduled parameter
value change should occur, from the
beginning of the simulation. Configure the
duration in the time unit of the report, which
is hours, by default.

Object Label The value of the Label for the object whose
parameter values should change.

Object UUID The unique ID for the object. This value is
required if the Object Label is not unique.

Subtable Name The name of the subtable in which the
attribute appears, if any. The subtable names
correspond with the tabs in the properties
dialogs, as follows:

• duration-subtable includes attributes on
the Duration tab.

• cost-subtable includes attributes on the
Cost tab.

• animation-subtable includes attributes on
the Animation tab.

If the attribute does not appear on the
Duration, Cost, or Animation tabs of the
properties dialog, the Subtable Name is none.
412

Creating Specialized Reports
You can enter values in the report manually, or you can add attribute values to
the report through the dialogs. If you are entering many values, it is typically
easier to add attributes initially through the dialogs. If the object labels are not
unique, you must add the attributes through the dialogs to enter the UUID in the
report. You can enter values for any number of attributes and any number of
objects.

Attribute Name The name of the attribute whose value should
change, as a symbol. For example, mean and
standard-deviation.

Attribute Value The value of the attribute to change. If the
attribute value is a duration, you must specify
the value in seconds or using an expression
with this format:

ww weeks, dd days, hh hours,
mm minutes, and ss seconds

For example, 4 weeks, 2 days, or
1 hour and 30 minutes.

Column Description
413

To create and use an Attribute Change Event rePort:

1 Display the Reports palette of the ReThink toolbox:

2 Create an Attribute Change Event Report and place it on the model detail or
organizer detail.

3 Configure the Time Unit of the report to be convenient for entering values, as
needed.

For example, if you are scheduling updates over a period of days or weeks,
configure the Time Unit of the report to be 1 day or 1 week. Remember, you
must enter all durations in the time period of the report.

For details, see Configuring the Time Unit

4 Create the report.

For details, see one of the following, depending on where you are creating the
report:

• Creating Reports.

• Creating Reports in Excel.

5 Click Add Row to add as many rows as you need to configure the report.

6 Enter values in each column in the report to schedule attribute value changes,
as needed.

Attribute Change
Event Report
414

Creating Specialized Reports
Enter values directly into the report manually, then edit the Duration and
Attribute Value columns to schedule attribute value changes. If you add
attributes to the report through the dialogs, you must update the report to see
the new attributes. Once the attributes exist in the report, you can copy and
paste rows in the report, then edit the Durations and Attribute Value columns
to schedule attribute changes for the same object.

7 Run the simulation.

The model uses the specified attribute values during the simulation, based on the
durations.

Here is a model that uses an Attribute Change Event Report to schedule attribute
value changes during the simulation:

Here is the report that schedules changes to the Mean attribute of the Orders
block over a period of 10 days. The value increases, remains high for a period of
days, then decreases to its original level.
415

416

9

Accessing
External Databases
Describes how to access databases.

Introduction 417

Configuring ReThink for Database Access 418

Creating a Work Object that Represents a Record 425

Creating an SQL Query for Accessing the Data 427

Sourcing Records from a Database 428

Retrieving Records from a Database 432

Storing Work Objects to a Database Table 435

Using Reports to Access External Databases 438

Introduction
You can access external databases directly through ReThink to:

• Generate work objects, using data from an external database.

• Retrieve data from an external database.

• Store work objects to a database table.

• Write report data to a database.

• Read report data from a database.
417

To access external databases, you must create a database and configure the ODBC
data source. You then create and configure a Database Interface object as the link
between the database and ReThink.

These blocks support database access:

• The Source block, which generates work objects from an external database.

• The Retrieve block, which retrieves work objects from an external database.

• The Store block, which stores work objects to an external database or updates
existing records.

When you run the simulation, ReThink accesses the external database
dynamically, as follows:

• When you generate or retrieve data from a database, ReThink dynamically
creates or retrieves one work object for each database record that matches the
SQL query you specify.

• When you store data to a database, ReThink dynamically adds new records to
or updates existing records of the specified table of the external database.

To configure a report for database access, you specify the database table and
enable database reporting. When you run the simulation, ReThink writes output
report data to a database when the report updates. To read input report data from
a database, you must explicitly import the data.

Note To configure ReThink for database access, you must be in Developer mode.

• ReThinkCreate a work object that represents a record.

• Create an SQL query for accessing the data.

• Source records from a database.

• Retrieve records from a database.

• Store work objects to a database table.

Configuring ReThink for Database Access
To access an external database, you must first start the ODBC Bridge and
configure your computer to use the bridge. You can access any external database
that the ODBC Bridge supports, including, Microsoft Access, Oracle, and
SQL2000.

The ODBC Bridge allows ReThink to communicate with external databases via a
Database Interface object and a TCP/IP connection.
418

Configuring ReThink for Database Access
This figure shows how ReThink communicates with a Microsoft Access database
through the ODBC Bridge:

To configure ReThink for database access, you:

• Create the database.

• Configure the ODBC data source.

• Start the ODBC Bridge process.

• Create and configure a Database Interface object.

• Connect to the database.

Creating the Database

You create the database by using any database that the ODBC Bridge supports.

If your model is generating or retrieving work objects from a database, using the
Source block or Retrieve block, respectively, or if your model is storing work
objects to a database, using the Store block, you must create the database table
manually. Each record field corresponds to an attribute of a work object that the
model generates, retrieves, or stores.

If you are sourcing or retrieving work objects from a database, you must also
populate the database with data. You can populate the database manually, or you
can populate by using the Store block, as described in Storing Work Objects to a
Database Table.

The examples use the sample database named Orders.mdb.

If your model is writing report data to a database or reading report data from a
database, you create the database manually, then you can create the database
table directly from the report object.

Microsoft
Access

ReThink

Database
Interface
object

ODBC
BridgeTCP/IP
419

Configuring the ODBC Data Source

Once you have created your database, you must configure the ODBC data source
on your computer to name the data source and point to your database. The
following example shows how to configure the ODBC data source for a Microsoft
Access database named Blocks_Report.mdb.

To configure the ODBC data source:

1 Display the ODBC Data Source Administrator dialog by choosing
Start > Programs > Administrative Tools > Data Sources (ODBC).

2 Click the System DSN tab.

3 Click Add to add a new ODBC data source.

4 Choose the appropriate driver for the database you created, for example,
Microsoft Access Driver (*.mdb) and click Finish.

5 Configure the Data Source Name to be any name, for example,
Orders or Blocks_Report.

6 Click the Select button, navigate to your database, and click OK.

7 Click OK in the ODBC Microsoft Access Setup dialog to create the new data
source.
420

Configuring ReThink for Database Access
The ODBC Data Source dialog should have an entry for each data source. For
example, the following dialog shows the Orders and Blocks_Report data
sources:

Starting the ODBC Bridge Process

Once you have configured the ODBC data source, you can start the ODBC Bridge
process. You must identify the host and port to which the bridge is connected for
configuring in the Database Interface object.

To start the ODBC Bridge process:

 Choose Start > Programs > Gensym G2 2011> Bridges > G2 ODBC Bridge.

The ODBC Bridge process appears in the command window.

To determine the bridge port:

 Open the command window for the bridge process.

The last line indicates the TPC/IP host and port number, for example:

TCP_IP:NSALVO-1165:22041
421

Creating and Configuring the Database Interface
Object

The Database Interface object specifies:

• A name, which the reports and block use to connect to the database.

• The ODBC source as a connect string.

• The host and port of the machine running the database bridge.

If the bridge process is running on the local machine, the host is localhost. The
port number is 22041, or 22042, or 22043, and so on, depending on the number
of clients that are currently connected on that port.

You create a Database Interface object for each database you want your model to
access. Typically, you write data to one database and read data from another
database, which means you must create two Database Interface objects.

Note To configure a Database Interface object, you must be in Developer mode.

To create and configure a database interface object:

1 Switch to Developer mode.

For details, see Switching User Modes.

2 Choose Project > System Settings > Interfaces > SQL > Manage and click the
New button to create a new Database Interface object.

Alternatively, you can choose View > Toolbox - G2, click the Network
Interfaces tab, and create a Database Interface object.

3 In the properties dialog for the Database Interface object, configure the
Interface Name attribute to be any symbol, for example, orders-database-
interface.

Tip This is the Database Interface Name you specify when you configure the
report or block for database access.

4 Configure the Type of Database to be Access-ODBC.

5 Configure the Bridge Host and Bridge Port attributes to match the host and
port of the machine running the bridge, localhost and 22041, by default.

6 Configure the Connect String attribute to be the name of the ODBC data
source, for example: orders.

7 Click Apply to apply these values.

8 Choose Tools > User Mode > Modeler to return to Modeler mode.
422

Configuring ReThink for Database Access
Here is a the Database Interface object named orders-database-interface and its
properties dialog:
423

Here is a Database Interface object named reports-database-interface and its
properties dialog:

Connecting to the Database

Once you have started the ODBC bridge and configured the Database Interface
object, you can connect to the database via the Database Interface object. You
must be connected to write records to or read records from the database.

To connect to the database:

1 Switch to Developer mode.

For details, see Switching User Modes.

2 Choose Connect on the Database Interface object or click the Manual Connect
and Log In button in the properties dialog.

The color of the Database Interface object turns to green and the Interface Status
in the properties dialog becomes 2 to indicate it is connected.
424

Creating a Work Object that Represents a Record
Here is a Database Interface object that is currently connected to the database:

Creating a Work Object that Represents a
Record

If you are generating data from a database, using the Source block, or if you are
retrieving data from a database, using the Retrieve block, you must create a work
object that is a type of database record. To create a record, you create an object
definition that inherits from the bpr-object class and from the db-qo-record class.

The class definition must declare class-specific attributes for all the database fields
that the model generates or retrieve through an SQL query. Each work object that
the model generates or retrieves corresponds to a record in the database.

To use the work object in a model, you configure the input path type of the block
to be a kind of database record.

This topic describes how to:

• Create a class definition for a query object.

• Use a query object in a model.

Creating a Class Definition for a Query Object

When creating a class definition for the query object, the order of the attributes
does not matter; however, the names must match exactly. Also, it is not necessary
to create attributes for every field in the database record; it is only necessary to
create attributes for those database fields that match the SQL query. Finally, some
databases do not allow hyphens in field names; therefore, you should not use
them in attribute names. Use underscores instead.

For information on specifying the SQL query, see Creating an SQL Query for
Accessing the Data.

Icon turns green
indicating it is connected.
425

To create a class definition for a query object:

1 Display the ReThink toolbox and display the Tools palette:

2 Select a Class Definition and place it on the model detail or organizer detail.

3 Display the properties dialog for the class definition.

4 Configure the Names to be a unique class name, for example, db-order.

5 Configure the Direct Superior Classes to be:

bpr-object, db-qo-record

6 Configure the Class Specific Attributes attribute to name all the fields in the
database record that the Source block or Retrieve block will access.

Note Do not provide types and/or default values for the class-specific attributes of the
record; otherwise, ReThink will create the record rather than obtaining it from the
database.

Class Definition
426

Creating an SQL Query for Accessing the Data
This example shows a class definition for a work object named db-order that
stores data from the Orders database:

Using a Query Object in a Model

You use query objects in models that generate or retrieve data from a database,
using the Source block or Retrieve block.

To use the database record in a model:

 Display the properties dialog for the output path of a Source block or a
Retrieve block, and configure the Type to be the name of the database record.

See Retrieving Records from a Database and Sourcing Records from a Database
for specific information on how to configure these blocks for database access.

Here is a simple model that generates db-orders from a database and stores them
in a pool, where db-order is a database record:

Creating an SQL Query for Accessing the Data
When you generate or retrieve data from a database, using the Source or Retrieve
block, respectively, you must specify an SQL query to extract from the database.
You can also specify an SQL query when storing data to a database. The SQL
query you specify uses standard syntax for retrieving records from a database.

Note The SQL query should not contain any carriage returns. Also, the SQL query must
use single quotes around text values, not double quotes.
427

The class definition for the database record must contain class-specific attributes
for all fields in the query. For information on creating a class definition for a
record, see Creating a Work Object that Represents a Record.

For example, here is an SQL query that retrieves all of the records in the Orders
table where the employee name is Laura Callahan. The employee first and last
name are not actually in the Orders table; they are in the Employees table. This
query does a join operation by combining the Orders and Employees tables, using
the EmployeeID field. The Orders.* returns all of the fields in the Orders table,
without having to specify them explicitly.

Select Orders.* from Orders, Employees where Employees.FirstName =
'Laura' and Employees.LastName = 'Callahan' and Orders.EmployeeID =
Employees.EmployeeID

The SQL query can include expressions to be evaluated at runtime by delimiting
the expression in square brackets ([]). The expression can refer to the input work
object of the Retrieve block by using the variable named InputObject.

For example, the following query retrieves all the records in the Orders table in
which the OrderID field is between the current value of the MinimumOrderID and
the MaximumOrderID of the input work object:

“Select * from Orders where OrderID >= [the MinimumOrderID of InputObject]
and OrderID <= [the MaximumOrderID of InputObject]”

ReThink queries the external database and generates or retrieves one work object
for each record that matches the query, depending on whether you are using a
Source block or Retrieve block. The attributes of the work object correspond to the
fields in each record.

Sourcing Records from a Database
You can generate work objects directly from an external database, using the
Source block. When you generate data from a database, you configure the output
path type of the Source block to determine the type of work object. The work
object you specify must define attributes for each field in the database record that
match the query. You can create work objects that contain all the database record
fields or a subset of fields, depending on the query you specify.

By default, the Source block generates work objects continuously by looping back
to the beginning of the database table when it reaches the end. You can control
whether the block stops when it reaches the end of the table or continues to
generate records.

To source records from a database, you must first populate the database.

The following example uses a sample database called Orders.mdb.
428

Sourcing Records from a Database
To source records from a database:

1 Configure ReThink for database access.

For details, see Configuring ReThink for Database Access.

2 Create a class definition that is a record.

For details, see Creating a Work Object that Represents a Record.

3 Display the properties dialog for the output path of the Source block and
configure the Type to be the name of the database record whose attributes
correspond to the database fields.

4 Click the Block tab and configure the Source Mode to be Database.

5 Click the Database tab and configure the Database Interface Name to be the
Database Interface object that provides access to the database.

Tip If you have populated the external database by using the Store block, the
Database Interface Name attribute is the same as the Database Interface Name
you specify in the Store block.

6 Configure the SQL Query to access records from the database.

For details, see Creating an SQL Query for Accessing the Data.

7 Configure the Repeat Database option to determine whether to generate work
objects continuously or stop when it reaches the end of the table.

This model shows how to generate orders from an orders database:
429

Here is the Database tab of the properties dialog for the Source block that uses the
SQL Query shown earlier:
430

Sourcing Records from a Database
Here is the User tab of the properties dialog for an order generated from the
database:
431

Retrieving Records from a Database
You can retrieve records from an external database, using the Retrieve block.
When you retrieve data from a database, you configure the output path type of
the Retrieve block to determine the type of work object. The work object must
define attributes for each field in the database record that you want to retrieve.
You can retrieve work objects that contain all the database record fields or a
subset of fields, depending on the query you specify.

To retrieve work objects from a database:

1 Configure ReThink to retrieve data from an external database.

For details, see Configuring ReThink for Database Access.

2 Create a class definition that is a record.

For details, see Creating a Work Object that Represents a Record.

3 Display the properties dialog for the output path of the Retrieve block and
configure the Type to be the name of the database record object whose
attributes correspond to the database fields.

4 Click the Block tab and configure the Retrieve Mode to be Database.

5 Click the Database tab and configure the Database Interface Name attribute to
be the database interface object that allows access to the external database.

Tip If you have populated the external database by using the Store block, the
Database Interface Name attribute is the same as the Database Interface Name
you specify in the Store block.

6 Configure the SQL Query to access records from the database.

For details, see Creating an SQL Query for Accessing the Data.

This model shows how to retrieve orders from the orders database:
432

Retrieving Records from a Database
Here is the Database tab of the properties dialog for the Retrieve block:
433

Here is the User tab of the properties dialog for the order retrieved from the
database:
434

Storing Work Objects to a Database Table
Storing Work Objects to a Database Table
You can store work objects to a database table, using a Store block. When you
store objects to a database table, ReThink creates one record for each work object
that the Store block processes. The fields of each record correspond to the user-
defined attributes of each work object. The database table must initially contain
fields for each user-defined attribute of the work object that the Store block
receives. The database updates dynamically when you run the ReThink model.

You can use the database that the Store block creates as input to a Source block to
generate work objects in a model. In this way, you can create a reproducible
model that uses the same values each time you run the simulation. For more
information, see Sourcing Records from a Database.

You can also use the Store block to update existing database records, based on an
attribute of the work objects you are storing.

This topic describes how to:

• Store new objects in a database.

• Update existing records in a database.

Storing New Objects in a Database

When you store user-defined attributes to a database, ReThink only stores
attributes that have a value. If the attribute does not have a value, ReThink
ignores the attribute.

To store new objects in a database:

1 Configure ReThink for database access.

For details, see Configuring ReThink for Database Access.

2 Generate an external database table.

For details, see Creating the Database.

3 Display the properties dialog for the Store block, click the Block tab, and
configure the Store Mode to be Database.

4 Click the Database tab and configure the Database Interface Name attribute to
be the database interface object that allows access to the external database.

5 Configure the Database Table attribute to be the name of the table within the
database in which the records will be written.
435

This model shows how to store orders to the orders database:

Here is the Database tab of the properties dialog for the Store block that stores
data to a database table named neworders:
436

Storing Work Objects to a Database Table
Updating Existing Records in a Database

You might want to update existing database records, using work objects that the
ReThink model processes. You use the Database Key attribute of the Store block
to update existing records, as opposed to storing new records.

If the value of the attribute of the work object that is named by Database Key
matches the value of the corresponding field in an existing database record,
ReThink updates the record, rather than creating a new record.

If the Database Key attribute is unspecified, ReThink creates new records for all
work objects it receives.

By default, you specify the name of a database table, and ReThink creates its own
query for creating or updating the records. If you do not specify a table, the Store
block uses the SQL Statement that you configure. ReThink stores one work object
in each record that matches the query, which can refer to attributes of the work
object. The attributes of each work object correspond to the fields of each record.

To update existing records in a database:

1 Follow the steps for storing new work objects to a database table.

For details, see Storing New Objects in a Database.

2 On the Database tab of the properties dialog for the Store block, configure the
Database Key to be an attribute of the work object that the block uses to
determine whether the record exists.

3 Configure the Database Table or SQL Query, depending on whether you want
ReThink to configure the query for you or whether you want to configure it
yourself.

For details, see Creating an SQL Query for Accessing the Data.
437

Here is the Database tab of the properties dialog for a Store block that updates
existing records whose orderid attribute value matches the Orderid field of an
existing record in the database:

Using Reports to Access External Databases
For any output or input report in the model, you can:

• Configure the report object for database access.

• Write output report data to a database.

• Import input report data from a database.
438

Using Reports to Access External Databases
Configuring Report Objects for Database Access

To configure a report object for database access, you must identify the Database
Interface object that connects to the database. You must also identify the database
table to access. You can create the database table from the report object if it does
not exist.

The resulting database provides columns for each attribute configured in the
report. The resulting database also provides these standard columns, which you
can use for querying data:

• Row_ID, which is a unique ID for the row.

• Model_Version, which is the value of the Model Version attribute of the
associated Model tool.

• Simulation_Version, which is the value of the Simulation Version attribute of
the associated Scenario tool.

Note To use reports to access external databases, you must be in System-Administrator
mode.

To configure a report object for database access:

1 Display the ReThink toolbar and click the Reports tab:
439

2 Create and configure the report:

For details, see:

• Creating Reports.

• Configuring the Time Unit.

• Updating Output Reports at Regular Time Intervals.

• Keeping a History of Data Values.

• Configuring the Scope of the Report.

• Filtering Report Data.

• “Configuring the Attributes to Appear in a Report” on page 372.

3 Click the Database tab of the properties dialog for the report object, then click
the Database Reporting Enabled option on.

4 Configure the Database Interface Name to be the name of an existing database
interface object.

For details, see Configuring ReThink for Database Access.

5 Configure the Database Table Name to be the name of an existing table in the
database or a new name.

The table name must be a legal database table name, with no spaces or
hyphens and no more than 32 characters, for example, block_output_report.

6 Click Apply to apply the values configured above.

7 If you entered the name of a database table that does not exist, click the Create
Database Table button to create the table.

Note The report must already be configured for database reporting before you can
create a table.

If you are using Microsoft Access, ensure that the database is closed before
attempting to create the table.

The database table now exists in the database with database fields for each
attribute defined in the report object. You can click Drop Database Table to drop
the table, as needed.
440

Using Reports to Access External Databases
Here is the Database tab for a Block Summary Report that is configured to access
the ODBC data source defined by the reports-database-interface Database
Interface object. The report writes data to the table named block_output_report.

Here is the resulting Microsoft Access database table that is created for the default
attributes of the Block Summary Report before creating or updating the report:
441

Here is the Database tab for a Block Input Report that is configured to access the
ODBC data source defined by the input-report-database-interface Database
Interface object. The report imports data from the table named block_input_report.

Here is the resulting Microsoft Access database table that is created for the default
attributes of the Block Input Report before entering any data:

Writing Output Report Data to a Database

To write output report data to a database, you simply create the report and run
the simulation. ReThink writes the report data to the database each time the
report updates, either manually or based on clock time or simulation time, and at
the end of the simulation.
442

Using Reports to Access External Databases
To write output report data to a database:

1 Configure ReThink for database access.

For details, see Configuring ReThink for Database Access.

2 Configure the report object for database access.

For details, see Configuring Report Objects for Database Access.

Note If you are using Microsoft Access, ensure that the database is closed before
you run the simulation.

3 Run the simulation.

Typically, when writing report data to a database, you run the simulation for a
fixed duration. For details, see “Configuring the Duration of the Simulation” on
page 15.

This figure shows a model that is configured to write Block Summary Report data
to a database:

Here is the resulting Microsoft Access database table that is created for three
blocks after creating or updating the report:
443

Importing Input Report Data from a Database

To import input report data from a database, you must populate the database
table with data that corresponds to the report you create, then you import the
data. Importing the data updates values in the model.

To import input report data from a database:

1 Configure ReThink for database access.

For details, see Configuring ReThink for Database Access.

2 Configure the report object for database access.

For details, see Configuring Report Objects for Database Access.

3 Choose Import Data from Database on the report object, or on the Database
tab of the Report object, click the Import Data from Table button.

This figure shows a model that is configured to import Block Input Report data
from a database:

Here is the Microsoft Access database table from which the data is to be imported:
444

10
Using Batch
Simulation
Describes how to use run multiple simulations from a script.

Introduction 445

Using the Batch Simulation Object to Run Simulations 446

Simulation Keywords 451

Report Keywords 452

Setting Attribute Values 453

Introduction
You use the Batch Simulation object to:

• Run multiple simulations from a script.

• Change the value of any parameter in the model while the simulation is
running.

For example, you can use the Batch Simulation object to optimize key parameters
and metrics by running multiple simulations, using different parameter values for
each simulation. You can then save the results to separate reports to analyze the
results. You can also use the Batch Simulation object to determine the impact on
the current model of changes in key parameters over time, such as those that
determine the frequency of work objects that the model generates.

To use the Batch Simulation object, you create a script that consists of a number of
keywords. The keywords identify the model to run and the various parameter
values to set. You can set parameter values for any type of object in the model.
445

You can save the results of a simulation to an Excel report, CSV file, or database
associated with an output report.

The keywords and the arguments to keywords are not case-sensitive in the script.
The script ignores extra spaces and carriage returns in labels. When entering time
values, you may enter hour or hours, minute or minutes, and so on.

The script executes in the order in which the keywords appear.

This topic describes how to:

• Use the Batch Simulation object to run simulations.

• Use simulation keywords.

• Use report keywords.

• Set attribute values.

Using the Batch Simulation Object to Run
Simulations

You might want to run several simulations for the same model, each with
different values for the mean parameter. Alternatively, you might want to run a
single simulation in which the value of the Mean parameter decreases over time,
which is common in many manufacturing processes.

You identify the simulation to run by referring to a unique scenario.
446

Using the Batch Simulation Object to Run Simulations
To use the Batch Simulation object to run simulations:

1 Display the properties dialog for the Scenario and configure the Label
parameter to be a unique name.

2 Choose Toolbox - ReThink to display the ReThink toolbox, then click the
Tools palette:

3 Select the Batch Simulation object and place it on the model detail or organizer
detail.

4 Display the properties dialog for the Batch Simulation object and configure
the script.

To do this, enter keywords and arguments in the Script field.

For a description of the available keywords, see:

• Simulation Keywords.

• Report Keywords.

• Setting Attribute Values.

5 Add comments to the script, as needed, using the following syntax:

/* this is a comment */

6 To verify that you have entered the keywords in the script correctly, click the
Check Script button:

ReThink displays error messages and warnings in red and yellow,
respectively, in the Log Book area.

Batch Simulation Object
447

For example, the Batch Simulation object generates an error if you have not
named the scenario, if an object does not exist, or if you have entered a
keyword that does not exist.

7 Click the Start button to start running the script:

ReThink displays messages in green in the Log Book each time a keyword
completes its execution, so you can follow the progress of the simulation.

8 To pause the simulation, click the Pause button:

9 To resume the simulation, click the Resume button:

10 To stop the simulation, click the Stop button:

ReThink completes the execution of the currently active keyword before pausing
or stopping the simulation. Normally, you let the script run by itself until it
finishes.

When the simulation finishes, it is as if you had run the simulation manually;
metrics compute normally and reports update at the specified time intervals. If
the script sets parameter values, the values update at the specified time and the
simulation continues.

Typically, if you are running multiple simulations, you save report data at the end
of one simulation, before starting the next one.

For example, this script runs the simulation associated with Scenario-1 for 91
days, saves a report, then sets the Mean parameters to different values, runs the
simulation again, then saves the report to a new file name. Notice that the
keyword that sets the Mean parameter comes before the start-simulation
keyword.

select-scenario(scenario 1)
set-attribute-value(Create Order,duration-subtable,mean,1 hour,0)
start-simulation(9 days)
wait-simulation
set-file-reporting(block summary report,true,Block Summary Report 1.csv)
save-report(block summary)
set-attribute-value(Create Order,duration-subtable,mean,2 hours,0)
start-simulation(9 days)
wait-simulation
set-file-reporting(block summary report,true,Block Summary Report 2.csv)
save-report(role-output)
448

Using the Batch Simulation Object to Run Simulations
Here is a model that uses a Batch Simulation object to run multiple simulations:
449

Here is the Batch Simulation object dialog that results while running the
simulation:
450

Simulation Keywords
Simulation Keywords
You use the Batch Simulation object to run a simulation for one or more scenarios
and for a specified duration for each. To run multiple simulations, you must wait
until the first simulation is finished running before starting another.

SELECT-SCENARIO(<scenario-label>)

Determines the scenario to use for all operations in the simulation, until a new
scenario is selected. You must configure the Label parameter of the scenario to
be a unique name.

Example:

SELECT-SCENARIO(Scenario 1)

START-SIMULATION(<duration>)

Starts the simulation and determines the duration of the simulation.

Note Always set parameter values before you start the simulation, even if you
schedule the parameter values to be set during the simulation.

Example:

START-SIMULATION(52 weeks)

WAIT-SIMULATION

Waits until the scenario is finished running. Use this keyword to run multiple
simulations for the same model, using different parameter values. This
keyword has no arguments.

CREATE-NEW-SEED(<truth-value>)

Whether to create a new value for the simulation.

SET-NEW-SEED(<seed>)

Sets a new seed value for the simulation.
451

Report Keywords
The following keywords control various reporting functions that can occur
during the simulation. All keywords specify the <report-title> argument to
identify the report object. When you save a report, it writes the report data to an
Excel report, CSV file, or database, depending on how the report is configured.

SET-FILE-REPORTING(<report-title>,<excel-report-enabled>,
<excel-report-filename>)

Enables the creation of CSV files for reports and specifies the .csv file name to
create, as if you had clicked the Excel Report Enabled option and specified the
file name in the report dialog. This keyword sets the file name to save when
you use the SAVE-REPORT keyword. Typically, you save report data to
separate CSV files; otherwise, saving report data overwrites the file data.

Example:

SET-FILE-REPORTING(block summary report,true,
block summary report.csv)

UPDATE-REPORT(<report-title>, <time>)

Updates a report at the specified simulation time interval, as if you had
manually updated the report while the simulation was running.

Example:

UPDATE-REPORT(block summary report, 1 hour)

SAVE-REPORT(<report-title>)

Saves report data to the .csv file associated with the report that you set by
using the SET-FILE-REPORTING keyword. To save reports to different
filenames, use the SET-FILE-REPORTING keyword each time you use
SAVE-REPORT.

If an Excel client is currently connected or if a report view is currently visible
in the client, this keyword updates the report in Excel or the client.

If the report object is configured to output data to a database, this keyword
saves the report data to the specified database. The database table includes
columns for the Model_Version and Simulation_Version to uniquely identify
data for each simulation run of each model.

Example:

SAVE-REPORT(block summary report)
452

Setting Attribute Values
LOAD-REPORT(<report-title>)

Loads the .csv file associated with an input report, as if you had clicked the
Import Data from File button in the report dialog.

Example:

LOAD-REPORT(block input report)

LOAD-REPORT-FROM-DATABASE (<report-title>)

Loads the data from the database associated with an input report, as if you
had clicked the Import Data from Table button.

Example:

LOAD-REPORT-FROM-DATABASE(block input report)

Setting Attribute Values
To set attribute values for any object, use the following keyword:

SET-ATTRIBUTE-VALUE(<object-label>,<subtable-name>,
<attribute-name>,<value>,<simulation-time>)

<object-label> is the text of the Label attribute.

<subtable-name> is the name of the subtable in which the attribute appears, if
any. The options are: duration-subtable, cost-subtable, and animation-
subtable. If the attribute appears on any tab other than the Duration tab, the Cost
tab, or the Animation tab, the <subtable> has no value.

<attribute-name> is a symbol that names the attribute whose value you want to
set. For example, mean, standard-deviation, maximum-activities, and so on.

<value> is the value of the attribute to set, for example, 1 hour or 6.

<simulation-time> is the simulation time at which to set the attribute value, for
example, 0 or 4 weeks.

This example shows how to set the value of the Mean attribute of the Create
Order block to 1 hour at the start of the simulation, then change it to 50 minutes
1 week into the simulation:

set-attribute-value(Create Order,duration-subtable,mean,1 hour,0)

set-attribute-value(Create Order,duration-subtable,mean,50 minutes,
1 week)
453

454

11
Using ReThink
in Online Mode
Describes how to use ReThink in online mode.

Introduction 455

Using ReThink in Online Mode 456

How Online Mode Works 457

Using Interface Pools 458

Using Online Blocks 463

Sending Email 468

Using JMS Messaging 470

Introduction
ReThink supports online transaction processing, where ReThink works as a
workflow engine, managing decisions and coordinating activities.

Using ReThink in online mode allows you to:

• Define hierarchical models and metrics to organize, manage, and display
information and best practices.

• Use simulation to do what-if analysis.

• Switch to operational mode to manage your processes.

All ReThink features such as instruments, resources, and reports are functional in
online mode.
455

To support online mode, ReThink provides:

• An online mode for scenarios, where the simulation clock is synchronized
with the current actual time.

• A framework for performing parallel and distributed processing that the
ReThink model coordinates and manages.

• A number of out-of-the-box blocks for interaction with databases, JMail, and
JMS Message servers.

Using ReThink in Online Mode
When using ReThink in online mode, keep the following considerations in mind:

• Except for the Remote Process Source block and the Delay block, all block
durations are disregarded, and the Work Time and Elapsed Time of all
activities are set to zero.

• For the Remote Process Source block and the Delay block, the duration
specified in the block represents the delay in actual time, which the block uses
to schedule events.

• In jump mode, the blocks and durations work as before, including the Delay
block, where the delay is in simulation time, not in actual time.

Note We highly recommend that you understand how ReThink processes events before
using ReThink in online mode. For a detailed description of internal block
processing, see the Customizing ReThink User’s Guide.

The ReThink toolbox includes the Online Activities palette:
456

How Online Mode Works
To build a new online model:

 Create a new project with ReThink as the selected library.

For details, see Working with Projects.

To switch to online mode:

 On the General tab of the Scenario properties dialog, choose Online as the
Mode or choose Simulation > Online Mode.

To view examples of online mode:

 Load rethink-40-online-examples.kb from the rethink\examples
directory.

How Online Mode Works
In online mode, ReThink advances the simulation clock as the wall clock changes,
in units of second. Events are scheduled for the current second, including new
events that have been scheduled within the current second due to ReThink
internals or received from external sources.

When using the basic blocks found on the Basic Activities tab of the ReThink
toolbox, ReThink processes work objects synchronously within each thread,
which means the phase completes before ReThink processes another work object
in the same or in a different block. When using the blocks found on the Online
Blocks tab of the ReThink palette, ReThink processes work objects in parallel. It
does this by offloading the processing to another G2 thread, to a thread in a
remote program, or to a bridge processes, such as a database bridge; it does not
wait until the thread completes before processing other work objects.

ReThink contains two categories of online blocks:

• One set receives events from external programs, and requests external
programs or G2 threads to process work objects or to send work objects to
another program or ReThink model.

• One set executes statements in the external system, such as SQL statements
that delete rows, insert rows, update rows, update attributes of work objects,
query database records, and execute stored procedures.

This figure shows a diagram of normal block processing compared with online
block processing:
457

1 For each work object that an online block processes, the block spawns an
asynchronous start method as a new thread during the start phase of the
block. ReThink does not call the stop method of the block as it would for
standard blocks, but instead continues processing other events in the model.

2 The asynchronous start method can perform processing in the same G2
process in a different thread, or it can offload the processing to another G2,
ReThink, C, VisualBasic, or Java program.

3 If the processing is performed outside of the local process, once processing is
complete, the remote process calls the asynchronous stop method.

4 If the processing is performed within the local process, once processing is
complete, the local process calls the asynchronous stop method directly.

5 When the asynchronous stop method executes, ReThink then schedules the
stop phase of the block, which dispatches the work object to downstream
blocks in the model.

To optimize online processing, you can extend and customize the online blocks to
call remote programs, as needed. To customize these blocks, instead of
customizing the bpr-stop-method, you customize the method named
bpr-async-start-method. For examples, see the blocks in methods-online.kb.

Using Interface Pools
One issue when using online blocks for workflow operations, and especially
when interacting with databases, is the IO throughput. For example, when many
work objects are being processed, querying a database or calling a remote
program to perform processing-intensive tasks may not significantly improve
performance or scale well, even when processing work objects from different
parts of your ReThink model. This is because the remote program may be busy
processing one work object at the time, or the same IO channel to the database
may be used in different part of the model, which blocks other queries or updates
when one is already processing.
458

Using Interface Pools
For scalability, ReThink supports pools of interfaces to communicate with
databases or other remote programs. The pool uses parallel bridges and
communication channels to interact with external databases and improve
performance. This means that ReThink can perform multiple database queries or
updates in parallel and use multiple instances of remote programs performing
processing-intensive tasks. For each request, ReThink selects an available or the
least-used network object from the pool at run time.

ReThink provides several types of interface pools, which are configured to create
network objects that connect to a database, JMail bridge, JMS Message server, or
another ReThink process.

To configure multiple communication channels, you configure the initial interface
count to be the desired number of connections. When the model resets, ReThink
automatically creates and configures the network objects to connect to the remote
process or bridge. Alternatively, you can configure the network communication
pool manually, and when the model resets, ReThink launches the remote
programs or bridges.

If you use the default procedures to launch the remote process or bridge, the
command line to launch it must accept one argument, which is the TCP/IP port
name to use for listening for connections.

To write your own procedures to launch or kill processes, the signatures of the
procedures are:

bpr-launch-process
(cmd: text, host: text, port: integer,
network-pool: class bpr-network-connection-pool)
-> return: float

bpr-kill-process
(io: class network-interface,
network-pool: class bpr-network-connection-pool)

The launch process returns the Process ID of the launched process or –1 if an error
occurred.

To configure an interface pool:

1 Choose View > Toolbox - G2 and choose the desired Network Interfaces
palette.

Alternatively, choose Project > System Settings > Interface Pools, choose the
desired type of interface, and choose Manage to create a new interface pool.
459

For example, here is the Network Interfaces - SMTP palette:

2 Create a network interface pool from the palette, display its properties dialog,
the interface pool and configure these attribute on the General tab:

3 Click the Network Interface tab and configure these attributes:

Attribute Description

Label Any label for the object.

Comments Any comment for the object.

User Name User name to connect to interfaces.

Password Password used to connect to
interfaces.

Initial Network Interface
Count

The default number of interfaces
created in the pool at reset time.

Network Connection Timeout The timeout of the network
connection.

Enable Initialization During
Reset

Enables and disables the initialization
of the pool at reset time of the model.

Attribute Description

Interface Default Host The host where the interface to
connect to is running.

Interface Base Port Number The TCP/IP port to which the remote
interfaces connect. For every
additional interface automatically
added at reset time, this port number
is incremented by 1, except for G2-to-
G2 interfaces.

Network Interface Timeout The timeout for the network interface.
460

Using Interface Pools
Network Interface
Initialization String

The initialization string for the
network interface.

Remote Process Launch
Arguments

Arguments to the Bridge Process
Launch Command.

Bridge Process Launch
Command

The command line to launch the
bridge or process. If you use
bpr-launch-process as the procedure
to launch the process, ReThink expects
the command line to take one
argument, which is the TCP/IP port
number the bridge should use to listen
for G2 connections. Standard G2
bridges such as database bridges
offered by Gensym comply with this
requirement.

Bridge Process Launch
Procedure

The name of a procedure to launch a
bridge or process. This procedure can
be a executable (.exe) or a batch file.
The procedure should return the
process ID of the process it launched
or –1 if it failed. The default procedure
is gdsm-launch-bridge-process.

Bridge Process Kill Procedure The name of a procedure to kill the
bridge to which an interface is
connected. The default procedure is
gdsm-kill-bridge-process.

Auto Connect to Bridge Whether to automatically connect to
the bridge when required.

Shutdown Bridge on
Disconnect

Whether to automatically shutdown
the bridge when disconnecting.

Launch Bridge Upon Connect Whether to automatically launch the
bridge when attempting a connection.

Attribute Description
461

4 For Database Interface Pools, click the Database tab and configure these
attributes:

For details, see the G2 Database Bridge User’s Guide.

5 For JMail Interface Pools, click the JMail tab and configure these attributes:

For details, see the G2 JMail Bridge User’s Guide.

Attribute Description

Database Connect String The database name to connect to or the
ODBC DSN to use to connect to the
database.

Maximum Number of Cursors The maximum number of cursors to
manage in each database bridge. The
default value is 100.

Bind Variable Prefix The prefix used by the database to tag
arguments as being bind variables.
The default value is colon (:).

Attribute Description

Incoming Host The name of the host computer used
for incoming email.

Incoming Port The port number of the host used for
incomign email.

Incoming Protocol The protocol used for incoming email.

Incoming Folder The name of the folder for incoming
email.

Delete Messages on Server Whether to delete messages on the
server when sent.

Outgoing Host The name of the host computer used
for outgoing email.

Outgoing Port The port number of the outgoing host.

Outgoing From The email address to use as the From
address when the email message is
sent.
462

Using Online Blocks
6 For JMS Interface Pools, click the JMS tab and configure the attribute.

For details, see the G2 JMSLink User’s Guide.

Using Online Blocks
This section describes the set of blocks that are based on asynchronous operation
and used to interact with remote processes and databases. To communicate with
the remote process, these blocks rely on network interface pools.

Remember, none of the online blocks except the Delay block uses durations.
Instead, the delay between the start and the stop phases depend on the remote
process.

The two types of models that you typically build, using the online blocks are:

• Distributed workflow applications.

• Database interaction applications.

Handling Errors

If an error occurs during processing within an online block, the error context is
stored in the work object; therefore, your model can reason and take actions,
based on the error condition. In addition, you can specify an error path on these
blocks, where work objects are sent to this path if an error occurs.

Errors can be due to communication errors, errors in the remote program, or
timeout conditions. These attributes on work objects identify error conditions:

Attribute Description

Error Status The default value is no-error. The status could
also contain an error symbol such as timeout-
error.

Error Code The error code, such as the error code from the
database bridge.

Error The error message, such as the error message
returned from the database.
463

Introduce Delays into the Process

Use this block to introduce delays in your model. You can use the Delay block in
simulation or online mode.

Modeling Distributed Workflow Applications

To model distributed workflow applications, you use the:

• Remote Process Source Block

• Remote Process Task Block

• Remote Process Sink Block

Remote Process Source Block

The Remote Process Source block receives work objects from a remote process
and generates a new work object. The block should have a single output path. The
block is configured to receive work objects from the Remote Process Sink block.

The external process generates the event that determines when the object is
transferred. It transfers one work object per event, along with sender
identification information, such as the host, port, scenario label, and block label.
The event itself is in the form of an RPC, which passes in the bpr-object. Once the
block receives the object, the block processes the object and inserts it into the
model.

Remote processes call the procedure bpr_receive_work_object or
bpr_receive_serialized_work_object to post new objects to the model. The remote
process identifies the source block into which it inserts the object, based on the
Remote Source Key of the source block, which contains any symbol.

By default, when the Remote Process Source block receives a work object from the
remote program, it generates a work object. You can also configure the block to
execute in batch mode, in which case it generates the work object when the block
executes, based on its duration.

The remote system transfers one object per event. The object contains sender
identification information such as the host, port, scenario label, and block label.
The event itself is in the form of a remote procedure call (RPC) that passes in an
instance of bpr-object. Once the block receives the object, it generates a work
object.

