
G2 Gateway

Bridge Developer’s Guide
Version 2015

G2 Gateway Bridge Developer’s Guide, Version 2015

January 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC016-1200

Contents Summary
Preface xix

Part I User’s Guide 1

Chapter 1 G2 Gateway Solutions for Connectivity Problems 3

Chapter 2 Configuring the G2 Knowledge Base 17

Chapter 3 Preparing the Bridge User Code 51

Chapter 4 Remote Procedure Calls 89

Chapter 5 Error Handling 127

Chapter 6 Troubleshooting Guidelines 135

Part II Reference 143

Chapter 7 G2 Gateway Data Structures 145

Chapter 8 Callback Functions 183

Chapter 9 API Functions 249

Chapter 10 Preprocessor Flags and Runtime Options 515

Chapter 11 Building and Running a G2 Gateway Bridge 525

Part III Appendixes 555

Appendix A Functions by Argument and Return Type 557

Appendix B Constants 581
iii

Appendix C G2 Gateway Error Messages 585

Appendix D G2 Gateway Data Types 595

Appendix E Limits and Ranges 609

Appendix F How G2 and G2 Gateway Exchange Data 615

Appendix G Upgrading G2 Gateway Applications 623

Glossary 631

Index 641
iv

Contents
Preface xix

About this Guide xix

Product Name xix

Audience xx

Organization xx

A Note About the API xxii

Conventions xxii

Related Documentation xxiv

Customer Support Services xxvi

Part I User’s Guide 1

Chapter 1 G2 Gateway Solutions for Connectivity Problems 3

Introduction 3

Capabilities of G2 Gateway Bridges 4
Providing Data Service for G2 Variables 4
Invoking Remote Procedures 5
Passing Objects 5
Other Support for Dynamic Real-Time Processing 5

Developing G2 Gateway Applications 6
Steps for Developing a G2 Gateway Application 6
Preparing a G2 KB to Communicate with a G2 Gateway Bridge 7
Building a G2 Gateway Bridge Executable 9

Deploying G2 Gateway Bridges 12

Starting G2 Gateway Bridge Processes 13

How a G2 Gateway Bridge Works 13
Procedural Flow of a G2 Gateway Bridge Process 13
Run-Time Modes of Bridge Operation 14
Providing Data Service for GSI Variables in a G2 KB 14
Setting Data Values in an External System 15
Sending Text Values to and from the G2 Gateway Bridge 16
v

Making and Receiving Remote Procedure Calls 16

Chapter 2 Configuring the G2 Knowledge Base 17

Introduction 17

Configuring Connections between G2 and G2 Gateway 18
Number of GSI Interfaces Required 18
Creating a GSI Interface 19
Setting Attributes of a GSI Interface 19
Updating GSI Interface Attributes While the KB is Running 38
Activating and Deactivating a GSI Interface 38

Configuring GSI Variables in the KB 40
Defining GSI Variable Classes 40
Attributes of GSI Variables 41
Defining Identifying Attributes 44
Identifying the Status of the GSI Variable 45
Specifying Initial Values for GSI Variables 46

Creating and Configuring GSI Message Servers 46
Attributes of a GSI Message Server 48
Running an Inform Action on a GSI Message Server 49

Chapter 3 Preparing the Bridge User Code 51

Introduction 52

Components of G2 Gateway User Code 52

Structure of G2 Gateway User Code 53
Contents of the main() Function 53
Sample main() Function 57

Using gsi_start() 57
Performing Once-Only Operations through gsi_set_up() 58
Specifying a Default TCP/IP Port Number 59

Managing a Connection between G2 and a G2 Gateway Bridge 60
Initializing a Connection 60
Pausing a Connection 60
Resuming a Connection After a Pause 61
Shutting Down a Connection 61

Processing Events through gsi_run_loop() 62
Behavior of gsi_run_loop() in Continuous and One-Cycle Modes 62
Interruptible Sleep 65
Handling Interrupts 67

Implementing Data Service in G2 Gateway 67
Solicited and Unsolicited Data Transfers 68
vi

Returning Solicited Data to G2 69
Sending Unsolicited Data to G2 72
Setting Values in the External Application 74

Message Passing 76
Sending Messages from G2 to the External System 76
Returning Text Messages to G2 76

Item Passing 76

Registering and Deregistering Items 77
Kinds of Items Registered by G2 77
Registering Items Automatically 77
Registering Items Explicitly 78
What G2 Gateway Does When G2 Registers an Item 78
How G2 Gateway Stores Information Associated with Registered

Items 79
Associating User Data with a Registered Item 80
Deregistering Items Automatically 81
Deregistering Items Explicitly 82

Context Control 82
Remote Procedure Calls within a Context 82

User Watchdog Functions 83

Memory Management Responsibilities of G2 Gateway User Code 85
Managing Data Structures 85
Managing Arrays and Lists 86
Reclaiming Memory 87

Write Buffer Management 87

Using and Disabling Abbreviated Function Name Aliases 87

Using and Disabling ANSI C Prototypes for API Functions 88

Chapter 4 Remote Procedure Calls 89

Introduction 89

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge 91
Writing a G2 Gateway Local Function to be Called by G2 93
Declaring the Local Function in Your G2 Gateway