The class of the object that gets passed in is mapped to a corresponding class in
ReThink. The local class must be a subclass of bpr-object. This procedure passes in
the class name as a symbol, where the object’s attributes and values are passed in
as sequences. The procedure to call from the external process has this signature:

bpr_receive_work_object(from-host: text, from-port: text, from-scenario: text,
from-block: text, object: class bpr-object) = (symbol, integer, text)
464

Using Online Blocks
The procedure returns the symbol success if it succeeds in posting the object to
the block. Otherwise, it returns a symbol specifying the error class, an error code,
and an error text.

Alternatively, and especially important when integrating with environments that
cannot rely on object passing such VisualBasic via the ActiveX control, the
external process can call a procedure with this signature. This procedure passes in
the class name as a symbol, where the object’s attributes and values are passed in
as sequences.

bpr_receive_serialized_work_object(from-host: text, from-port: text,
from-scenario: text, from-block: text, dest-name: symbol,
class-name: symbol, attribute-names: sequence,
attribute-values: sequence) = (symbol, integer, text)

Remote Process Task Block

The Remote Process Task block offloads processing of activities to a separate G2
thread, in a remote G2 or ReThink process, VB program, C/C++ program, or Java
program. In the remote process procedure, you either specify the name of a local
procedure or remote procedure. The task calls this procedure either by:

• Passing the work object by reference, when Use Object Passing is enabled.

• Passing it via serialization, whereby attribute/value pairs are passed in and
returned by the remote procedure as sequences.

The remote procedure should specify a timeout so that if the procedure does not
complete within the timeout period, the call to the remote procedure is aborted.

Remote Process Sink Block

The Remote Process Sink block sends work objects to a remote procedure. The
model performs no further processing of the work object.

If the destination attribute of the work object has the default value of none, it
receives a new value from the Remote Destination attribute of the block.

You can also configure the Remote Process Interface Label to be a bpr-network-
connection-pool that contains 1 - n connection interfaces to be used. The block
uses the next least-used available connection. You use pools of multiple
connections that can be used in parallel to improve performance when the block
needs to make multiple calls to remote systems. If the block does not configure a
remote process interface, it uses a default interface to make a local connection.

If the block has multiple inputs, it sends work objects from each input path. By
default, it sends the objects as they arrive. You can also enable the Needs All
Inputs option to send the objects when the block has an object waiting on each
input path.
465

The remote process must define the following procedure:

bpr_receive_work_object(from-host: text, from-port: text, from-scenario: text,
from-block: text, object: class bpr-object) = (symbol, integer, text)

The block sends the work object with all of its non-system attributes, except the
animation-subtable. The procedure should return the symbol success if the
operation is successful, or an integer representing the error code and a text
explaining the error, otherwise.

Interacting with Databases

The following set of blocks provide out-of-the-box support for interacting with
databases. You use them to insert or query an external database. To use these
blocks, you must be familiar with writing SQL statements.

The timeout of these blocks limits the time that a query, insert, or update should
take. If a timeout error occurs, the Error Status of the work object is set to
timeout-error to enable the model to detect abnormal database connectivity
conditions.

If a timeout error occurs, the query can be automatically aborted or not. If it is not
aborted, when the query completes, the results of the query are discarded because
the work object will already have been processed and sent to other blocks.

All of the online database blocks, with the exception of the Database Commit and
Database Rollback blocks, take an SQL statement. The SQL query may refer to
attributes of the work object by specifying the attribute name preceded with a $.
For example, to refer to the Total Starts of a work object, use $TOTAL-STARTS in
the query. At run time, this variable is replaced by the value of the total-starts
attribute of the work object on the input path of the block.

Several SQL statements also support bind variables, which generally increases
performance. If the statement uses bind variables, the bind variable names
should correspond to the work object attribute names, without the bind variable
prefix. For example, suppose you define the following SQL statement to insert a
work object into a database:

insert into emp (empno, ename) values (:nr,:name)

In this query statement, nr and name need to be defined as attributes of your
work object, and the character “ : ” needs to be defined as the bind variable prefix
in the Network Interface Pool that contains the connection to your database. At
run time, the code collects the list of bind variables, fetches the corresponding
attributes from the work object, and executes the statement. The code also maps
any hyphen or space character specified in a bind variable to an underscore before
sending the SQL statement to the database. This means you can specify attribute
names that include hyphens without compromising requirements for the
database.
466

Using Online Blocks
To interact with databases, you use the:

• DB Function Query Block

• Database Stored Procedure Block

• Database Update Object Block

• Database SQL DML Block

• Database Query Block

• Database Commit Block

• Database Rollback Block

DB Function Query Block

The DB Function Query block performs any SQL function query, such as a count,
and stores the result into an attribute of the work object.

You can use one of two mechanisms to replace values in the SQL statement with
values from the input work object:

• "[the <attribute> of InputObject]"

You use this expression when you need to extract attributes from the duration
or cost subtable.

• $<attribute>

You use this expression to create easier-to-read SQL statements when
referring to attributes that do not appear in subtables.

Bind variables in SQL statements can only use the syntax :<attribute> where : is
defined as the bind variable prefix. At run time, bind variables are created based
on the attribute name by replacing hyphens with underscores and replaced with
the actual value of the attributes as rows are inserted.

Database Stored Procedure Block

The Database Stored Procedure block executes stored procedures in the database.
You provide an SQL statement that is the name of a stored procedure to call,
including the arguments to pass. Similar to the SQL Function block, the statement
can refer to $<attribute-name> or [the <attribute> of InputObject] to pass arguments
of the work object.

Database Update Object Block

The Database Update Object block uses an SQL statement to update attributes of
the work object with values from the database, using a SELECT statement. Note
that the SELECT statement should select a single row only. The block uses the
values of the selected row to update the attributes of the work object.
467

Database SQL DML Block

The Database SQL DML block uses an SQL statement to delete, insert, or update
values in the database, using a DELETE, INSERT, or UPDATE statement. You can
configure the block to automatically commit the update or not. If you do not
automatically commit the statement, your model needs to include a Database
Commit and/or Database Rollback block. Once the commit or rollback block is
executed, the SQL statement is committed or rolled back.

Database Query Block

The Database Query block uses an SQL statement to query rows from the
database, using a SELECT statement. It queries the database for multiple rows. For
each row, the block creates an object of the class specified in the Object Type of the
block and updates the object’s attributes with values from the row. The object is
then inserted into the attribute of the work object specified by the Container List
Attribute of the block.

Database Commit Block

The Database Commit block commits a series of SQL statements that have been
posted and releases the database interface connection. It commits all transactions
for all interfaces in a network interface pool.

Database Rollback Block

The Database Rollback block rolls back a series of SQL statements that have been
posted and releases the database interface connection. It rolls back all transactions
for all interfaces in a network interface pool.

Sending Email
You use the Email Send block and accompanying JMail Interface Pool for sending
email as part of online transaction processing. For example, you might create a
distributed workflow application or database interaction application that sends
email when a certain event occurs, thereby providing real-time communication as
part of your online application.

To use the Email Send block, you must first create and configure a JMail
Connection Pool, then you must start the G2 JMail Bridge. The bridge provides
communication between your ReThink application and the email server specified
in your JMail Connection Pool. When a work object arrives at the Email Send
block in your online application, ReThink sends the email message via the bridge.

The Email Send block supports sending email only; it does not support receiving
email.
468

Sending Email
To send email as part of online transaction processing:

1 Create a JMail Connection Pool and configure its attributes for connecting to
an email server.

For details, see Using Interface Pools.

2 Use the blocks on the Online palette of the ReThink toolbox to create an online
application that interacts with databases or other external systems.

3 Configure the application to use the Email Send block by connecting it to a
block in the model where you want email to be sent.

4 You must configure the application such that a work object arrives at the
block, which triggers the email to be sent.

5 Configure the standard attributes on the General tab of the Email Send block.

6 Click the Block tab and configure the following attributes:

Attribute Description

Email To A text string that includes a single email
address. To send email to multiple recipients,
create an alias on your mail server. The text
string can include an expression that refers to an
attribute of object that is the email address, as
described in Email Subject.

Email CC A text string that includes a single email
address. To send email to multiple recipients,
create an alias on your mail server. The text
string can include an expression that refers to an
attribute of object that is the email address, as
described in Email Subject.

Email Subject A text string that is the subject of the email. The
text string can include expressions to be
evaluated at runtime by delimiting the
expression in square brackets ([]) or by using
"$<attribute-name>" when referring to
attributes in subtables. The expression can refer
to the input work object of the block by using
the variable named InputObject.
469

When you are ready to run your application in online mode, you must start
the G2 JMail Bridge.

7 To start the G2 JMail Bridge, choose Start > Programs > Gensym G2 2011 >
Bridges > G2 JMail Bridge.

This command launches a bridge process that establishes communication
between your ReThink application and the email server you specified in the
JMail Connection Pool.

8 Now, run your application in online mode.

When a work object arrives at the Email Send block, ReThink sends an email
message to the specified recipients via the bridge.

Using JMS Messaging
JMS, an acronym for Java Message Service, is an industry-standard API for Java-
based clients to interact with native message-oriented middleware (MOM)
systems, which are designed especially for enterprise messaging applications.

Some JMS-compliant MOM systems include IBM’s WebSphereMQ, Sun JMQ,
FioranoMQ, BEA Weblogic, and JBoss 3.2.6 on Linux and HP, Open JMS 0.7.6.1 on
Windows, Linux, and HP, Java 2 Platform, Enterprise Edition (J2EE) 1.3.1 on
Linux.

JMS supports two types of messaging models:

• Point-to-point (PTP) is a one-to-one message delivery system that allows only
two JMS clients to send and receive messages, both synchronously and
asynchronously, via a virtual channel known as a queue.

• Publish-and-subscribe (pub/sub) is a one-to-many message delivery system
in which one JMS client is a message publisher that can send a message to
many JMS clients as message subscribers through a virtual channel known as
a topic.

Email Message A text string that is the email message. The text
string can include an expression, as described in
Email Subject.

For an example, see "Creating an SQL Query for
Accessing the Data” in Chapter 8, “Accessing
External Databases” in the ReThink User’s Guide.

Email Connection
Pool

The name of an existing JMail Connection Pool.
The dropdown list shows all instances of this
type of pools associated with the scenario.

Attribute Description
470

Using JMS Messaging
You use the JMS Source, JMS Task, and JMS Sink blocks and accompanying JMS
Interface Pool to send and receive messages, using the JMS Message Service. For
example, you might create a distributed workflow application or database
interaction application that sends messages when a certain event occurs, thereby
providing real-time communication as part of your online application.

To use the JMS blocks, you must first create and configure a JMS Connection Pool,
then you must start the G2 JMS Bridge. The bridge provides communication
between your ReThink application and the email server specified in your JMS
Connection Pool. When a work object arrives at the JMS blocks in your online
application, ReThink communicates with the JMS message server via the bridge.

For details about configuring the JMS Connection Pool and JMS blocks, see the G2
JMSLink User’s Guide.
471

472

Part II
ReThink Reference
Chapter 12: Blocks Reference

Provides a description and example of each ReThink block.

Chapter 13: Instruments Reference

Provides a description and example of each ReThink feed and probe.
473

474

12
Blocks Reference
Provides a description and example of each ReThink block.

Introduction 476

Common Attributes of Blocks 477

Common Menu Choices for Blocks 486

Common Attributes of Paths 487

Common Menu Choices for Paths 491

Associate 492

Batch 498

Branch 511

BRMS Task 535

Copy 537

Copy Attributes 542

Insert 548

Merge 554

Reconcile 556

Remove 562

Retrieve 570

Sink 585

Source 587

Store 600

Task 608
475

Yield 622

Introduction
This chapter describes each block in the Basic Activities palette of the ReThink
toolbox:

The chapter begins with sections describing the attributes and menu choices that
are common for all blocks and their paths. It then describes each block in detail,
including:

• A general description of the block.

• Specific uses of the block.

• An example.

• Specific attributes and menu choices.

• Customization attributes, where relevant.
476

Common Attributes of Blocks
For general information about how to use blocks to create a model, see Using
Blocks.

Common Attributes of Blocks
You access the common attributes of blocks through the properties dialog. The
properties dialog has tabs, which allow you to edit and view general block
attributes, block-specific attributes, duration attributes, cost attributes, and
animation attributes.

This table describes the various tabs that are available in the properties dialog for
blocks:

Following are examples for a Task block of the tab pages of the properties dialog
that are common to all blocks: General, Duration, Cost, and Animation. Following
each dialog is a description of the attributes that appear in Modeler mode. Each
attribute indicates whether it is a parameter (P) or metric (M).

Tab Description

General Parameters that are common to all blocks, such
as the Label and Comments. Metrics related to
the number of activities the block processes.

Block Parameters and metrics that are specific to the
particular block, for example, the mode in
which the block operates. For a description of
the attributes on this tab, see the individual
block listings.

Database Parameters for accessing records in a database
when the block is configured for database
access. This tab is only available for certain
blocks in database mode. For details, see
Accessing External Databases.

Duration Parameters that determine how the block
computes the duration of each activity. Metrics
related to the timing of the block.

Cost Parameters for configuring fixed and variable
costs for the block, and the total cost metric for
the block.

Animation Parameters for specifying animation colors for
the block.
477

For information on the attributes that are available in Developer mode, see the
Customizing ReThink User’s Guide.

General Tab

Attribute P/M Description

Block Label P A label for the block, which appears next to the
block in quotes. For information on hiding the
label, see Using Attribute Displays.

Comments P An area for entering a description of the
purpose of the block and whatever other
information you want to keep.
478

Common Attributes of Blocks
For information on the metrics related to activities, see Determining the Current
Activities.

Maximum Activities P The maximum number of activities that the
block can process concurrently. Specify a
positive integer or leave empty. The default
value is empty, which means the block can
process any number of activities concurrently,
depending on other constraints. See Limiting
the Number of Concurrent Activities.

URL P A URL to an HTML file, either on the World
Wide Web or on the file system, or a URL to an
RTF file on the file system, which explains the
block. When this attribute is configured,
choosing Show URL or clicking the block
displays the file in its own window.

Total Starts M The total number of activities that the block has
started processing since the start of the
simulation.

Total Stops M The total number of activities that the block has
finished processing since the start of the
simulation.

Current Activities M The total number of activities that the block is
currently processing. The sum of the Current
Activities and Total Stops equals the Total Starts
for the block.

Error M A description of any error for the block. See
Debugging Blocks.

Attribute P/M Description
479

Duration Tab
480

Common Attributes of Blocks

Attribute P/M Description

Distribution Mode P How the block computes duration. The default
for all blocks (except the Source block) is
Random Normal, which computes a random
duration, based on a normal distribution, where
you configure a Mean and Standard Deviation.

The default value for a Source block is Random
Exponential, which computes a random
duration, based on an exponential distribution,
where you configure the Mean.

You can also choose from the following random
distributions: Fixed, Uniform, Triangular,
Erlang, Weilbull, Lognormal, Gamma, and Beta.
Choosing one of these distributions displays
additional parameters for specifying the
particular function.

For details on configuring these distributions,
see Specifying a Fixed Duration and Specifying
a Random Duration.

You can also configure the Distribution Mode to
be:

• Work Object Duration
(See Specifying Duration Based on an
Attribute of a Work Object)

• Report Indexed Lookup
(See Specifying Duration Based on an
Indexed Report Lookup)

• Report Lookup
(See Specifying Duration Based on an
Attribute Report Lookup)

• Duration File
(See Specifying Duration from a File)

• Arrival Rate Input Graph
(See Using a Graph to Specify Duration.

• Custom
(See Specifying a Custom Duration)
481

For general information on block duration, see Working with the Duration of
Blocks.

Time per Unit
Attribute

P The name of an attribute of a work object that
specifies the number of units of work. The block
multiplies the value of the attribute of the work
object by the duration to compute the duration
of the activity.

You can use dot notation to refer to the attribute
of a subobject, for example, my-subtable.my-attr.

See Computing Duration for Multiple Units of
Work.

Total Work Time M The sum of all the work times for each activity
that the block performs as of the current time.
See Understanding Total Work Time and Total
Elapsed Time.

Total Elapsed Time M The amount of time that has elapsed since the
simulation began or since you created the block
in a running simulation. See Understanding
Total Work Time and Total Elapsed Time.

Creation Time M The simulation time when the block was
created. See Understanding Total Work Time
and Total Elapsed Time.

Average in Process M The average number of concurrent activities for
the block, which is the Total Work Time divided
by the Total Elapsed Time. See How the Block
Uses Total Work Time and Total Elapsed Time.

Attribute P/M Description
482

Common Attributes of Blocks
Cost Tab

Attribute P/M Description

Cost Per Use P The fixed cost of each activity the block
processes.

Cost Per Time Unit P The variable cost of each activity, which the
block computes based on the specified Time
Unit and the duration of the block.
483

For information on configuring and computing costs for a block, see Working
with Block Costs.

Time Unit P The time unit the block uses to interpret the Cost
Per Time Unit attribute. By default, the Time
Unit is 1 hour, which means variable costs is
computed on an hourly basis.

Total Cost M The sum of the costs of each individual activity
performed by the block, which includes fixed
and variable costs assigned to the block itself, as
well as fixed and variable costs assigned to the
resources allocated to each activity.

Attribute P/M Description
484

Common Attributes of Blocks
Animation Tab

Attribute P/M Description

Active Color P The color of the block when it is currently
processing work objects.

Inactive Color P The color of the block when it is idle.

Error Color P The color of the block when it is in an error state.

Detail Color P The color of a Task block when it has detail. This
attribute is only available for the Task block.
485

Common Menu Choices for Blocks

Menu Choices Description

Delete Permanently deletes the block.

Transfer
Clone

Cuts and copies (transfers) the block from one
workspace to another, or copies (clones) the
block to a workspace. ReThink copies all of the
block’s configured attributes and detail, if one
exists.

Order Lifts the object to the top or drops to the bottom.

Nudge Moves the object up, down, left, or right by one
pixel.

Align or Distribute Align the left, center, right, top, middle, or
bottoms of two or more selected objects.
Distributes three or more selected objects
vertically or horizontally.

Rotate or Flip Rotates the object 90 degrees clockwise or
counterclockwise or 180 degrees. Flips the object
vertically or horizontally.

Properties Displays the properties dialog for the block for
configuring parameters and viewing metrics.

Create Input
Create Output

Creates an input or output path on the block,
depending on the type of block.

Snapshot Activities Displays a temporary workspace that shows the
current activities of the block. The number of
activities on the workspace corresponds to the
Current Activities of the block. Each activity
object computes metrics about the specific
activity. When the block finishes processing an
activity, ReThink deletes the activity from the
workspace; however, it does not dynamically
add activities to the workspace. See
Determining the Current Activities.

Disconnect Breaks all connections between the block and
other blocks in the model and adds junction
blocks to the ends of the stubs that remain on
the block. See Inserting a Block Between Two
Connected Blocks.
486

Common Attributes of Paths
Common Attributes of Paths
The properties dialog of a path has these tabs:

The following sections describe the attributes that appear in Modeler mode. For
information on the attributes that are available in Developer mode, see the
Customizing ReThink User’s Guide.

Set Break Causes ReThink to pause the simulation when a
work object arrives at an input path of the block.
ReThink indicates the break point by using an
indicator arrow. You set break points to help in
debugging. To continue the simulation, choose
Continue or hide the indicator. See Debugging
Blocks.

Clear Break When you have set a breakpoint for a block, this
menu choice appears allowing you to clear the
breakpoint. Clearing the breakpoint causes
work objects to continue flowing through the
block normally. To clear all break points in a
model, click the Clear Breaks button on the
toolbar.

Show Scenario Displays an indicator arrow next to the scenario
that controls this block. This menu choice is only
available when the scenario is active.

Update Updates all the metrics for the block. See
Updating Duration Metrics for Blocks.

Menu Choices Description

Tab Description

General Parameter for specifying the type of work object
that the path carries. Metrics that compute
metrics related to the number of work objects
the path carries and the amount of time the path
has been waiting.

Branch Parameters related to configuring the path for a
Branch block and Yield block.

Animation Parameters for configuring the animation color
for paths.
487

General Tab

Attribute P/M Description

Redraw Path P Determines whether or not the path
reconfigures itself when you move the
connected blocks. See Disabling Path
Redrawing.

Type P Specifies the class name of the work object that
the block processes or creates, depending on the
type of block.

The default value is bpr-object, which allows
work objects of all types to pass on the path. See
Configuring the Type of Work that Blocks
Process.

Total Insertions M The total number of work objects that have ever
been on the path.

Current Waiting M The current number of work objects that are
waiting in the path queue.
488

Common Attributes of Paths
For information on path metrics, see Analyzing the Wait Time Due to Work
Backups.

For information on menu choices related to the path queue, see Showing Work
Backups Interactively.

Branch Tab

For information on the attributes on the Branch tab, see Path Attributes that
Pertain Only to Branching.

Total Wait Time M The total amount of time that all work objects
have spent waiting in the path queue since the
start of the simulation.

Mean Wait Time M The total amount of time that all work objects
have spent waiting in the path queue (Total
Wait Time) divided by the total number of work
objects that have ever been in the path queue
(Total Insertions).

Error M A description of any error for the path. See
Debugging Blocks.

Attribute P/M Description
489

Animation Tab

For more information, see Configuring the Animation of Paths.

Attribute P/M Description

Waiting Color P The color of the path when work objects are in
the path queue due to work backups.

Empty Color P The color of the path when no work objects are
in the path queue.

Error Color P The color of the path when it is in an error state.

Selected Color P The color of the path when you select it for
certain operations, such as when you use the
Choose Original Output Path menu choice of a
Copy block.
490

Common Menu Choices for Paths
Common Menu Choices for Paths

Menu Choices Description

Delete Breaks the connection between two blocks and
adds junction blocks to the ends of the stubs that
remain on the block. See Inserting a Block
Between Two Connected Blocks.

Properties Displays the properties dialog of the path.

Snapshot Queue Displays a workspace that shows the work
objects currently waiting on the path. See
Showing Work Backups on an Input Path.
491

Associate

An Associate block relates two or more work objects that get out of sequence in a
process. For example, you use an Associate block to relate an order and its invoice
so that you can match them again later in the process. You match associated
items, using the Reconcile block. You can also store associated objects in a pool,
using the Store block, then retrieve them later in the process, using the Retrieve
block.

The Associate block synchronizes its inputs by waiting to process until all of its
inputs have arrived at the block. You can add input paths to the block to associate
more than two work objects.

You can use the Associate block to create a new association, which is a name that
links the associated work objects, or to add work objects to an existing association,
thereby associating multiple work objects, using the same association. When
reconciling multiple associated work objects, you can reconcile individual
associated work objects or all associated work objects. Similarly, if multiple work
objects are waiting on the input path of the Associate block, you can choose to
associate individual work objects or all work objects at once.

Occasionally, you might need to use the Associate block to remove work objects
from an association. For example, you might want to remove work objects from
an existing association, then create a new association between one of the work
objects and some other work object.
492

Associate
Configuring the Association Mode

The Associate block provides three operating modes:

Creating New Associations

When you use the block to create a new association, the block associates the work
objects on each input path and passes the associated objects together downstream.

To create a new association between two objects:

1 On the Block tab of the properties dialog, name the association in the
Association Name attribute, using a symbol.

This is the association name that you use downstream in a process to reconcile
the two objects.

2 Configure the Mode to be New.

3 Click the Associate All option on to create a new association between all work
objects as they arrive at the block; otherwise, use the default to create new
associations between individual work objects only.

4 Configure the output path types of the block.

Note If you use the default path type for the output paths of the block, ReThink places
both input work objects on the same output path.

For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

For example, you might associate an order and an invoice upstream in a process,
then pass each separately to Task A and Task B, which might have different

Mode Description

New Creates a new association object between the
input work objects.

Add Adds an input work object to an existing
association of another input work object, thereby
creating multiple associated work objects.

Remove Removes an input work object from an existing
association of another input work object. If no
associated work objects exist when you remove
work objects from the association, the Associate
block also deletes the association.
493

durations. The Association Name might be order-invoice. Once the individual
processing is complete, the Reconcile block reconciles the order and invoice again,
matching associated objects based on the association name.

For information on reconciling associated objects, see the Reconcile block.

Adding Work Objects to Existing Associations

Suppose you have several work objects that are all associated with a single work
object. For example, you might have a software release object that is associated
with both a software build and its documentation. To model such a process, you
might create an initial association between the software release and the software,
then add the documentation to the existing association downstream in the
process. You could then reconcile both the software and the documentation with
the software release when both tasks are complete.

To add work objects to an existing association:

1 Create a model in which you create a new association between work object A
and work object B, as described in Creating New Associations.

2 On the Block tab of the properties dialog, click the Associate All option on to
add work objects to existing associations as they arrive at the block; otherwise,
use the default to add individual work objects to existing associations.

3 Downstream in the model, create an association between work object C and
work object B, where:

• Association Name is the same as the Association Name between work
object A and work object B.

• The Mode attribute of the Associate block is Add.

For a complete example that adds work objects to an existing association, then
reconciles all of the work objects, see Reconciling All Objects.
494

Associate
Showing Associated Work Objects

To show associated work objects in a running model:

 Run the simulation in step mode and choose Show Associations on a work
object.

ReThink displays an indicator arrow next to all the associated work objects in the
model. The label of the associated objects displays the association name, while the
label of the selected object is “Original.”

For example, here is the Sink block in the example shown in Reconciling All
Objects after choosing Show Associations on the software release object:
495

Specific Attributes

Here is the Block tab of the properties dialog for the Associate block:
496

Associate
The specific attributes of the Associate block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The Associate block has no specific menu choices.

For information on the common menu choices, see Common Menu Choices for
Blocks.

Attribute Description

Association Name The name of the association that the block
creates between the associated objects. The
Reconcile block uses this association name
when it reconciles the associated objects.

Mode Whether the block creates a new
association object between the input work
objects, adds an input work object to an
existing association of another input work
object, or removes an input work object
from an existing association of another
input work object.

Associate All If multiple work objects arrive on one of
the input paths while the other path is
waiting for an object to associate, enabling
the Associate All option associates all
input work objects, according to the Mode.
If Associate All is off, the block associates
objects one at a time.
497

Batch

A Batch block gathers a group of objects into a batch before passing them together
to the downstream block. By default, ReThink waits for a critical threshold of
objects to arrive before passing them downstream. The block can also pass the
batch downstream based on the sum of a value of an attribute of an input work
object, a particular work object arriving at the block, or a specified time interval.

You can batch objects into a group and pass the group of objects simultaneously,
or you can batch objects into a container and pass the container.

The Batch block synchronizes its inputs by waiting until it receives all the objects
in the batch before it passes them downstream together.

The Batch block creates a single activity for each object it processes. For example,
if three objects are in the batch, the block creates three activities.

Configuring the Batch Mode

A Batch block provides the following operating modes:

Batch Mode Description

Number Passes the batch when a critical threshold or
number of objects arrive at the block.

Sum Passes the batch when the sum of the values of
an attribute of the input work objects exceeds a
minimum threshold.

Trigger Passes the batch when a triggering work object
arrives at the block on the specified input path.

Interval Passes the batch at a specified start and end
time, at a specified frequency, and on specified
days.

Custom Allows you to specify a custom procedure for
determining the batch.
498

Batch
Batching Objects in a Group

To batch objects in a group, specify the number of input work objects in the batch.
The block passes the objects together to the downstream block when the number
of input work objects meets the threshold.

To batch objects in a group:

1 On the Block tab of the properties dialog, configure the Batch Mode as
Number.

2 Configure the Threshold attribute to be the number of work objects in the
batch.

This example uses number mode to model the replenishment detail of a
manufacturing process. Line items of different types come into the Branch block,
which separates them by type. The Batch blocks require a minimum production
lot before the line items are manufactured and stored in inventory.

Batching Objects By Summing an Attribute of a
Work Object

You might have a batch process that determines when to pass the batch by
summing the value of an attribute of the input work object and comparing this
sum to a threshold. For example, you might batch boxes to load on a truck based
on the total weight.
499

To batch objects by summing an attribute of a work object:

1 Define a work object class definition with an attribute whose value the Batch
block will sum.

Configure the attribute type to be a quantity and provide an initial value, for
example:

weight is a quantity, initially is 100

For details, see Creating a New Class of Work Object.

2 On the Block tab of the properties dialog, configure the Batch Mode as Sum.

3 Configure the Attribute Name as the attribute of the work object whose value
the Batch block will sum.

4 Configure the Minimum Threshold as a numerical value that represents the
threshold the block will use to determine when to pass the batch.

When the sum exceeds the threshold, the block passes the batch.

5 Configure the input path type of the Batch block to be the class you defined.

This example shows a before and after view of a simple model that batches boxes,
based on the weight of each box, which is 100 pounds. When the Batch block
receives enough boxes such that the total weight equals 500 pounds, the block
passes all the work objects downstream.
500

Batch
This figure shows the Block tab of the properties dialog, which specifies the
attribute to sum and the threshold:

Batching Objects Based on a Triggering Work
Object

You might have a batch process that passes a batch downstream based on the
arrival at the block of a particular type of work object. Typically, the triggering
work object arrives at the block less frequently than the other work. For example,
you might use this mode to model an approval process for salary actions, where
the salary action requests arrive once a day, on average, and approvals are given
once a week.

When batching work objects based on a trigger object, you can configure the block
so it processes the trigger object or deletes it. If you do not identify the trigger
output path, the Batch block deletes the trigger object.
501

To batch objects based on a triggering work object:

1 Create a Batch block with at least two input paths and configure different
types of work objects.

2 On the Block tab of the properties dialog, configure the Batch Mode to be
Trigger.

3 Choose the Choose Trigger Input Path menu choice on the Batch block, then
choose Select on the input path whose work object type triggers the Batch
block.

4 If you want the Batch block to process the trigger object, choose the Choose
Trigger Output Path menu choice and choose Select on the output path that
should carry the trigger object.

This example shows three stages in a running process that models an approval
process for salary actions. The trigger input path is the path that sends approvals
into the Batch block. Because the output path has been identified as the trigger
output path, the block passes both the salary actions and approval processes onto
the output path.

The salary actions arrive at the Batch
block once a day, on average.

An approval arrives at the
block once a week.

The Batch block passes all the salary
actions and the approval downstream.

1

2

3

502

Batch
Batching Objects At Specified Time Intervals

Your process might need to batch work according to a schedule, beginning and
ending at a particular time. For example, you might process work once every
three hours between the hours of 9:00 and 5:00, Monday through Friday. If work
arrives at the Batch block approximately once an hour, on average, the block will
emit three work objects at each time interval between the designated hours.

Note If work arrives at the block at the exact same time that the batch is emitted, it is
indeterminate as to whether the work object is emitted with the current batch or
the next batch.

When you use the Batch block to batch work at specified time intervals, you
cannot specify the duration of the block; the block computes the duration for you.

To batch objects at specified time intervals:

1 On the Block tab of the properties dialog, configure the Batch Mode as
Interval.

2 Configure the Start Time and End Time as time intervals, which determine the
time at which the block emits its first and last batch on each of the specified
days.

3 Configure the Period as a time interval, which determines the times at which
the block emits each additional batch during the day.

4 Configure the Days by selecting the desired day of the week, during which
the Batch block processes batches according to the Start Time, End Time, and
Period.
503

Here is Block tab of the properties dialog for a Batch block that batches work once
every three hours on weekdays:

The following example shows two steps in a model that batches work once every
three hours during normal business hours, Monday through Friday. The Source
block generates work once an hour, 24 hours a day.

The first model shows work objects sitting on the input path of the Batch block,
waiting for the first batch. The simulation time is 9:00, which is the start time of
the Batch block. The next model shows the next step in the process when the
504

Batch
Batch block passes the batch downstream. The work objects in the batch have
been moved to show all the objects.

Batching Objects into a Container

You can use the Batch block in any mode to batch objects into a container. A
container is a work object that defines an item-list attribute in which the batch is
stored. The Batch block passes the container to its output path, rather than
passing the individual objects.

Using the Batch block to batch items into a container is similar to using the Insert
block to insert all its objects into an item-list attribute of another object.

Once you have inserted the batch into the container, you can remove the batch,
either one at a time or all at once, using the Remove block.

The Batch block creates one activity for each item in the container.

To batch items into a container:

1 Configure the output path type of the Batch block to be bpr-container, any
subclass of bpr-container, or any user-defined object that has an item-list
attribute.

The bpr-container class defines an item-list attribute named container-list. The
block stores the objects in the container-list attribute of the container.

1

2

505

2 On the Block tab of the properties dialog, configure the Batch Mode and
configure the appropriate mode attributes and paths for the particular mode.

3 Configure the Container List Attribute to be the item-list attribute of the
container, which is container-list, by default.

For example, the following figure shows a simple model that batches five objects
into a container, using number mode, processes the container, then removes the
objects all at once, using a Remove block.

For information on removing objects from a container, see the Remove block.

Showing Work Objects in the Container

To show work objects in the container:

 Run the simulation in step mode and choose Snapshot Container on a
container.

ReThink displays a workspace with all the work objects in the container, similar
to the workspace you see when you use Snapshot Queue on a path with work
backups.
506

Batch
Specific Attributes
507

The specific attributes of the Batch block are:

The mode-specific attributes of the Batch block are:

Attribute Description

Batch Mode The criteria the block uses to pass the
batch to the downstream block. The
options are: Number, Sum, Interval,
Trigger, and Custom. The default value is
Number.

Container List Attribute An attribute of the container whose value
is an item-list. You specify this attribute
when you batch objects into a container.
The default value is the container-list
attribute of a bpr-container.

You can use dot notation to refer to the
attribute of a subobject, for example,
my-subtable.my-attr.

Mode Attribute Description

Number Threshold The number of objects the Batch
block must receive before it passes
the objects onto its output path. The
default value is 1.

Sum Attribute Name An attribute of the input work
object whose value the block sums.

You can use dot notation to refer to
the attribute of a subobject, for
example, my-subtable.my-attr.

Minimum Threshold The minimum value of the sum of
the specified attribute. The block
passes the work objects when the
sum exceeds the threshold.

Interval Start Time A time interval that represents the
time at which the block emits its
first batch on each of the specified
days.
508

Batch
For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The specific menu choices for the Batch block are:

End Time A time interval that represents the
time at which the block emits its
last batch on each of the specified
days.

Period A time interval that represents a
fixed time between batches.

Days The days during which the block
emits batches according to the Start
Time, End Time, and Period.

Trigger N/A N/A

Custom Batch Procedure Name See Customization Attributes.

Mode Attribute Description

Menu Choice Description

Choose Trigger Input Path When Batch Mode is Trigger, this
menu choice identifies the input path
that carries the trigger object, which
triggers the Batch block to execute.
You must identify the trigger input
path.

Choose Trigger Output Path When Batch Mode is Trigger, this
menu choice identifies the output path
that carries the trigger object. If you do
not identify the trigger output path,
the Batch block deletes the trigger
input object.
509

For information on the common menu choices, see Common Menu Choices for
Blocks.

Customization Attributes

The customization attribute available in Developer mode for the Batch block is:

You can customize the threshold procedure to specify a different criteria for
passing the batch or container to the output path. For more information, see the
Customizing ReThink User’s Guide.

Show Trigger Input Path When the trigger input path is
selected, this menu choice displays an
indicator arrow next to the trigger
input path.

Show Trigger Output Path When the trigger output path is
selected, this menu choice displays an
indicator arrow next to the trigger
output path.

Menu Choice Description

Attribute Description

Batch Procedure Name When Batch Mode is Custom, specifies the
procedure name that determines when the
Batch block passes the batch. The default
value is bpr-batch-number-threshold.
510

Branch
Branch

The Branch block implements any kind of decision-making operation, for
example, routing, sorting, collating, or any other kind of branching.

You can branch work based on probability, type, or attribute value, or you can
interactively select the output path. You can also implement branching based on
more sophisticated logic by writing rules that set the attribute value upon which
the branching is based.

Configuring the Branch Mode

A Branch block supports the following operating modes:

Branch Mode Description

Proportion Branches work based on the proportion
specified on each output path of the block. This
is the default mode.

Dynamic Proportion Branches work based on the list of proportions
specified on each output path. The block uses
each subsequent pair of proportions each time
the work object loops through the branch.

Type Branches work based on the path type of each
output path of the block and the type of work
object that flows into the block.

Prompt Branches work to the output path that the user
selects interactively.

Attribute Value Branches work based on an attribute value of
the work object, a threshold or range, and a
mathematical operation that compares the
current value to the threshold or range. In
Attribute Value mode, you can use rules to set
the attribute value based on testing multiple
attribute values in a work object.

Custom Allows you to specify a custom procedure for
determining how to branch work objects.
511

Branching Based on Proportion

You branch work objects based on proportion by specifying a relative proportion
on each output path of the Branch block. The work objects flow more often onto
the output paths with the relatively higher proportion and less often onto the
output paths with the relatively lower proportion.

The value for Branch Proportion can be zero or any positive number, and the sum
of the values for all the output paths need not total 1.

When the values you enter add to 1, these numbers represent percentages. For
example, you might enter 0.25 on one path and 0.75 on another, in which case
ReThink passes objects approximately one-quarter of the time onto one path and
approximately three-quarters of the time onto the other path.

When the values add to a number greater than 1, these numbers represent
fractions. For example, if you enter 1 on one path, and 1 on the other path, which
is the default, ReThink passes work objects half the time on one path and half the
time on the other. If you enter 2 on one path and 5 on another path, ReThink
passes work objects approximately 2/7 of the time on one path and
approximately 5/7 of the time on the other.

The Branch block computes its probability each time a new work object arrives at
the block; the probability does not depend on the previous probability.

To branch work objects based on proportion:

1 On the Block tab of the properties dialog, configure the Branch Mode as
Proportion, the default.

2 Create the desired number of output paths on the Branch block.

3 Display the properties dialog for each output path and configure the Type to
carry any type of work object.

4 Click the Branch tab of the properties dialog for each output path and
configure the Branch Proportion to determine the relative proportion of the
time that work objects flow onto each path.

This example shows how you use the Branch block to model predictable behavior
in a sales process. The leads come in, sales calls are made, and the sales calls pass
512

Branch
to a Branch block. The Branch block uses proportions to model three potential
outcomes: the order is won, the order is lost, or a sales call must be made again.

Here is the Branch tab of the properties dialog for the output path that represents
the orders that are won:

Branching Based on a Dynamic Proportion

Suppose you have a process in which work objects loop through the Branch block,
based on some probability, where the probability of each output path changes
each time a work object loops back through the block. You model this type of
branching by using dynamic proportion mode.

To use dynamic proportion mode, you configure a list of proportions for each
output path. The block uses each subsequent proportion for each output path
each time the work object loops through the block.
513

If a work object loops through the block more than the specified number of
proportions, the block uses the last proportion in the list.

To branch work objects based on dynamic proportions:

1 On the Block tab of the properties dialog, configure the Branch Mode as
Dynamic Proportion.

2 Create the desired number of output paths on the Branch block and make one
of the output paths loop to an upstream path in the model.

3 Display the properties dialog for each output path, click the Branch tab, and
configure the relative proportions, based on the number of times a work
object loops through the model.

You specify values in the same way that you specify values in proportion mode,
either as a percentage or as a fraction.

For example, to model a process in which the likelihood of a work object looping
back through the Branch block is 75% initially, 50% the next time through, and
25% the third time, the dynamic proportions of each output path would look like
this:

Loop Path Downstream Path

.75 .25

.5 .5

.25 .75
514

Branch
The following example shows a simple model that uses dynamic proportion
mode. The Sample probe shows the Total Starts of the Branch block, which
indicates that the work object has looped through the model twice.
515

Branching Based on Type

You can branch work objects based on the type of work object by specifying the
type of each output path of the Branch block and by specifying type mode. Work
objects pass onto the output path whose type most closely matches the object
class.

For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

To branch work objects based on type:

1 On the Block tab of the properties dialog, configure the Branch Mode as Type.

2 Display the properties dialog for each output path and configure the Type to
determine on which output path each type of work object passes.

This example shows how you use the Branch block to branch different types of
line items before batching them into production lots and storing them in
inventory:

Depending on how you have defined your class hierarchy for the work objects in
your model, you can use the Branch block in type mode to branch work according
to the superior class of the object, as opposed to the object class itself. For
example, the next model generates six different types of sales calls, each from a
516

Branch
different region. The East-West Branch block branches calls according to whether
they are in the eastern or western half of the country.

The class hierarchy that supports this type of branching defines two superior
classes, eastern-half and western-half. The three eastern regions are subclasses of
the eastern-half class, and the three western regions are subclasses of the western-
half class.
517

Interactively Selecting the Output Path

You can branch work objects by interactively selecting the path on which the
work objects should pass. You use this mode for:

• Testing purposes to pass explicitly a work object onto a path that handles
exceptional cases.

• Demonstration purposes to control on which output path a work object flows.

For example, the Branch block might specify a 5% probability that an order is
returned. During normal processing, you would only rarely see work objects flow
onto this path. Therefore, to test this outcome, you can temporarily override the
branch mode and explicitly select the path with a 5% probability.

To select explicitly the output path for branching:

1 On the Block tab of the properties dialog, configure the Branch Mode as
Prompt.

2 Display the properties dialog for each output path and configure the Type so
that it can carry any type of input work object.

3 When the Branch block receives a work object, it prompts you to select an
output path for the work object.

4 Choose Select on the desired output path to select it.

The work object passes onto the selected path, and the model continues running.

For example:

Branching Based on Attribute Value

You can branch work objects based on the value of an attribute of the work object.
The block tests the current value of the specified attribute against a value
specified on the path. You can branch work based on an attribute value by using:

• A branch operation such as equality, greater than, or less than, which the
block uses to perform the comparison with an attribute of the block.

• A range, which tests against a lower and upper threshold attribute of the path.
518

Branch
To branch work objects based on an attribute value of the work object:

1 On the Block tab of the properties dialog, configure the Branch Mode as
Attribute Value.

2 Configure the Branch Attribute to name an attribute of the work object whose
value the block will test.

3 Configure the Operation to determine how the block compares the attribute
value of the work object to a value of the path.

When you are comparing symbolic values for equality, specify the =
operation, the default.

When you are comparing numeric values, specify one of the following
operations: =, /=, <, <=, >, >=, or Range.

For information on branching based on a range of values, see Branching Based
on a Range of Values.

4 Display the properties dialog for each output path, click the Branch tab, and
configure the Branch Value to determine the threshold for comparison.

The value can be a number, symbol, string, or otherwise, which passes work
objects on its path when no other condition is met.

Note Do not specify the same symbol as the Branch Value for more than one output
path; otherwise, the output path will be unpredictable.

5 On the General tab for each output path, configure the Type so it can carry
any type of input work object.

The block compares the current value of the Branch Attribute of the work object to
the Branch Value of each output path, using the Operation.

For example, the following model shows how to branch work by testing the
number-of-dependents attribute of a dependents-form to see if it is equal to a
particular value. The Branch Value of the output paths are 0, 1, 2, and otherwise.
519

Branching Based on a Range of Values

When the Operation is Range, you have several options. For each output path of
the Branch block:

• Specify a distinct range by entering an upper threshold in the Branch Upper
attribute of the path and a lower threshold in the Branch Lower attribute. The
Branch Upper must be greater than the Branch Lower.

• Specify an open-ended range by entering just an upper threshold for
comparison in the Branch Upper attribute of the path.

• Specify an open-ended range by entering just a lower threshold for
comparison in the Branch Lower attribute of the path.

Note The Branch Upper and Branch Lower of two output paths should not overlap;
otherwise, the output path will be unpredictable.
520

Branch
For example, the following model shows how to branch work by testing the
income attribute of an income-form, using a range, where the Change feed feeds a
random number into the object:
521

Here are the properties dialogs for each output path:
522

Branch
Here is the Block tab of the properties dialog for the Branch block:

Branching Based on Rules that Set the Attribute
Value

In attribute value mode, you can create a rule or a set of rules on the Branch block
detail that tests the value of one or more other attributes in the model and sets the
attribute value upon which the branching is based. The block uses the attribute
value the rule sets in the same way it uses the attribute value in normal attribute
value mode.

You can create “if” rules with multiple conditional statements, using “and” or
“or” logic. The rule should conclude a value for the attribute of the work object
specified in the Branch Attribute of the block. The concluded attribute should be
the value of the Branch Value of an output path of the block.
523

For clarity, we recommend that you create one rule for each possible value of the
Branch Value, rather than specifying an initial value for the attribute in the class
definition of the work object.

For debugging purposes, we also recommend that you always create an output
path whose Branch Value is otherwise so that if no input work object matches the
criteria specified in the rule, the block can still process the work object.

To branch work objects based on rules that set the attribute value:

1 Follow steps 1 through 5 under Branching Based on Attribute Value.

2 Choose Create Rules on the Branch block to display the detail.

The detail contains a template for creating the rule, which must have this
format:

For example, you might conclude the eligibility attribute of a contact-form
work object to be eligible by testing the income and number-of-dependents
attributes. The default value of the eligibility attribute would be ineligible. To
do this, you would substitute the following values for these placeholders:

• Substitute income and number-of-dependents for <attribute>.

• Substitute =, /=, >, >=, <, <= for <operation> and whatever value you
want to test for <value>.

• Substitute and/or with the appropriate conditional expression.

• Substitute eligibility for <branch attribute>.

• Substitute the symbol ELIGIBLE for <branch value>.
524

Branch
3 Display the Tools palette of the ReThink toolbox:

4 Select a rule and place it on the Rules detail of the Branch block.

5 Choose edit on the rule to display the Text Editor.

The Text Editor guides you through the syntax of the rule by providing
prompts below the type-in area, which you can click to enter into the rule.

6 Create the rule by clicking the prompts and typing specific attribute names
and values.

7 Once you have created the rule, delete the free text that describes the format of
the rule.

By default, the block waits the specified Rules Wait Interval of 0.05 seconds
before proceeding with execution, which should ensure that the rule is
finished executing.

8 To proceed with execution immediately without waiting, disable the
Use Rules Wait Interval option, as needed.

Rule
525

The following example shows a simple model that branches contact-form work
objects based on rules. The model feeds the income and number-of-dependents
into the contact-form. The Branch block tests each attribute according to rules and
concludes the value of eligibility. When eligibility is eligible, the object flows onto
the output path whose Branch Value is eligible, and when eligibility is ineligible,
the object flows on the other output path.
526

Branch
Here are the two rules that conclude values for the eligibility of a contact-form. The
first rule concludes a value of eligible, while the second rule concludes a value of
ineligible.
527

Here is the Block tab of the properties dialog for the Branch block, which branches
work based on the attribute named eligibility:

To view the rule on the detail of a Branch block:

 Choose Show Rules.
528

Branch
Path Attributes that Pertain Only to Branching

The Branch tab of the properties dialog of the output path of a Branch block
contains attributes that pertain only to branching:
529

The attributes of a path that pertain only to branching are:

Attribute Description

Branch Proportion In proportion mode, the proportion of the
work objects that flow onto this output
path, as follows:

• If the output path proportions add to
1, the value of this attribute represents
a percentage.

• If the output path proportions add to a
number greater than 1, the value of
this attribute represents a fraction of
the total.

See Branching Based on Proportion.

Branch Value In attribute value mode, the value the
Branch block uses when it tests the Branch
Attribute, using the Branch Attribute
Operation. The block behaves as follows:

• If the attribute value meets the criteria,
the work object flows onto this output
path.

• If no attribute value meets the criteria,
the work object flows onto the output
path whose Branch Value is the
symbol otherwise.

See Branching Based on Attribute Value.

Branch Lower In attribute value mode, when the Branch
Attribute Operation is Range, this
attribute is the lower end of the range that
the Branch block uses when it tests the
Branch Attribute. If the attribute value
meets the criteria, the work object flows
onto this output path. See Branching
Based on a Range of Values.
530

Branch
Branch Upper In attribute value mode, when the Branch
Attribute Operation is Range, this
attribute is the upper end of the range that
the Branch block uses when it tests the
Branch Attribute. If the attribute value
meets the criteria, the work object flows
onto this output path. See Branching
Based on a Range of Values.

Branch Dynamic
Proportions

In dynamic proportion mode, the list of
proportions the block uses each time a
work object loops around the path. The
Branch block uses each subsequent
proportion in the list each time a work
object loops back through the Branch
block. See Branching Based on a Dynamic
Proportion.

Attribute Description
531

Specific Attributes

The specific attribute of the Branch block is:

Attribute Description

Branch Mode Specifies how the block branches work
objects. The options are: Proportion,
Dynamic Proportion, Type, Prompt,
Attribute Value, and Custom. The default
value is Proportion.
532

Branch
The mode-specific attributes of the Branch block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Mode Attribute Description

Proportion N/A N/A

Dynamic
Proportion

N/A N/A

Type N/A N/A

Prompt Branch Prompt
Message

The message ReThink displays when it
prompts for the output path. The default
value is Please select the desired output
path.

Branch Prompt
Timeout

The period of time the user has to select
the output path on which a work object
should pass. The default value is
30 seconds.

Attribute Value Use Rules Wait
Interval

Whether to use the Rules Wait Interval.
Disable this option to proceed with
execution immediately after the rule
executes without necessarily waiting for
the rule to complete.

Rules Wait Interval The amount of time to wait for rules on
the rules workspace to execute before
proceeding with execution. The default
value is 0.05.

Branch Attribute An attribute of a work object that
determines the path on which the work
object passes.

You can use dot notation to refer to the
attribute of a subobject, for example, my-
subtable.my-attr.

Operation The operation the block uses to make the
comparison. The default value is =.

Custom Branch Procedure
Name

See Customization Attributes.
533

Specific Menu Choices

The specific menu choices for the Branch block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

Customization Attributes

The customization attributes available in Developer mode for the Branch block
are:

You can customize any of the default branch procedure to branch work objects,
based on some other criteria. For more information, see the Customizing ReThink
User’s Guide.

Menu Choice Description

Create Rules In attribute value mode, creates a
workspace for creating rules that
specify logic for concluding the value
an attribute of a work object.

Show Rules In attribute value mode, this menu
choice shows the rules that were
created on the rules workspace.

Attribute Description

Branch Procedure Name When Branch Mode is Custom, specifies
the procedure name that determines how
the block branches work objects. The
default value is bpr-branch-proportion.
534

BRMS Task
BRMS Task

The BRMS Task block invokes Business Rules Management System (BRMS) rules
on the work objects it processes. BRMS rules provide a mechanism for easily
editing, organizing, analyzing, and executing business rules. You define business
rules for a class of business objects in a given category. A business rule consists of
one or more conditions and actions, which you define interactively based on the
business object class. You invoke rules programmatically by invoking all rules in
one or more categories for a set of objects.

You can use BRMS to create individual business rules or to create more complex
sets of related business rules in a decision table, which tests conditions and take
actions on attributes defined on the same business object class. You can edit these
decision tables in G2 or Excel.

BRMS rules and decision tables are described fully in the Business Rules
Management System User’s Guide.

Configuring the BRMS Rules to Invoke

To configure the BRMS rules to invoke:

1 Create and configure the BRMS rules you want the BRMS Task block to
invoke.

For details, see the Business Rules Management System User’s Guide.

2 Show the properties dialog of the BRMS Task block and click the Block tab.

3 Configure the categories of Rule Sets the block should invoke.

When the work object arrives at the block, the specified rules are invoked for
associated objects.
535

Specific Attributes

The specific attributes of the BRMS Task block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The BRMS Task block has no specific menu choices.

For information on the common menu choices, see Common Menu Choices for
Blocks.

Attribute Description

Rule Sets The rule categories to invoke.
536

Copy
Copy

A Copy block creates multiple copies of an object. The Copy block has a single
input by default, and it can have any number of outputs. When a Copy block
receives its inputs, it outputs as many copies as it has output paths.

The block typically has a single input path. When the block processes the work
object, it copies the original work object and passes the original and the copies.
However, you can also use the Copy block with multiple input paths, in which
case it creates copies of each work object sequentially as it arrives at the block; it
does not synchronize the input work objects.

The copied objects have the same attributes and values as the original.

If the work object that the Copy block copies contains an item-list, the copy of the
work object contains the same list of items as the original, as of the moment the
object is copied.

Creating Copies of a Work Object

To create copies of a work object:

 Create one output stub for each copy of the work object you want, including
the original.

For example, if you want one copy, use the two default output paths on the block,
one for the original and one for the copy.

Note Use the default path type for the output paths of a Copy block so that the output
work objects are the same type as the input work objects. Do not configure their
type to be different from the input path type.

You can use a Copy block with a Task block to synchronize the original work
object and its copies, as the following model shows. The Copy block creates a
single copy. Task A performs specialized processing on the copy. Task B receives
the original on its left input path and the copy on its bottom input path. Task B
waits until it receives the copy from Task A before it processes, thereby
537

synchronizing the original with its copy. Task B then deletes the copy and passes
the original on its single output path.

Identifying the Original Output Path

If your model allocates a resource before a Copy block and deallocates it after the
Copy block, you need to identify the output path for the original work object of
the Copy block. Similarly, if you are associating objects before a Copy block and
reconciling them downstream, you also need to identify the output path for the
original work object.

If you do not identify the output path for the original work object, you cannot
guarantee the work object that caused the resource to be allocated will be the
same work object that causes the resource to be deallocated downstream.
Similarly, you cannot guarantee that the correct objects will be reconciled.

To identify the original output path:

1 Allocate a resource before the Copy block.

2 Deallocate a resource after the Copy block.

3 Choose the Choose Original Output Path menu choice on the Copy block to
identify the output path for the original work object, which goes to the block
that deallocates the resource.

4 Choose Select on the output path on which the original work object should be
output.

For more information on... See...

Allocating and deallocating
resources manually

Allocating the Same Resource for
Multiple Sequential Steps.

Associating and reconciling objects • Associate block.

• Reconcile block.
538

Copy
This example shows a model in which you must identify the original output path
of the Copy block:

Adding Copies to Associations

If the work object that the Copy block copies is associated with other work objects
in the model, you can choose to associate the copy with the other work objects as
well. By default, the Copy block does not add copies to associations.

To add copies to associations:

 On the Block tab of the properties dialog, click the Add to Associations option
on.

Configuring the Number of Objects to Create

You can generate several copies of new work objects each time the Copy block
processes, rather than a single copy. You specify the number of copies to generate
for each activity on each output path that does not carry the original work object.

To configure the number of copies to create on each path output path:

 On the Block tab of the properties dialog, configure the Output Count to be
the number of objects to create.

For example, this diagram generates two copies of the input work object, instead
of just one. One of the copies has been moved to show both objects.
539

Specific Attributes

The specific attributes of the Copy block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Attribute Description

Output Count The number of work object copies to create for
each activity and on each output path that does
not carry the original work object.

Add to Associations Whether the copies are associated with the same
work objects as the original.
540

Copy
Specific Menu Choices

The specific menu choices for the Copy block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

Customization Attributes

The customization attributes available in Developer mode for the Copy block are:

For backward compatibility, you can set these attributes to false. For more
information, see the Customizing ReThink User’s Guide.

Menu Choice Description

Choose Original Output Path Identifies the output path that carries
the original object, which the Copy
block copies. Choose Select on the
input path that carries the original
object to select the path.

Show Original Output Path Puts an indicator arrow next to the
chosen original output path.

Attribute Description

Copy Item Lists A truth-value that specifies whether the block
should copy the contents of attributes of work
objects that contain item-lists. The default
value is true.

Copy Item List Items A truth-value that specifies whether the block
should copy the items within item-list
attributes of work objects. The default value is
true.
541

Copy Attributes

The Copy Attributes block copies attribute values from one work object to
another. The block copies all of the user-defined attributes that are common to
both objects.

The Copy Attributes block takes two input objects, one of which you identify as
the source object and the other of which is, by default, the destination object. The
block passes the source and destination objects as outputs.

You supply values for the user-defined attributes to be copied by:

• Using a feed.

• Creating an external file of objects with user-defined attributes and values,
and use the Source block in file mode to generate objects for the model from
the file.

Copying Attributes from One Object to Another

To copy attributes from one object to another, you typically set up a class
hierarchy with classes that define the same user-defined attributes.

For example, suppose you were modeling a sales process that generates sales
orders, processes the sales orders, generates licenses, then copies all the relevant
data from the sales order to the license. The sales order might contain a customer
name, company name, order number, and part number. Once the model creates
the license, the Copy Attributes block might copy these attributes from the sales
order to the license. See the model following the series of steps for an example.

To create a class hierarchy that supports this type of information system, create a
superior class that contains the attributes common to both sales orders and
licenses. The class definition for sales orders and licenses should both inherit from
the same superior class. The sales order and license class definitions can define
additional attributes, as needed.

Once you have created the common attributes, you must identify which object is
the source. The Copy Attributes block automatically copies all common attributes
from the source to the target as soon as both objects arrive at the block. Thus, the
Copy Attributes block synchronizes its inputs by waiting to process until it
receives all input work objects.
542

Copy Attributes
To copy attributes from one object to another:

1 Create class definitions for two objects, which share one or more attributes.

Typically, you create a superior class that defines the common attributes,
which both classes inherit.

For information on creating work object class definitions, see Creating a New
Class of Work Object.

2 Configure the path types of the two input paths to the Copy Attributes block.

3 Choose the Choose Original Input Path menu choice on the Copy Attributes
block, then choose Select on the input path that carries the source object to
select the path.

When selected, the path turns magenta, indicating that you have selected it.

4 Configure the path types of the two output paths of the Copy Attributes
block.

Note If you use the default path type for the output paths of the block, ReThink will
process both input work objects on the same output path.

For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

Here is a model that generates and processes orders, creates licenses, copies data
from the orders to the licenses, then continues to process the licenses, before
deleting the orders and licenses:

The order and license classes inherit from the license-order class, which defines
the common attributes. The class-specific attributes appear as attribute displays in
the following figure. The order class also defines a class-specific attribute named
salesperson, whose value is given in the source file, along with the common
543

attributes. Note that it is not necessary to declare data types because ReThink
determines the type when it creates the object from the file.

The model generates sales objects from a file, using the Source block’s file mode.
The external file contains a list of object types, followed by a list of user-defined
attribute names and values, separated by carriage returns. This file contains four
objects.

order,customer-name,"Susan Shore",company,"Shore Sweets",order-
number,12345,part-number,"1122-A", salesperson,"ASD"
order,customer-name,"Linda Longly",company,"Longly Lights",order-
number,23456,part-number,"1123-B",salesperson,"FGH"
order,customer-name,"Allison Albright",company,"Albright
Associates",order-number,34567,part-number,"1122-
A",salesperson,"JKL"
order,customer-name,"Vicky Weis",company,"Weis Windows",order-
number,45678,part-number,"1122-A",salesperson,"ASD"

For information on how to create this external file, using a Source block, see
Generating Work Objects from an External File.

To view the attributes of an object:

 Run the simulation in step mode and display the properties of a work object.
544

Copy Attributes
Here is the User tab of the properties dialog for the first sales order the model
produces:

Attributes obtained
from source file.
545

Here is the User tab of the properties dialog for the license once the license and
the sales order pass through the Copy Attributes block:

Specific Attributes

The Copy Attributes block has no specific attributes.

For information on the common block attributes, see Common Attributes of
Blocks.

Common attributes
copied from sales order.
546

Copy Attributes
Specific Menu Choices

The specific menu choices for the Copy Attributes block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

Menu Choice Description

Choose Original Input Path Identifies the input path that carries
the object from which the block copies
the attributes. Choose Select on the
input path that carries the source
object to select the path.

Show Original Input Path Puts an indicator arrow next to the
chosen original input path.
547

Insert

The Insert block inserts objects into an item-list attribute of a container. A
container is an object of the bpr-container class, which is a built-in ReThink class
that defines an item-list attribute named container-list, any subclass of
bpr-container, or any user-defined class that defines an item-list attribute.

You use the Remove block to remove the inserted objects from the other object
downstream in the process. For example, you might want to add line item objects
to an order and remove those line items downstream in a process.

You can insert objects one at a time into the other object, or you can insert a group
of objects all at once. When you insert objects one at a time, you create a loop that
repeatedly passes the object around the process to the Insert block until some
criteria is met. Typically, you use a Branch block to create the loop.

Understanding the Paths of an Insert Block

The Insert block has two input paths and a single output path, as follows:

To configure the Insert block, you must identify which input path passes the
container. You do this by specifying the path types for each input path and
interactively identifying the container input path. You specify the attribute of the
container that defines the item-list. You do not need to identify the output path
that passes the objects in the container.

Configuring the Insert Mode

By default, the Insert block inserts a single object into the beginning of the
item-list of the container each time the block processes.

You can control whether the block inserts objects one at a time or all at once.
When you insert objects one at a time, you can control whether the block inserts

Path Description

Container input path Passes the container object with the item-list
attribute.

Object input path Passes the objects to insert into the item-list
attribute of the container.

Output path Passes the container with the objects inserted.
548

Insert
the objects at the beginning or at the end of the list first. You control this behavior
by using the Mode attribute of the block as follows:

The combination of the Insert and Remove block’s Mode specifications
determines whether the model uses a FIFO (first in, first out), FILO (first in, last
out), LIFO (last in, first out), or LILO (last in, last out) queuing algorithm.

For information on removing objects from a container, see the Remove block.

Inserting a Single Object Into a Container

By default, the Insert block inserts a single object into the item-list attribute of the
container before passing the container to the downstream block.

To insert an object into a container:

1 Display the properties dialog for one input path of the Insert block and
configure the Type to be bpr-container or a subclass of bpr-container.

This built-in ReThink class defines a container-list attribute, whose value is an
instance of an item-list. The block stores the objects in the container-list
attribute of this object.

2 Choose the Choose Container Input Path menu choice to select the input path
that carries the container object, then choose Select on the path that carries the
container to select it.

When selected, the path turns magenta indicating that you have selected it.

3 On the Blocks tab of the Insert block, configure the Container List Attribute to
be the item-list attribute of the container, whose default is the container-list
attribute of the bpr-container class.

The Insert block specifies a Mode of First, by default, which inserts one object at a
time into the beginning of the container list attribute of the container.

Mode Description

First Inserts objects one at a time into the container
list attribute, inserting the object at the
beginning of the item-list of the container. This
mode is the default.

Last Inserts objects one at a time into the container
list attribute, inserting the object at the end of
the item-list of the container.

All Inserts all the objects into the item-list at one
time.
549

Here is a simple example that packs an object into a container using the Insert
block, delivers the box using a Task block, and then unpacks the object from the
container using a Remove block. The top output path of the Unpack Box block
passes the part that the block removes from the box, and the bottom output path
passes the empty box.

For information on how to remove objects, see the Remove block.

Inserting Objects into the Container By Looping

By default, the Insert block inserts a single object into the container each time the
block processes; the block inserts a single object into the container and passes the
container downstream. One way of inserting multiple objects into the container is
by creating a loop in your diagram that continues to insert objects into the
container until a certain condition is met. For example, you might use a Branch
block to pass the container around the process based on some probability. Each
time the container arrives at the Insert block, a new object is inserted.

To insert objects into the container by looping, specify the Mode attribute of the
Insert block to be First (the default) or Last.

The following example illustrates how to use a Branch block, which loops
containers around the process based on probability, in conjunction with the Insert
block to insert objects into a container:

The Containers task creates the container object, and the Objects task creates the
objects to insert into the container. The Insert block inserts a single object from the
550

Insert
object path into the container from the container path. The resulting container
passes to a Branch block, which loops back to a Merge block, based on
probabilities. When the container loops around again, the Objects block creates
another object, which gets inserted into the container.

Inserting Objects Into the Container All at Once

Sometimes you want to insert a group of objects all at once into a container. This
might happen when containers and the objects to insert arrive at the block at
different time intervals. For example, when inserting mail into a mail truck, you
might insert all the letters that have arrived so far each time a mail truck arrives.
To insert objects all at once into a container, you specify the Mode attribute as All.

This example shows a mail delivery process in which letters arrive on average
once every five minutes, and mail trucks arrive once every hour. Each time a letter
arrives at the Load Truck task, it waits on the input path for a truck. The input
path turns green indicating that the block is waiting for its other input. When a
mail truck arrives at the Load Truck task, the block inserts all the letters that have
been waiting on the input path into the truck.

In this model, the container is a truck, the objects to insert into the container are
letters, and the Load Truck task is an Insert block:

Showing Work Objects in the Container

To show work objects in the container:

 Run the simulation in step mode and choose Snapshot Container on a
container.

ReThink displays a workspace with all the work objects in the container, similar
to the workspace you see when you use Snapshot Queue on a path with work
backups.

Input path turns green
waiting for container.
551

Specific Attributes
552

Insert
The specific attributes of the Insert block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The specific menu choices for the Insert block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

Attribute Description

Container List Attribute The item-list attribute of the container in
which the block inserts objects. The
default value is the container-list attribute
of a bpr-container.

You can use dot notation to refer to the
attribute of a subobject, for example, my-
subtable.my-attr.

Mode Specifies how the block inserts objects into
the container. The options are:

• First — Inserts objects one at a time,
with each new object first in the list,
the default.

• Last — Inserts objects one at a time,
with each new object last in the list.

• All — Inserts a group of items
simultaneously into the list.

Menu Choice Description

Choose Container Input Path Specifies the input path that carries the
container. Choose Select on the input
path that carries the container to select
the path.

Show Container Input Path Puts an indicator arrow next to the
chosen container input path.
553

Merge

The Merge block merges multiple streams of work objects into a single stream.
For example, you use this block to merge two different streams of work objects for
similar processing.

The Merge block can have any number of input paths, but it typically has only
one output path. As soon as it receives an object on any one of its input paths, it
sends the object to its output path, without waiting for its other inputs.

If the Merge block has more than one output path, the block behaves like a Branch
block in type mode. For more information, see Branching Based on Type.

Merging Multiple Streams of Work

You use the Merge block to merge together multiple streams of work of the same
type or of different types. The Merge block passes its work objects to its output
path as soon as the work object arrives. Thus, the Merge block does not
synchronize its inputs, like a Task block with multiple input paths does.

For example, if you have multiple Source blocks that emit different types of
objects, you might want to merge the objects together into a single stream to
perform similar processing of different types of work, using a single Task block.

To merge multiple streams of work into a single stream:

 Connect as many input stubs to the Merge block as you want to merge.

The Merge block typically has a single output path.

In this example, Source A, B, and C emit different types of work objects, which the
Merge block brings together into a single stream. The work objects pass to a task
block, which processes them as soon as they arrive. After the task processes the
work objects, they flow apart again using a Branch block, which branches the
554

Merge
objects based on their type. The following tasks process each type of work object
independently before deleting them.

Merging Work That Loops Around a Process

You often use a Merge block to merge work that originates upstream in a process
with work that loops around the process, using a Branch block:

For information on branching, see Branch block.

Specific Attributes and Menu Choices

A Merge block has no specific attributes or menu choices.

For information on the common block attributes, see Common Attributes of
Blocks.

For information on the common menu choices, see Common Menu Choices for
Blocks.
555

Reconcile

The Reconcile block matches together associated objects. For example, you might
use this block to match associated orders and invoices that have gotten out of
sequence in a process. When the associated objects arrive, the block outputs the
objects together, each on its own output path.

Unlike other blocks with multiple input paths that synchronize their inputs, the
Reconcile block does not insert objects waiting to be reconciled into the path
queue of the block. This means that the input path does not turn green and the
wait time of the path does not include the time the block spent waiting for the
object to be reconciled. Instead, the Reconcile block stores these objects in an
internal attribute of the block.

Reconciling Individual Associated Objects

You use the Reconcile block to match individual associated objects. You associate
the objects upstream in a process with an Associate block.

By default, the Reconcile block determines the number of associated work objects
to reconcile by looking at the number of input paths. Thus, if the block has two
input paths, it must wait until two associated work objects arrive at the block
before it reconciles them.

To reconcile individual associated objects:

1 Associate objects upstream in the process by using an Associate block.

See Associate block.

2 On the Block tab of the properties dialog, name the association in the
Association Name attribute of the Reconcile block.

This is the value of the Association Name attribute you created upstream in a
process with the Associate block.

3 Configure the input and output path types of the Reconcile block.

Note If you use the default path type for the output paths of the block, ReThink will
pass both input work objects on the same output path.
556

Reconcile
For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

For example, you might associate an order and an invoice upstream in a process
then pass each separately to Task A and Task B, which might have different
durations. Once the individual processing is complete, the Reconcile block
reconciles the order and invoice, matching associated objects based on the
association name.

Reconciling All Objects

By default, the Reconcile block reconciles each individual associated object as it
arrives on an input path of the block.

If you have used the Associate block to associate multiple work objects, you can
use the Reconcile block to reconcile all objects in the association. When the
Reconcile block reconciles all associated objects, it determines the number of
associated work objects to reconcile by looking at the named association, instead
of the number of input paths. The block must reconcile all associated work objects
in the named association. Thus, if the Reconcile block names an association that
has four associated work objects, but the block has only three input paths, it must
wait until all four associated work objects arrive at the block before it reconciles
them.

To reconcile all objects:

1 Use the Associate block to associate multiple work objects.

You can do this by using the Associate block in Add mode, by enabling the
Associate All option, or by using the Associate block in New mode with
multiple input paths.

2 On the Block tab of the properties dialog, name the association in the
Association Name attribute of the Reconcile block.

3 Enable the Reconcile All option.

4 Configure the input and output path types of the Reconcile block.
557

The following example models a software release process, which associates and
then reconciles a software release, documentation, and two different software
components. In the example, the Reconcile block sets the Reconcile All option to
be on.

The following figures show two steps in the process:

1 The first software release waits on the input path of the Reconcile block for its
associated software components and documentation.

2 When the associated software components and documentation arrive at the
Reconcile block, the block reconciles all the associated work objects in the
named association, which includes the software release, the documentation,
and both software components. Notice that the software release is still
associated with the software and documentation through a part-of-release
association. In the figure, one of the software components has been moved off
the path so both are visible.
558

Reconcile
1

2

559

Specific Attributes

The specific attributes of the Reconcile block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Attribute Description

Association Name The value that the block uses to determine
whether to reconcile two objects.

Reconcile All When creating an association between
multiple work objects, using the Associate
block, this option reconciles all associated
work objects in the named association.
Otherwise, the block reconciles all
associated work objects on the input paths.
560

Reconcile
Specific Menu Choices

The Reconcile block has no specific menu choices.

For information on the common menu choices, see Common Menu Choices for
Blocks.

Customization Attributes

The customization attributes available in Developer mode for the Reconcile block
are:

You can customize the match procedure to specify a different criteria for
reconciling the two objects. For more information, see the Customizing ReThink
User’s Guide.

Attribute Description

Match Procedure Name Determines the criteria the block uses to
reconcile two objects. The default value is
bpr-match-by-association, which
reconciles objects based on an association
name given by the Association Name
attribute.
561

Remove

The Remove block removes objects that have been inserted into an item-list
attribute of a container. For example, you might add line item objects to an order
and remove those line items downstream in a process.

You can remove objects one at a time from the container, or you can remove them
all at once. When you remove objects one at a time, you create a loop that
continues to pass the container around the process to the Remove block until all
the objects have been removed.

You create a container object by using the built-in bpr-container class, any
subclass of bpr-container, or any user-defined class that defines an item-list
attribute.

You use the Insert block or the Batch block to insert objects into a container.

Understanding the Paths of a Remove Block

The Remove block has one input path and three output paths, as follows:

To configure the Remove block, you must identify the non-empty container
output path and the empty container output path. You do this by specifying the
path types for each output path and interactively identifying each of the output
container paths. You also specify the attribute of the container that defines the
item-list. You do not need to identify the path that passes the objects in the
container.

Path Description

Input path Passes the container with the item-list attribute
that contains the objects to be removed.

Non-empty container
output path

Passes the container when it still has objects in
the item-list attribute of the container.

Empty container
output path

Passes the container when all the objects have
been removed from the item-list attribute of the
container.

Object output path Passes the work objects that the block removes
from the item-list attribute of the container.
562

Remove
Configuring the Remove Mode

By default, the Remove block removes a single object from the beginning of the
item-list of the container each time the block processes. When combined with the
default behavior of the Insert block, which inserts objects at the beginning of the
list, this technique of inserting and removing objects models a LIFO (last-in
first-out) queuing algorithm.

You can control whether the block removes objects one at a time or all at once.
When you are removing objects one at a time, you can control whether the block
removes objects from the beginning or from the end of the list first. You control
this behavior by using the Mode attribute of the block, as follows:

The combination of the Insert and Remove block’s Mode specifications
determines whether the model uses a FIFO (first in, first out), FILO (first in, last
out), LIFO (last in, first out), or LILO (last in, last out) queuing algorithm.

For information on inserting objects into a container, see Insert block.

Removing Objects from the Container By Looping

By default, the Remove block removes a single object from the container each time
the block processes. By default, the block removes the first object in the item-list
from the container. You can also remove objects one at a time by removing the last
object first.

To remove objects one at a time from the container, create a loop in your diagram
that continues to remove objects from the container until the container is empty.

To remove objects from a container one at a time:

1 Insert objects into the item-list attribute of a container by using the Insert
block or the Batch block.

For information about how to do this, see the Insert block or the Batch block.

Mode Description

First Removes objects one at a time from the
container list attribute, removing the first object
in the item-list first. This is the default.

Last Removes objects one at a time from the
container list attribute, removing the last object
in the item-list first.

All Removes all the objects from the item-list at one
time.
563

2 Use one of the output paths of the Remove block to create a loop that connects
to an upstream Merge block and configure its path type to be a type of the
container.

3 Choose the Choose Nonempty Container Output Path menu choice, then
choose Select on the output path you just configured to select the path that
carries containers that still contain objects.

This is the path that loops around the process and feeds back into a Merge
block.

When selected, the path turns magenta indicating that you have selected it.

4 Configure the path type of a second output path of the Remove block to be a
type of container.

5 Choose the Choose Empty Container Output Path menu choice, then choose
Select on the output path you just configured to select the path that carries
containers that no longer contain any objects.

This is the path that carries the container downstream.

6 Configure the path type of the third output path of the Remove block to be a
type of the object that the Remove block removes from the container.

7 On the Block tab of the properties dialog, configure the Container List
Attribute attribute of the Remove block to specify the name of the item-list
attribute of the container.

By default, the Container List Attribute refers to the container-list attribute of a
bpr-container.

8 Configure the Mode attribute to be First or Last, depending on which objects
you want to remove first.

In the following model, Source A produces containers, and Source B produces
objects to insert into the container. The Branch block causes the container to loop
around the process to insert objects into the container, based on a probability.

The container then passes to the Remove block through a Merge block, which
removes objects one at a time from the container. The bottom output path of the
Remove block passes the non-empty container, and the right output paths pass
564

Remove
the empty container and the objects that are removed. The labels in the diagram
correspond to the preceding steps.

Removing Objects from the Container All at Once

By default, the Remove block removes objects from the container one at a time.
You can also remove all the objects at once. When you use this configuration of
the Remove block, you do not need to create a loop in your model. Also, the
Remove block no longer requires the non-empty container output path.

To remove objects from a container all at once:

1 Insert objects into the item-list attribute of a container by using an Insert block
or a Batch block.

For information about how to do this, see the Insert block and the Batch block.

2 Delete one of the output paths of the Remove block.

When you remove objects all at once, the Remove block does not have a non-
empty container output path.

3 Configure the path type of one of the two output paths to name the container.

4 Choose the Choose Empty Container Output Path menu choice, then choose
Select on the other output path that carries the container to select the output
path that carries the empty container.

When selected, the path turns magenta indicating that you have selected it.

5 Configure the path type of the other output path to name the objects that are
removed from the container.
565

6 On the Block tab of the properties dialog, configure the Container List
Attribute attribute of the Remove block to specify the name of the item-list
attribute of the container.

By default, the Container List Attribute refers to the container-list attribute of a
bpr-container.

7 Configure the Remove block to specify the Mode attribute to be All.

Here is a simple example that packs a part into a box using the Insert block,
delivers the box using a Task block, and then unpacks the part from the box using
a Remove block. The top output path passes the part that is removed from the
box, and the bottom output path passes the empty box. The labels in the diagram
correspond to the preceding steps.

Showing Work Objects in the Container

To show work objects in the container:

 Run the simulation in step mode and choose Snapshot Container on a
container.

ReThink displays a workspace with all the work objects in the container, similar
to the workspace you see when you use Snapshot Queue on a path with work
backups.
566

Remove
Specific Attributes
567

The specific attributes of the Remove block are:

For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The specific menu choices for the Remove block are:

Attribute Description

Container List Attribute The item-list attribute of the container
from which the block removes objects. The
default value is the container-list attribute
of a bpr-container.

You can use dot notation to refer to the
attribute of a subobject, for example, my-
subtable.my-attr.

Mode Specifies how the block removes objects
from the container. The default value is
First, which removes the first object in the
list first. The other options are Last, which
removes the last object in the list first, and
All, which removes all objects
simultaneously from the list.

Menu Choice Description

Choose Empty Container
Output Path

Specifies the output path that carries empty
containers. Choose Select on the output path
that carries the empty containers to select
the path.

Choose Nonempty
Container Output Path

Specifies the output path that carries
containers that still have objects in them.
Choose Select on the output path that carries
containers that still have objects to select the
path.

Show Empty Container
Output Path

Puts an indicator arrow next to the chosen
empty container output path.

Show Nonempty
Container Output Path

Puts an indicator arrow next to the chosen
non-empty container output path.
568

Remove
For information on the common menu choices, see Common Menu Choices for
Blocks.

Customization Attributes

The customization attribute available in Developer mode for the Remove block is:

You can customize when the block passes the container. For more information,
see the Customizing ReThink User’s Guide.

Attribute Description

Empty Breakpoint Determines when the container is
considered empty and, thus, when it will
be passed to the empty output path. The
block looks at the contents of the container
list when the container first arrives at the
block. By default, if the list contains a
single object upon arrival, it will pass to
the empty container output path. The
default is 1.
569

Retrieve

The Retrieve block retrieves objects from a resource pool or from a database.
Typically, you add these objects to a pool or database dynamically, using a Store
block. For example, you could use this block to retrieve an object from inventory
to fill an order, or to model retrieving data from a database.

When you retrieve work objects from a database, ReThink retrieves one object for
each record, based on an SQL query. To retrieve work objects from a database,
you use the G2 Database Bridge, which provides access to external databases.

For information on how to use the Retrieve block for accessing external databases,
see Retrieving Records from a Database.

You specify the output path types to determine on which output paths the input
object and the retrieved object flow.

For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

Configuring the Retrieve Mode

A Retrieve block supports the following operating modes:

Retrieve Mode Description

Random Retrieves work objects from a pool at random.

Association Retrieves work objects from a pool, based on the
Association Name.

Database Retrieves work objects from a database.

Attribute Value Retrieves work objects from a pool, based on an
attribute value of the work object, a threshold or
range, and a mathematical operation that
compares the current value to the threshold or
range.

Custom Allows you to specify a custom procedure for
determining how to retrieve work objects from
a pool.
570

Retrieve
Retrieving Objects from a Pool

To retrieve objects from a pool, you must first store the objects in the pool, using
the Store block.

You have three options when you retrieve objects from a pool. You can retrieve
objects:

• At random.

• Based on an association name.

• Based on an attribute value.

For example, you might want to retrieve an object that is associated with another
object as one way of reconciling the associated objects, or you might want to
retrieve only those objects with an attribute value within a particular range.

Retrieving Objects from a Pool at Random

By default, the Retrieve block retrieves objects from a pool at random. You specify
the pool from which to retrieve the objects. If the resource from which you are
retrieving work objects does not have detail, ReThink displays an error message.

To retrieve objects from a pool at random:

1 Store objects in a Resource pool, using the Store block.

For example, you might store the orders in a pool named orders-pool.

See the Store block.

2 Configure the output path type of the Retrieve block to name the object to
retrieve from the pool.

For example, if you store widgets in the pool, the output path type would be
widget.

3 Configure the input path type and the other output path type to name an
existing object or just use the defaults.

4 On the Block tab of the properties dialog, configure the Retrieve Mode of the
Retrieve block to be Random.

This mode is the default.

5 Choose the Choose Pool menu choice, then choose Select on the resource pool
from which the block will retrieve objects to select the pool.

ReThink places an indicator arrow next to the pool to indicate that you have
selected it.
571

Note ReThink adds the Show Pool menu choice to the block, which places an indicator
arrow next to the selected pool. ReThink also adds the Show Blocks menu choice
to the selected pool, which identifies the blocks that are currently pointing to this
pool. These menu choices appear only when the Scenario is active.

This model shows how to store widgets to an inventory and retrieve the widgets
from the pool at random to fill an order. The Source block generates orders, which
the Manufacture Part block manufactures as widgets and then stores in inventory,
using a Store block. The order passes downstream for processing and then
retrieves a widget from the pool at random to fill the order. The labels in the
diagram correspond to the preceding steps.

Retrieving Associated Objects from a Pool

When you retrieve objects from a pool by association, you specify the pool from
which to retrieve the objects and the name of the association. The Retrieve block
passes the object and its associated object onto the two output paths of the block.

To retrieve associated objects from a pool:

1 Associate objects upstream in an model, using the Associate block.

For example, you might associate an order and an invoice.

See Associate block.

2 Store the object with an association name in a resource pool, using the Store
block.

For example, you might store the orders in a pool named orders-pool.

See Store block.
572

Retrieve
3 Configure the input path type of the Retrieve block.

The input path type is the class name of the object that is associated with the
object in the pool. For example, if you store orders in the pool, the input path
type would be invoice.

4 Configure the output path types of the Retrieve block to reflect the object and
its associated object.

For example, the output paths types would be order and invoice.

5 On the Block tab of the properties dialog, configure the Retrieve Mode to be
Association.

6 Configure the Association Name that an Associate block creates as the value
of the Association Name attribute of the Retrieve block.

For example, the Association Name might be order-invoice.

7 Choose the Choose Pool menu choice, then choose Select on the resource pool
from which the block will retrieve objects to select the pool.

ReThink places an indicator arrow next to the pool to indicate that you have
selected it.

The following figure shows a simple model that associates orders and invoices,
stores the orders in a pool, and retrieves the orders from the pool based on the
association name. The order-pool resource is a pool resource. The labels on the
figure correspond to the preceding steps.

Retrieving Objects with a Particular Attribute Value
from a Pool

You can retrieve work objects from a pool based on the value of an attribute of the
work object. The block tests the current value of the specified attribute of the work
objects in the pool against a value specified in the block. You specify the operation
that the block uses to perform the comparison in an attribute of the block, such as
573

equality, greater than, or less than. You can also specify a range operation, which
tests against a lower and upper threshold attribute of the block.

To retrieve work objects based on an attribute value of the work object:

1 On the Block tab of the properties dialog, configure the Retrieve Mode to be
Attribute Value.

2 Configure the Retrieve Attribute to name an attribute of the work objects in
the pool whose value the block will test.

3 Configure the Operation to determine how the block compares the attribute
value of the work object to a value of the block.

When you are comparing symbolic values for equality, specify the =
operation, the default.

When you are comparing numeric values, specify one of the following
operations: =, /=, >, >=, <, <=, or Range.

For information on retrieving work objects based on a range of values, see
Retrieving Based on a Range of Values.

4 Configure the Attribute Value to determine the threshold for comparison.

The value can be a number, symbol, string, true, or false.
574

Retrieve
For example, here the Block tab of the properties dialog that retrieves objects
whose color attribute equals red:

5 Configure the output path types of the Retrieve block.

The block compares the current value of Retrieve Attribute of the work objects in
the pool to the Attribute Value, using the Operation.
575

The following example is a variation on the previous examples of retrieving
blocks from a pool, where the Retrieve block retrieves only those widgets whose
color is red. A Change feed determines the color of the current widgets in
inventory.

Retrieving Based on a Range of Values

When the Operation is Range, you have several options:

• Specify a distinct range by entering an upper threshold in the Range Upper
attribute of the block and a lower threshold in the Range Lower attribute. The
Range Upper must be greater than the Range Lower.

• Specify an open-ended range by entering just an upper threshold for
comparison in the Range Upper attribute of the block.

• Specify an open-ended range by entering just a lower threshold for
comparison in the Range Lower attribute of the block.

For example, if the Operation is Range, and you specify the Range Lower as 1 and
the Range Upper as 4, the block retrieves work objects from the pool whose
specified attribute is greater than or equal to 1 and less than or equal to 4.
576

Retrieve
Retrieving All Work Object

You can retrieve all work objects from a pool or database, according to the
specified retrieve mode:

Note In database retrieve mode, the default behavior is to retrieve the next work object
from the table.

To retrieve all work objects from a pool or database:

 On the Block tab of the properties dialog, click the Retrieve All option on.

Retrieving Copies of Work Objects from a Pool

When retrieving work objects from a pool, using random, association, or attribute
value mode, you can choose to retrieve a copy of the work object, rather than the
work object itself. When retrieving a copy, the block creates a copy of the work
object that meets the specified criteria, leaving the original object in the pool.

Note The Retrieve Copy option does not apply to database retrieve mode; database
retrieve mode always copies the data from the table and never deletes the record
from the database.

To retrieve a copy of a work object from a pool:

1 On the Block tab of the properties dialog, configure the Retrieve Mode to be
any mode except Database.

2 Click the Retrieve Copy option on.

In this retrieve mode... The block retrieves...

Random All work objects in the pool.

Association All associated work objects in the pool.

Database All records in the table, and uses the data to
create multiple work objects.

Attribute Value All work objects that meet the criteria in the
pool.
577

Adding Retrieved Work Objects to Associations

If you are retrieving work objects from a pool by creating a copy, and if the
retrieved work object is associated with another work object in the model, you can
choose to make the copy be associated with the other work object. By default, the
Retrieve block does not add copies to associations.

To add retrieved copies to associations:

1 On the Block tab of the properties dialog, configure the Retrieve Mode to be
any mode except Database.

2 Click the Retrieve Copy option on.

3 Click the Add to Associations option on.

Determining How the Block Handles Objects Not
Found

By default, when the block cannot find an object that meets the association
criteria, or when the block cannot find an object in the pool, the block sends the
input object onto the specified output path anyway. You can create a specific
output path to pass objects for which an associated object or object from the pool
is not found.

For example, suppose you are retrieving invoices from a pool based on an
association with orders, and the block cannot find an invoice associated with a
particular order. You might want to pass the order onto a special output path.

To specify an output path for input objects that the block cannot retrieve:

1 Create another output path on the block.

2 Configure the path type of the new output path to be the input object type.

Given the example above, the output path type would be invoice.

3 Choose the Choose Not Found Output Path menu choice, then choose Select
on the path you just created to select the output path that passes the objects
whose association cannot be found.

When selected, the path turns to magenta indicating that you have selected it.
578

Retrieve
Specific Attributes
579

The specific attributes of the Retrieve block are:

Attribute Description

Retrieve Mode Specifies how to retrieve objects. The
options are: Random, Association,
Database, Attribute Value, and Custom.
The default value is Random.

Retrieve All When selected, retrieves all work objects
from the pool or database, according to
the Retrieve Mode:

• In random mode, retrieves all work
objects from the pool.

• In association mode, retrieves all the
associated work objects in the pool.

• In database mode, retrieves all the
records in the table and uses the data
to create multiple work objects.

• In attribute value mode, retrieves all
work objects from the pool that meet
the criteria.

Retrieve Copy When selected, retrieves a copy of the
work object, leaving the original work
object in the pool. Applies to all retrieve
modes except Database.

Add to Associations When Retrieve Copy is selected,
determines whether the block adds the
associations of the retrieved work object to
the copy.
580

Retrieve
The mode-specific attributes of the Retrieve block are:

Mode Attribute Description

Association Association Name The criteria that the block uses to
determine which object to retrieve
from the pool. Typically, the value
of this attribute is an association
name that an Associate block
creates.

Database Database Interface Name

(Database tab)

The name of the Database Interface
object that allows access to an
external database. See Retrieving
Records from a Database.

SQL Query

(Database tab)

An SQL query that queries the
external database named in
Database Interface Name. ReThink
retrieves one work object for each
record that matches the query. The
attributes of each work object
correspond to the fields in each
record. See Creating an SQL Query
for Accessing the Data.
581

For information on the common block attributes, see Common Attributes of
Blocks.

Attribute Value Retrieve Attribute An attribute of a work object to
compare with the Attribute Value
to determine if the block should
retrieve the work object.

You can use dot notation to refer to
the attribute of a subobject, for
example, my-subtable.my-attr.

Attribute Value The value the Retrieve block uses
when it tests the Retrieve Attribute,
using the Operation. If the attribute
value meets the criteria, the block
retrieves the work object. If no
attribute value meets the criteria,
the block does not retrieve the work
object.

Range Lower When the Operation is Range, this
attribute is the lower end of the
range that the Retrieve block uses
when it tests the Retrieve Attribute.
If the attribute value meets the
criteria, the block retrieves the work
object.

Range Upper When the Operation is Range, this
attribute is the upper end of the
range that the Retrieve block uses
when it tests the Retrieve Attribute.
If the attribute value meets the
criteria, the block retrieves the work
object.

Operation The operation the block uses to
make the comparison. The default
value is =.

Custom Lookup Procedure Name See Customization Attributes.

Mode Attribute Description
582

Retrieve
Specific Menu Choices

The specific menu choices for the Retrieve block are:

Note When you choose a pool for the Retrieve block by using the Choose Pool menu
choice, ReThink adds a menu choice to the resource pool’s menu called Show
Blocks. This menu choice places an indicator arrow next to the block or blocks that
are currently pointing to that pool.

For information on the common menu choices, see Common Menu Choices for
Blocks.

Menu Choice Description

Choose Not Found
Output Path

Identifies the output path of the Retrieve
block that passes objects for which an
associated object or object from the pool
cannot be found. Choose Select on the
output path you want to select the path.

Show Not Found
Output Path

Puts an indicator arrow next to the chosen
not found output path.

Choose Pool In random lookup or association lookup
modes, chooses the resource pool from
which the Retrieve block retrieves objects.
Choose Select on the pool from which to
retrieve objects to select the pool.

Show Pool In random lookup or association lookup
modes, displays an indicator arrow next to
the pool that the Retrieve block has
identified. This menu choice only appears
when you have already chosen a pool and
when the scenario is active.
583

Customization Attributes

The customization attribute available in Developer mode for the Retrieve block is:

You can customize the procedures that ReThink uses to retrieve blocks from a
pool. For backward compatibility, you can set the copy-item-lists and copy-item-
list-items attributes to false. For more information, see the Customizing ReThink
User’s Guide.

Attribute Description

Lookup Procedure Name Determines how the block retrieves objects
from a pool. The default value of this
procedure in the subtable is bpr-random-
lookup-from-pool, which retrieves objects
from the pool at random.

Copy Item Lists When true and when Retrieve Copy is
true, copies the item-list attributes of the
work object.

Copy Item List Items When true and when Retrieve Copy is
true, copies the items contained in the
item-list attributes of the work object.
584

Sink
Sink

The Sink block signals the end of a process and is the counterpart to a Source
block. You position this block at the end of a process. A Sink block deletes all the
work objects it receives.

Note To probe a Sink block to obtain metrics about work objects, you must configure
the probe to trigger in the start phase by configuring the Phase attribute of the
probe.

Signalling the End of a Process

You use the Sink block at the end of a process to delete its input work objects. The
block permanently deletes the work objects it receives on its input path or paths.

Note If you do not use a Sink block or a block with no output paths at the end of a
process in a model, work objects accumulate on the unconnected path. Therefore,
we recommend that you always use a Sink block to delete work objects at the end
of a process when you do not need to save the data.

To delete objects at the end of a process:

 Connect to the Sink block the output stubs from upstream blocks, whose work
objects you want to delete.

Tip When you want to delete multiple streams of work, it is sometimes easier to
delete the existing input stub on the Sink block first and then connect the output
stubs from the upstream block directly to the Sink block.

If you do not want to delete the work objects at the end of a process, you can use a
Store block instead to store the objects in a resource pool. For an example, see
Storing Work Objects in a Pool.
585

You can use multiple Sink blocks to delete multiple streams of work at the end of
a process, or you can use a single Sink block and connect as many input paths as
you need, as these two models show:

Specific Attributes and Menu Choices

A Sink block has no specific attributes or menu choices.

For information on the common block attributes, see Common Attributes of
Blocks.

For information on the common menu choices, see Common Menu Choices for
Blocks.
586

Source
Source

The Source block generates work objects as input to a model. In the default mode,
the block generates work objects based on the type of its output path and the
mean time specified for the block. By default, the Source block uses a random
exponential function to compute the arrival time of work objects.

You can generate work objects by specifying:

• Object types on the Source block’s output paths.

• Object types, attributes, and values in an external file.

• An SQL query and external database, which generates one object for each
record in the database.

When generating work objects from a file, you can determine whether the
simulation stops or continues when it reaches the end of the file.

When generating work objects from a database, you must create and configure a
Database Interface object to provide access to the external database.

For information on how to use the Source block for accessing external databases,
see Sourcing Records from a Database.

You can use the Store block to store object types and attribute values to a file or
database, or to store object types, attribute values, and arrival times to a file, and
then use the stored data as input to a Source block. In this way, you can rerun the
same simulation to perform “what-if” analysis. For example, you might want to
experiment with different work flow models or resource constraints, using the
same set of input data.
587

Configuring the Source Mode

A Source block supports the following modes for determining the type of the
work objects it generates, and in object file mode and database mode, the attribute
values of each work object:

Generating Work Objects Based on the Path Type

By default, the Source block uses Type mode to generate work objects, based on
the output path type of the Source block.

To generate work objects based on the path type:

1 On the the Block tab of the properties dialog, configure the Source Mode to be
Type.

You can use the default value for Output Count.

2 Create output paths for the Source block for each type of work object you
want to create.

3 Configure the Type attribute of each output path.

ReThink generates work objects of the type specified on the output path(s), at
intervals computed based on the mean time.

If the class definition of the work object does not already exist, ReThink
automatically creates one. The work object that ReThink creates is a subclass of
bpr-object.

Mode Description

Type Generates work objects, based on the Type
attribute specified on the output path of the
Source block.

Object File Generates work objects, based on the object
types and attribute values specified in an
external text file.

Database Generates work objects, based on records and
fields in an external database.

Custom Uses a custom procedure to determine how the
block generates work objects.
588

Source
Configuring the Number of Objects to Generate for
Each Output Path Type

By default, each time the block executes, it generates one work object on each
output path. When Source Mode is Type, you can specify the number of work
objects to generate on each output path for each activity of the block.

To specify the number of objects to generate for each output path:

1 On the Block tab of the properties dialog, configure Source Mode to be Type.

2 Configure the Output Count attribute to be the number of work objects to
generate.

For example, this model generates two invoices, one of which has been moved to
show both objects:

Generating Work Objects from an External File

You can specify in an external file the types of objects a Source block generates
and values for any user-defined attributes the object defines. The Source block
generates one work object for every object in the file. You can determine if the
block generates work objects continuously or stops when it reaches the end of the
file.

Format of Object File

The basic format of the object file looks like this, where each new object is
separated by a carriage return:

object-type, attribute, value, attribute, value...
object-type, attribute, value, attribute, value...
etc.

For example, this file generates three orders:

widget, color, red
widget, color, blue
widget, color, yellow
589

You can also specify an output file with attribute values that contain item-lists as
follows:

object-type, attribute, ((object-type, attribute, value, attribute, value ...),
(object-type, attribute, value, attribute, value ...),
(...))

object-type, attribute, ((object-type, attribute, value, attribute, value ...),
(object-type, attribute, value, attribute, value ...),
(...))

etc.

For example, this file generates two software products, each with an item-list
attribute named line-items. Each item in the list is an instance of the line-item class
and contains two attributes, product-name and product-version.

software-product, line-items, ((line-item, product-name, "G2", product-
version, "8.2 Rev. 0"), (line-item, product-name, "ReThink", product-
version, "5.0 Rev. 0"))
software-product, line-items, ((line-item, product-name, "G2", product-
version, "8.2 Rev. 1"), (line-item, product-name, "GDA", product-version,
"5.0 Rev. 0"))

Note The class definition and attribute names must exist before you read object types
from a file. If an object file contains attributes that are item-lists, those attributes
must also exist. If the class definition does not exist, or if the class definition does
not specify all the attributes in the file, ReThink generates an error.

For information on how to create work objects with user-defined attributes, see
Creating a New Class of Work Object.

Generating Work Objects Continuously

For example, you might create a file that specifies a single object type that repeats,
or you might create a file that specifies numerous different types of object files in
a particular order, which stops when it reaches the end of the file.

To generate work objects from a file continuously:

1 Create an external file of object types and optional attribute names and values.

You can generate this file by using an external editor or by using the Store
block.

For information on how to generate this file by using a Store block, see Storing
Work Objects to a File.

2 Create class definitions for each object type specified in the external file.

Be sure the class definitions contain class-specific attributes for all user-
defined attributes specified in the file.
590

Source
For information on how to create a class definition with class-specific
attributes, see Creating a New Class of Work Object.

3 On the Block tab of the properties dialog, configure the Source Mode to be
Object File.

4 Configure the Object File Name to refer to the external file.

If you have created the external file by using the Store block, the Object File
Name attribute is the same as the Object File Name you specify in the Store
block.

5 Configure the output path type of the Source block to be compatible with the
work objects in the file.

Note ReThink ignores the objects in the file whose path type is incompatible with
the output path type of the Source block.

6 Configure the duration of the Source block.

The Source block generates one work object for each line in the file. The attributes
of the work objects correspond to the attribute names and values specified in the
file.

Here is the first example above, which generates widgets with different values for
the color attribute:
591

Here is the second example above, which generates software products with
different values for the line-item attribute:

Stopping Generating Work Objects at the End of the File

By default, the Source block generates work objects continuously by looping back
to the beginning of the file when it reaches the end. You can cause the Source
block to stop when it reaches the end of the file.

To stop generating objects at the end of the file:

1 On the Block tab of the properties dialog, configure the Source Mode to be
Object File.

2 Click the Repeat Object File attribute off.

ReThink generates as many work objects as are specified in the file and then
stops.

You can also control when the Source block stops generating work objects by
specifying the maximum number of objects to create. For more information, see
Configuring the Maximum Number of Objects.

Configuring Duration and Objects from an External
File

You can use a combination of a duration file and an object file to create objects,
using a Source block. By specifying different values for the following two
attributes, you can control which file determines the number of objects the Source
block creates:

• The Repeat Duration File attribute on the Duration tab of the properties
dialog, which controls whether the duration file repeats. You configure this
attribute when the Distribution Mode is Duration File.

• The Repeat Object File attribute on the Block tab of the properties dialog,
which controls whether the object file repeats.
592

Source
The following table summarizes the effects of different combinations of these two
attributes:

You can also specify the maximum number of objects that the source emits to
control the number of objects that flow into a model. For more information, see
Configuring the Maximum Number of Objects.

For information on configuring duration from a file, see Specifying Duration from
a File.

Repeat File Settings for Object and Duration Files

Repeat File

Duration Object Effect

on off Source creates one object for each entry
in the object file. If the duration file
contains fewer entries than the object
file, ReThink cycles to the beginning of
the duration file to obtain durations for
the remaining entries in the object file.

off on Source creates one object for each entry
in the duration file. If the object file
contains fewer entries than the duration
file, ReThink loops to the beginning of
the object file to obtain types and
attribute values for the remaining
entries in the duration file.

on on Source creates objects continuously,
cycling back to the beginning of each file
when it reaches the end. If the files
contain a different number of entries,
ReThink pairs the current object entry
with the current duration entry,
regardless of its position in the file.

off off Source creates the number of objects in
the file that contains the fewest entries.
ReThink stops processing when it
reaches the end of the shortest file.
593

Generating Work Objects

Because a Source block has no input paths, you need to start the block explicitly to
generate work objects. You start a source in one of three ways.

Note The Scenario must be active for these menu choices to be available on the Source
block.

To generate work objects from a Source block:

 Choose Start on the Source block to generate work objects continuously
according to the specified duration.

or

 Choose Single Shot on the Source block to generate a single work object.

or

 Click the Start All button on the toolbar to generate work objects for all Source
blocks associated with the scenario.

The Start and Single Shot menu choices start the source and continue running the
model. The Start All button also automatically resets the model.

Configuring the Maximum Number of Objects

You can specify the maximum number of work objects that the Source block emits
so that the simulation stops when the maximum is reached. This can be useful for
testing purposes to limit the number of objects the model processes.

To limit the number of objects a Source block generates:

 On the Block tab of the properties dialog, configure the Maximum Starts to be
the number of objects to generate.

If you are generating object types or durations from an external file, the
Maximum Starts attribute takes precedence over the length of the files.
594

Source
Configuring the Start and End Times

You can specify the start and end times of the first and last work objects,
respectively, independent of duration. This feature allows you to designate start
and end times for portions of a simulation.

To specify the start and end times of the first and last work objects:

1 On the Block tab of the properties dialog, configure the Start Time to be the
time at which the first work object is generated, for example, 10 seconds,
8 hours, or 1 week.

2 Configure the End Time to be the time at which the last work object is
generated.

ReThink converts these durations to seconds in the dialog.

The Source block generates its first work object and its last work object at exactly
the start time you specify, regardless of its duration. Thus, if the Source block
specifies 45 minutes as the Start Time and 60 minutes as the End Time, and it
specifies exactly 10 minutes as its duration, it would generate three work objects
at times 45 minutes, 55 minutes, and 60 minutes. When it generates its last work
object, the block stops processing.
595

Specific Attributes

The specific attributes of the Source block are:

Attribute Description

Source Mode Specifies how the block generates work objects.
The options are: Type, Object File, Database,
and Custom. The default value is Type.

Maximum Starts The maximum number of work objects the
Source block can create.
596

Source
For information on the common block attributes, see Common Attributes of
Blocks.

The mode-specific attributes of the Source block are:

Start Time The time at which the Source block generates it
first work object, specified as a duration. For
example, 10 minutes, 1 hour and 30 minutes,
12 days. ReThink converts the duration to
seconds.

End Time The time at which the Source block generates its
last work object and stops processing, specified
as a duration.

Attribute Description

Mode Attribute Description

Type Output Count The number of work objects to
create for each activity on each
output path.

Object File Object File Name The filename of the external file that
contains object types, attribute
names, and attribute values. The
filename must be a complete
pathname.

Repeat Object File Whether the Source block loops
back to the beginning of the object
file to continue generating work
objects or whether it stops when it
reaches the end. The default value
is on.

Database Database Interface Name

(Database tab)

The name of the database interface
object that allows access to an
external database. See Sourcing
Records from a Database.
597

Specific Menu Choices

The specific menu choices for the Source block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

SQL Query

(Database tab)

An SQL query that queries the
external database named in
Database Interface Name. ReThink
generates one work object for each
record that matches the query. The
attributes of each work object
correspond to the fields of each
record. See Creating an SQL Query
for Accessing the Data.

Repeat Database

(Database tab)

Whether the Source block loops
back to the beginning of the
database to continue generating
work objects or whether it stops
when it reaches the end. The
default value is on.

Custom Source Procedure Name See Customization Attributes.

Mode Attribute Description

Menu Choice Description

Single Shot Generates a single work object on the output
path.

Start Generates work objects on the output path
continuously. The frequency of work objects
depends on the duration of the block.
598

Source
Customization Attributes

The customization attribute available in Developer mode for the Source block is:

You can customize the procedure that ReThink uses to generate work objects. For
more information, see the Customizing ReThink User’s Guide.

Attribute Description

Source Procedure Name When Source Mode is custom, specifies
the procedure that the block uses to
determine how it generates work objects.
The default value is bpr-source-type.
599

Store

The Store block stores objects in a resource pool, file, or database. You use this
block to model database operations or inventory fluctuations. For example, you
use a Store block to model saving data to a customer database or an order
database, or saving line items in a manufacturing inventory. You use the Retrieve
block to retrieve objects from a pool or database.

When you store objects to a file or database, you can store the object types and
user-defined attribute values. When you store objects to a file, you can also store
the arrival time between objects. You can then use this file or database as input to
the Source block to rerun the same simulation, for example, to test a different
work flow configuration or a different set of input parameters.

Note When viewing the output files that ReThink generates, use an editor that displays
each line of text on its own line.

When you store work objects to a database, ReThink creates or updates one
database record for each work object the block processes. To store work objects to
a database, you must create and configure a Database Interface object, which
provides access to external databases.

For information on how to use the Store block for accessing external databases,
see Storing Work Objects to a Database Table.

Configuring the Store Mode

A Store block supports the following modes for determining how it stores work
objects:

Mode Description

Pool Stores work objects to a resource pool.

File Stores work objects to a text file.

Database Stores work objects to an external database.

Custom Uses a custom procedure to determine how the
block stores work objects.
600

Store
Storing Work Objects in a Pool

One use of resource pools is to store work objects in the pool dynamically during
processing. To do this, you use the Store block to store work objects to a pool. You
use this technique to model database or inventory operations.

ReThink clears the pool when you reset the model. If your model depends on the
fact that objects initially exist in the pool, you must populate the pool with objects
before you run the simulation. You can do this by using a G2 procedure or by
manually transferring work objects to the pool.

For information on creating procedures, see G2 Reference Manual.

To store work objects in a pool, configure the block to refer to the pool.

You have two options when storing objects to a pool:

• You can store work objects in a pool as a way of signalling the end of a
process, instead of using a Sink block.

• You can store associated objects in a pool and retrieve the object and its
associated object downstream in a process with a Retrieve block.

You can also store resources in a pool dynamically, using the Store block.

To store work objects to a pool:

1 Create a resource pool from the Resources palette of the ReThink toolbox.

You can also create one of the other types of resources; however, if you do,
you need to create a detail for the resource.

2 On the Block tab of the properties dialog, configure the Store Mode to be Pool.

3 Choose the Choose Pool menu choice on the Store block, then choose Select on
the pool in which the Store block will store objects to select the pool.

ReThink places an indicator arrow next to the selected pool indicating that
you have selected it.

Note ReThink adds the Show Pool menu choice to the block, which places an indicator
arrow next to the selected pool. ReThink also adds the Show Blocks menu choice
to the selected pool, which identifies the blocks that are currently pointing to this
pool.

This example shows a simple model that creates orders and invoices, associates
the order and the invoice, stores the orders in a resource pool, then retrieves the
601

associated orders from the pool. The File Order task stores orders in the PC
Database resource pool. The Retrieve Order task retrieves the order from the pool.

Storing Work Objects to a File

You can store objects to a file by using file mode. When you store objects to a file,
ReThink stores the object type and any user-defined attributes defined for the
object.

The format of the object file looks like this, where each object is separated by a
carriage return:

object-type,attribute,value,attribute,value...
object-type,attribute,value,attribute,value...
etc.

For example:

ORDER,TIMESTAMP,1174
ORDER,TIMESTAMP,7511
ORDER,TIMESTAMP,8822

You can use this file as input to a Source block to generate work objects in a
model. In this way, you can create a reproducible model that uses the same
objects and values each time you run the simulation.

For information on how to generate work objects from this file, see Generating
Work Objects from an External File.

Note ReThink appends new object data to existing files, rather than overwriting the
file. To create a new file, delete the existing file before running the model.

To store objects to a file:

1 On the Block tab of the properties dialog, configure the Store Mode to be File.

2 Configure the Object File Name to be the file name in which to store the work
objects.
602

Store
You must specify a complete pathname.

Note When you store user-defined attributes to a file, the attributes must have a value;
otherwise, ReThink ignores the attribute.

For example, suppose you create a model that generates orders and feeds a
timestamp into a user-defined attribute named timestamp when the order is
created. Thus, this timestamp reflects the creation time of each order.

If you save the objects and their associated timestamps to a file, you could then
use the file to generate objects in another model, using a Source block in file
mode. This figure shows such a model and sample output file:

Typically, the model updates a user-defined attribute of a work object sometime
during the process as opposed to at the beginning of the process. However, this
example will also be used to demonstrate how ReThink stores duration times in a
file, as the following section describes.

Storing Arrival Times to a File

You can save to a file the difference in creation times between objects. You can
then use this file with a Source block to provide arrival times from a file.

For information on how to use this file to specify the duration of a Source block,
see Specifying Duration from a File.

To store object arrival times to a file:

1 On the Block tab of the properties dialog, configure the Store Mode to be File.

2 Configure the Duration File Name to be the file name in which to store the
arrival times.

You must specify a complete pathname.

PRODUCT-ORDER,TIMESTAMP,1174
PRODUCT-ORDER,TIMESTAMP,7511
PRODUCT-ORDER,TIMESTAMP,8822
PRODUCT-ORDER,TIMESTAMP,11101
etc.
603

Using the model shown in Storing Work Objects to a File, suppose you were to
store arrival times to a file. The duration file would look like this:

1174
6337
1311
2279

Notice that the first time is the same as the first timestamp in the object file created
in the previous example, which corresponds to the creation time of the object; the
second timestamp is 6337 seconds later; the third timestamp is 1311 seconds after
that, and so on.

Thus, ReThink creates arrival times by subtracting each subsequent object’s
creation time from the previous object’s creation time.

Specific Attributes
604

Store
The specific attribute of the Store block is:

For information on the common block attributes, see Common Attributes of
Blocks.

The mode-specific attributes of the Store block are:

Attribute Description

Store Mode Specifies how the block stores objects. The
options are: Pool, File, Database, or
Custom. The default is Pool.

Mode Attribute Description

Pool N/A N/A

File Object File Name The file name that the block uses
when it stores object types and
user-defined attribute names and
values to a file. The filename is a
complete pathname.

Duration File Name The file name that the block uses
when it stores durations to a file.
The filename is a complete
pathname.

Database Database Interface Name

(Database tab)

The name of the Database Interface
object that allows access to an
external database. See Storing Work
Objects to a Database Table.

Database Table

(Database tab)

The name of a table within the
database in which the Store block
creates or updates the records. If
you do not specify the Database
Table, the Store block uses the SQL
Statement.

Database Key

(Database tab)

An attribute of the work object,
which serves as a key for updating
existing records in the database.
605

Specific Menu Choices

The specific menu choices for the Store block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

SQL Query

(Database tab)

When Database Table is not
specified, an SQL query that
queries the external database
named in Database Interface Name.
ReThink stores one work object in
each record that matches the query.
The attributes of each work object
correspond to the fields of each
record. See Creating an SQL Query
for Accessing the Data.

Custom Store Procedure Name See Customization Attributes.

Mode Attribute Description

Menu Choice Description

Choose Pool Chooses the resource pool in which the Store
block stores objects. Choose Select on the pool
in which to store objects to select the pool.

Show Pool Displays an indicator arrow next to the pool
that the Store block has identified. This menu
choice only appears when you have already
chosen a pool.
606

Store
Customization Attributes

The customization attribute available in Developer mode for the Store block is:

You can customize the procedure that ReThink uses to store work objects, as well
as several attributes related to database mode. For more information, see the
Customizing ReThink User’s Guide.

Attribute Description

Store Procedure Name When Store Mode is Custom, specifies the
procedure that determines how the block
transfers objects to the detail of the
resource pool. The default value is
bpr-store-pool.

Database Input Object
Name

The name by which you reference the
input work object.

Database Quote String The character that ReThink uses to specify
a text string. The default value is ‘.

Database Quote In Text
String

The character that ReThink uses to specify
an embedded quote character within a text
string. The default value is ".
607

Task

The Task block represents any activity that processes work objects in a model.
This block can have any number of inputs and outputs for processing singular or
multiple streams of work.

A Task block represents a core activity or a collection of activities or subprocesses.
Typically, you decompose a Task block level by level by adding detail.

If a Task block has multiple inputs, it waits until it has received all of its inputs
before it passes objects onto any output paths, thereby synchronizing its inputs.

The number of output paths and their types determines whether the Task block
passes an object downstream, creates a new object, or deletes an existing object.
The Task block:

• Processes all input work objects for which output paths of a corresponding
type exist.

• Creates new work objects on output paths for which no corresponding input
path type exists.

• Deletes input work objects for which no corresponding output path type
exists.

When configuring the Task block to delete the input work object and create a new
work object of a different type, you can configure the block to copy attribute
values from the input work object to the output work object.

For a general explanation of how ReThink determines the output path type for
blocks with multiple output paths, see Determining the Output Path Based on Its
Type.

Processing Work and Sending It Downstream for
Further Processing

One basic type of processing involves receiving an object, processing that object,
and then sending the same object downstream for further processing. This is the
simplest way of using the Task block.
608

Task
To process an object and send it downstream:

1 Configure the type of the input path of the Task block.

Because the default path type is bpr-object, you do not need to configure the
type of the output path. ReThink automatically passes to the output path the
work object that the block receives.

2 On the Duration tab of the properties dialog, configure the duration of the
task.

The duration of the task represents the amount of processing applied to a
particular work object. You determine the amount of time that the Task block
contributes to the overall process time based on its duration.

Here is a simple example that processes orders, with the path types labeled:

Notice that the output path type is bpr-object, which allows the object to travel on
the path, because the order class is a subclass of bpr-object.

Processing Multiple Streams of Work
Synchronously

Another common modeling technique is to process multiple streams of different
types of work as part of the same activity. You use this technique when a
particular task requires multiple inputs before it can process.

For example, your model might require that an order and an invoice both be
signed by the same manager before it is filed and the invoice is sent out.

You typically use a Task block to accomplish this type of processing. The Task
block waits to process its inputs until all inputs are available. This type of
processing is called synchronized processing.

To synchronize the processing of multiple streams of work:

1 Create additional input paths for the Task block.

2 Configure the path type of all input paths.
609

3 Depending on how you want to process the objects, you have two options:

• To send the objects downstream on separate output paths, create as many
output paths as there are input paths and configure the type of each
output path to correspond to the input path types.

• To send the objects downstream on the single output path of the Task
block, use the default path type of bpr-object.

When you run the simulation, the block waits to process its inputs until all inputs
arrive at the block. The path of the work object that arrives first at the block turns
green indicating that the block is waiting for other inputs.

Here is an example of a running model that uses separate sources to generate
orders and invoices, which the Task block synchronizes and sends downstream
on separate output paths:

Here is a slightly different version of the same example that processes the orders
and invoices concurrently but sends them downstream on the same output path:

Processing Multiple Streams of Work Sequentially

When you are processing multiple streams of work, you can also process the
work sequentially as opposed to synchronously. You use this technique when a
task receives multiple inputs that are completely independent of one another.

For example, a model of a purchasing department might create two different
types of requisitions and process each separately. Rather than being dependent on
one another, the requisitions are completely independent.

Input path that is waiting turns green.
610

Task
To use a Task block to process multiple types of work as soon as the work arrives,
you must first merge the different streams of work together by using a Merge
block. This type of processing is called sequential processing.

To process multiple streams of work sequentially:

 Insert a Merge block before the Task block, which merges the multiple
streams of work together.

Here is an example that merges two different types of requisitions into a single
path, which the Task block processes sequentially. The requisitions then pass to a
Branch block, which branches them based on their types for separate processing.
The input and output path types of the Task block are both bpr-object, which
allows any type of object to pass.

Generating Work in a Process

Typically, you create work objects at the beginning of a process by using a Source
block. Often, however, a model requires that you generate work in the middle of a
process, as opposed to the beginning. You can use the Task block to generate
work objects in the middle of a process by adding output paths to the block.

To generate work in a process:

1 Create one or more additional output stubs for the Task block.

For information on how to do this, see Creating and Deleting Stubs.

2 Configure the path type of the input and output paths that pass the same type
of work object.

3 Configure the path type of the output path that generates a new work object.
611

Here is an example that processes orders, passes the orders downstream for
further processing, and generates invoices:

When a Task block has multiple output paths, you typically specify the path types
of all output paths to make explicit which objects travel on which paths.
However, this step is not, strictly speaking, necessary because ReThink will send
the existing object onto the appropriate path, using the default path type.

For more information on specifying path types, see Determining the Output Path
Based on Its Type.

Also, the Task block can have multiple input paths as well as multiple output
paths. Further, the Task block can generate one or more new work objects.

Specifying the Number of Objects to Generate

When using the Task block to generate work objects in the middle of a process,
you can generate multiple work objects each time the block processes, rather than
a single work object. You specify the number of work objects to generate for each
activity and on each output path whose type is different from the input path type.

To specify the number of objects to create for each unique output path type:

 On the Block tab of the properties dialog, configure the Output Count to be
the number of work objects to generate.

For example, this model processes orders on the top output path and generates
two invoices on the bottom output path. One of the invoices has been moved to
show both objects.
612

Task
Deleting Work in a Process

Another common modeling technique is to process one type of work object and
generate a different type of work object, thereby deleting the first object. To delete
work in a process, specify the path type of the output path to be different from the
path type for the input path.

For information on how to copy attributes from the input object to the output
object before it gets deleted, see Copying Attribute Values to the Output Object.

To delete work in a process:

1 Configure the path type of the input path of a Task block.

2 Configure the path type of the output path of the Task block to be a different
type.

Here is an example that processes orders and generates invoices, deleting the
orders as part of the task:

Modeling the Details of a Task

You can create detail for a Task block to model its detailed tasks. You can place
any number of blocks on the detail to create hierarchical views of the model. You
can also add Task blocks with detail to a detail to create multiple levels of detail in
a model.

When a Task block has detail, ReThink creates a subworkspace for the block with
as many connectors as there are input and output paths on the block. The input
paths correspond to the connectors on the left side of the detail, and the output
paths correspond to the connectors on the right side of the detail. Work objects
flow in through the input connectors to the blocks on the detail, then out through
the output connectors to the downstream block.

When a Task block has detail, the color of the block’s icon changes to salmon, by
default.

By default, the Task block with detail computes summary metrics for all the
blocks on its detail. Once you create detail for a task, the duration and cost for the
top-level task have no effect.

You can enable and disable detail for a Task block. When detail is disabled, the
block behaves as if it had no detail, although the detail still exists.
613

When a Task block has detail and the detail is disabled, the icon looks like this:

Note You cannot probe a Task block with detail when detail is enabled. Probe the
individual blocks on the detail instead.

The path type of the right-most output path leading into the connector determines
the path type of the object that the superior task passes to the downstream block;
the output path type of the superior task has no effect.

For information about how to improve performance in a model that has Task
blocks with detail, see Configuring the Computation Behavior.

To model the details of a task:

1 Choose Create Detail on the Task block.

2 Create, connect, and configure other blocks on the detail.

To enable and disable detail for a task:

 Choose Enable Detail and Disable Detail on the Task block.

For additional information on creating hierarchical views in a model and
interacting with the detail, see Creating Hierarchical Views.

Copying Attribute Values to the Output Object

You might have a process in which the input work object gets converted into
some other type of object, using a Task block. For example, a manufacturing plan
might get converted into a build order, or an order might get converted into an
invoice. Typically, when you convert an object into a different type, the output
object requires at least some of the same attributes as the input object. For
example, a manufacturing plan might define the order size, which the build order
also requires. When copying attribute values, the attribute names need not be the
same.

To copy attribute values to the output object:

1 Configure the Task block to delete work in a process.

For details, see Deleting Work in a Process.

2 Display the properties dialog and click the Block tab.

By default, the Task block does not copy attributes from the input to the
output work object.

3 Enable the Copy Attributes option to configure the attributes to copy.
614

Task
4 Configure the attributes to copy, using one of these techniques:

 Enable the Copy All Attributes option to copy all attributes whose names
are the same.

or

a To copy only certain attributes or to copy attributes whose names are not
the same, for each attribute you want to copy, click the Insert Row button.

b Configure the Source Subtable to be the name of the subtable in which the
attribute to copy is defined, if any.

The Source Subtable corresponds to each tab page of the work object on
which the attribute to copy appears, for example, duration-subtable or
cost-subtable. If the attribute is on the General tab or is user defined, leave
the Source Subtable blank.

c Configure the Source Attribute to be the name of the attribute of the input
work object to copy.

Typically, the source attribute is a user-defined attribute such as
order-size.

d Configure the Destination Subtable to be the name of the subtable in
which the copied attribute is defined.

You only need to configure this attribute if you are copying attributes
from a subtable.

By default, the block copies the exact value of the source attribute into the
destination attribute; however, you can also apply a mathematical
operator or function to the source attribute to compute the destination
attribute.

e Choose the Operator from the available list, or configure the Operator to
be FCT and configure the Function to be the name of a G2 function to
apply.

Some examples of functions are: max, min, or average. For details, see Chapter
25 “Functions” in the G2 Reference Manual.
615

This example shows a manufacturing process that converts mfg-plan objects to
mfg-product objects, then manufactures those products. The Convert Plan to
Product task copies attributes from the mfg-plan to the mfg-product.

Here are the class definitions for the mfg-plan and mfg-product classes:
616

Task
Here are two configurations of the Task block that copies attributes:

Copies the value of
the order-size and
time attributes,
which are common.
617

Copies the value of
the order-size only.
618

Task
Specific Attributes

The specific attributes of the Task block are:

Attribute Description

Output Count The number of work objects to create for each
activity and on each output path whose type is
different from the input work object.

Copy Attributes Enables the copying of attributes from the input
to the output work object.
619

For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The specific menu choices for a Task block are:

Copy All Attributes Copies all attribute values whose names are
common from the input to the output work
object.

Source Subtable
Source Attribute
Destination Subtable
Destination Attribute
Operation
Function

When Copy Attributes is enabled, copies a
specific Source Attribute from the input work
object to a Target Attribute in the output work
object, based on the specified Operator or
Function.

If the Source Attribute and Destination
Attribute are in a subtable of the work object,
configure the Source Subtable and Destination
Subtable, for example, duration-subtable or
cost-subtable.

Attribute Description

Menu Choices Description

Create Detail Creates a detail subworkspace for the task for
adding detail to the model. The default detail
has a copy of the superior task with the same
input and output paths and the same
configuration as the superior task. The input
and output paths are connected to connectors
on the detail. When a task with a detail
processes, the work objects flow through the
blocks on the detail of the superior block before
passing to the downstream block. See Creating
Hierarchical Views.

Show Detail If you have created detail for the task, this menu
choice appears for showing the detail. See
Creating Hierarchical Views.
620

Task
For information on the common menu choices, see Common Menu Choices for
Blocks.

Enable Detail If the Task block has detail and the detail is
disabled, this menu choice enables the detail so
work objects flow to the blocks on the detail.

Disable Detail If the task block has detail and the detail is
enabled, this menu choice disables the detail so
work objects flow through the top-level task.

Menu Choices Description
621

Yield

The Yield block divides the input work object into two output objects, based on an
attribute of the input work object and the yield mode. For example, you could use
the Yield block to compute the manufacturing yield, based on the order size of the
input work object, using a random triangular distribution to compute the yield.

You configure how the block splits the work object by configuring the mode. You
can split the work object by configuring percentages, based on random values, a
random triangular function, an attribute of the work object, or output path
proportions.

The Yield block multiplies the percentages by the value of the specified attribute
of the input work object. It then splits the work object into two. It then copies the
computed yield into the specified attribute of one output work object. It copies the
left-over yield into the attribute of the other work object. You choose which
output path carries the rejects.

Configuring the Yield Mode

A Yield block provides the following operating modes:

Yield Mode Description

Random Yield You configure the minimum and maximum
percentages as values between 0.0 and 1.0.

Random Triangular You configure the minimum, maximum, and
mode percentages as values between 0.0 and
1.0. By configuring a mode that is not
equidistant between the two end-points, you
can skew the percentages.

Work Object You configure an attribute of the input work
object that determines the yield.

Proportional You configure the percentages on the output
paths of the block, similar to the Branch block.

Custom See Customization Attributes.
622

Yield
Configuring a Random or Random Triangular Yield

Suppose your model has a manufacturing yield of 70%, plus or minus 3%. You
would use the Random yield mode and specify the minimum as 0.67 and the
maximum as 0.73. The block would choose a random yield between 67% and 73%.

Alternatively, suppose you know that while your manufacturing process has a
70% yield plus or minus 3%, it is more likely to have a higher yield than a lower
yield. In this case, you would use a Random Triangular yield mode and specify
the minimum as 0.67, the mode as 0.71, and the maximum as 0.73. Given these
values for a triangular function, the block would choose a random yield that is
more often closer to 73% than it is to 67%.

To configure a fixed yield, configure the minimum and maximum to be the same
value, for example, .70.

To configure a random or random triangular yield:

1 Create a work object class that defines an attribute upon which the yield is to
be computed.

For example, you might define a subclass of bpr-object called product that
defines an attribute called order-size. The Yield block will multiply the yield
percentage by the value of this attribute to determine the yield.

2 Create a model that provides a value for the attribute of the work object.

For example, you might use a Change feed to feed random values into the
attribute.

3 Display the properties dialog of the Yield block and click the Block tab.

4 Configure the Yield Mode to be Random or Random Triangular, depending on
how you want the block to compute the yield.

5 Configure the Attribute to Split to be the attribute of the work object that will
be multiplied by the yield percentage to determine the yield.

In the example, this attribute is order-size.

6 Configure the Minimum Random Value, Mode Random Value, and
Maximum Random Value, depending on the mode you choose.

Each of these values is a number between 0.0 and 1.0. The block multiplies the
yield by the value of the Attribute to Split attribute to determine the yield.

7 Choose the Choose Reject Path menu choice on the Yield block, then choose
Select on the output path that should carry the defective products.

The other output path carries the work object whose yield is computed, based on
the mode.

When you run the simulation, the Yield block copies the computed yield to the
Attribute to Split attribute of the output work object that represents manufactured
623

products. It copies the balance of the computed yield to the same attribute of the
work object that represents defective products, which travels on the reject path.
For example, suppose the yield percentage is 70% and the Attribute to Split is
called order-size. If the order size of the input work object is 100, then the order
size of the manufactured product will be 70, and the order size of the rejected
product will be 30.

The following example manufactures products from manufacturing plans. The
Change feed sets the order-size, using a random triangular function, and the Task
block copies the current value of the order-size to the product it generates. For
details, see the Task block.

The Yield block computes the yield, based on the order size, using a random
function. It then copies the computed yield to the order-size of the manufactured
product and send it to a Store block, which stores it in a pool. It copies the balance
of the computed yield to the order-size of the rejected product and sends it on the
reject path.

The Create Rebuild Order task copies the current order size from the rejected
product, deletes the rejected product, and generates a new manufacturing plan,
based on the order size. The Branch block then sorts the manufacturing plans,
based on order size and sends plans with a positive order size back to the Convert
624

Yield
Plan to Product task. The manufacturing process then begins again to compensate
for the defective products.
625

Here is the Block tab of the Yield block, which uses a random function to compute
a 70% yield, plus or minus 3%:
626

Yield
Here is the Block tab of the Yield block, which uses a random triangular function
to compute a 70% yield, plus or minus 3%, but skewed toward the higher yield
rate:

Configuring Yield Based on an Attribute of the Work
Object

Suppose you have computed the yield elsewhere in the model and have copied it
to an attribute of the input work object. Alternatively, suppose you want to feed
the yield into an attribute of the work object, for example, using a Change feed
configured to generate random numbers, based on a distribution.
627

To configure yield based on an attribute of the work object:

1 Create a work object class that defines an attribute upon which the yield is to
be computed and an attribute that determines the yield.

For example, you might define a subclass of bpr-object called mfg-product that
defines an attribute called order-size and an attribute called yield. The Yield
block will multiply the value of the yield attribute by the value of the order-
size to determine the yield.

2 Create a model that provides a value for each of these attributes of the work
object.

For example, you might use Change feeds to feed random values into each
attribute.

3 Display the properties dialog of the Yield block and click the Block tab.

4 Configure the Yield Mode to be Work Object.

5 Configure the Attribute to Split to be the attribute of the work object that will
be multiplied by the yield percentage to determine the yield.

In the example, this attribute is order-size.

6 Configure the Work Object Yield Attribute Name to be the name of the
attribute that defines the yield.

In the example, this attribute would be the yield attribute.

7 Choose the Choose Reject Path menu choice on the Yield block, then choose
Select on the output path that should carry the defective products.

For example, suppose the value of the yield attribute is 0.70 and the Attribute to
Split is called order-size. If the order size of the input work object is 100, then the
order size of the manufactured product will be 70, and the order size of the
rejected product will be 30.
628

Yield
This model is similar to the previous model except that the mfg-product1 class
defines a yield attribute and the Yield block uses this attribute as the yield
percentage. The model uses a Change feed to compute a random value for the
yield.
629

Here is the Block tab of the Yield block, which uses the yield attribute of the
product as the yield percentage and the order-size as the attribute to split:

Configuring a Proportional Yield

You might know the exact proportion of the input work object that should be
converted to manufactured versus defective products. In this case, you can
configure the yield percentage as proportions on each output path of the Yield
block. You can use this technique to model a manufacturing process that makes
different grades of products, for example, low grade, medium grade, and high
grade. In this case, you would add extra output paths to the Yield block, and it
would split the initial order size proportionally between the output paths; the
reject path carries the defective products.
630

Yield
To configure a proportional yield:

1 Create a work object class that defines an attribute upon which the yield is to
be computed.

For example, you might define a subclass of bpr-object called mfg-product that
defines an attribute called order-size. The Yield block will multiply the
proportions specified for each output path by the value of the order-size to
determine the yield for each output path.

2 Create a model that provides a value for this attribute of the work object.

For example, you might use Change feeds to feed random values into the
attribute.

3 Create as many output paths as needed for the Yield block.

For example, to manufacture high, medium, and low grade products, you
would add two output paths to the block, which results in three output paths
for the manufactured products and one for the defective products.

4 Display the properties dialog of the Yield block and click the Block tab.

5 Configure the Yield Mode to be Proportional.

6 Configure the Attribute to Split to be the attribute of the work object that will
be multiplied by the yield percentage to determine the yield.

In the example, this attribute is order-size.

7 Display the properties dialog for each output path, click the Branch tab, and
configure the Branch Proportion.

The Branch Proportion is the proportion of the manufactured and defective
product that each output path should carry. The Yield block multiplies the
proportion by the value of the Attribute to Split attribute to determine the
yield for each output path.

For example, suppose your manufacturing process has a 90% yield that
results in equal amounts of low, medium, and high grade products. You could
configure the Branch Proportion of the output paths to be 30, 30, and
30 for each manufactured product output path, and 10 for the reject path.

Alternatively, you can configure the Branch Proportion to be a number that
represents a percentage, for example, .33, .33, .33, and .10.

For details on how to configure the Branch Proportion, see Branching Based
on Proportion.

8 Choose the Choose Reject Path menu choice on the Yield block, then choose
Select on the output path that should carry the defective products.

For example, suppose the Branch Proportion values are 30, 30, 30, and 10 for the
low, medium, high, and reject paths, respectively, and the Attribute to Split is
called order-size. If the order size of the input work object is 100, then the order
631

size for the low, medium, high, and reject path work objects will be 30, 30, 30, and
10, respectively.

This model is similar to the previous models except that it has three output paths
for the manufactured products and a reject path, each of which specifies a
proportion.
632

Yield
Here is the Block tab of the Yield block, which uses Proportional mode to compute
the yield percentage and order-size as the attribute to split:
633

Suppose the model has a 90% yield, which is split evenly between low, medium,
and high grade products. This figure shows one way to configure the Branch
Proportion for the output paths:

Determining the Yield Value

The Yield block computes the current Yield Value for each input work object it
receives, which is the yield percentage multiplied by the value of the Attribute to
Split attribute of the work object. If the Yield block is configured to use Proportion
mode and has more than two output paths, the Yield Value is the sum of the yield
values for each output path that carries a manufactured product.

Low, medium,
and high paths

Reject path
634

Yield
Specific Attributes
635

The specific attributes of the Yield block are:

The mode-specific attributes of the Yield block are:

Attribute Description

Yield Mode Specifies how the block computes the Yield
Value. The options are: Random, Random
Triangular, Work Object, proportional, and
Custom. The default value is Random.

Attribute to Split The name of an attribute of the input work
object upon which the yield is to be computed.
The block multiplies the yield percentage by the
value of this attribute, then splits the value
between the output work objects.

You can use dot notation to refer to the attribute
of a subobject, for example, my-subtable.
my-attr.

Yield Value (Metric) The computed yield for the current
work object.

Mode Attribute Description

Random Minimum Random Value The minimum value for
the random yield
percentage.

Maximum Random Value The maximum value for
the random yield
percentage.

Random Triangular Minimum Random Value The minimum value for
the random yield
percentage.

Mode Random Value The mode value for the
random yield percentage
in a triangular function.

Maximum Random Value The minimum value for
the random yield
percentage.
636

Yield
For information on the common block attributes, see Common Attributes of
Blocks.

Specific Menu Choices

The specific menu choices for a Yield block are:

For information on the common menu choices, see Common Menu Choices for
Blocks.

Work Object Work Object Yield
Attribute Name

The name of an attribute
of the input work object
that is the yield
percentage.

You can use dot notation
to refer to attributes of
subobjects, for example,
my-subtable.my-attr.

Proportional N/A Specifies that the Branch
Proportion of each
output path determines
the yield percentages.

Custom Yield Procedure Name See Customization
Attributes.

Mode Attribute Description

Menu Choices Description

Choose Reject Path Identifies the path that carries defective
product. Choose Select on the output path that
carries the defective product to select the path.

Show Reject Path Puts an indicator arrow next to the chosen reject
output path.
637

Customization Attributes

The customization attribute available in Developer mode for the Yield block is:

You can customize the procedure that ReThink uses to compute yield. For more
information, see the Customizing ReThink User’s Guide.

Attribute Description

Yield Procedure Name When the Mode is Custom, this attribute
specifies the procedure that determines
how the block computes yield. The default
value is bpr-yield-custom-procedure.
638

13
Instruments
Reference
Provides a description and example of each ReThink feed and probe.

Introduction 640

Common Attributes of Instruments 642

Common Menu Choices for Instruments 648

Acknowledge Message Probe 650

Average Probe 652

Copy Attributes Probe 659

Criteria Probe 667

Delete Message Probe 671

Delta Time Probe 673

Interval Sample Probe 678

Message Probe 683

Moving Average Probe 688

N-Dimensional Sample Probe 698

Parameter Probe 702

Sample Probe 708

Statistics Probe 716

Update Trigger Probe 724

Accumulate Feed 725

Attribute Feed 731

Change Feed 738
639

Copy Attributes Feed 755

Increment Feed 761

Parameter Feed 766

Timestamp Feed 771

Introduction
ReThink provides two types of instruments: feeds and probes. This chapter
describes each instrument in the Instruments palette of the ReThink toolbox:
640

Introduction
The chapter begins with sections describing the attributes and menu choices that
are common for all instruments. It then describes each instrument including:

• A general description of the instrument.

• Specific uses of the instrument.

• An example.

• Specific attributes and menu choices.

This chapter is organized alphabetically by instrument type, as follows:

For information on how to use instruments in a model, see Using Instruments.

Probes Feeds

Acknowledge Message Probe Accumulate Feed

Average Probe Attribute Feed

Copy Attributes Probe Change Feed

Criteria Probe Copy Attributes Feed

Delete Message Probe Increment Feed

Delta Time Probe Parameter Feed

Interval Sample Probe Timestamp Feed

Message Probe

Moving Average Probe

N-Dimensional Sample Probe

Parameter Probe

Sample Probe

Statistics Probe

Update Trigger Probe
641

Common Attributes of Instruments
The following sections describe the attributes that are common to all ReThink
feeds and probes. You access these attributes by displaying the properties dialog
for the instrument. The properties dialog has these tabs:

Following are examples for a Timestamp feed of the tab pages of the properties
dialog that are common to all blocks: General and Animation. Following each
dialog is a description of the attributes that appear in Modeler mode. Each
attribute indicates whether it is a parameter (P) or metric (M).

For information on the attributes that are available in Developer mode, see the
Customizing ReThink User’s Guide.

Tab Description

General Parameters that are common to all instruments,
such as the Label, Comments, and the class to
which the instrument applies. Metrics related to
the number of data points.

Instrument Parameters and metrics that are specific to the
particular instrument, for example, the source
attribute name for a feed and the computed
value for a probe.

Animation Parameters for specifying animation colors for
the instrument.
642

Common Attributes of Instruments
General Tab for Feeds

Attribute P/M Description

Label P A text label for the feed, which appears as
an attribute display with the instrument.

Comments P An area for entering a description of the
feed and whatever other information you
want to keep.

Apply to Class Name P The class to which the instrument feeds
values. The default value is bpr-object,
which feeds values into any type of work
object.

Destination Attribute
Name

P The attribute of the specified class into
which the instrument feeds values. Note
that you cannot use dot notation to refer to
subattributes.
643

General Tab for Probes

Phase P When the feed sets its value. A Phase of
Start sets the value before the connected
block applies its duration to the
simulation clock. A Phase of Stop sets the
value after the connected block applies its
duration. The default value for feeds is
Stop.

Counter M The number of data points the instrument
has received.

Error M A description of any error for the feed. See
Debugging Blocks.

Attribute P/M Description
644

Common Attributes of Instruments

Attribute P/M Description

Label P A label for the probe, which appears as an
attribute display with the instrument.

Comments P An area for entering a description of the
probe and whatever other information
you want to keep.

Apply to Class Name P The class from which the instrument
probes values. The default value is bpr-
object, which probes any type of work
object.

Source Attribute Name P The attribute of the specified class from
which the probe obtains values. Note that
you cannot use dot notation to refer to
subattributes.

Phase P When the probe computes its value. A
Phase of Start computes the value before
the attached block applies its duration to
the simulation clock. A Phase of Stop
computes the value after the attached
block applies its duration. The default
value for probes is Stop.

Counter M The number of data points the instrument
has received.

Error M A description of any error for the probe.
See Debugging Blocks.
645

Animation Tab for Feeds and Probes

Here is the Animation tab for feeds:
646

Common Attributes of Instruments
Here is the Animation tab for probes:

Attribute P/M Description

Active Color P The color of the instrument when it is
currently feeding or probing values.

Inactive Color P The color of the instrument when it is idle.

Error Color P The color of the instrument when it is in
an error state.
647

Common Menu Choices for Instruments
All instruments share a common set of menu choices. In addition, all probes share
a number of common menu choices.

Common Menu Choices for Feeds and Probes

Feeds and probes both have the following menu choices:

Menu Choices Description

Delete Permanently deletes the instrument.

Transfer
Clone

Cuts and copies (transfers) the instrument from
one workspace to another, or copies (clones) the
block to a workspace. ReThink copies all of the
instrument’s configured attributes.

Order Lifts the object to the top or drops to the bottom.

Nudge Moves the object up, down, left, or right by one
pixel.

Align or Distribute Align the left, center, right, top, middle, or
bottoms of two or more selected objects.
Distributes three or more selected objects
vertically or horizontally.

Rotate or Flip Rotates the object 90 degrees clockwise or
counterclockwise or 180 degrees. Flips the
object vertically or horizontally.

Properties Displays the properties dialog for the
instrument for configuring parameters and
viewing metrics.

Show Scenario Displays an indicator arrow next to the scenario
that controls the instrument. This menu choice
is only available when the scenario is active.

Create Connection Creates a connection stub on the instrument.
This menu choice is only available when the
connection stub has been deleted.
648

Common Menu Choices for Instruments
Common Menu Choices for Probes

All probes have the following menu choices:

Menu Choices Description

Create Chart Creates a chart with an associated remote from
the probe. The chart plots the probed value.
You use the remote to configure the chart. This
menu choice is available for most probes. See
Creating a Chart Directly from a Probe.

Create Remote Creates a ReThink remote, which keeps a
history of the probed values. ReThink
automatically creates a remote when you use
the Create Chart menu choice to create a chart
from a probe. You use this menu choice when
you want to add a probed value to an existing
chart. See Plotting Multiple Values on the Same
Chart.

Show Remotes Places an indicator arrow next to the remotes
associated with the probe.

Show Chart Places an indicator arrow next to the chart
associated with the probe. This menu choice is
available for most probes.
649

Acknowledge Message Probe

The Acknowledge Message probe acknowledges messages created in the
Messages Browser by the Message probe.

Specific Attributes
650

Acknowledge Message Probe
The specific attributes of the Acknowledge Message probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An Acknowledge Message probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Attribute P/M Description

Acknowledge All
Messages

P Whether to acknowledge all messages that
arrive on the input path of the associated
block.

Message Type P The class of message to acknowledge. By
default, the probe acknowledges all
messages that are instances of the gevm-
message class or any subclass.

Category P The category of message to acknowledge.
By default, the probe acknowledges all
message categories.
651

Average Probe

The Average probe computes an average of all sampled values. The probe keeps
track of the minimum and maximum values.

The Average probe is appropriate for computing the average of an attribute of
any ReThink object, whose value does not depend on how long it has persisted,
such as the average duration of a block.

You can also use the Average probe to compute the average value of a
quantitative variable or parameter, then chart the value over time.

Determining the Value of the Probe

The Average probe defines these metrics to determine the value of the probe:

The Average Value attribute appears as an attribute display of the probe.

Computing the Average of an Attribute Value

You attach an Average probe to a block, probe, or resource to compute the
average value of any attribute of a block, activity, work object, path, instrument,
or resource.

To compute the average of an attribute value:

1 Connect an Average probe to an object in the model whose attribute you want
to average.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class name of the object whose attribute you want to average.

For example, if you are probing the Total Work Time attribute of a work
object, specify bpr-object or a subclass of bpr-object.

Attribute Description

Average Value The average of the sampled values.

Minimum Value The minimum of the sampled values.

Maximum Value The maximum of the sampled values.
652

Average Probe
3 Configure the Source Attribute Name to be the attribute of the class whose
values you want to average.

You can choose from the list of attributes or enter your own value. You must
specify the attribute name as a symbol. For example, if you are probing the
Total Work Time or Total Cost attribute of a work object, choose total-work-
time or total-cost.

4 Click the Instrument tab and configure the Precision to be the number of
decimal points to round the computed Average Value.

5 To provide initial values for the average, configure the Sample Initial Value
and Use Initial Value attributes, as needed.
653

This model shows how you use the Average probe to compute the average of
several objects in the model:

The average phone-time

of a sales-call.

The average cost
of a bpr-activity.

The average delta-time

of a bpr-instrument.

The average total-cost
of a bpr-resource.

1

2

3

4

1

2

3

4

654

Average Probe
Plotting the Minimum and Maximum Values

The Average probe computes the Minimum Value and Maximum Value of the
probed value, which you can plot.

To plot the minimum and maximum values of an Average probe:

1 Create and configure an Average probe to compute the average value of an
attribute of the model.

For details, see Computing the Average of an Attribute Value.

2 Attach two Sample probes to the Average probe whose minimum and
maximum values you want to plot.

3 On the General tab of the properties dialog for each Sample probe, configure
the Apply to Class Name to be bpr-instrument.

4 Configure the Source Attribute Name of one Sample probe to be minimum-
value.

5 Configure the Source Attribute Name of the other Sample probe to be
maximum-value.

6 Choose Create Chart on the Average probe that computes the average of an
attribute of the model.

7 Choose Create Remote on the Sample probes that compute the minimum and
maximum of the average value.

8 To add the new remotes to the chart, for each remote, choose Add Remote on
the chart, then choose Select on the remote.

9 Display the properties dialog for each remote and, on the Chart tab, configure
the Line Color of each plot.
655

The following figure shows how to plot the minimum and maximum values of an
Average probe that computes the average cost of an activity:

Charting the Average of Quantitative Parameters

You can attach an Average probe to a quantitative parameter, then chart the value
over time. You can use this feature in conjunction with a Parameter feed, which
allows you to feed the value of a quantitative parameter into an attribute of the
model, and a Parameter probe, which allows you to probe an attribute of the
model that comes from a quantitative parameter.

Tip You can also conclude the current values when an attribute of the model changes
by creating a rule. For an example, see Branching Based on Rules that Set the
Attribute Value.

To chart the average of a quantitative parameter:

1 Create a model that probes the value of a quantitative parameter created from
an attribute of the model.

For details, Parameter Probe.

2 Attach an Average probe to the quantitative parameter.

3 Display the properties dialog and configure the Apply to Class Name
attribute of the Average probe to be quantitative-parameter.

Leave the Source Attribute Name blank.
656

Average Probe
4 Choose Create Chart on the Average probe to create a chart and associated
remote.

Specific Attributes

The specific attributes of the Average probe are:

For more information on... See...

Examples that use a Sample probe Charting Quantitative Parameters.

Configuring the Parameter probe Parameter Probe.

Attribute P/M Description

Use Initial Value P Whether to use the Sample Initial Value as
the first value.

Sample Initial
Value

P The initial value to use for the Average
Value.

Precision P The number of decimal places to round
the Average Value.
657

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An Average probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Average Value M The average of the sampled values,
rounded to the number of decimal places
specified by Precision.

Maximum Value M The maximum value of the sampled
values.

Minimum Value M The minimum value of the sampled
values.

Attribute P/M Description
658

Copy Attributes Probe
Copy Attributes Probe

The Copy Attributes probe copies attributes from the object to which the probe
applies to a destination object. You can use the Copy Attributes probe to “roll up”
metrics computed on a detail to the higher-level Task block. For example, you
might want to “roll up” the Total Cost of the task on the detail to the superior
task.

You can configure the Copy Attributes probe to copy the exact value of an
attribute, or you can configure it to use an operator or function. For example, you
might want to sum the order size of each work object that the task on the detail
processes and store the sum in an attribute of the superior task.

Compare the Copy Attributes probe with the Copy Attributes feed, which copies
attributes from a source object to the object to which the feed applies.

Rolling Up Metrics from the Detail to the Superior
Task

To “roll up” metrics computed in objects on a detail to the superior task, you
attach a Copy Attributes probe to a block or resource on the detail and configure
it to copy attributes from an object on the detail to the superior task. You
configure the class to which the probe applies, which defines the source object,
and the destination class.

For example, you might want to create a subclass of the Task block with
additional attributes that the model copies from objects on the detail to the
superior task.

To roll up metrics from the detail to the superior task:

1 Create a subclass of the Task block with the attributes you want to “roll up”
from objects on the detail.

For example, you might create a subclass of the Task block called bpr-task-1,
which defines the attributes total-cycles and total-products-built. The model
copies the total-starts from the task on the detail and copies it into the total-
cycles attribute of the superior task. It also sums the value of the order-size of
the work object on the detail and copies it into the total-products-built attribute
of the superior task.

For information on how to create a subclass, see Customizing Blocks.
659

2 Create a model that uses the subclass of Task block that you created and
configure its detail.

3 Connect a Copy Attributes probe to an object on the detail, for example, a
block or resource.

4 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class that triggers the probe to copy attributes.

The Apply to Class Name class is the source class from which the Copy
Attributes probe copies attributes.

For example, to copy attributes from the Task block, configure the Apply to
Class Name to be bpr-task. To copy attributes from the work object on the
input path of the attached block, configure the Apply to Class Name to be
bpr-object or a subclass.

5 Click the Instrument tab and configure the Destination Class Name to be the
class name of the object to which the Copy Attributes probe copies attributes.

In the example, the Destination Class Name would be bpr-task-1.

6 For each attribute to copy, create and configure a row in the List of Operations
group, as follows:

a Click Add Row to create a new row.

b Configure the Source Subtable to be the name of the subtable in which the
attribute to copy is defined, if any.

The Source Subtable corresponds to each tab page on which the attribute
to copy appears, for example, duration-subtable or cost-subtable. If the
attribute appears on a tab page other than the Duration or Cost tab, leave
the Source Subtable blank.

c Configure the Source Attribute to be the name of the attribute of the input
work object to copy.

The source attribute is a user-defined attribute such as order-size.

d Configure the Destination Subtable to be the name of the subtable in
which the copied attribute appears.

You only need to configure this attribute if you are copying attributes
from a subtable.

By default, the probe copies the exact value of the source attribute into the
destination attribute; however, you can also apply a mathematical
operator or function to the source attribute to compute the destination
attribute.

e Choose the Operator from the available list, or configure the Function to
be the name of a G2 function to apply.
660

Copy Attributes Probe
Some examples of functions are: max, min, or average. For details, see Chapter 25
“Functions” in the G2 Reference Manual.

The following example shows how to “roll up” metrics from the detail of a user-
defined Task block to the superior task. The bpr-task-1 class defines three class-
specific attributes, total-products-built, total-cycles, and total-cost, which appear as
attribute displays above the superior task. The model feeds the order-size into
each mfg-plan, then converts it into a product, copying the order size, using the
Task block. For details, see the Task block.
661

On the detail of the user-defined Task block are two Copy Attribute probes. The
Copy Block Attributes probe copies attributes from the Task block on the detail to
the superior task, and the Copy Object Attributes probe copies attributes from a
work object on the detail to the superior task. The Yield block computes the yield
and sends manufactured products out one path and defective products out the
other. For details, see the Yield block.
662

Copy Attributes Probe
The Copy Block Attributes probe specifies Apply to Class Name as bpr-task,
which is the source object, and bpr-task-1 as the Destination Class Name. It copies
the total-cost on the cost-subtable of the source object (bpr-task) to the total-cost
on the cost-subtable of the destination object. It also copies the total-starts to the
total-cycles of the destination object. It uses the = operator, the default, to copy the
exact value for both operations.
663

The Copy Object Attributes probe specifies Apply to Class Name as mfg-product,
which is the source object, and bpr-task-1 as the Destination Class Name. It copies
the order-size of the source object (mfg-product) to the total-products-built of the
destination object. It uses the + operator to sum the values.
664

Copy Attributes Probe
Specific Attributes
665

The specific attributes of the Copy Attributes probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Copy Attributes probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Attribute P/M Description

Destination Class
Name

P The class name of the object whose
destination attributes the probe updates.
The probe copies attributes from the
source object specified in the Apply to
Class Name attribute.

Source Subtable
Source Attribute
Destination Subtable
Destination Attribute
Operation
Function

P The list of operations to perform when the
Copy Attributes probe updates.

It copies the Source Attribute of the source
object to the Destination Attribute of the
destination object, based on the specified
Operator or Function.

If the Source Attribute and Destination
Attribute are in a subtable of the work
object, you can configure the Source
Subtable Name and Destination Subtable
Name, for example, duration-subtable or
cost-subtable.
666

Criteria Probe
Criteria Probe

You use a Criteria probe to compare a sample value in the model against criteria
you configure in the probe to determine the percentage of time the sampled value
meets the criteria. You configure the value to compare and the operator to use for
the comparison. For example, you would use a Criteria probe to determine the
percentage of time that the total cost of a work object goes above a certain value.

Determining the Value of the Probe

The Criteria probe defines these metrics to determine the value of the probe:

The Criteria True Percent attribute appears as an attribute display of the probe.

Comparing Sampled Values Against a Criteria

To compare sampled values against a criteria:

1 Connect a Criteria probe to a block, instrument, or resource in the model.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class name of the object whose attribute you want to compare
against the criteria.

For example, if you are probing the Total Work Time of a work object, specify
bpr-object or a subclass of bpr-object.

3 Configure the Source Attribute Name to be the attribute of the class whose
value you want to compare against the criteria.

You can choose from the list of attributes to probe or enter your own value. If
you enter your own attribute name, you must use a symbol. For example, if
you are probing the Total Work Time or Total Cost attribute of a work object,
choose total-work-time or total-cost.

Attribute Description

Criteria True Count The number of times the test was true.

Criteria True Percent The percentage of times that the test was true.
667

4 Click the Instrument tab and configure the Attribute Value to be the value
with which to compare the value of the Source Attribute Name.

5 Configure the Operation to be the operator to use for comparison.

This example uses a Sample probe to sample the Total Cost of the work object. It
then uses a Criteria probe to probe the sample-value of the bpr-instrument to test
the percentage of time that the total cost exceeds 1000. In this example, the total
cost is greater than 1000 approximately 40% of the time.
668

Criteria Probe
Specific Attributes

The specific attributes of the Criteria probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Attribute P/M Description

Operation P The operation to use when comparing the
Attribute Value against the value of the
Source Attribute name of the probe. The
default value is =.

Attribute Value P The value to use for the comparison.

Criteria True Count M The number of times the criteria was true
since the start of the simulation.

Criteria True Percent M The percentage of time that the criteria
was true since the start of the simulation.
669

Specific Menu Choices

A Criteria probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.
670

Delete Message Probe
Delete Message Probe

The Delete Message probe deletes messages created in the Messages Browser by
the Message probe.

Specific Attributes
671

The specific attributes of the Delete Message probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An Delete Message probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Attribute P/M Description

Delete All Messages P Whether to delete all messages that arrive
on the input path of the associated block.

Message Type P The class of message to delete. By default,
the probe deletes all messages that are
instances of the gevm-message class or
any subclass.

Category P The category of message to delete. By
default, the probe deletes all message
categories.
672

Delta Time Probe
Delta Time Probe

The Delta Time Probe compares a timestamp of an object with the current time.
You use this probe to measure the time change from one event in the model to
another, which is called the “delta time.” For example, you can probe the creation
time of an object and compare it to the current time at the end of the process to
obtain the cycle time of the overall process.

You often use the Delta Time probe in conjunction with a Timestamp feed to
compare the current time with a timestamp that you feed into the model.

You can configure the time unit for the Delta Time probe, to report the delta time
in the time unit of the model, for example, hours or days.

Determining the Value of the Probe

The Delta Time probe defines an attribute named Delta Time, which is a
quantitative parameter that keeps a history of the delta time values. The value of
this attribute is the current delta time. The Delta Time attribute appears as an
attribute display of the probe.

Computing the Cycle Time

The Delta Time probe is automatically configured to probe the creation time of
the work object that flows through the block to which it is attached. Thus, you can
easily compute the cycle time of a work object from the time it was created to a
specified point in time in the model.

To probe the creation time of a work object:

1 Attach a Delta Time probe to a block.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to specify the work object whose creation time you are probing.

By default, the probe computes the delta time in seconds.
673

3 Click the Instrument tab and configure the Time Unit to use for computing the
cycle time, for example, minutes, hours, days, or weeks.

For example, if you configure the duration of blocks in the model in hours, set
the Time Unit to 1 hour, the default.

4 Configure the Precision to be the number of decimal points to round the Delta
Time value.

You use the default value for the Source Attribute Name to probe the
creation-time of the work object.

This example probes the creation time of a sales-call object to compute the sales
cycle time. The model makes a sales call and branches the sales call, based on
whether the sale is won or lost or whether another call must be made. The
variation in sales cycle time is due to the deviations in the durations of each of the
blocks.

For information on how to create charts from probes, see Charting Performance
Metrics.
674

Delta Time Probe
Computing a Partial Cycle Time

Rather than comparing the creation time of an object with the current time, you
might want to compare a timestamp that you feed into the model with the current
time to compute a partial cycle time. To do this, you use a Timestamp probe in
conjunction with a Delta Time probe.

To probe a timestamp that you feed into the model:

1 Attach and configure a Timestamp feed to a block in the model where you
want to feed a timestamp.

For details, see Feeding a Timestamp into a Work Object of the Model.

2 Create a class definition for a work object with a class-specific attribute that
holds the timestamp.

For details, see Creating a New Class of Work Object.

3 Attach a Delta Time probe to a downstream block where you want to probe
the timestamp.

4 On the General tab of the properties dialog, configure the Apply to Class
Name attribute to be the work object whose timestamp you are probing.

5 Configure the Source Attribute Name to refer to the class-specific attribute of
the work object that holds the timestamp.

6 Click the Instrument tab and configure the Time Unit to use for computing the
cycle time.

7 Configure the Precision to be the number of decimal points to round the Delta
Time value.

Here is a credit check approval process. To monitor the cycle time of the credit
approval process, you feed a timestamp into the sales-call object at the beginning
of the process and probe it at the end of the subtask to determine the credit check
cycle time. The Timestamp instrument feeds a timestamp into the begin-credit-
check attribute of the sales-call object, which the Delta Time probe then probes.
675

676

Delta Time Probe
Specific Attributes

The specific attributes of the Delta Time probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Delta Time probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Attribute P/M Description

Time Unit P The time unit to use for computing the
delta time. The default value is 1 second.

Precision P The number of decimal places to use for
rounding the Delta Time value.

Delta Time M The difference in value of the probed
value and the current time.
677

Interval Sample Probe

You use an Interval Sample probe to average or sum the value of an attribute of
the model at regular time intervals, based on simulation time. You use an Update
Trigger tool to determine when to sample the model. For example, you would use
an Interval Sample probe to chart on a weekly basis the average total cost of a
work object at a particular point in the model.

Except for the ability to update based on a time interval, the Interval Sample
probe is the same as a Sample probe.

Determining the Value of the Probe

The Interval Sample probe defines an attribute named Sample Value, which is the
value of the current sample. The Sample Value attribute appears as an attribute
display of the probe.

Sampling the Model at Regular Time Intervals

To sample the model at regular time intervals:

1 Connect an Interval Sample probe to a block, instrument, or resource in the
model.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class whose attribute value you are probing at regular
intervals.

By default, the Interval Sample probe simply samples the values; it does not
sum the values.

3 To configure the probe to keep a cumulative sum of the sampled values, click
the Instruments tab and click the Cumulative Sample option off.
678

Interval Sample Probe
4 Display the Tools palette of the ReThink toolbox:

5 Create an Update Trigger tool and place it on the model detail or on the detail
of an organizer.

6 Display the properties dialog for the Update Trigger and configure the Label.

By default, the Update Trigger tool triggers updates continuously.

7 Click the Block tab and configure the Maximum Starts to be the maximum
number of times the trigger should update, as needed.

You might want to begin triggering updates after a time delay or stop
triggering updates after a certain simulation time.

8 Configure the Start Time and End Time to be the time at which the trigger
should start and finish triggering updates, as needed.

9 Click the Duration tab and configure the Period to be the frequency with
which to probe the model.

For example, to probe the model once an hour of simulation time, enter
1 hour.

10 Choose the Choose Update Trigger menu choice on the Interval Sample
probe, then choose Select on the Update Trigger tool.

The Interval Sample probe samples the model when the Update Trigger tool
evaluates, and either averages or sums the sampled values.

Update Trigger
679

This example probes the Total Cost of a block on a weekly basis. The Interval
Sample probe samples the block each time the Task block evaluates; however, it
does not average the values until the Update Trigger tool evaluates, which
happens once a week, based on simulation time.
680

Interval Sample Probe
Specific Attributes

The specific attributes of the the Sample probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Attribute P/M Description

Cumulative Sample P Whether to maintain the sum of the
samples in the Sample Value attribute of
the probe. The default value is to sample
the values without summing them.

Precision P The number of decimal places to use for
rounding the Sample Value.

Sample Value M The current probed value.
681

Specific Menu Choices

The specific menu choices for the Interval Sample probe are:

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Menu Choice Description

Choose Update Trigger Identifies the Update Trigger tool that
determines when the Interval Sample
attribute updates.

Show Update Trigger Places an indicator arrow next to the chosen
Update Trigger tool.

Remove Update Trigger Removes the association between the
Interval Sample probe and the Update
Trigger tool.
682

Message Probe
Message Probe

You use a Message probe to generate a message at a particular location when the
simulation is running. By default, ReThink pauses the simulation and displays an
indicator arrow with the message text next to the probe. For example, you might
want to pause the simulation and display a message when the simulation creates
an invalid order.

You can also use the Message probe to send messages to the Messages Browser.
You can configure various information about the message, including its type,
category, text, and details. You can use the Acknowledge Message probe and
Delete Message probe to acknowledge and delete messages in the Messages
Browser.

You can also configure the Message probe to write messages to a log file, without
pausing the simulation.

You can configure ReThink to send messages to an email account when a message
is generated. For details, see Delivering Messages by Email.

Generating Text Messages

When generating messages, you can refer to various attribute values, using the
following expressions:

For example:

"This order is invalid. Probe Counter: [the counter of Probe] ; Object Starts:
[the total-starts of Item] ; Block Starts : [the total-starts of ConnectedItem]"

To refer to attributes of the... Use this expression...

Message probe [the <attribute> of Probe]

Object that triggers the probe [the <attribute> of Item]

Object to which the probe is
attached

[the <attribute> of ConnectedItem]
683

To generate a message:

1 Connect a Message probe to a block, instrument, or resource in the model.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the name of the class that triggers the message.

3 Click the Instrument tab and configure the Message to be a text string to
display next to the indicator arrow when the probe triggers.

Refer to attributes of the probe, trigger item, or connected item, as needed.

4 Configure the Message Log File to be a text string that names a log file to
which the probe writes the messages.

5 To cause the instrument to just write messages to the log file, without pausing
the simulation, click the Indicate option off.

Tip If you are connecting the Message probe to a Sink or Store block, configure the
Phase attribute of the probe to be Start; otherwise, the Message probe never
triggers.

This example shows the result of running a model that uses a Message probe to
flag invalid orders, based on an attribute of the order:

Here is a text of a sample log file:

SATURDAY, 1 Jan 2000 5:54:53 a.m. - Error on Probe Invalid
Orders : This order is invalid.

SATURDAY, 1 Jan 2000 8:07:26 a.m. - Error on Probe Invalid
Orders : This order is invalid.
684

Message Probe
Specific Attributes

The specific attributes of the Message probe on the Instrument tab are:

Attribute P/M Description

Indicate Message P Determines whether to pause the
simulation when the Message probe
triggers. By default, the Indicate Messages
option is on.

Log Message P Determines whether to log messages to
the specified log file.
685

Message Log File P A text string that names a text file to
which the probe writes messages. The log
file must be a text file with the extension
.txt, .log, or .dat.

Message Queue P The message queue to which to send the
message. By default, the message is sent to
the default message queue, which
displays the message in the default
Message Browser available by choosing
Programs > Message Browser. For details,
see Viewing Messages.

Attribute P/M Description
686

Message Probe
The specific attributes of the Message probe on the Message tab are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Message probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Attribute P/M Description

Message Type P The type of message. To create a text
message that appears next to the probe
when it triggers, leave the Message Type
blank. Choose one of the other message
types to create messages that appear in the
Message Browser.

Category P A text string that is the message category,
which appears in the message details.

Priority P An integer priority for the message, which
appears in the message details. The
default value is 9.

Message P A text string that is the message to display
when the probe triggers. The message can
refer to the following expressions:

[the <attribute> of Probe]
[the <attribute> of Item]
[the <attribute> of ConnectedItem]

Detail P A text string that provides details about
the message, which appears in the
message details. The detail can include the
same expressions as the message.

Advice P A text string that provides advice about
the message, which appears in the
message details. The advice can include
the same expressions as the message.
687

Moving Average Probe

The Moving Average probe computes a time-weighted moving average of all
sampled values. This probe is appropriate for computing the average of an
attribute of an object, whose value depends on how long it has persisted, such as
the number of activities of a block. Thus, a Moving Average probe computes a
time-persistent average. It does this by weighting sampled values by how long
the values have persisted during the specified time period.

By default, it computes the moving average over the entire simulation. You can
also configure the time period over which the probe computes the moving
average. The probe computes the moving average starting at the present and
moving backwards in time to the time period you specify.

For example, suppose the number of activities of a block has a value of 1 from
time 0 to time 3 minutes and a value of 5 from time 3 minutes to time 10 minutes.
If the time period over which you are computing the moving average is the entire
10 minutes, the probe computes the moving average as follows:

(1 x 3 minutes + 5 x 7 minutes) / 10 minutes = 3.8

If the time period over which you are computing the moving average is instead 5
minutes, the probe computes the moving average for each 5 minute period, as
follows:

(1 x 3 minutes) + (5 x 2 minutes) / 5 minutes = 2.6

(5 x 5 minutes) / 5 minutes = 5

You typically use the Moving Average probe to probe another probe. For
example, you can use a Delta Time probe to compute a cycle time, then probe the
Delta Time probe to obtain a moving average of this cycle time.

You can also use a Moving Average probe to probe a value directly in the model.
For example, you can obtain a moving average of the Current Activities of a block
by probing the current-activities directly in the Statistics probe.

When you chart a moving average, you often display the probed value and the
moving average on the same chart, each in its own color.
688

Moving Average Probe
Determining the Value of the Probe

The Moving Average probe defines the following two metrics, which are
quantitative parameters that keep a history of the probed values:

The Moving Average appears as an attribute display of the probe.

Computing a Moving Average of a Probed Value

To compute the moving average of a probed value, attach the Moving Average
probe directly to another probe.

To compute the moving average of a probed value:

1 Connect a Moving Average probe to another probe, such as a Sample or Delta
Time probe.

2 Display the General tab of the properties dialog for the Moving Average
probe.

The default value of Apply to Class Name is bpr-instrument, which means the
probe is automatically configured to probe another probe.

3 Configure Source Attribute Name to be the attribute of the probe for which to
compute the moving average.

For example:

• The sample-value attribute of a Sample probe.

• The delta-time attribute of a Delta Time probe.

4 Click the Instrument tab and configure the Time Period to be the time period
over which to compute the moving average, as a duration.

The default value is 1 hour. ReThink converts the duration to seconds.

5 Configure the Precision to be the number of decimal places to round the
Moving Average and Moving Standard Deviation values.

6 To provide initial values for the moving average, configure the Sample Initial
Value and Use Initial Value attributes, as needed.

Attribute Description

Moving Average A time-weighted moving average of the probed
values.

Moving Standard
Deviation

A time-weighted moving standard deviation of
the probed values.
689

This example computes and plots a moving average of the total work time of the
Sample probe:

For information on how to configure a chart to plot two values, see Plotting
Multiple Values on the Same Chart.
690

Moving Average Probe
Here is the General tab of the properties dialog for the Moving Average probe,
which shows how it is configured:
691

Here is the Instrument tab, which shows its computed values and specific
parameters:

Computing a Moving Average Directly

You can attach a Moving Average probe directly to a block to compute the
moving average of a value in the model directly. For example, you might want to
compute the moving average of the Total Cost of a block, the Total Work Time of
a work object, or the Average Utilization of the current resource, without probing
these values directly first.

To compute the moving average directly:

1 Connect a Moving Average probe directly to a block, instrument, or resource.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the object whose value you are probing.

For example, if you are probing the Average Utilization of a resource, the class
is bpr-resource.

3 Configure the Source Attribute Name to be the attribute whose moving
average you want to compute.

For example, if you are probing the Average Utilization of a resource, the
value is average-utilization.
692

Moving Average Probe
4 Click the Instrument tab and configure the Time Period to be the time period
over which the moving average is computed.

5 Configure the Precision to be the number of decimal places to round the
Moving Average and Moving Standard Deviation values.

Here is a running model that computes a moving average of the Average
Utilization of the current resource allocated to the task:
693

Here is the General tab of the Moving Average probe:

Computing a Moving Average of a Resource Directly

When you probe the attributes of a resource by attaching the probe to a block, the
probe computes the moving average of the specified attribute of the current
resource allocated by the task. You can also probe a resource directly to compute
the moving average of the specified attribute of an individual resource or
resource pool. When you probe a resource pool directly, you obtain metrics about
the sum of all the resources in the pool.

To compute the moving average of a resource directly:

1 Connect a Moving Average probe directly to a resource.

2 On the General tab of the properties dialog, configure the Apply to Class
Name of the probe to be bpr-resource.

3 Configure the Source Attribute Name Attribute to be the attribute whose
moving average you want to compute.

4 Click the Instrument tab and configure the Time Period to be the time period
over which the moving average is computed.

5 Configure the Precision to be the number of decimal places to round the
Moving Average and Moving Standard Deviation values.
694

Moving Average Probe
This figure shows the result of computing a moving average of the sum of the
Average Utilization of all resources in the pool:

Here is the General tab for the Moving Average probe:

When you plot the moving average of a resource pool, you might want to divide
the moving average by the number of resources in the pool to plot an average of
the sum of the moving average values. For information on how to do this, see
Configuring the Colors and Data Points of the Chart.
695

Specific Attributes

The specific attributes of the Moving Average probe are:

Attribute P/M Description

Use Initial Value P Whether the moving average should
include the Sample Initial Value.

Sample Initial
Value

P The initial value to use for the moving
average when Use Initial Value is enabled.

Time Period P The time interval over which the moving
average is computed, for example,
4 weeks. To compute the moving average
over the entire simulation, use the default
value of 0.

Precision P The number of decimal places to round
the computed values.
696

Moving Average Probe
For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Moving Average probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.

Moving Average M A time-weighted moving average of the
probed values, based on the Time Period.

Moving Standard
Deviation

M A time-weighted moving standard
deviation of the probed values, based on
the Time Period.

Attribute P/M Description
697

N-Dimensional Sample Probe

You use an N-Dimensional Sample probe to obtain multiple sample values from
the model, using a single probe, and optionally keep a history of those values over
time. For example, you might use an N-Dimensional Sample probe to collect a
history of the Total Cost of a task, the Total Cost of a work object, and the Average
Utilization of a resource.

To configure the attributes to sample, you specify the label or unique ID of any
object in the model and the attribute to sample. If the object is not unique within
the model, you must provide a unique label. If the object does not define a Label,
you must go into Developer mode and name the object. For example, to collect the
Mean Wait Time of a path, you must name the path.

To view the sampled data, you must export the data to Excel by using an Excel
Export tool. For details and an example, see Exporting Probed Data to a CSV File.

The first column of the report displays the simulation time, using an Excel
date/time-aware format.

Note The use of an N-Dimensional Sample probe and an Excel Export tool has been
superseded by the N-Dimensional Input and Output reports. For details, see
Summary of Input and Output Reports and Creating Reports in Excel.

Collecting N-Dimensional Samples from the Model

To collect n-dimensional samples from the model:

1 Connect an N-Dimensional Sample probe to a block, instrument, or resource.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the object that triggers the probe to collect data from the model.

The default value is bpr-object, which means it triggers when a work object
arrives at a block.

3 Click the Instrument tab and configure the attributes to sample and the objects
that define those attributes, as follows:

a Click Add Row to insert a row above the currently selected row.

b Double-click a cell to enter a new value and press Return.
698

N-Dimensional Sample Probe
In the left-hand column, enter a unique label of the object whose data you
want to collect, and in the right-hand column, enter the name of the attribute
whose values you want to collect. Specify the attribute name as a symbol, for
example, total-cost or average-utilization.

4 For objects that do not define a Label or whose Label is not unique, you must
configure the name of the object, as follows:

a Choose Tools > Developer Mode.

b Display the properties dialog for the object and click the Customize tab.

c Configure the Name to be a unique symbol, for example, path-1.

5 To keep a history of the sampled data, enable the Keep History Values option.

This example shows an N-Dimensional Sample probe that collects the Total Cost
of the Task block, the order, and the Person resource, the Average Utilization of
the Person resource, and the Total Wait Time of the input path to the Task block
named path-1:

path-1
699

Here is the Instrument tab for the probe:
700

N-Dimensional Sample Probe
Specific Attributes

The specific attribute for the N-Dimensional Sample probe is:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An N-Dimensional Sample probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes.

Attribute P/M Description

Keep History
Values

P Whether to keep a history of sampled
values.
701

Parameter Probe

A Parameter probe sets the value of a parameter to the value of an attribute of the
model. You can create the quantitative parameter from the probe.

You can also use the Parameter probe in conjunction with any type of parameter
or variable, which you can create in Developer mode.

Used in conjunction with a Sample probe or Average probe, the Parameter probe
allows you to plot a history of attribute values or an average of those values,
respectively, over time. For details, see:

• Charting Quantitative Parameters.

• Charting the Average of Quantitative Parameters.

Used in conjunction with a Parameter feed, the Parameter probe enables you to
set attributes of the model that originate from a quantitative parameter. For
details, see Parameter Feed.

Setting the Value of a Parameter

To set the value of a parameter:

1 Connect a Parameter probe to an object in the model whose attribute values
you want to store in a parameter.

Connect the probe to a block to probe an attribute of the block, its activities, or
the work objects, or connect the probe to a resource or to another probe.

2 Choose Create Parameter on the Parameter probe to create a uniquely named
quantitative parameter.

The Parameter probe sets the Parameter Name to the name of the parameter.

Note If you have already created a parameter, using some other technique, you can
also choose the Choose Parameter menu choice on the probe and choose Select
on the parameter. For example, you might have already created the parameter
by using a Parameter feed. This menu choice gives the parameter a unique
name, if it does not have one, and sets the Parameter Name to the named
parameter.
702

Parameter Probe
3 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class name of an object in the model whose attribute values
you want to store.

For example, if you are probing the Total Work Time attribute of a work
object, specify bpr-object or a subclass of bpr-object.

4 Configure the Source Attribute Name to be the attribute of the class whose
values you want to store in the parameter.

For example, if you are probing the Total Work Time attribute of a work object,
specify Source Attribute Name as total-work-time.

When you run the simulation, the Parameter probe sets the current value of the
parameter to the specified attribute.

For example, in the following model, the Parameter probe obtains the Total Work
Time of the work object and stores it in the named quantitative parameter. The
Total Work Time of the work object on the output path of the Task block
corresponds to the current value of the parameter.
703

To see the probe associated with the parameter:

 Choose Show Instruments on the parameter.

Feeding Values into Different Types of Parameters

You might want to use a Parameter probe to keep truth values, symbols, or text
strings, rather than quantitative values.

The parameter types are:

• logical-parameter, which keeps true or false values.

• quantitative-parameter, which keeps integers or floating point numbers.

• integer-parameter, which keeps integers.

• float-parameter, which keeps floating point numbers.

• symbolic-parameter, which keeps symbols.

• text-parameter, which keeps text strings.
704

Parameter Probe
To feed values into different types of parameters:

1 Choose View > Toolbox - G2.

2 Click the G2 Parameter tab:

3 Create the desired type of parameter.

4 Choose the Choose Parameter menu choice on the Parameter probe, then
choose Select on the parameter to select it.

The Parameter probe sets the Parameter Name to the name of the parameter.

5 Create a model that feeds the appropriate type of value into the parameter.
705

Specific Attributes

The specific attribute of the Parameter probe is:

For information on the common attributes, see Common Attributes of
Instruments.

Attribute P/M Description

Parameter Name P The name of the parameter whose value
the probe should set. Choosing Create
Parameter or Choose Parameter on the
probe sets automatically.
706

Parameter Probe
Specific Menu Choices

The specific menu choices of the Parameter probe are:

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes.

Menu Choice Description

Create Parameter Creates a unique named quantitative
parameter and sets the Parameter Name
attribute of the probe to the parameter
name.

Choose Parameter Associates an existing parameter with the
Parameter probe, sets the Parameter Name
attribute to the existing parameter, and
creates a unique name for the parameter, if
needed. Choose Select on a parameter to
select it.

Show Parameter Places an indicator arrow next to the
parameter associated with the Parameter
probe.
707

Sample Probe

A Sample probe obtains any attribute value that the model computes. For
example, you use the Sample probe to obtain the:

• Total Work Time of a block.

• Total Cost of a work object.

• Average Utilization of a resource.

• Current value of a quantitative parameter or variable, which you can then
chart over time.

You can use the Sample probe to obtain individual attribute values, or you can
use it to compute the sum of all the individual values.

Note The Sample probe functions in a sample and hold mode, which means it samples
the value at the end of block processing. This means that the sampled value might
not always match the values shown in the dialog for the sampled value, because
these values update at different times.

Determining the Value of the Probe

The Sample probe defines an attribute named Sample Value, which is a
quantitative parameter that keeps a history of the probed values. The value of this
attribute is the current probed value. The Sample Value appears as an attribute
display of the probe.

Probing Attribute Values that the Model Computes

By default, the Sample probe is configured to probe the total-work-time of a work
object.

To probe the total work time of an object:

1 Connect a Sample probe to a block or instrument.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class whose attribute values you are probing.

For example, if you are probing the Total Work Time attribute of a work
object, specify bpr-object or a subclass of bpr-object.
708

Sample Probe
3 Configure the Source Attribute Name to be the attribute to sample.

If you are probing the Total Work Time attribute of a work object, you can use
the default value for Source Attribute Name, which is total-work-time.

If you are probing some other attribute, such as Total Cost, specify the
attribute value as a symbol, for example, total-cost.

4 To compute the sum of all probed values, click the Cumulative Sample option
on; otherwise, use the default.

This example probes the total-cost of each sales call in a model of the sales cycle.
The Make Sales Call task has a variable cost assigned to it, which represents the
cost of the phone call, based on the duration. The cost is 30¢ per minute. By
probing the total cost of this task, you can determine the cost of each phone call.
709

Here is the General tab of the properties dialog for the Sample probe:

Probing Attribute Values of a Resource Directly

When you probe the attributes of a resource by attaching the probe to a block, the
probe obtains the sample value from the current resource allocated by the task.
You can also probe a resource directly to obtain the sample value of an individual
resource or resource pool. When you probe a resource pool directly, you obtain
metrics about the sum of all the resources in the pool.

To probe an attribute value of a resource directly:

1 Connect a Sample probe directly to a resource or resource pool.

2 On the General tab of the properties dialog, configure the Apply to Class
Name as bpr-resource.

3 Configure the Source Attribute Name Attribute to refer to the attribute of the
resource you want to probe.

For example, you might want to sample the average-utilization.

4 To compute the sum of all probed values, click the Instrument tab and click
the Cumulative Sample option on; otherwise, use the default.
710

Sample Probe
This example shows how to probe a resource directly, using a Sample probe:

You can perform computations on the sample values, for example, to plot the
average of the sum of all the resources in the pool. For an explanation of how to
do this, see Configuring the Colors and Data Points of the Chart.

Charting Quantitative Parameters

You can attach a Sample probe to a quantitative parameter, then chart the value
over time. You can use this feature in conjunction with a Parameter feed, which
allows you to feed the value of a parameter into an attribute of the model, and a
Parameter probe, which allows you to probe an attribute of the model that comes
from a parameter.

To chart a quantitative parameter:

1 Create a model that probes the value of a quantitative parameter from an
attribute of the model.

For details, see Parameter Probe.

2 Attach a Sample probe to the quantitative parameter.

3 On the General tab of the properties dialog, configure the Apply to Class
Name to be variable-or-parameter.

Leave the Source Attribute Name blank.

4 To compute the sum of all probed values, click the Instrument tab and click
the Cumulative Sample option on; otherwise, use the default.

5 Choose Create Chart on the Sample probe to create a chart and associated
remote.

The following example shows how to chart over time the value of total cost,
which is stored in a quantitative parameter. The model uses a Parameter probe to
obtain the total cost of a work object and store it in a quantitative parameter. A
Sample probe obtains the current value of the quantitative parameter and plots it
on a chart.

For information on how to configure the Parameter probe, see Parameter Probe.
711

712

Sample Probe
Here is the General tab of the properties dialog for the Sample probe:
713

Specific Attributes

The specific attributes of the Sample probe are:

For information on the common attributes, see Common Attributes of
Instruments.

Attribute P/M Description

Cumulative Sample P Whether to maintain the sum of the
samples in the Sample Value attribute of
the probe. The default value is to sample
the values without summing them.

Precision P The number of decimal places to round
the Sample Value.

Sample Value M The current sampled value.
714

Sample Probe
Specific Menu Choices

A Sample probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.
715

Statistics Probe

The Statistics probe computes various time-weighted metrics for the sample
values. Similar to the Moving Average probe, the Statistics probe is appropriate
for computing metrics for the attribute of any object, whose value depends on
how long it has persisted, for example, the Current Activities of a block or the
Total Cost of a work object or resource. You might also use this probe to compute
metrics for user-defined attributes of work objects, such as inventory levels,
which you compute as time-weighted values over a given time period.

You provide the time period over which the probe computes metrics. The probe
computes metrics for each time period, where the initial value for each new time
period is the last value for the previous time period. Unlike the Moving Average
probe, you must provide the time period over which to compute the metrics.

For a description of how the probe computes time-weighted metrics, see Moving
Average Probe.

You can use the Statistics probe to probe another probe. For example, you can use
a Delta Time probe to compute a cycle time, then probe the Delta Time probe to
obtain metrics about the cycle time.

You can also use a Statistics probe to probe a value directly in the model. For
example, you can obtain metrics the Current Activities of a block by probing the
Current Activities directly in the Statistics probe.

Determining the Value of the Probe

The Statistics probe defines the following attributes, which are quantitative
parameters that keep a history of values:

Attribute Description

Sample Value The current sampled value.

Number of Samples The number of samples within the time period.

Sum of Incremental
Values

The sum of all positive delta values between the
last sample value and the new sample value
that incremented the value.
716

Statistics Probe
The Sample Value appears as an attribute display of the probe.

Computing Statistics for a Probed Value

To statistics metrics for a probed value:

1 Connect a Statistics probe to an object in the model for whose attribute you
want to compute metrics.

For example, you can attach the Statistics probe to a block, instrument, or
resource.

2 On the General tab of the properties dialog, configure the Apply to Class
name to be the class to which the probe applies.

The default value is bpr-object, which means the probe is automatically
configured to probe the work object of a block.

3 Configure the Source Attribute Name to be the attribute of the probe for
which to compute metrics.

For example, to probe the Sample Value of a Sample probe, the source
attribute is sample-value, and to probe the Current Activities of a block, the
attribute is current-activities.

Sum of Decremental
Values

The sum of all negative delta values between
the last sample value and the new sample value
that decremented the value.

Minimum Value The minimum of the sampled values within the
time period.

Maximum Value The maximum of the sampled values within the
time period.

Average Value The average of the sampled values within the
time period.

Moving Average The time-weighted moving average of the
sampled values, based on the time period.

Moving Standard
Deviation

The time-weighted moving standard deviation
of the probed values, based on the time period.

Time Weighted Value The time-weighted value of the sampled value,
based on the time period.

Attribute Description
717

4 Click the Instrument tab and configure the Time Period to be the time period
over which the time-weighted metrics are computed.

For example, you might want to compute weekly or monthly metrics. The
default value is 52 weeks.

5 Configure the Precision to be the number of decimal places to round the
metrical values.

This example computes metrics for the order size of each manufactured product
that the Yield block creates. For details on this example, see the Yield block.
718

Statistics Probe
Here is the General tab of the properties dialog for the Statistics probe:
719

Here is the Instrument tab of the properties dialog for the Statistics probe:
720

Statistics Probe
Specific Attributes

The specific attributes of the Statistics probe are:

Attribute P/M Description

Time Window P The time interval over which the metrics
are computed, for example, 4 weeks. You
must specify a time period. The default
value is 52 weeks.

Precision P The number of decimal places to round
various computed metrics.

Initial Value P The initial value for the probed value.
721

Period Start Time M The simulation time at the start of the
current time period.

Period Initial Value M The initial value of the current time
period, which is the last value for the
previous time period.

Update Time M The time at which the probe last updated
its values.

Sample Value M The current sampled value, which appears
as an attribute display next to the probe.

Number of Samples M The number of samples in the current time
period.

Sum of Incremental
Values

M The sum of all positive delta values
between the last sample value and the
new sample value that incremented the
value.

Sum of
Decremental Values

M The sum of all negative delta values
between the last sample value and the
new sample value that decremented the
value.

Minimum Value M The minimum of the sampled values in
the current time period.

Maximum Value M The maximum of the sampled values in
the current time period.

Average Value M The average of the sampled values in the
current time period.

Moving Average M The time-weighted moving average of the
sampled values, based on the Time
Period.

Moving Standard
Deviation

M The time-weighted moving standard
deviation of the sampled values, based on
the Time Period.

Time-Weighted
Value

M The time-weighed sample value, based on
the current Time Period.

Attribute P/M Description
722

Statistics Probe
For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Statistics probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.
723

Update Trigger Probe

You use an Update Trigger probe to trigger updates, based on model events. The
Update Trigger probe updates when the object specified in the Apply to Class
Name attribute becomes active. For example, you might want a report to update
each time a work object arrives at a block or each time a resource is allocated.

For more information and an example, see Triggering Updates Based on Model
Events.

Specific Attributes

An Update Trigger probe has no specific attributes.

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An Update Trigger probe has no specific menu choices.

For information on the menu choices common to all probes, see Common Menu
Choices for Feeds and Probes and Common Menu Choices for Probes.
724

Accumulate Feed
Accumulate Feed

The Accumulate feed increments a counter by the value specified in the attribute
of a work object. For example, suppose you are modeling a sales process that
receives local sales calls and regional sales calls, where each type of sales call has
an associated mileage attribute. You use an Accumulate feed to increment the
total mileage attribute of each sales call object by each specific mileage amount.

The Accumulate feed is very similar to the Count feed, except that you configure
the amount by which the feed increments as an attribute of the work object that is
accumulating a value. You must also configure the attribute that holds the
accumulated value.

By default, the Accumulate feed adds the source attribute to the destination
attribute. However, you can also use subtraction, multiplication, division, or
exponentiation. For example, if the operation is subtraction, the feed subtracts the
source attribute from the destination attribute.

Accumulating Values

To use the Accumulate feed, create a class definition with two class-specific
attributes. One attribute specifies the attribute that accumulates the values, and
the other attribute specifies the amount by which the counter increments. The
Accumulate feed refers to these two attributes as the source and destination,
respectively.

To accumulate values into an attribute of an object:

1 Create a class definition with two class-specific attributes, one of which is the
accumulated value and the other of which is the amount by which to
increment the value.

Be sure to configure initial values for each of these attributes.

For details, see Creating a New Class of Work Object.

2 Create another class definition that has the same two class-specific attributes
but with a different default value for the attribute that increments the feed.

Tip Create two class definitions that inherit from a single superior class, each of
which defines different initial values for the attribute that increments the feed.

3 Attach an Accumulate feed to a block.
725

4 On the General tab of the properties dialog, configure the Apply to Class
Name to be the work object that the model processes.

5 Configure the Destination Attribute Name to be the attribute of the work
object that stores the accumulated value.

6 Click the Instrument tab and configure the Source Attribute Name to be the
attribute of the work object that determines how much to increment the
accumulated value.

7 Configure the Operation to be the mathematical operation that the source
attribute should perform on the destination attribute.

By default, the Accumulate feed adds the source attribute to the destination
attribute.

This model of a sales process creates two types of sales calls, a local sales call and
a regional sales call, each of which is a type of sales-call. The Accumulate feed
increments the total-mileage attribute of each type of sales call by the mileage
attribute of each type of sales call, which is different for each type of sales call.

The sales-calls class defines a total-mileage attribute. The mileage attribute
specifies the amount by which the Accumulate feed increments the total-mileage
attribute. Each specific type of sales-calls inherits its definition from the sales-
calls and specifies a different initial value for the mileage attribute.
726

Accumulate Feed
Here are the class definitions for the sales-calls, local-sales-call, and
regional-sales-call classes:
727

Here is General tab and the Instrument tab of the properties dialog for the
Accumulate feed. The feed applies to the sales-calls class, which is the superior
class for each type of sales call. The mileage and total-mileage attributes are both
attributes of the sales-call class.
728

Accumulate Feed
Here is the User tab of the properties dialog for a regional sales call that has had
two sales calls applied to it, as indicated by the value of the Total Mileage
attribute:

Specific Attributes
729

The specific attributes of the Accumulate feed are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

An Accumulate feed has no specific menu choices.

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.

Attribute Description

Source Attribute Name The attribute of the specified class that
determines the amount by which the
counter increments the Destination
Attribute Name attribute of the feed.

Operation The mathematical operation that the
source attribute performs on the
destination attribute. The options are: +, -,
*, /, and E. The default value is +.

For example, if the source attribute is 100,
the destination attribute value is currently
500, and the operation is -, the new value
of the destination attribute will be 400.
730

Attribute Feed
Attribute Feed

The Attribute feed copies the value of an attribute of one object to another
attribute, either in the same object or in a different object. For example, you might
want to copy the work time of an activity of a block into an attribute of the output
work object.

An Attribute feed is similar to a Copy Attributes block in that it copies attributes
from one object to another, with two differences:

• The Copy Attributes block copies attributes between work objects only,
whereas the Attribute feed can copy attributes between any type of object.

• The Copy Attributes block copies all common attributes, whereas the
Attribute feed copies only one attribute.

By default, the Attribute feed copies the exact value of the source attribute to the
destination attribute. When copying numeric values, you can also use addition,
subtraction, multiplication, division, or exponentiation to copy the value. For
example, if the operation is subtraction, the feed subtracts the source attribute
from the current value of the destination attribute and copies the result into the
destination attribute.

Normally, instruments execute either before or after the attached block applies its
duration to the simulation, by specifying the Phase attribute as either Start or
Stop, respectively. The Attribute feed provides an additional Phase called Activity,
which executes after the block applies its duration but before the block executes its
stop method. By setting the Phase to Activity, you can copy attribute values from
the input work object into the block, after the block applies its duration.

Copying Attribute Values

You can copy attribute values to and from blocks, resources, activities, input work
objects, output work objects, input paths, or output paths.

To copy attribute values:

1 Connect the Attribute feed to a block in the model.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be source object, that is, the object from which the feed will copy
values.

3 Configure the Source Attribute Name to be the source attribute, that is, an
attribute of the source object whose value the feed will copy.
731

4 Configure the Phase, depending on the source and target objects you specify.

For example:

• To copy attributes from the input work object, input path, or activity,
before the block applies its duration to the simulation, configure the Phase
as Start.

• To copy attributes from the output work object, output path, or activity,
after the block has applied its duration to the simulation, configure the
Phase as Stop.

• To copy attributes from the input work object into the block after the block
has applied its duration to the simulation, configure the Phase as Activity.

5 Click the Instrument tab and configure the Destination Class Name to be the
target object, that is, the object to which the feed will copy values.

6 Configure the Destination Attribute Name to be the target attribute, that is,
the target object whose value the feed will update, using the source attribute.

If the values of the source and destination attributes are numeric, you can
configure the operation to perform. By default, the feed does not apply any
operator.

7 For numeric attributes, configure the Operation to be the operator to apply
when copying the source attribute to the destination attribute.

The feed applies the operator to the current value of the destination attribute,
as follows:

8 For numeric values, configure the Precision to be the number of decimal
places to round the value of the attribute named by Destination Attribute
Name.

This model shows how to copy the work time of the activity of a block into an
attribute of the output work object, which requires that the Phase attribute be
Stop.

The model generates phone calls and uses an Attribute feed to copy the work-time
of the Make Call activity into the phone-time attribute of the phone call. The

Operation Description

+ Destination attribute + source attribute

- Destination attribute - source attribute

* Destination attribute x source attribute

/ Destination attribute / source attribute

E Destination attribute source attribute
732

Attribute Feed
model then branches work, based on the length of each call and counts the
number of calls.

The following figure shows the result of choosing Snapshot Activities on the
Make Call task and showing its properties dialog. Notice that the Work Time is
2918 seconds.

The Attribute feed configure the Phase as Stop so it can copy attributes to the
output work object after the Make Call task evaluates. The source attribute is the
work-time of the bpr-activity, and the target attribute is the phone-time of the
sales-call.
733

Here are the General and Instrument tabs of the properties dialog for the feed:
734

Attribute Feed
Specific Attributes
735

The specific attributes of the Attribute feed are:

For information on the common attributes, see Common Attributes of
Instruments.

Attribute Description

Phase (General tab) Determines when the feed
copies the value of the source attribute to
the destination attribute. A value of Start
copies the value before the attached block
applies its duration to the simulation. A
value of Activity copies the value after the
block applies its duration but before the
block stops processing. A value of Stop
copies the value after the block applies its
duration and after it stops processing. Use
Activity to copy values from the input
work object to the block. The default Phase
is Stop.

Destination Class Name The class name of the object to which the
feed copies its value. The feed copies the
value of the attribute named by Source
Attribute Name to the attribute named by
Destination Attribute Name.

Destination Attribute
Name

An attribute of the object named in
Destination Class Name to which the feed
copies a value.

Operation The mathematical operation to use when
copying the value of the source attribute to
the destination attribute. The options are:
=, +, -, *, /, and E. The default value is =,
which copies the exact value.

For example, if the source attribute is 100,
the destination attribute value is currently
500, and the operation is -, the new value
of the destination attribute will be 400.

Precision The number of decimal places to round
the value of the attribute named by
Destination Attribute.
736

Attribute Feed
Specific Menu Choices

The Attribute feed has no specific menu choices.

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.
737

Change Feed

You use the Change feed to modify an attribute of the model, using a:

• New value

• Random value

• Unique ID

• Mathematical distribution

You typically use a Change feed to modify various attribute values of blocks or
resources to experiment with different values. By creating sliders and type-in
boxes from the Change feed, you create an easy way of supplying input
parameters to the model. However, you can also use the Change feed to generate
values for you.

For example, you can use a Change feed to modify:

• The rate at which work flows into the model by feeding values into the Mean
attribute of a Source block.

• The number of objects in a batch by feeding values into the Threshold
attribute of a Batch block.

• The hourly wage of a resource by feeding values into the Cost per Time Unit
attribute of a resource.

• Symbolic values of user-defined attributes of the model, for example, the type
of carrier.

Note When ReThink creates a slider or type-in box, it also creates a remote and places it
on the object’s detail. You do not need to use the remote when you configure
sliders and type-ins.

Feeding New Values into Attributes of Blocks

You use a Change feed to modify attributes of blocks to experiment with different
parameters. To do this, you configure the Change feed, then create a slider or
type-in from the feed. You can use the slider or type-in box to feed values into
blocks while the model is running.

You can feed quantitative, textual, or symbolic values into a block.
738

Change Feed
Feeding Quantitative Values

To feed quantitative values into attributes of blocks:

1 Connect a Change feed to the block whose attribute you want to change.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be bpr-block.

3 Configure Destination Attribute Name to be the attribute of the block whose
value you want to change.

4 Click the Instrument tab and configure the Change Mode to be Value, the
default.

5 Configure the New Value attribute to be the initial value for the Change feed.

Note When feeding time-based values into the model, you must configure the
number of seconds, for example, 3600 for 1 hour, 7200 for 2 hours, and so on.

6 To provide an interactive way of feeding new values into the model, choose
Create Slider or Create Type In on the Change feed, depending on how you
want to enter the new value.

ReThink creates a slider or type-in box just above the Change feed labeled
New Value.

7 Configure the slider or type-in box, as follows:

a Click exactly on the border of the type-in box or exactly on the slider to
display the properties dialog.

b Configure the Label.

c Configure the Value On Activation as a number or use the default, which
is none.

If you specify none, the slider or type-in box uses the current value of the
Change feed as the default value when you reset the model.

d If you create a slider, configure the Minimum Value and Maximum Value
attributes of the slider.

e To move the slider or type-in box, choose Tools > Developer Mode, move
the slider to a different location, then go back into modeler mode.

8 To feed a value into the model, adjust the slider or enter a value into the
type-in box.
739

This example shows how you use a type-in box to modify the Mean of a Source
block:
740

Change Feed
Here are the General and Instrument tabs of the properties dialog for the Change
feed:
741

This example shows how you use a slider to modify the Threshold of a Batch
block:
742

Change Feed
Here are the General and Instrument tabs of the properties dialog for the Change
feed:
743

Feeding Symbolic or Textual Values

To provide an interactive way of feeding symbolic or textual values into the
model, you use a type-in box.

To feed symbolic or textual values into attributes of blocks:

 Follow the steps above for feeding quantitative values into attributes of a
block, except instead of configuring the New Value attribute, configure the
New Non Quantitative Value.

This example shows how you use a type-in box to feed symbolic values into the
Carrier attribute of a user-defined work object of type package:
744

Change Feed
Here are the General and Instrument tabs of the properties dialog for the Change
feed:
745

Feeding New Values into Attributes of Resources

You can use a Change feed to modify attributes of resources to experiment with
different sets of resource parameters. You follow the same steps as you do when
feeding new values into attributes of blocks, except that you connect the feed
directly to the resource and you specify bpr-resource as the class to which the
feed applies. You can use a slider or type-in box to feed values into resources
while the model is running.

To feed values into attributes of a resource:

1 Connect a Change feed to the resource whose attribute you want to change.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be bpr-resource.

3 Follow steps 3 through 8 outlined under Feeding New Values into Attributes
of Blocks.

This example shows how you use the Change feed to modify the hourly wage of a
resource:
746

Change Feed
Here are the General and Instrument tabs of the properties dialog for the Change
feed:
747

Generating Random Numbers and Unique IDs

You can use the Change feed to generate random numbers between a maximum
and a minimum number, or unique IDs that increment starting from an initial ID.

To generate random numbers:

1 On the General tab of the properties dialog, configure the Apply to Class
Name and the Destination Attribute Name.

2 Click the Instrument tab and configure the Change Mode to be Random.

3 Configure the Minimum Value and Maximum Value attributes to be
minimum and maximum values for the random number.

ReThink generates random numbers between the minimum and maximum
values.

For example, you could use feed random numbers into the cost-per-use of a
bpr-block to configure random fixed costs:

To generate unique IDs:

1 On the General tab of the properties dialog, configure the Apply to Class
Name and the Destination Attribute Name.

2 Click the Instrument tab and configure the Change Mode to be Unique ID.

3 Configure the Initial ID to be the initial value for the unique ID.

ReThink generates unique IDs starting with the initial ID and incrementing it by
one for each new ID.
748

Change Feed
For example, you could feed the unique ID into a user-defined attribute of a work
object to create a unique ID:

Generating Random Numbers Based on a
Distribution

You can use a Change feed to feed random numbers that are generated based on a
mathematical distribution. You use the same distributions that you use to
configure the Mode Type of a block, including random normal, random
exponential, random triangular, and so on.

To generate random numbers based on a distribution:

1 On the General tab of the properties dialog, configure the Apply to Class
Name and the Destination Attribute Name.

2 Click the Instrument tab and configure the Change Mode to be Distribution.

3 Configure the Distribution Mode to be the random distribution to use, then
configure the mode-specific attributes for the distribution you choose.

For details, see Specifying a Fixed Duration and Specifying a Random Duration.

ReThink generates random numbers, based on the mathematical distribution.
749

This example shows how you use the Change feed to feed a random number,
based on a triangular distribution, into a user-defined attribute named order-size
defined for a mfg-order:
750

Change Feed
Here are the General and Instrument tabs of the properties dialog for the Change
feed:
751

Specific Attributes

The specific attribute of the Change feed is:

Attribute Description

Change Mode Specifies the type of value the Change feed
generates. The options are: Value,
Random, Unique ID, Distribution, and
Custom.
752

Change Feed
The mode-specific attributes of the Change feed are:

For information on the common attributes, see Common Attributes of
Instruments.

Mode Attribute Description

Value New Value A new value for the attribute of the
class that the Destination Attribute
attribute of the feed specifies.
Typically, you set this value with a
slider or type-in box, rather than
through the dialog. The New Value
attribute can be a number, symbol,
text string, true, or false.

New Non Quantitative
Value

A new value for the destination
attribute when the value is other
than a quantity, for example, a
symbol.

Random Minimum Value The minimum value of the
randomly generated number.

Maximum Value The maximum value of the
randomly generated number.

Unique ID Initial ID The initial value for the unique ID.

Distribution Distribution Mode The distribution to use when
generating the value. For
information on the mode-specific
attributes for each mode type, see
Specifying a Fixed Duration and
Specifying a Random Duration.

Custom Change Procedure Name See Customization Attributes.
753

Specific Menu Choices

The specific menu choices of the Change feed are:

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.

Customization Attributes

The customization attribute available in Developer mode for the Change feed is:

For more information, see the Customizing ReThink User’s Guide.

Menu Choice Description

Create Slider Creates a slider for setting the New Value
or New Non Quantitative Value attribute
of the Change feed.

Create Type In Creates a type-in box for setting the New
Value or New Non Quantitative Value
attribute of the Change feed.

Show Slider Places an indicator arrow next to any
sliders that have been created from this
feed.

Show Type In Places an indicator arrow next to any type-
in boxes that have been created from this
feed.

Attribute Description

Change Procedure Name When Change Mode is Custom, this
attribute specifies the procedure name that
determines how to compute the value of
the feed. The default value is bpr-change-
value.
754

Copy Attributes Feed
Copy Attributes Feed

The Copy Attributes feed copies attributes from a source object to the object to
which the feed applies. You can use the Copy Attributes feed to copy metrics
computed in a higher-level Task block to work objects on the detail.

You can configure the Copy Attributes feed to copy the exact value of an attribute,
or you can configure it to use an operator or function. For example, you might
want to sum the order size of each work object that the task on the detail
processes and store the value in an attribute of the superior task.

Compare the Copy Attributes feed with the Copy Attributes probe, which copies
attributes from the object to which the feed applies to a destination object.

Copying Attributes from a Block to a Work Object

To copy attributes from a block to a work object, you attach a Copy Attributes
feed to a block on the detail and configure it to copy attributes from the block to
an attribute of a work object. You configure the class to which the probe applies,
which defines the destination object, and the source class.

For example, you might want to copy attributes from a superior task to a work
object on the detail, or you might want to copy an attribute of a block to the work
object, such as the Yield Value of a Yield block.

For information about creating a subclass of the Task block with additional
attributes that the model copies to objects on the detail, see Copy Attributes
Probe.

To copy metrics from a block to a work object:

1 Connect a Copy Attributes feed to the block in the model whose attributes
you want to copy to a work object.

2 On the General tab of the properties dialog, configure the Apply to Class
Name to be the class that triggers the feed to copy attributes.

The Apply to Class Name class is the destination class to which the Copy
Attributes feed copies attributes.

For example, to copy attributes to a work object, configure the Apply to Class
Name to be bpr-object or a subclass.

3 Click the Instrument tab and configure the Source Class Name to be the class
name of the object from which the Copy Attributes feed copies attributes.
755

For example, if you are copying metrics from a Yield block to the output work
object, you would configure the Source Class Name to be bpr-block or a
subclass.

4 For each attribute to copy, create and configure a row in the List of Operations
group, as follows:

a Click Add Row to create a new row.

b Configure the Source Subtable to be the name of the subtable in which the
attribute to copy is defined, if any.

The Source Subtable corresponds to each tab page of the object on which
the attribute to copy appears, for example, duration-subtable or
cost-subtable. If the attribute is on any tab other than the Duration or Cost
tab, leave the Source Subtable blank.

c Configure the Source Attribute to be the name of the attribute of the
source object to copy.

For example, you might copy the total-starts of the superior task to an
attribute of a work object on the detail.

d Configure the Destination Subtable to be the name of the subtable in
which the copied attribute is defined.

You only need to configure this attribute if you are copying attributes
from a subtable.

By default, the feed copies the exact value of the source attribute into the
destination attribute; however, you can also apply a mathematical
operator or function to the source attribute to compute the destination
attribute.

e Choose the Operator from the available list, or configure the Function to
be the name of a G2 function to apply.

Some examples of functions are: max, min, or average. For details, see Chapter 25
“Functions” in the G2 Reference Manual.
756

Copy Attributes Feed
The following example shows how to copy an attribute from one work object to
another:
757

The Copy Attributes feed specifies Apply to Class Name as mfg-license, which is
the destination object, and mfg-order as the Source Class Name. It copies the
order-size from one object to the other, using the = operator.

Copy Attributes Feed
Specific Attributes
759

The specific attributes of the Copy Attributes feed are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Copy Attributes feed has no specific menu choices.

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.

Attribute P/M Description

Source Class Name P The class name of the object whose source
attributes the feed copies. The feed copies
attributes to the destination object
specified in the Apply to Class Name
attribute.

Source Subtable
Source Attribute
Destination Subtable
Destination Attribute
Operation
Function

P The list of operations to perform when the
Copy Attributes feed updates.

It copies the Source Attribute of the source
object to the Destination Attribute of the
destination object, based on the specified
Operator or Function.

If the Source Attribute and Destination
Attribute are in a subtable of the work
object, you can configure the Source
Subtable Name and Destination Subtable
Name, for example, duration-subtable or
cost-subtable.
760

Increment Feed
Increment Feed

The Increment feed increments a counter by a value. For example, you use this
feed to report on the number of times a work object has gone around a loop in the
model.

You specify the target attribute in which the count accumulates, the amount by
which to increment the counter, and an initial count.

By default, the Increment feed adds the increment value to the destination
attribute. However, you can specify a different mathematical operation to
perform such as subtraction, multiplication, division, or exponentiation. For
example, if the operation is subtraction, the feed subtracts the incremented value
from the destination attribute.

Incrementing a Counter

To use the Increment feed, first create a class definition with a class-specific
attribute that is the counter. The Increment feed refers to this attribute as the
destination attribute of the feed. Next, configure the initial value for the counter
and the amount by which to increment the counter. You can also configure an
initial value for the counter.

To increment a counter in an attribute of an object:

1 Create a class definition with a class-specific attribute, which is the counter.

For details, see Creating a New Class of Work Object.

Note If you specify an initial value for the attribute that is the counter, the model
uses this default as the initial value for the counter, rather than the value of
the Initial Count attribute of the feed.

2 Connect an Increment feed to a block through which a work object passes
multiple times.

3 On the General tab of the properties dialog, configure Apply to Class Name to
be the work object that the model processes.

4 Configure Destination Attribute Name to be the attribute of the work object
that is the counter.
761

5 Click the Instrument tab and configure the Initial Count to be the starting
number for the counter.

The default value is 0.

6 Configure the Increment to be the amount by which to increment the count.

The default value is 1.

7 Configure the Operation attribute to be the mathematical operation that the
value of the Increment attribute should perform on the destination attribute.

By default, the Increment feed adds the Increment value to the destination
attribute.

8 Configure the Precision attribute to be the number of decimal places to round
the incremented value.

In this model of a sales process, the Branch block passes some percentage of the
sales calls back through the process to make another sales call. The Increment feed
is attached to the Try Again task to determine how many return sales calls each
work object requires.
762

Increment Feed
If you probe the sales call just before it is absorbed by the Sink block, you can
determine the number of times the sales call went around the loop. Here is the
properties dialog for the Increment feed, which applies to the sales-call-1 class
and uses the default values for Initial Count and Increment. The feed specifies the
counter attribute of the sales-call-1 as the Destination Attribute Name.
763

Here is the User tab of the properties dialog for a sales call object that had four
return sales calls applied to it, as indicated by the value of the Counter attribute:

Specific Attributes
764

Increment Feed
The specific attributes of the Increment feed are:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

The Increment feed has no specific menu choices.

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.

Attribute Description

Initial Count The starting number for the counter.

Increment The amount by which to increment the
attribute named by the Destination
Attribute Name.

Operation The mathematical operation that the
Increment attribute performs on the
destination attribute. The options are: +, -,
*, -, and E.

For example, if Increment is 1, the
destination attribute is currently 5, and the
operation is -, the new value of the
destination attribute will be 4.

Precision The number of decimal places to round the
incremented value.
765

Parameter Feed

A parameter feed gets the value of a parameter and sets it as the current value of
an attribute of the model. You create the parameter from the feed.

You can also use the Parameter feed in conjunction with any type of parameter or
variable, which you can create in Developer mode.

Used in conjunction with a Parameter probe, the Parameter feed enables you to
get the value of a parameter that comes from an attribute of the model. For details,
see Parameter Probe.

Getting the Value of a Parameter

To get the value of a parameter:

1 Connect a Parameter feed to an object in the model whose attribute values you
want to set.

Connect the feed to a block to set an attribute of the block, its activities, or the
work objects, or connect the feed to a resource or another probe.

2 Choose Create Parameter on the Parameter feed to create a uniquely named
quantitative parameter.

The Parameter feed sets the Parameter Name on the Instrument tab to the
name of the parameter.

Note If you have already created a parameter, choose the Choose Parameter menu
choice on the Parameter feed to choose the existing parameter, or configure
the Parameter Name to be the name of the parameter.

3 On the General tab of the properties dialog, configure Apply to Class Name to
be the object of the model whose attribute values you want to set.

4 Configure the Destination Attribute Name to be the attribute of the class
whose values you want to set.

When you run the simulation, the Parameter feed gets the current value of the
parameter and sets it as the current value of the specified attribute of the model.

For example, in the first model below, a Change feed feeds a random number into
the amount attribute of a POR work object. A Parameter probe gets the current
value of the amount attribute and sets it as the current value of the quantitative
766

Parameter Feed
parameter. In the second model, a Parameter feed gets the current value of the
quantitative parameter and sets it as the current value of the amount attribute of
the POR. The User tab of the properties dialog for the POR on the output path of
the Task block in the second model corresponds to the current value of the
quantitative parameter.
767

Here is the General tab of the properties dialog for the Parameter feed:

To see the feed associated with the parameter:

 Choose Show Instruments on the parameter.

Getting Values from Different Types of Parameters

You might want to use a Parameter feed to keep integers, symbols, text strings, or
truth values rather than quantitative values.

The parameter types are:

• Logical-parameter, which keeps true or false values.

• Quantitative-parameter, which keeps integers or floating point numbers.

• Integer-parameter, which keeps integers.

• Float-parameter, which keeps floating point numbers.

• Symbolic-parameter, which keeps symbols.

• Text-parameter, which keeps text strings.
768

Parameter Feed
To get values from different types of parameters:

1 Choose View > Toolbox - G2.

2 Click the G2 Parameter tab:

3 Create the desired type of parameter.

4 Choose the Choose Parameter menu choice on the Parameter probe to choose
the existing parameter, then choose Select on the parameter to select it.

5 Create a model that sets the parameter values into attributes of the
appropriate type.

Specific Attributes
769

The specific attribute of the Parameter feed is:

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

The specific menu choices of the Parameter feed are:

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.

Attribute Description

Parameter Name The name of the parameter whose current
value the feed should get. Choosing
Create Parameter or Choose Parameter on
the probe sets this attribute automatically.

Menu Choice Description

Create Parameter Creates a unique named quantitative
parameter and sets the Parameter Name
attribute of the feed to the parameter
name.

Choose Parameter Associates an existing parameter with the
Parameter feed, sets the Parameter Name
attribute to the existing parameter, and
generates a unique name, if needed.
Choose Select on a parameter to select it.

Show Parameter Places an indicator arrow next to the
parameter associated with the Parameter
feed.
770

Timestamp Feed
Timestamp Feed

The Timestamp feed supplies the current time to an attribute of an object at any
point in the model. You use the Timestamp feed in conjunction with a Delta Time
probe to compute a partial cycle time for a model. You use a Delta Time probe to
compare the timestamp to the current time, which computes the cycle time for
that portion of the model.

Typically, you feed a timestamp into a work object of the model and probe the
Delta Time of the work object at a point downstream in the model.

Feeding a Timestamp into a Work Object of the
Model

To feed a timestamp into a work object, first define a work object class with a
timestamp attribute, then configure the Timestamp feed.

To feed a timestamp into a work object of the model:

1 Create a class definition for a work object with a class-specific attribute that
will hold the timestamp.

For example, you might create a class-specific attribute named load-time to
indicate the time at which a box is loaded.

For details, see Creating a New Class of Work Object.

2 Connect a Timestamp feed to a block in the model.

Typically, you feed a timestamp into a work object somewhere in the middle
of the model, for example, at the beginning of a subtask.

3 On the General dialog of the properties dialog, configure Apply to Class
Name to be the name of the work object that defines the timestamp attribute.

4 Configure the Destination Attribute Name to be the timestamp attribute of the
work object.
771

For example, here is the Take Order detail, which computes a partial cycle time:

For a complete explanation of this example, see Computing a Partial Cycle Time.
772

Timestamp Feed
Specific Attributes

The Timestamp feed has no specific attributes.

For information on the common attributes, see Common Attributes of
Instruments.

Specific Menu Choices

A Timestamp feed has no specific menu choices.

For information on the menu choices common to all feeds, see Common Menu
Choices for Feeds and Probes.
773

774

Glossary
A

activity: The amount of work associated with processing the inputs of a single
block. Each time work objects flow to the input paths of a block, the block creates
an activity object. Each activity adds value to the work object; activities have a
duration and they can have an associated cost. See also concurrent activities.

allocate: To assign a resource to an activity. When the activity is complete, the
resource is typically deallocated and can be allocated to another activity. You can
allocate a resource for multiple sequential activities. You can allocate particular
resources to an activity based on various criteria, such as cost, utilization, or
priority. You can also constrain the availability of resources, using temporal
constraints.

annotation: A tool that contains detail for adding documentation to a model.

association: A relationship between two or more work objects in a model, which
you create by using an Associate block. Because the work objects are associated,
they can flow apart in a process. You can create new associations between work
objects, or you can add work objects to existing associations. You can reconcile
associated work objects downstream in the process based on the association.

attribute displays: Text displayed next to an icon that shows the value of a
particular attribute of the object. For example, all blocks show the Label attribute
as an attribute display, whose default value is an empty string.

B

batch: A group of work objects that a Batch block processes together. By default,
the Batch block waits until the specified number of work objects arrive at the
block before passing them together to the downstream block. The block can also
pass the batch downstream based on the value of an attribute of an input work
object, a particular work object arriving at the block, or a specified time interval.

block: A graphical object that represents an operation within your model. Blocks
operate on work objects. Blocks can have a duration and a cost. Blocks can also
require resources. ReThink represents each block execution as an activity.
775

C

chart: A display of historical values that a probe in the model collects. See also
probe.

concurrent activities: Activity objects that a block processes simultaneously. A
block can process multiple activities concurrently, depending on constraints on
the model. The number of concurrent activities depends on the arrival rate of
work objects to the block, the duration of the task, the number of resources that
are available, the maximum number of activities that the block specifies, and
whether the block synchronizes its inputs.

connector: An object that connects the blocks on a higher-level workspace to the
blocks on the detail of a task. Work objects flow from the top-level block, through
the connectors, to the blocks on the detail, and back up through the connector to
the top-level blocks.

constraints: See temporal constraints.

container: A subclass of work object that defines an attribute into which the Insert
block and the Batch block insert work objects, and from which the Remove block
removes work objects. A container is an instance of the bpr-container class.

cost: The sum of all fixed and variable costs associated with tasks and resources
that are applied to different objects in the model. For example, process costs
measure costs as they apply to work objects, task costs measure costs as they
apply to individual blocks, and resource costs measure costs as they apply to
resources or resource pools that are allocated to a task.

creation time: The simulation time at which a ReThink object was created. The
creation time of some ReThink objects, like blocks, is typically the start time of the
simulation, while the creation time of other ReThink objects, like work objects,
can be any time during the simulation when the work object is created.

cycle time: The amount of simulation time from one operation in a model to
another. Cycle time is one way of measuring the performance of a process or
subprocess. Cycle time is also called delta time.

D

deallocate: To finish using a resource for an activity. When a Resource Manager
deallocates a resource, the manager can allocate it to some other activity.

detail: The subworkspace of a ReThink object. For example, a Task block can have
detail to define its subprocesses, and a Model has detail on which you place
blocks, instruments, and resources. Task block details allow work objects to flow
from the top-level task, through the blocks on the detail, and then back up to the
top-level blocks. The detail can be multiple levels deep.

duration: The amount of simulation time applied to a particular activity. ReThink
computes duration differently for different types of objects. By default, the
776

duration of most blocks is computed based on a random normal function and
represents the amount of simulation time the block has been processing work
objects. The duration of a resource is the amount of simulation time the resource
has been allocated to activities in the model. The duration of a work object is the
amount of simulation time the blocks in the model have spent processing the
work object.

E

elapsed time: The amount of simulation time that represents the entire duration
of the activity. The total elapsed time associated with a block is the amount of
time that has elapsed since the simulation began. Contrast with work time.

F

feed: A type of instrument that you use to assign values to objects in the model
while the simulation is running. You can feed values into attributes of blocks,
paths, work objects, resources, and instruments.

free text: Text that you can place anywhere on a workspace to label the model.

H

hierarchical view: A way of viewing a model such that only the relevant
information is visible. You create hierarchical views in a model by adding detail
to Task blocks. You can create nested levels of detail in a hierarchical view, as
needed.

I

image definition: An object that defines a bitmap image, which ReThink can use
as the background for the icon of a block, instrument, resource, or work object, or
as the background of a workspace.

indicator: A large magenta arrow that a scenario displays next to an object when
the user chooses certain menu choices, such as Show Scenario on any object or
Choose Resource on a Resource Manager. The Scenario controls whether clicking
the indicator removes it from the workspace, the default, or whether the indicator
disappears automatically.

instrument: A type of ReThink object that either supplies values to the model or
obtains values from the model. Feeds and probes are the two classes of
instruments within ReThink. From ReThink instruments, you create user interface
objects to observe and control your model; you create charts from probes and
sliders and type-in boxes from feeds.
777

J

jump mode: The normal discrete event simulation mode. Events occur while a
simulation is running. After each event, ReThink advances the simulation clock to
the starting time of the next event. Work objects flow through the model
continuously. Contrast with step mode and synch mode.

junction: A type of connection that exists on the end of a stub when you
disconnect two blocks. You can drag a stub into a junction to connect two blocks.
When a path contains a junction and you move a connected block, ReThink only
reconfigures the path between the junction and the block you move; it does not
reconfigure the path between the junction and the block connected to the path on
the other side of the junction.

M

metrics: Attributes that the model computes, based on parameters that you
configure.

mode: The discrete simulation mode in which a simulation runs, which can be
continuous (jump mode), step-by-step (step mode), synchronized (synch mode),
or online. You control the mode from the Scenario Control Panel. See also user
mode.

model: A representation of some part of a business process that you create by
using ReThink blocks, instruments, and resources. You create ReThink models on
the detail of a Model tool.

module: A set of related information in an application. Typically, you store a
single module in a single .kb file that has the same name as the module.

module hierarchy: The set of dependent modules that form an application. You
can show the module hierarchy, and you can create, delete, rename, and merge
modules.

O

organizer: A type of tool with detail on which you can place various types of
objects, for example, resources and work object class definitions.

P

parameters: Inputs to a model that determine how the model behaves. For
example, the mean time between orders, the hourly wage of a clerk, and the
number of boxes in a truckload are all parameters of the model. The model
computes metrics, based on parameters that you configure.
778

path: A connection between two blocks. Paths carry work objects from block to
block within a model. Paths have a direction of flow, typically from left to right.
Blocks can have input paths and output paths. You determine the type of work
object that a block processes by specifying the path type. Paths automatically
reconfigure when you move one of the connected blocks. See also stub.

path queue: The pending work objects for a particular task. When a block has
constraints or when a block synchronizes its inputs, input paths can develop a
backlog, called a work backup. Paths keep track of queuing metrics, such as wait
time, making it easy to identify and diagnose bottlenecks in a process.

path type: The type of work object that a block receives on its input path or passes
on its output path. The path type can be bpr-object, bpr-container, or any subclass.

phase: An attribute of an instrument that determines whether the instrument
evaluates before or after the attached block applies its duration to the simulation.
You use the start phase to feed and probe input work objects and paths, and you
use the stop phase to feed and probe output work objects and paths.

pool: See resource pool.

probe: A type of instrument that obtains values of objects while a simulation is
running. You can obtain performance information about blocks, paths, activities,
work objects, resources, and instruments by using probes. You create charts
directly from probes to plot the history of probed values.

R

readout table: A display that shows the current value of an attribute of an object,
which updates at a periodic interval. You use readout tables to display attributes
of paths and other objects.

remote: An intermediate object that ReThink creates when you create a chart from
a probe. You configure the remote to specify how the chart looks and behaves.
Remotes contain a history of probed values.

report: A table of output metrics or input parameters for blocks, paths, probes,
resources, and work objects. You can configure the update interval for output
reports, and you can apply input report data to the model. You can create reports
in the client, in an Excel spreadsheet, in a .csv file, or in a database.

resource: An object that a block requires to process its activities. Resources
constrain the model, based on availability. You can also apply costs to a model
through resources. You use Resource Managers to allocate and deallocate
resources for particular tasks.

resource manager: Determines which resources a block uses to perform a
particular task and how the block allocates and deallocates them. You create
resource managers directly from resources and attach them to blocks that require
the particular resource. By default, the resource manager chooses resources from
a pool at random and schedules the blocks that are waiting for the resource when
779

the resource is unavailable. The resource manager also determines the utilization
of the resources, which is the amount of resources that are required.

resource pool: A collection of resources available for a particular task. To create a
pool for any resource, create detail for the resource and add resources.

S

scenario: The control center of a model. You control the simulation by creating an
associated scenario, which keeps track of the simulation time of the model. The
scenario advances the simulation clock for each discrete event and either
continues running the model or pauses, depending on the mode in which you are
running the model. You can use one scenario to control multiple models, or you
can use different scenarios to control the same model.

sequential processing: A way of processing in which a block processes each work
object in sequence as it arrives at the block. For example, a Merge block performs
sequential processing of its inputs. Contrast with synchronized processing.

simulation time: The current time at which the simulation is running. Scenarios
control when the simulation clock advances, and the duration of activities
determines how much it advances for each event.

stand-alone model: A model that runs independently of other models in a
knowledge base. You create a stand-alone model by placing a scenario on the
detail of a model with the blocks, resources, and instruments that make up the
model.

status: The current run status of a simulation, which can be running, stopped, or
paused. You control the status from the Simulation menu.

step mode: The mode used for diagnosing and debugging the model. ReThink
pauses after each event so that you can walk through the simulation one step at a
time. When you continue running, the simulation clock immediately advances to
the starting time of the next event. Contrast with jump mode and synch mode.

stub: A connection coming into or out of a block that is not yet connected to
another block. You can connect stubs to other stubs, directly to a block, or to a
junction. See also path.

surrogate: A different manifestation of an existing resource, usually placed in a
different pool, which the model uses in another location. You use surrogates to
share an individual resource between more than one task. For example, in a
model of a delivery process, a truck loader might also act as a truck driver.

symbol: A string of alpha-numeric characters without spaces. Use hyphens in
place of spaces in any symbol. All names and attributes must be specified as
symbols, for example, model-top-level-workspace, creation-time, and begin-credit-
check.
780

synch mode: The mode used to help visualize the delays in the process. ReThink
scales the time of the simulation to real time. For example, you can use this mode
to run the simulation at one hour simulation time per second of real time. Most of
the time when you are building models, however, you focus on diagnosing the
work flows and let the clock keep track of the simulation time. Contrast with jump
mode and step mode.

synchronized processing: A way of processing in which a block waits to process
its inputs until all of the inputs have arrived at the block. These blocks
synchronize their inputs: the Task block, the Associate and Reconcile blocks, the
Insert and Remove blocks, and the Copy Attributes block. Contrast with
sequential processing.

T

task: A distinct operation within a process that adds value and applies costs to
work objects. ReThink represents tasks dynamically as activities.

temporal constraints: Objects that allow you to constrain the date and time
availability of resources. To configure the availability of resources, you connect a
temporal scheduler to any resource and configure the constraints on the detail of
the scheduler. You can configure the availability of resources by the date, month,
week, and day.

top-level workspace: A named workspace that you create on which you create
models. Each top-level workspace is assigned to a module.

total cost: For a block, the sum of the cost of all of individual activities, which
includes the fixed and variable costs assigned to the block and the fixed and
variable costs assigned to any resources associated with the block. For a work
object, the sum of the individual activity costs applied to the work object.

total elapsed time: The amount of time that has elapsed since the simulation
began.

total work time: The sum of all the work time of each activity currently scheduled
by the block, as of the current simulation time.

U

user modes: Determines the privileges for different categories of users, such as
moving, editing, and deleting objects. See also browser mode, modeler mode, and
developer mode.

utilization: The amount of a resource allocated to an activity. You specify
utilization in the Resource Manager that allocates resources to a task. You specify
the amount of the resource that is available for a task in the resource itself.
Resources and work objects compute various utilization metrics to analyze the
efficiency of the process.
781

W

“what-if” analysis: A technique of business process reengineering in which you
experiment with different parameters, resource constraints, costs, and work
flows, to come up with a more efficient process.

wire: A connection between an instrument and another object, or between a
Resource Manager and a block. ReThink automatically reconfigures wires when
you move one of the connected objects.

work backups: Work objects that ReThink places in the path queue. Work backs
up in a process when a block is too busy processing its current inputs to process
the work in the queue. This happens when resource constraints exist, when the
maximum number of activities for a block is specified, or when the block
synchronizes its inputs.

work objects: The objects in a model on which blocks operate. Work objects
represent the inputs and outputs of a process, for example, orders and invoices.
Work objects compute summary duration and cost metrics that indicate the
overall performance of the process. The type of work objects that the model
processes depends on the path type, which is bpr-object, by default.

work time: The amount of simulation time that an object has actually been active.
ReThink computes work time differently depending on the type of object. The
work time of a work object is the amount of time the object has been actively
operated on by blocks in the process. The work time of a resource is the amount of
time the resource has been allocated. The work time of a block is the amount of
time the block has been actively processing work objects. Contrast with elapsed
time.

workspace: An area for creating a model, interfacing with an end user, and
storing definitions. See also top-level workspace and detail.
782

Index
Numerics
180 menu choice

controlling layout, using
Layout menu

90 Clockwise menu choice
controlling layout, using
Layout menu

90 Counterclockwise menu choice
controlling layout, using
Layout menu

A
About ReThink menu choice
Access Tables menu choice
Access, Microsoft
Accumulate feed

accumulating values, using
reference

Acknowledge All Messages attribute
Acknowledge Message probe
Acknowledge Messages Upon Selection

attribute
action buttons, updating charts, using
Activate menu choice

activating scenarios, using
Simulation menu

activating scenarios
Active Color attribute

of blocks
of instruments
of resources

activities
See also blocks
attributes of
constraining

using Maximum Activities
using resources

cost of
current

computing
showing snapshot of
when allocating multiple and partial
resources

duration of
configuring custom
configuring fixed
configuring from a file
configuring from a report
configuring from a report lookup
configuring from an attribute
configuring random
customizing

showing allocated resources of
understanding for blocks

Activity phase
Add Remote menu choice
Add to Associations attribute

of Copy block
of Retrieve block

Address field
adjusting

micro position of objects
order of objects

Administrator mode
configuring user preferences for
description of
Tools menu

Align or Distribute menu choice
controlling layout, using
distributing objects, using
Layout menu
of blocks
of instruments

Allocate Resource attribute
Alpha attribute

random beta distribution
random gamma distribution

animation
configuring

for blocks
for instruments
for paths
for resources
for scenarios
783

for surrogates
Animation Color attribute
Animation Repeat Counter attribute
Animation Speed attribute
Animation tab

blocks
configuring
reference

feeds
configuring
reference

paths
configuring
reference

probes
configuring
reference

resources
annotating models

introduction to
using Annotation tool
using free text
using readout tables

Annotation tool
applications

interacting with objects in
navigating

Apply menu choice
Excel toolbar
Reports menu

Apply to Class Name attribute
configuring for feeds

updating system-defined attributes
updating user-defined attributes

configuring for probes
of feeds
of probes

applying input report data
from databases
from Excel

Arrival Rate Input Graph
configuring
creating
editing the shape of

arrows, indicator
configuring behavior of
setting and clearing

Associate All attribute
of Associate block
using

Associate block
784
configuring specific features of
reference

Association Name attribute
allocating associated resources, using
of Associate block
of Reconcile block
of Retrieve block

associations
adding to existing
creating new
showing existing

Attribute Change Event Report
description of
using

attribute displays, using
Attribute feed

copying attribute values, using
reference

Attribute Lookup Report
configuring durations, using
description of

Attribute Name attribute, of Batch block
Attribute to Split attribute
Attribute Value attribute

of Criteria probe
of Retrieve block

attributes
See also scenarios and resources
computing statistics for
configuring

block animation
block cost
block duration
block, general
block, specific
for feeds
for probes
for reports
using Batch Simulation object

copying values
using Attribute feed
using Copy Attributes block
using Copy Attributes feed
using Copy Attributes probe
using Task block

Auto Refresh Clients attribute
Average in Process attribute

computing for blocks
of blocks

Average probe

charting averages of quantitative
parameters, using

computing an average, using
determining value of
plotting minimum and maximum values

of
reference

Average Utilization attribute
computing for individual resources

when allocating multiple resources
when allocating partial resources

computing for resource pools
when allocating multiple resources
when allocating partial resources

of resources
of work objects
showing

for individual resources
for resource pools
for work objects

Average Value attribute
current value of Average probe
of Average probe
of Statistics probe

B
Back menu choice

Go menu
Background Color attribute

of charts
background images, loading
Basic Activities palette

creating blocks, using
reference
ReThink toolbox

Batch block
batching

at time intervals
based on trigger object
by summing attribute of work objects
in a group
into containers, using

choosing the batch mode
configuring

path identity of
specific features of

reference
Batch Mode attribute

Interval
Number
of Batch block
Sum
Trigger

Batch Procedure Name customization attribute
Batch Simulation History attribute
Batch Simulation objects

creating
keeping histories across multiple

simulations, using
keywords for

report parameters
simulations

using
Beep Enabled attribute
Best Practice URL, of models
Beta attribute

random beta distribution
random gamma distribution

beta distribution
Block Input Report
Block Label attribute
Block Summary Report
blocks

See also activities and individual block
listings

activities
configuring custom duration
configuring duration from a file
configuring duration from a report
configuring duration from a report

lookup
configuring duration from an attribute
configuring fixed duration of
configuring random duration of
customizing duration of
determining current
showing snapshot of current

attributes
Animation tab
common
Cost tab
Duration tab
General tab

class names of
configuring

animation attributes
cost attributes
duration attributes
general
general attributes
785

hierarchical views
modes
path identity
path types, general
path types, specific blocks
specific
specific attributes
type of work to process

connecting
by inserting between connected blocks
introduction to
redisplaying paths when
using loops
using stubs

constraining
using Maximum Activities
using resources

costs
computing, based on resource costs
fixed
total cost
using
variable

creating
custom
customizing
debugging
disconnecting
duration

computing duration for multiple work
units

file
fixed
random
report
report lookup
updating metrics
using
work object attribute

errors
menu choices of
online
paths

connecting
creating loops
deleting

probing performance of
replacing
stubs
verifying metrics of

Blocks Waiting attribute
786
borderless free text
borders, adjusting workspace
bpr-acknowledge-message-probe class
bpr-activity class
bpr-associate class
bpr-average-probe class
bpr-batch class
bpr-block class

feeding values into
filtering report data, using
probing
updating attributes of

bpr-branch class
bpr-container class

batching objects into
configuring as path type
configuring path type, using
creating subclasses of
filtering report data, using
inserting objects into
removing objects from

bpr-copy class
bpr-copy-attribute-probe class
bpr-copy-attributes class
bpr-criteria-probe class
bpr-delete-message-probe class
bpr-delta-time-probe class
bpr-insert class
bpr-instrument class

filtering report data, using
probing

bpr-interval-sample-probe class
bpr-merge class
bpr-message-probe class
bpr-module-settings
bpr-moving-average-probe class
bpr-n-dim-sample-probe class
bpr-object class

configuring as path type
configuring path type, using
creating subclasses of
filtering report data, using
probing
vs. bpr-resource

bpr-parameter-probe class
bpr-path class

filtering report data, using
probing
updating attributes of

bpr-pool class
bpr-probe class

bpr-reconcile class
bpr-remove class
bpr-resource class

feeding values into
filtering report data, using
populating pools dynamically, using
probing

configuring the probe
using Moving Average probe
using Sample probe

updating attributes of, using Change feed
vs. bpr-object

bpr-retrieve class
bpr-sample-probe class
bpr-sink class
bpr-source class
bpr-statistic-probe class
bpr-store class
bpr-surrogate class
bpr-task class
bpr-update-trigger-probe class
bpr-yield class
Branch Attribute attribute
Branch block

branching based on
a range of values
attribute value
dynamic proportion
interactively selecting output path
output path type
proportion
rules

choosing the branch mode
configuring

general
specific features of

path attributes of
reference
testing every outcome, using

Branch Dynamic Proportions attribute
Branch Lower attribute
Branch Mode attribute

Attribute Value
Dynamic Proportion
of Branch block
Prompt
Proportion
Type

Branch Procedure Name customization
attribute

Branch Prompt Message attribute
Branch Prompt Timeout attribute
Branch Proportion attribute

configuring
for Branch block
for Yield block

of paths
Branch tab, of path dialog
Branch Upper attribute
Branch Value attribute
breakpoints

setting and clearing
verifying model metrics, using

Bridge Host attribute
Bridge Port attribute
Bridge, ODBC
Bring to Front menu choice

controlling layout, using
Layout menu

BRMS Task block
Business Objects menu choice
Business Processes menu choice

Business Processes menu
System Models menu

Business Rules menu choice
Project menu

C
Category attribute

Acknowledge Message probe
Delete Message probe

Change feed
changing attributes

of blocks, using
of resources, using

generating
random numbers, based on a

distribution, using
random numbers, using
unique IDs, using

reference
updating system-defined attributes, using

Change Mode attribute
Distribution
of Change feed
Random
Unique ID
Value

Change Procedure Name customization
attribute
787

charts
charting performance statistics, using
configuring

axes of
colors of
maximum points of
minimum and maximum values of

creating from probes
offsetting values of
plotting multiple values on
remote

creating from reports
creating from Tools palette

updating
automatically
manually
using a rule
using an action button

Charts menu choice
Check Script button
Choose Connector menu choice

associating connectors
on model details, using
on task details, using

Choose Container Input Path menu choice
Choose Detail menu choice
Choose Empty Container Output Path menu

choice
Choose Manager attribute

Priority
Random

Choose Nonempty Container Output Path
menu choice

Choose Not Found Output Path menu choice
Choose Original Input Path menu choice
Choose Original Output Path menu choice
Choose Parameter menu choice

of Parameter feed
of Parameter probe

Choose Pool menu choice
of Retrieve block
of Store block

Choose Reject Path menu choice
Choose Resource attribute

Highest and Lowest Priority
Lowest Cost
Lowest Utilization

Choose Resource menu choice
Choose Root Workspace menu choice
Choose Trigger Input Path menu choice
Choose Trigger Output Path menu choice
788
Choose Update Trigger menu choice
of Interval Sample probe
of reports

Update Trigger probe
Update Trigger tool

Class Definition
creating subclasses

automatically
manually
of query objects
of resources
of work objects

Class Name attribute, work object class
definitions

Class Specific Attributes attribute
of query objects
of work object class definitions

Clear Break menu choice
of blocks

Clear Breaks menu choice
clearing breakpoints, using
Simulation menu

Clear Indicators menu choice
clearing indicators, using
Simulation menu
using

client
connecting

directly to server
from Start menu
to a specific server

disconnecting
Clone menu choice

copying objects, using
Edit menu
of blocks
of instruments

Close menu choice
exiting client, using
File menu

collecting n-dimension samples
colors

configuring
for blocks
for instruments
for paths
for resources
for workspaces

editing for objects
Colors menu choice

Edit menu

Comments attribute
of blocks
of feeds
of probes

comments, adding to scripts
comparing sampled values against a criteria
computation behavior of scenarios
Compute All Blocks attribute
computer class
configuring

Batch Simulation object
blocks

animation of
concurrent activities of
costs of
duration of
general
general attributes of
hierarchical views of
modes of
path types of
specific
specific attributes of

charts
database access
database interface objects
feeds
interface pools
model environment
online blocks
paths

animation of
branch attributes of
identity of
output types of specific blocks
types

probes
reports

attributes to appear in
filter criteria of
history for
scope of
time unit of
update interval for

resource managers
allocation and deallocation of
association name of
criteria for choosing manager
criteria for choosing resources
utilization of

resources
animation of
constraints for
costs of
efficiency factor of
priority of
utilization of

scenarios
Connect menu choice

Database Interface object
Excel toolbar

Connect String attribute
connection posts

See connectors
connections

See paths and connectors
connectors

associating
on model details
on Task block details

on Task block details
showing connected paths of

Constraints
ReThink toolbox
Temporal Scheduler

constraints
configuring

date availability of
hourly availability of
monthly availability of
temporal scheduler detail of
weekly availability of

constraining resources
using
using normal business hours

introduction to
temporal scheduler

default
displaying detail of

Constraints palette
constraining resources, using
ReThink toolbar

Container List Attribute attribute
of Batch block
of Insert block
of Remove block

container-list attribute
batching objects into
inserting objects into
removing objects from

containers
batching objects into
789

configuring path types, using
creating subclasses of
inserting single objects into
showing work objects in

for Batch block
for Insert block
for Remove block

Continue menu choice
continuing the simulation, using
Simulation menu

Copy All Attributes attribute
Copy Attributes attribute
Copy Attributes block

configuring path identity of
reference

Copy Attributes feed
copying metrics, using
reference

Copy Attributes probe
reference
rolling up metrics from details, using

Copy block
adding copies to associations, using
configuring

number of objects to create, using
path identity of
specific features of

reference
Copy Item List Items customization attribute

of Copy block
of Retrieve block

Copy Item Lists customization attribute
of Copy block
of Retrieve block

copying
attributes

using Attribute feed
using Copy Attributes block
using Copy Attributes feed
using Copy Attributes probe

models
work objects

Cost attribute, of activities
Cost Per Time Unit attribute

configuring variable costs
for blocks, using
for resources, using

of blocks
Cost Per Use attribute

configuring fixed costs
for blocks, using
790
for resources, using
of blocks

costs
of activities
of blocks

reference
using

of resources
of work objects

Counter attribute
of feeds
of probes

Create Chart menu choice
creating charts from probes, using
of probes

Create Connection menu choice
creating stubs for instruments, using
instruments

Create Detail menu choice
creating detail for tasks, using
creating detail, using
creating resource pools, using
of Task block
Organizer tool

Create Input Graph menu choice
Create Input menu choice

creating new stubs, using
of blocks

Create Manager menu choice
Create Output menu choice

creating new stubs, using
of blocks

Create Parameter menu choice
of Parameter feed
of Parameter probe

Create Remote menu choice
creating remotes from probes, using
of probes
remote charts

Create Rules menu choice
Create Slider menu choice

creating sliders from feeds, using
of Change feed

Create Surrogate menu choice
Create Type In menu choice

creating type-in boxes from feeds, using
of Change feed

creating
activities
annotations
Batch Simulation object

blocks
charts
class definitions

for query objects
for work objects
of resources

connectors
database interface objects
details for Task blocks
displays
feeds
instruments
interface pools
JMail interface objects
models
online blocks
organizers
pools

for resources
generic

probes
projects
remotes

from charts
from probes

reports
general
in databases

resource managers
resource pools
resources
scenarios
sliders
stubs
surrogates
temporal constraints
type-in boxes
update trigger

probes
tools

user interface objects from feeds
work objects

class definitions for
during processing

Creation Time attribute
computing for blocks
of blocks
of resources
of work objects

Criteria probe
comparing sampled values against criteria,
using

determining value of
reference

Criteria True Count attribute
current value of Criteria probe
of Criteria probe

Criteria True Percent attribute
current value of Criteria probe
of Criteria probe

.csv files, Excel
Cumulative Sample attribute

of Interval Sample probe
of Sample Value probe

Current Activities attribute
determining current block activities, using
of blocks
of resources
of work objects

Current Utilization attribute
computing for individual resources

when allocating multiple resources
when allocating partial resources

computing for resource pools
when allocating multiple resources
when allocating partial resources

displaying
for individual resources
for resource pools
for work objects

of resources
of work objects

Current Waiting attribute
analyzing wait time of paths, using
of paths

custom blocks
customer support services
customizing

blocks
description of
how to

instruments
Resource Managers
resources
scenarios
surrogates
work objects

cycle time
computing

for work objects
partial
791

using Delta Time probe

D
database access

configuring
connect string
database interface objects
host and port
ODBC data source
ReThink for

connecting to the database
creating

record work objects for
SQL queries for

creating the database
generating work objects, using
introduction to
online mode
retrieving objects, using
starting ODBC Bridge
storing work objects, using
updating database records, using
using reports

Database Commit block
Database Input Object Name customization

attribute
Database Interface Name attribute

configuring for reports
creating work objects from a database,

using
of Retrieve block
of Source block
of Store block
retrieving work objects from a database,

using
storing work objects to a database, using

database interface objects
Database Key attribute

of Store block
updating work objects in a database, using

Database Query block
Database Quote In Text String customization

attribute
Database Quote String customization attribute
Database Reporting Enabled parameter
Database Rollback block
Database SQL DML block
Database Stored Procedure block
Database tab
792
reports
Retrieve block
Source block
Store block

Database Table attribute
of Store block
storing work objects to a database, using

Database Table Name attribute
Database Update Object block
Date and Time as Durations attribute
Date Constraint
Date-Time Time as Duration attribute
Days attributes
DB Function Query block
db-qo-record class
deactivating scenarios
Deallocate Resource attribute
debugging

blocks
branching work onto explicit path
verifying model metrics
viewing errors

Default User Mode attribute
Default Web Location attribute
definitions

See class definitions
Delay block
Delete All Messages attribute
Delete Background Image menu choice

deleting background images, using
Workspace menu

Delete CSV Report File menu choice
Delete menu choice

deleting objects, using
deleting workspaces, using
Edit menu
of blocks
of instruments
of paths

Delete Message probe
deleting

objects
stubs
workspaces

deleting messages
Delta Time attribute

current value of Delta Time probe
of Delta Time probe

Delta Time probe
computing

cycle time, using

partial cycle time, using
determining value of
reference

demo models, viewing
Destination Attribute Name attribute

configuring for feeds
updating system-defined attributes,

using
updating user-defined attributes,

using
of Attribute feed
of feeds

Destination Class Name attribute
of Attribute feed
of Copy Attributes probe

Detail Color attribute
details

associating connectors on
for models
for Task blocks

computing metrics for Task blocks with
creating
creating hierarchical views, using
definition of
deleting

for Model and Organizer tools
for resource pools
for Task blocks

disabling
displaying for objects
enabling
replacing

for models
for organizers

rolling up metrics from
showing

connected paths on
for container objects
for pools
for Task blocks
superior object of

Task block
Developer mode

configuring user preferences for
description of

dialogs
See menu choice listings for launching

specific dialogs
Direct Superior Classes attribute

for query objects
for resource subclasses
for work object subclasses
Disable Detail menu choice

disabling Task block details, using
of Task block

Disconnect menu choice
Excel toolbar
of blocks

disconnecting
from the client

using menu
Displays

Annotation tool
Readout Table
ReThink toolbox

Displays palette
displays, attribute
distributed workflow applications
distributing

objects
Distribution Mode attribute

Arrival Rate Input Graph
Custom
Duration File
Fixed Distribution

description of
specifying for blocks

of blocks
of Change feed
Random Beta
Random Erlang
Random Exponential
Random Gamma
Random Lognormal
Random Normal
Random Triangular
Random Uniform
Random Weibull
Report Indexed Lookup
Report Lookup
Work Object Duration

Documentation menu choice
Down menu choice
duration

of activities
of blocks
of resources
of work objects

Duration attribute
Duration File Name attribute
Duration tab

activities
793

blocks

E
Edit menu
Efficiency Factory attribute
Elapsed Time attribute

computing Total Work Time, using
of activities

email
configuring

address
format
to send

delivering messages by
examples of sending
sending
starting JMail Bridge
startup parameters for sending

Empty Breakpoint customization attribute
Empty Color attribute
Enable Animation attribute
Enable Charting attribute
Enable Detail menu choice

enabling Task block details, using
of Task block

Enable Macros button
Enable Metrics Toolbar Update attribute
Enable Status Bar Message Browser attribute
Enable Tracking attribute
End Time attribute

of Batch block
of Source block
of Update Trigger tool

Erlang distribution
Error attribute

of blocks
of feeds
of paths
of probes
viewing block errors, using

Error Color attribute
of blocks
of instruments
of paths
of resources

errors
debugging blocks
handling in online mode
viewing
794
Event and Alarm Metrics menu choice
Events queue
Excel

connecting to the server from
manually

controlling simulation from
creating reports in
enabling macros in

Excel CSV File Reporting Enabled attribute
Excel .csv files
Excel File Name attribute
Excel Report Enabled attribute

importing data, using
writing data, using

Exit menu choice
exiting the server, using

exponential distribution
Export Excel tool
Export Tools button, ReThink toolbox
Export Tools palette
Extended Menus attribute

F
F4 key
feeds

Animation tab
configuring

attribute to update
class to which feed applies
introduction to

creating
sliders from
type-in boxes from
user interface objects from

feeding values into models, using
General tab
introduction to
menu choices of
updating

system-defined attributes of the
model, using

user-defined attributes of the model,
using

FIFO queuing algorithm
File menu
files

.csv
g2.ok

generating work objects from
.kb

rethink-40-online-examples.kb
rethink-online.kb
ReThink-Summary-Reports.xls
StartServer.bat

storing
arrival times in
work objects in

twng.exe

FILO queuing algorithm
Filter menu choice, Excel
filtering report data

general
in Excel

Fixed Distribution
Flip Horizontally menu choice

controlling layout, using
Layout menu

Flip Vertically menu choice
controlling layout, using
Layout menu

Foreground Color attribute
formatting Excel reports
Forward menu choice

Go menu
free text

G
G2 Help Topics menu choice
G2 JMail Bridge menu choice, Start menu
G2 JMSLink
G2 toolbox
g2.ok file
gamma distribution
General tab

activities
blocks
feeds
paths
probes

generating messages
Get menu choice

Workspace menu
GIF files, loading as background images
Go menu
Go To menu choice

manage dialog
project hierarchy
Search dialog

Go to Superior menu choice
View menu
H
Help menu
Hide menu choice

View menu
hierarchical views, modeling the details of a

task, using
histories

charting
keeping for reports

Home menu choice
Go menu

Home Process Map attribute
Hourly Constraint
HTTP menu choice

I
IDs, unique
Import Data from Database menu choice
Import Data from File menu choice
Inactive Color attribute

of blocks
of instruments
of resources

Include All Details attribute
Include Tasks with Detail attribute
Increment attribute
Increment feed

incrementing counters, using
reference

Indexed Lookup Report
configuring duration, using
description of

Indicate Busiest Path menu choice
Indicate Items attribute

configuring
Indicate Longest Wait Time Path menu choice
Indicate Message attribute
Indicate Mode attribute
Indicate Most Used Path menu choice
Initial Count attribute
Initial ID attribute
Initial Value attribute

Average probe
Moving Average probe
Statistic probe

Initialize Application menu choice
deleting messages, using
Project menu

Input directory
795

input reports
applying data to the model

from databases
from Excel
general

input stubs
Insert block

choosing insert mode
configuring

path identity of
specific features of

inserting
objects into a container by looping
single objects into containers, using

reference
understanding the paths of

instruments
See also feeds and probes
attributes, common
class names of
configuring

animation attributes
feeds
probes

connecting to objects
creating
creating instruments, using ReThink

toolbox
customizing
feeding values into models, using
menu choices of
probing performance of models, using
replacing

Instruments palette
reference
ReThink toolbar

Interface Name attribute
Database Interface object

Interface Pools menu choice
Project menu

Interfaces menu choice
configuring network interfaces, using
Project menu
SMTP
SQL

Interval Sample probe
determining value of
reference
sampling models, using

inventory fluctuations
796
J
Java Mail (JMail)

configuring
in configuration file
in user preferences

sending email, using online blocks
Java Message Service (JMS)
JMS menu choice
JMS Sink
JMS Source
JMS Task
JPEG files

loading as background images
saving workspaces to

Jump Mode menu choice
description of
running simulations, using
Simulation menu

K
.kb files

See also files
description of
opening
saving

Keep History attribute
N Dimensional Sample probe
of reports

knowledge bases (KB)
See .kb files

L
Label attribute

hiding
of feeds
of probes

layering
Layout menu
Layout toolbar

View menu
Left menu choice
LIFO queuing algorithm
LILO queuing algorithm
Line Color attribute
Load Background Image menu choice

loading background images, using
Workspace menu

loading projects

Log Message attribute
lognormal distribution
Lookup Attribute Name attribute
Lookup Label Attribute Name attribute
Lookup Subtable customization attribute
loops, creating in diagrams

M
machine class
Make Temporal Connector menu choice
Manage dialog

displaying object properties and details
using

Manage menu choice
Manager Priority attribute
managing

objects
using Manage dialog
using Project menu

Match Procedure Name customization
attribute

Max attribute
random beta distribution
random triangular distribution
random uniform distribution

Maximum Activities attribute
limiting concurrent activities, using
of blocks

Maximum Random Value attribute
Maximum Starts attribute

debugging blocks, using
of Source block
of Update Trigger tool

Maximum Utilization attribute
computing for individual resources

when allocating multiple resources
when allocating partial resources

computing for resource pools
when allocating multiple resources
when allocating partial resources

configuring resource availability, using
displaying

for individual resources
for resource pools

of resources
Maximum Value attribute

configuring slider values, using
generating random numbers, using
maximum value of Average probe
of Average probe
of Change feed
of Statistics probe

Maximum Values attribute, of remotes
Mean attribute

configuring fixed distribution, using
fixed distribution
random erlang distribution
random exponential distribution
random lognormal distribution
random normal distribution

Mean Wait Time attribute
analyzing wait time of paths, using
of paths

menus
Edit
File
Go
Help
Layout
Model
Project
ReThink
Simulation
Tools
Workspace

Merge block
configuring
merging work

multiple streams of
using a loop

processing multiple streams of work
asynchronously, using

reference
Message attribute
Message Board menu choice

View menu
viewing messages, using

Message Browser menu choice
View menu

message browsers
configuring

for modeler mode
for operator mode

showing by default in operator mode
Message Browsers menu choice
Message Log File attribute
Message probe

generating text messages, using
reference

Message Type attribute
797

Acknowledge Message probe
Delete Message probe

messages
acknowledging
deleting
delivering by email
generating
viewing

Messages queue
metrics

disabling updating of toolbar
updating

in properties dialogs
in reports

Microsoft
Access
Excel

Min attribute
random beta distribution
random triangular distribution
random uniform distribution

Minimum Random Value attribute
Minimum Threshold attribute
Minimum Value attribute

configuring slider values, using
generating random numbers, using
minimum value of Average probe
of Average probe
of Change feed
of Statistics probe

Mobile Email
address
Notification

Mode attribute
All

Insert block
Remove block

Associate block
Add
New

First and Last
Insert block
Remove block

of Associate block
of Insert block
of Remove block
random triangular distribution

Mode Random Value attribute
Model button, Manage dialog
model environment, configuring
Model menu
798
Model tools
See models

Model Version column
Modeler Browser attribute
Modeler mode

configuring
user preferences for

description of
models

See Also simulations
annotating
associating connectors on detail of
comparing different versions of
controlling

using different scenarios
using single scenario

copying
creating
definition of
demo
feeding values into
hierarchical
large, working with
organizing

introduction to
organizing, using Organizer tools
performing what-if analysis on
probing performance of
replacing default detail of
working with

modes
configuring

distribution
for blocks

Monthly Constraint
Moving Average attribute

current value of Moving Average probe
of Moving Average probe
of Statistics probe

Moving Average probe
computing moving averages

directly, using
of probed values, using
of resources directly, using

determining current value of
reference

Moving Standard Deviation attribute
moving standard deviation of Moving

Average probe
of Moving Average probe
of Statistics probe

My User Preferences menu choice
configuring user preferences, using
Project menu

N
navigating applications
Navigator

menu choice
Navigator menu choice

View menu
N-Dimensional Input Report

creating
description of

N-Dimensional Output Report
creating
description of

N-Dimensional Sample probe
collecting samples, using
reference

New Instance menu choice, project hierarchy
New menu choice

creating
projects, using
top-level workspaces, using

File menu
Workspace menu

New Point menu choice
New Value attribute

of Change feed
updating system-defined attributes, using

normal distribution
Normal menu choice
Not Available Time attribute

computing for resources, using constraints
of resources

Nudge menu choice
controlling layout of objects, using
Layout menu
of blocks
of instruments

Number of Samples attribute

O
Object File Name attribute

of Source block
of Store block

Object Input Report
Object Models menu choice
Object Summary Report
object tracking
objects

adjusting the order of
aligning
copying
deleting
displaying properties for
distributing
editing colors
flipping
interacting with

in Modeler mode
managing
nudging
resizing
rotating
selecting

all
individual

transferring
ODBC Bridge

Start menu
using for database access

Online Activities palette
ReThink toolbar
using

online mode
configuring delays
how it works
interacting with databases
introduction to
IO Interface pools
modeling distributed workflow

applications
online blocks
using

Online Mode menu choice
description of
Simulation menu
using

Open menu choice
File menu
opening projects, using

Operation attribute
of Accumulate feed
of Attribute feed
of Branch block
of Criteria probe
of Increment feed
of Retrieve block
799

Operator Browser attribute
Operator mode

configuring user preferences for
description of
user mode

Oracle
Order menu choice

Layout menu
of blocks
of instruments

organizers
creating
definition of
placing resources in
replacing default detail of

otherwise symbol
Output Count attribute

of Copy block
of Source block
of Task block

Output directory
output reports

generating report data
in databases
in Excel
in the client

output stubs

P
Palette Workspace
Parameter feed

getting parameter values, using
getting values from different types of

parameters, using
reference

Parameter Name attribute
of Parameter feed
of Parameter probe

Parameter probe
feeding values into parameters, using
reference
setting parameter values, using

parameters
See Also attributes
getting values of
setting values of

Path Input Report
path queues
Path Summary Report
800
path types
configuring

for blocks
introduction to
using containers
using default
using user-defined objects

paths
See also stubs
attributes

Animation tab
common
for branching
General tab

class name of
configuring

animation attributes
for particular blocks
identify of
output types of specific blocks
type
using containers

determining, based on type
disabling redrawing for
duration of
green

analyzing wait time of
due to path synchronization
due to resource constraints
when limiting concurrent activities

menu choices of
redisplaying for connected blocks
type

configuring
default

work backups on
due to resource constraints
showing using Snapshot Queue

Pause menu choice
Batch Simulation object
pausing the simulation, using
Simulation menu

performance, enhancing
by configuring

animation
computation behavior
simulation speed

Period attribute
of Batch block
of Update Trigger tool

Period Initial Value attribute

Period Start Time attribute
person class
Phase attribute

configuring
for feeds
for probes

of activities
of Attribute feed
of feeds
of probes

pools
See also resources
allocating particular resources from
creating

for resources
generic
introduction to

deleting details
determining when to use
populating dynamically
showing details
vs. other resources

popup menus
interacting with objects, using

popup menus, displaying
Precision attribute

of Attribute feed
of Average probe
of Delta Time probe
of Increment feed
of Interval Sample probe
of Moving Average probe
of Sample Value probe
of Statistics probe

Print menu choice
File menu
printing workspaces, using

priority
allocating the same resource to different

blocks, based on
choosing resources, based on

Probe Input Report
Probe Summary Report
probes

Animation tab
charting performance statistics, using
configuring

attribute to probe
class to which probe applies
introduction to

examples of probing
average utilization of current resource
average utilization of resource in pool
average utilization of top-level

resource
General tab
introduction to
menu choices of

common
probes

probing
blocks
models
resources
work objects

showing current value of
Procedure Name attribute
Project

menu
managing objects, using
using
using submenus

Project menu
projects

creating
opening
saving
working with

properties dialogs
shortcuts for displaying

properties dialogs, displaying
Properties menu choice

blocks
Edit menu
for items on workspaces
instruments
paths
popup menu for objects

Q
quantitative values, feeding
quantitative-parameter class, charting average

value
query objects
Queues menu choice

R
Random Beta distribution
Random Erlang distribution
801

Random Exponential distribution
Random Gamma distribution
Random Lognormal distribution
Random Normal distribution
random numbers

generating
based on a distribution
using Change feed

Random Triangular distribution
Random Uniform distribution
Random Weibull distribution
Range Lower attribute
Range Upper attribute
readout tables
Reconcile All attribute
Reconcile block

configuring specific features of
reconciling

all associated objects, using
individual associated objects, using

reference
records, database
Redraw Path attribute

disabling path redrawing, using
of paths

Refresh menu choice
Go menu

remote charts
creating

from reports
from Tools palette

Remote Process Sink block
Remote Process Source block
Remote Process Task block
remotes

creating
from charts
from feeds
from probes

interpreting value when configuring
charts

offsetting values of
plotting multiple values on same chart,

using
scaling values of
statistics of

Remove block
configuring

general
path identity of
remove mode
802
specific features of
reference
removing objects

all at once
by looping

understanding the paths of
Remove Update Trigger menu choice
Repeat Database attribute

determining when to stop creating work
objects, using

of Source block
Repeat Duration File attribute
Repeat Object File attribute
Report Title attribute
reports

accessing databases, using
Batch Simulation object script keywords

for
configuring

attributes to appear in
filter criteria of
for database access
history for
scope
time units of
update interval for

creating
in databases
in Excel
in the client
specialized
templates

filtering
data
in Excel

generating output data
in .csv files
in databases
in Excel
in the client

importing input data
from .csv files
from databases
from the client

introduction to
keeping a history of data values in
refreshing data
summary of input and output
updating

based on model events
Excel

introduction to
manually
multiple
regularly
triggering

Reports menu choice
Reports palette

creating reports, using
ReThink toolbar

Reset menu choice
resetting the simulation, using
Simulation menu

resizing objects
Resource Input Report
Resource Managers

See also resources
allocating resources

for multiple sequential steps, using
to tasks, using

associating with different resources
configuring utilization of
creating

multiple identical, for different tasks
multiple, for a single task

customizing
identifying associated resource of

resource pools
See pools

Resource Priority attribute
Resource Summary Report
Resource Utilization chart
resources

See also pools and Resource Managers
allocating

associated
based on priority
for multiple sequential steps
from a pool
lowest cost resource
multiple resources from a pool
multiple resources to the same task
partial resources from a pool
particular resources from a pool
resource with lowest utilization
same resources to multiple tasks
surrogate resources to different tasks
the same resource to different blocks

based on priority
to tasks
with constraints

availability of
configuring, using constraints
configuring, using maximum

utilization
class names of
comparing with work objects
configuring

animation of
costs of
priority of

constraining
availability of, using temporal

constraints
model, using
using normal business hours

costs of
activities
assigning fixed and variable
introduction to
total cost

creating
general
generic pools
pools

creating pools
for any resource
generic

creating resources
customizing
deallocating explicitly
disabling
displaying attributes with
duration of
efficiency factors for
examples of

allocating multiple resources from a
pool

allocating partial resources from a
pool

showing attributes
feeding attribute values into
metrics

General tab
Utilization tab

pools
creating
determining when to use

populating dynamically
probing

average utilization of current resource,
example
803

average utilization of resource in pool,
example

average utilization of top-level
resource, example

general
moving average of
performance of
sample values of

red, when allocated
replacing
showing currently allocated
surrogates
timing
utilization of

charting
computing
individual
when allocating multiple resources

from a pool
when allocating partial resources

work backups due to
Resources palette

creating pools, using
creating resources, using
ReThink toolbar

Restore Last Pane Settings attribute
Resume menu choice, Batch Simulation object
ReThink

connecting client
from Start menu
to specific server

demo models
exiting
menus
running
running in secure G2 environment
starting server

using Start menu
with your application loaded

ReThink Help Topics menu choice
ReThink toolbox

Basic Activities
Constraints
Displays
Export tools
Instruments
Online Activities
Reports
Resources

generic pool
pools
804
resource
Tools

Arrival Rate Input Graph
Batch Simulation Object
Class Definition
Connector
Model
Organizer
Palette Workspace
Scenario
Update Trigger tool

using
rethink-40-online-examples.kb file
rethink-online.kb file
ReThink-Summary-Reports.xls file
Retrieve All attribute
Retrieve Attribute attribute
Retrieve block

adding copies to associations
choosing the retrieve mode
configuring

path identity of
configuring specific features of
determining how the block handles objects

not found
reference
retrieving objects

all
at random
based on a range of values
by association
copies of
from a database
from a pool
with particular attribute values

Retrieve Copy attribute
Retrieve Mode attribute

Association
Attribute Value
of Retrieve block
Random

Right menu choice
Rotate or Flip menu choice

controlling layout, using
Layout menu
of blocks
of instruments

Row ID column
Rule Sets attribute

of BRMS Task block
rules

branching work objects based on
updating charts, using

Rules Wait Interval attribute
running

ReThink
simulations

using Batch Simulation object
using scenarios

S
Sample
Sample Initial Value attribute

Average probe
of Moving Average probe

Sample probe
charting quantitative parameters, using
determining the value of
probing

attribute values of the model, using
resources directly, using

reference
Sample Value attribute

current value of Interval Sample probe
current value of Sample probe
of Interval Sample probe
of Sample probe
of Statistics probe

sampling attribute values
at regular time intervals
of objects

Save A menu choice
saving projects, using

Save as JPEG menu choice
File menu
saving workspaces, using

Save As menu choice
File menu

Save menu choice
File menu
saving projects, using

Scale attribute, random weibull distribution
Scaling Divisor attribute
Scaling Offset attribute
scaling workspaces
scenarios

activating and deactivating
Batch Simulation object script keywords
configuring

computation behavior
duration
indicator arrow behavior
mode
object tracking
online mode
simulation speed
start time
version

creating
customizing
definition of
introduction to
simulation time of

Script attribute, for Batch Simulation object
Search Criteria attribute
Search menu choice

searching for objects, using
Tools menu

Seconds per Tick attribute
secure G2, running in
Select All menu choice

Edit menu
selecting objects, using

Selected Color attribute
Send to Back menu choice

controlling layout, using
Layout menu

sending email
server

connecting to
default
from Excel, initially
from Excel, manually
specific

disconnecting from
from Excel

shutting down
using menus

starting
on specific port
using Start menu
with your application loaded

Server Information menu choice
Set All Available menu choice

Date Constraint
Hourly Constraint
Monthly Constraint
Weekly Constraint

Set All Not Available menu choice
Date Constraint
Hourly Constraint
805

Monthly Constraint
Weekly Constraint

Set Break menu choice
debugging blocks, using
of blocks

Set Default User Mode attribute
Shape attribute, random weibul distribution
Show Associations menu choice
Show Blocks menu choice

showing blocks pointing to pool
Retrieve block
Store block

Show Chart menu choice
output reports
probes

Show Constraint menu choice
Show Container Input Path menu choice
Show Detail menu choice

Model tool
of Task block
Organizer tool
showing details

for pools
for Task blocks

summary of common tasks
View menu
workspaces

Show Empty Container Output path menu
choice

Show Flow History menu choice
Show Instruments menu choice

Parameter feed
Parameter probe

Show Items to Update menu choice
Show Logbook attribute
Show Nonempty Container Output Path menu

choice
Show Not Found Output Path menu choice
Show Original Input Path menu choice
Show Original menu choice
Show Original Output Path menu choice
Show Parameter menu choice

of Parameter feed
of Parameter probe

Show Pool menu choice
of Retrieve block
of Store block
showing chosen pool

for Retrieve block
for Store block

Show Reject Path menu choice
806
Show Remotes menu choice
Show Report menu choice
Show Resource menu choice
Show Resources menu choice
Show Rules menu choice
Show Scenario menu choice

of blocks
of instruments

Show Slider menu choice
Show Source menu choice
Show Trigger Input Path menu choice
Show Trigger Output Path menu choice
Show Type In menu choice
Show Update Trigger menu choice
Show URL menu choice

blocks
models

Show Users menu choice
Shrink Wrap menu choice

Layout menu
shrink wrapping workspaces, using

Shut Down G2 menu choice
shutting down server

using menus
Simulation

menu
toolbar

simulation clock
advancing

based on real time
based on wall clock
continuously
for each discrete event

Simulation menu
activating and deactivating scenarios
clearing indicators
configuring simulation mode
starting and stopping simulations

Simulation Speed attribute
simulation time

scaling to real time
scenarios

Simulation toolbar
toggling
View menu

Simulation Version attribute
Simulation Version column
simulations

See Also scenarios
configuring attributes

using Attribute Change Event Reports

controlling
from Excel
introduction to

running
in jump mode
in step mode
in synch mode
using Batch Simulation object

starting and stopping
Single Shot menu choice

debugging blocks, using
of Source block

Sink block
configuring
reference

sliders, creating from feeds
SMTP menu choice
Snapshot Activities menu choice

of blocks
showing current activities, using

Snapshot Container menu choice
showing work objects in containers, using

for Batch block
for Insert block
for Remove block
when using container path types

Snapshot Queue menu choice
example of showing work backups, using

due to limiting concurrent activities
due to resource constraints

of paths
showing work backups, using

Source Attribute Name attribute
configuring for probes
of Accumulate feed
of probes

Source block
configuring

duration and objects, using files
general
maximum number of objects
number of objects to generate
objects from external file
source mode
specific features of
start and end times

generating work objects
based on path type
by evaluating the block
from a database
from an external file
reference
Source Class Name attribute
Source Mode attribute

Database
Object File
of Source block
of Store block
Type

Source Procedure Name customization
attribute

SQL menu choice
creating database interface objects, using

SQL queries
SQL Query
SQL Query attribute

generating objects from a database, using
of Retrieve block
of Source block
retrieving objects from a database, using
Store block

SQL2000
Standard Deviation attribute

random lognormal distribution
random normal distribution

Standard toolbar
View menu

Start All menu choice
Simulation menu
starting the simulation, using

Start menu choice
Batch Simulation object
of Source block

Start Time attribute
of Batch block
Source block

Start Time attribute, Update Trigger tool
Start Time tab
starting simulations

using Batch Simulation Object
using Scenario

StartServer.bat file
State attribute
Statistics probe

computing statistics, using
determining the value of
reference

Status Bar menu choice
toggling status bar, using
View menu

Step Mode menu choice
debugging blocks, using
807

description of
running simulations, using
Simulation menu

Stop menu choice
Batch Simulation object
Go menu

stopping simulations
using Batch Simulation Object
using Scenario

Store block
configuring

specific features of
store mode

reference
storing arrival times to a file, using
storing work objects

in a resource pool, using
to a database, using
to an external file, using

updating database records, using
Store Mode attribute

Database
File

storing arrival times
storing objects

Pool
Store Procedure Name customization attribute
stubs

See also paths
connecting to blocks
creating for blocks

input
output

deleting
subclasses

See Class Definition
subworkspaces

See details
Sum of Decremental Changes attribute
Sum of Incremental Changes attribute
summary reports

See reports
surrogates

configuring animation attributes of
customizing
sharing resources, using
showing associated resource of

symbols, feeding
Synch Mode menu choice

description of
running simulations, using
808
Simulation menu
System Performance menu choice
System Settings menu
System-Administrator mode

configuring user preferences for
description of

T
Tabbed Mdi Mode attribute
Task block

associating connectors on detail of
configuring

general
specific features of

configuring the number of objects to
generate, using

copying attribute values to output objects,
using

deleting work objects, using
generating work objects, using
modeling details of

creating hierarchical views by
reference

processing multiple streams of work
objects

sequentially, using
synchronously, using

processing work objects and sending
downstream

reference
Telnet Command attribute
Templates menu choice
temporal constraints

See constraints
temporal scheduler

displaying detail of
introduction to
using default

text values, feeding
Threshold attribute

Batch block
batching objects in a group, using

Time per Unit Attribute attribute
computing duration, using
of blocks

Time Period attribute
Time Unit attribute

configuring costs
for blocks, using

for resources, using
of Arrival Rate Input Graph
of blocks
of Delta Time probe
of reports

Time Window attribute
Timeout attribute
Timestamp feed

computing partial cycle times, using
feeding timestamps, using
reference

Time-Weighted Value attribute
timing

See Also duration
resources

toolbars
Layout
Simulation
Standard
using
Web

Toolbars menu
toolbox

G2
ReThink

Toolbox - G2 menu choice
using

Toolbox - ReThink menu choice
View menu

Tools
Class Definition
Connector
menu
Organizer
ReThink toolbox
Scenario
Update Trigger tool

Total Cost attribute
computing

based on resource costs
for blocks
for work objects

of blocks
Total Elapsed Time attribute

computing
Average in Process, using
for blocks
using constraints

of blocks
of resources
of work objects
relating to activities
understanding for blocks

Total Idle Time attribute
computing, using constraints
of resources
of work objects

Total Insertions attribute
analyzing wait time of paths, using
of paths

Total Starts attribute
determining current block activities, using
of blocks
of resources
of work objects

Total Stops attribute
determining current block activities, using
of blocks
of resources
of work objects

Total Wait Time attribute
analyzing wait time of paths, using
of paths

Total Work Time attribute
computing

Average in Process, using
for blocks
using constraints

of blocks
of resources
of work objects
relating to activities
understanding for blocks

transaction processing
Transfer menu choice

cutting and pasting objects, using
Edit menu
of blocks
of instruments

transferring
blocks
instruments

triangular distribution
truck class
twng.exe file
Type attribute

configuring
using a user-defined object
using bpr-container
using bpr-object
using query object
using user-defined objects
809

configuring for paths
of paths

Type of Database attribute
type-in boxes

creating from feeds
example of

U
uniform distribution
Uninitialize Application menu choice

Project menu
unique IDs, generating
Up menu choice
Update All Related Items menu choice
Update button, reports
Update button, updating duration statistics
Update Chart menu choice
Update Chart menu choice, for charts
Update Charts attribute
Update Input Graph menu choice
Update Interval attribute
Update menu choice

Excel toolbar
of blocks
Reports menu
updating duration statistics, using

Update Mode attribute
Update Report menu choice
Update Time attribute
Update Trigger probe

exporting probed data, using
reference
updating reports, using

Update Trigger tool
exporting probed data, using
triggering updates for multiple reports,

using
using with Interval Sample probe

updating
charts
reports

at regular time intervals
Excel
manually

URL
attribute of blocks

Use Initial Value attribute
Average probe
of Moving Average probe
810
Use Rules Wait Interval attribute
user interface objects, creating from feeds
User Interface Theme attribute
User Mode menu choice

switching user modes, using
Tools menu

user modes
configuring default
specifying user preferences for different
switching

User Name attribute
Modeler mode

user preferences
configuring

in Modeler mode
creating and configuring
specifying for different types of users

User Preferences menu choice
configuring user preferences, using
Project menu

User tab of work objects
Users menu choice
utilization

of individual resources
of Resource Managers
of resource pool
of resources
of work objects

computing
displaying
example with no constraints
example with resource constraints

Utilization attribute
allocating

associated resources, using
multiple resources, using
partial resources, using

of Resource Managers
allocating multiple resources from a

pool, using
allocating partial resources, using

UUID attribute

V
Value on Activation attribute

configuring initial value
for sliders
for type-in boxes

variable-or-parameter class, charting values

variables
getting values of
setting values of

viewing messages and errors

W
Waiting Color attribute
Web toolbar

View menu
Weekly Constraint
Weibull distribution
what-if analysis

introduction to
performing on models

Window menu
wires

on instruments
on Resource Managers

work backups
analyzing wait times due to
due to

Maximum Activities
path synchronization
resource constraints

showing interactively
showing on input paths

due to resource constraints
using Snapshot Queue

Work Object Duration Attribute attribute
Work Object Yield Attribute Name attribute
work objects

accumulating values in attributes of
associating
automatically creating class definitions for
batching
branching
class names of
comparing with resources
computing cycle time for
copying

attributes of
onto output path

costs
computing based on resource costs
using

creating
class definitions for
during processing
using a Source block
using Task block
customizing
deleting

using Sink block
using Task block

duration, computing
incrementing values in attributes
inserting into containers
merging multiple streams of
path types, configuring using
probing

performance
processing

and sending downstream
multiple streams sequentially
multiple streams synchronously
using blocks

reconciling associated
removing from containers
retrieving from pools and databases
showing

allocated resources of
associated
in containers, for Batch block
in containers, for Insert block
in containers, for Remove block

statistics of
storing to pools, files, and databases
updating user-defined attributes of
user-defined attributes of
utilization

computing
displaying
example with no constraints
example with resource constraints

Work Time attribute
of activities
relating to Total Work Time
using to compute Total Work Time

Workspace Margin attribute
Workspace menu

Delete Background Image
description of
Get
Load Background Image
New

workspaces
adjusting borders for
deleting
editing

colors of
811

margins of
name of
properties

hiding
interacting with
loading background images
printing
saving as JPEG
scaling
showing superior object of detail
shrink wrapping

X
X attribute
X Maximum attribute
X Minimum attribute

of Arrival Rate Input Graph
of charts

X Range attribute
X Scale attribute
X Shift attribute
X Size attribute
X Step attribute
XMB files, loading as background images

Y
Y attribute
Y Maximum attribute
Y Minimum attribute

of Arrival Rate Input Graph
of charts

Y Range attribute
Y Scale attribute
Y Shift attribute
Y Size attribute
Yield block

configuring
based on an attribute of a work object
mode
path identity of
proportional yield
specific features of
using random and random triangular

yields
determining yield value
reference

Yield Mode attribute
of Yield block
812
Proportional
Random
Random Triangular
Work Object

Yield Procedure Name customization attribute
Yield Value attribute

Z
Zoom In menu choice

scaling workspaces, using
View menu

Zoom menu choice
scaling workspaces, using
View menu

Zoom Out menu choice
scaling workspaces, using
View menu

Zoom to Fit menu choice
scaling workspaces, using
View menu

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Modeling Using ReThink
	Running ReThink
	Introduction
	Starting the Server and Connecting the Client
	Connecting to a Specific Server at Startup
	Connecting the Client to the Default Server
	Starting the Server on a Specific Port
	Connecting the Client to a Specific Server

	Starting the Server with Your Application Loaded
	Exiting ReThink

	Organizing Models and Controlling Simulations
	Introduction
	Working with Projects
	Creating a New Project
	Saving a Project
	Opening a Project

	Configuring the Model Environment
	Creating a Model
	Creating an Organizer

	Controlling the Simulation
	Activating and Deactivating the Scenario
	Starting and Stopping the Simulation

	Configuring the Scenario
	Configuring the Simulation Mode
	Running the Simulation in Jump Mode
	Running the Simulation in Step Mode
	Running the Simulation in Synch Mode

	Configuring the Duration of the Simulation
	Configuring the Simulation Version
	Configuring the Start Time of the Simulation
	Configuring Simulation Speed
	Configuring Animation
	Configuring Object Tracking
	Configuring the Behavior of Indicator Arrows
	Configuring the Computation Behavior
	Configuring the Scenario to Generate Identical Random Numbers

	Performing “What-if” Analysis on a Model
	Comparing Different Versions of the Same Model
	Using Different Scenarios to Compare the Same Model
	Using a Single Scenario to Control Multiple Models

	Working with Large Models
	Associating Existing Connectors on Task Block Details
	Associating Connectors on Other Types of Details
	Replacing Default Details of Model and Organizer Tools

	Viewing Demo Models
	Customizing Scenarios

	Working with Models
	Introduction
	Summary of Common Tasks
	Using the Project Menu
	Using the Project Menu
	Using the Manage Dialog
	Using the Project Submenus

	Navigating Applications
	Using the Navigator
	Searching for Objects

	Interacting with Workspaces
	Displaying a Detail Workspace
	Hiding a Workspace
	Deleting a Workspace
	Creating a Detail Workspace
	Editing Workspace Properties
	Scaling a Workspace
	Shrink Wrapping a Workspace
	Showing the Superior Object of a Detail Workspace
	Printing a Workspace
	Saving a Workspace to a JPEG File
	Loading Background Images
	Creating and Accessing Top-Level Workspaces

	Using the Menus
	Using the File Menu
	Using the Edit Menu
	Using the View Menu
	Using the Layout Menu
	Using the Go Menu
	Using the Project Menu
	Using the Workspace Menu
	Using the Simulation Menu
	Using the Tools Menu
	Using the Help Menu

	Using the ReThink Toolbox
	Basic Activities
	Constraints
	Displays
	Export Tools
	Instruments
	Online Activities
	Reports
	Resources
	Tools

	Using the G2 Toolbox
	Interacting with Objects
	Selecting Objects
	Cutting, Copying, Pasting, and Deleting Objects
	Controlling the Layout of Objects
	Displaying the Properties Dialog for an Object
	Resizing an Object
	Editing Icon Color Regions

	Using the Toolbars
	Standard Toolbar
	Simulation Toolbar
	Web Toolbar
	Layout Toolbar
	Status Bar

	Annotating Models
	Using an Annotation Tool
	Using Free Text
	Using Readout Tables
	Using Attribute Displays

	Setting and Clearing Breakpoints and Indicators
	Switching User Modes
	Viewing Messages
	Configuring User Preferences
	Specifying User Preferences for Different Types of Users
	Configuring User Preferences
	Delivering Messages by Email
	Starting the G2 JMail Bridge Process
	Creating, Configuring, and Connecting the JMail Interface Object
	Configuring ReThink to Send Email Messages
	Examples: Sending Email Messages
	Configuring Startup Parameter for Sending Email Messages

	Configuring Network Interfaces
	Configuring Message Browsers
	Configuring Module Settings

	Using Blocks
	Introduction
	Creating Blocks
	Creating Blocks
	Source Block
	Task Block
	Sink Block
	Copy Block
	Merge Block
	Branch Block
	Batch Block
	Associate and Reconcile Blocks
	Store and Retrieve Blocks
	Insert and Remove Blocks
	Copy Attributes Block
	Yield Block
	BRMS Task Block

	Connecting Blocks
	Using Stubs to Connect Two Blocks
	Inserting a Block Between Two Connected Blocks
	Redisplaying the Paths of Connected Blocks
	Disabling Path Redrawing
	Creating and Deleting Stubs
	Deleting a Stub
	Creating a New Stub

	Creating Loops in a Diagram
	Replacing Blocks

	Configuring the Type of Work that Blocks Process
	Configuring the Path Type
	Using the Default Path Type
	Creating Work During Processing
	Configuring the Path Types of Particular Blocks
	Creating Class Definitions for Work Objects
	Determining the Output Path Based on Its Type
	Configuring the Animation of Paths
	Configuring Path Types of Specific Blocks

	Configuring Blocks
	Configuring General Block Parameters
	Configuring Specific Block Attributes and Features
	Configuring Path Identity of Specific Blocks
	Configuring the Duration of Blocks
	Configuring the Cost of Blocks
	Configuring the Animation of Blocks
	Configuring Specific Blocks
	Source Block
	Task Block
	Branch Block
	Merge Block
	Insert and Remove Blocks
	Sink Block
	Custom Blocks

	Creating Hierarchical Views
	Modeling the Detail of a Task
	Interacting with the Detail

	Understanding the Activities of Blocks
	Determining the Current Activities
	Understanding the Attributes of Activities
	Customizing the Time Delay of Activities
	Using Resources to Constrain Concurrent Activities
	Limiting the Number of Concurrent Activities
	Showing Work Backups on an Input Path
	Analyzing the Wait Time Due to Work Backups
	Showing Work Backups Interactively

	Working with the Duration of Blocks
	Specifying a Fixed Duration
	Specifying a Random Duration
	Fixed Distribution
	Random Exponential
	Random Normal
	Random Uniform
	Random Triangular
	Random Erlang
	Random Weibull
	Random Lognormal
	Random Gamma
	Random Beta

	Specifying Duration from a File
	Specifying Duration Based on an Indexed Report Lookup
	Specifying Duration Based on an Attribute of a Work Object
	Specifying Duration Based on an Attribute Report Lookup
	Using a Graph to Specify Duration
	Creating an Arrival Rate Input Graph
	Configuring the Arrival Rate Input Graph
	Editing the Shape of the Arrival Rate Input Graph
	Configuring the Block to Use the Graph

	Specifying a Custom Duration
	Understanding Total Work Time and Total Elapsed Time
	Total Work Time
	Total Elapsed Time

	Relating Work Time and Elapsed Time of Activities and Blocks
	How the Block Uses Total Work Time and Total Elapsed Time
	Updating Duration Metrics for Blocks
	Computing Duration for Multiple Units of Work

	Working with Block Costs
	Configuring the Cost of a Block
	Specifying a Fixed Cost
	Specifying a Variable Cost

	Computing the Total Cost of a Block

	Debugging Blocks
	Viewing and Resetting Errors
	Verifying Model Metrics
	Testing Every Possible Outcome

	Customizing Blocks

	Using Instruments
	Introduction
	Creating Instruments
	Creating Instruments
	Timestamp Feed
	Accumulate Feed
	Increment Feed
	Change Feed
	Parameter Feed
	Attribute Feed
	Copy Attributes Feed
	Delta Time Probe
	Sample Probe
	Average Probe
	Moving Average Probe
	Interval Sample Probe
	Parameter Probe
	Copy Attributes Probe
	Statistics Probe
	Criteria Probe
	Update Trigger Probe
	N-Dimensional Sample Probe
	Message Probe
	Acknowledge Message Probe
	Delete Message Probe

	Connecting Instruments
	Connecting Instruments to Objects
	Replacing Instruments
	Configuring the Animation of Instruments

	Probing the Performance of Your Model
	Configuring the Probe
	Showing the Current Value of the Probe
	Probing the Performance of Blocks
	Probing the Performance of Work Objects
	Probing the Performance of Resources
	Three Techniques for Probing Resources
	Probing the Average Utilization of the Current Resource
	Probing the Average Utilization of the Top-Level Resource
	Probing the Average Utilization of a Resource in a Pool

	Charting Performance Metrics
	Creating a Remote Chart

	Exporting Probed Data to a CSV File
	Exporting Probed Data Based on Model Events
	Exporting Probed Data at Regular Time Intervals
	Exporting Historical Data

	Feeding Values into the Model
	Configuring the Feed
	Updating User-Defined Attributes of a Work Object
	Updating System-Defined Attributes of the Model

	Creating User Interface Objects for Feeding Values
	Creating a Slider
	Creating a Type-in Box

	Creating a Chart Directly from a Probe
	Creating a Chart
	Updating Charts
	Updating Charts Manually
	Using an Action Button to Update Charts
	Using a Rule to Update Charts

	Configuring the Colors and Data Points of the Chart
	Configuring the Axes of the Chart
	Plotting Multiple Values on the Same Chart
	Scaling the Current Value of a Remote
	Offsetting the Current Value of a Remote
	Showing Metrics for a Remote

	Customizing Instruments

	Using Resources
	Introduction
	Using Resources to Constrain the Model
	Creating a Resource
	Allocating a Resource to a Task
	Identifying the Associated Resource
	Associating the Manager with a Different Resource
	Replacing Resources
	Showing Work Backups Due to Resource Constraints
	Showing Currently Allocated Resources
	Disabling a Resource

	Creating a Pool of Resources
	Creating a Pool for Any Resource
	Creating a Generic Pool
	Showing Pool Details
	Deleting Pool Details

	Computing Utilization and Duration Metrics
	Computing Utilization Metrics
	Computing Duration Metrics
	Computing Metrics for Individual Resources
	Computing Metrics for the Resource Pool
	Keeping a History of Resource Utilization
	Charting Resource Utilization

	Working with Resource Costs
	Assigning Costs to Resources in a Model
	Computing the Cost of Individual Activities
	Computing Total Costs Based on Resource Costs

	Allocating Multiple Resources to a Task
	Allocating the Same Pool to Multiple Tasks
	Sharing the Same Resource in Multiple Pools
	Allocating Partial and Multiple Resources
	Specifying the Utilization of the Resource Manager
	Specifying the Number of Available Resources
	Determining the Maximum Number of Activities
	Determining Whether to Use a Pool or an Individual Resource
	Example of Allocating Partial Resources from a Pool
	Computing Metrics for Individual Resources in a Pool
	Computing Metrics for the Resource Pool

	Example of Allocating Multiple Resources from a Pool
	Computing Metrics for Individual Resources in a Pool
	Computing Metrics for the Resource Pool

	Allocating the Same Resource for Multiple Sequential Steps
	Choosing Particular Resources from a Pool
	Choosing the Lowest Cost Resource
	Choosing the Resource with the Lowest Utilization
	Choosing Resources Based on Priority

	Allocating Resources Associated to Work Objects
	Allocating the Same Resource to Different Blocks Based on Priority
	Creating Resources with Different Efficiency Factors
	Showing the Metrics of Resources
	Displaying Resource Metrics
	Example of Allocating Resources
	Displaying Attributes with a Resource

	Constraining the Availability of Resources
	Allocating Resources With Constraints
	Displaying Constraints
	Constraining a Resource to Normal Business Hours
	Configuring the Availability of the Resource
	Temporal Scheduler Detail
	Default Configuration of the Temporal Constraint Detail
	Determining the Availability of Each Type of Constraint Visually
	Displaying the Temporal Scheduler Detail
	Configuring the Monthly Availability
	Configuring the Weekly Availability
	Configuring the Hourly Availability
	Configuring the Date Availability

	Using Constraints with Timing Resources

	Configuring the Animation of Resources
	Probing the Performance of Resources
	Populating Resource Pools Dynamically
	Customizing Resources

	Using Work Objects
	Introduction
	Configuring Path Types
	Using the Default Path Type
	Specifying a Container as the Path Type
	Specifying a User-Defined Object as the Path Type
	Automatically Generating the Work Object Class Definition
	Creating a New Class of Work Object
	Viewing User-Defined Attributes of Work Objects

	Comparing Work Objects and Resources
	Understanding the Activities of Work Objects
	Computing Utilization and Duration Metrics
	Computing Utilization Metrics
	Understanding the Duration Metrics of a Work Object
	Understanding the Utilization of a Work Object
	Example of Computing Utilization Metrics With No Constraints
	Example of Computing Utilization Metrics With Constraints
	Computing the Cycle Time of a Work Object

	Working with Work Object Costs
	Customizing Work Objects

	Using Reports
	Introduction
	Creating Reports
	Summary of Input and Output Reports
	Creating a Report
	Generating Output Report Data from the Model
	Applying Input Report Data to the Model

	Configuring the Time Unit
	Updating Output Reports at Regular Time Intervals
	Configuring Output Reports to Update Regularly
	Triggering Regular Updates for Multiple Reports
	Triggering Updates Based on Model Events
	Triggering Updates Manually
	Configuring When Clients Refresh Their Data

	Keeping a History of Data Values
	Charting Report Data
	Configuring the Scope of the Report
	Filtering Report Data
	Configuring the Attributes to Appear in a Report
	Creating Reports in Excel
	Creating a Report in Excel
	Generating Output Report Data from the Model to Excel
	Applying Input Report Data to the Model from Excel
	Filtering Report Data in Excel
	Controlling the Simulation from Excel
	Connecting to and Disconnecting from the Server from Excel

	Writing to and Reading from CSV Files
	Writing Output Report Data to CSV Files
	Importing Input Report Data from CSV Files

	Writing to and Importing from Databases
	Creating Specialized Reports
	Creating N-Dimensional Reports
	Creating Indexed Lookup Reports
	Creating Attribute Lookup Reports
	Creating Attribute Change Event Reports

	Accessing External Databases
	Introduction
	Configuring ReThink for Database Access
	Creating the Database
	Configuring the ODBC Data Source
	Starting the ODBC Bridge Process
	Creating and Configuring the Database Interface Object
	Connecting to the Database

	Creating a Work Object that Represents a Record
	Creating a Class Definition for a Query Object
	Using a Query Object in a Model

	Creating an SQL Query for Accessing the Data
	Sourcing Records from a Database
	Retrieving Records from a Database
	Storing Work Objects to a Database Table
	Storing New Objects in a Database
	Updating Existing Records in a Database

	Using Reports to Access External Databases
	Configuring Report Objects for Database Access
	Writing Output Report Data to a Database
	Importing Input Report Data from a Database

	Using Batch Simulation
	Introduction
	Using the Batch Simulation Object to Run Simulations
	Simulation Keywords
	Report Keywords
	Setting Attribute Values

	Using ReThink in Online Mode
	Introduction
	Using ReThink in Online Mode
	How Online Mode Works
	Using Interface Pools
	Using Online Blocks
	Handling Errors
	Introduce Delays into the Process
	Modeling Distributed Workflow Applications
	Remote Process Source Block
	Remote Process Task Block
	Remote Process Sink Block

	Interacting with Databases
	DB Function Query Block
	Database Stored Procedure Block
	Database Update Object Block
	Database SQL DML Block
	Database Query Block
	Database Commit Block
	Database Rollback Block

	Sending Email
	Using JMS Messaging

	ReThink Reference
	Blocks Reference
	Introduction
	Common Attributes of Blocks
	General Tab
	Duration Tab
	Cost Tab
	Animation Tab

	Common Menu Choices for Blocks
	Common Attributes of Paths
	General Tab
	Branch Tab
	Animation Tab

	Common Menu Choices for Paths
	Configuring the Association Mode
	Creating New Associations
	Adding Work Objects to Existing Associations
	Showing Associated Work Objects
	Specific Attributes
	Specific Menu Choices
	Configuring the Batch Mode
	Batching Objects in a Group
	Batching Objects By Summing an Attribute of a Work Object
	Batching Objects Based on a Triggering Work Object
	Batching Objects At Specified Time Intervals
	Batching Objects into a Container
	Showing Work Objects in the Container
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Configuring the Branch Mode
	Branching Based on Proportion
	Branching Based on a Dynamic Proportion
	Branching Based on Type
	Interactively Selecting the Output Path
	Branching Based on Attribute Value
	Branching Based on a Range of Values
	Branching Based on Rules that Set the Attribute Value
	Path Attributes that Pertain Only to Branching
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Configuring the BRMS Rules to Invoke
	Specific Attributes
	Specific Menu Choices
	Creating Copies of a Work Object
	Identifying the Original Output Path
	Adding Copies to Associations
	Configuring the Number of Objects to Create
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Copying Attributes from One Object to Another
	Specific Attributes
	Specific Menu Choices
	Understanding the Paths of an Insert Block
	Configuring the Insert Mode
	Inserting a Single Object Into a Container
	Inserting Objects into the Container By Looping
	Inserting Objects Into the Container All at Once
	Showing Work Objects in the Container
	Specific Attributes
	Specific Menu Choices
	Merging Multiple Streams of Work
	Merging Work That Loops Around a Process
	Specific Attributes and Menu Choices
	Reconciling Individual Associated Objects
	Reconciling All Objects
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Understanding the Paths of a Remove Block
	Configuring the Remove Mode
	Removing Objects from the Container By Looping
	Removing Objects from the Container All at Once
	Showing Work Objects in the Container
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Configuring the Retrieve Mode
	Retrieving Objects from a Pool
	Retrieving Objects from a Pool at Random
	Retrieving Associated Objects from a Pool
	Retrieving Objects with a Particular Attribute Value from a Pool
	Retrieving Based on a Range of Values
	Retrieving All Work Object
	Retrieving Copies of Work Objects from a Pool
	Adding Retrieved Work Objects to Associations
	Determining How the Block Handles Objects Not Found
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Signalling the End of a Process
	Specific Attributes and Menu Choices
	Configuring the Source Mode
	Generating Work Objects Based on the Path Type
	Configuring the Number of Objects to Generate for Each Output Path Type
	Generating Work Objects from an External File
	Format of Object File
	Generating Work Objects Continuously
	Stopping Generating Work Objects at the End of the File

	Configuring Duration and Objects from an External File
	Generating Work Objects
	Configuring the Maximum Number of Objects
	Configuring the Start and End Times
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Configuring the Store Mode
	Storing Work Objects in a Pool
	Storing Work Objects to a File
	Storing Arrival Times to a File
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Processing Work and Sending It Downstream for Further Processing
	Processing Multiple Streams of Work Synchronously
	Processing Multiple Streams of Work Sequentially
	Generating Work in a Process
	Specifying the Number of Objects to Generate
	Deleting Work in a Process
	Modeling the Details of a Task
	Copying Attribute Values to the Output Object
	Specific Attributes
	Specific Menu Choices
	Configuring the Yield Mode
	Configuring a Random or Random Triangular Yield
	Configuring Yield Based on an Attribute of the Work Object
	Configuring a Proportional Yield
	Determining the Yield Value
	Specific Attributes
	Specific Menu Choices
	Customization Attributes

	Instruments Reference
	Introduction
	Common Attributes of Instruments
	General Tab for Feeds
	General Tab for Probes
	Animation Tab for Feeds and Probes

	Common Menu Choices for Instruments
	Common Menu Choices for Feeds and Probes
	Common Menu Choices for Probes
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Computing the Average of an Attribute Value
	Plotting the Minimum and Maximum Values
	Charting the Average of Quantitative Parameters
	Specific Attributes
	Specific Menu Choices
	Rolling Up Metrics from the Detail to the Superior Task
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Comparing Sampled Values Against a Criteria
	Specific Attributes
	Specific Menu Choices
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Computing the Cycle Time
	Computing a Partial Cycle Time
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Sampling the Model at Regular Time Intervals
	Specific Attributes
	Specific Menu Choices
	Generating Text Messages
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Computing a Moving Average of a Probed Value
	Computing a Moving Average Directly
	Computing a Moving Average of a Resource Directly
	Specific Attributes
	Specific Menu Choices
	Collecting N-Dimensional Samples from the Model
	Specific Attributes
	Specific Menu Choices
	Setting the Value of a Parameter
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Probing Attribute Values that the Model Computes
	Probing Attribute Values of a Resource Directly
	Charting Quantitative Parameters
	Specific Attributes
	Specific Menu Choices
	Determining the Value of the Probe
	Computing Statistics for a Probed Value
	Specific Attributes
	Specific Menu Choices
	Specific Attributes
	Specific Menu Choices
	Accumulating Values
	Specific Attributes
	Specific Menu Choices
	Copying Attribute Values
	Specific Attributes
	Specific Menu Choices
	Feeding New Values into Attributes of Blocks
	Feeding Quantitative Values
	Feeding Symbolic or Textual Values

	Feeding New Values into Attributes of Resources
	Generating Random Numbers Based on a Distribution
	Specific Attributes
	Specific Menu Choices
	Customization Attributes
	Copying Attributes from a Block to a Work Object
	Specific Attributes
	Specific Menu Choices
	Incrementing a Counter
	Specific Attributes
	Specific Menu Choices
	Getting the Value of a Parameter
	Specific Attributes
	Specific Menu Choices
	Feeding a Timestamp into a Work Object of the Model
	Specific Attributes
	Specific Menu Choices

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	J
	M
	O
	P
	R
	S
	T
	U
	W

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

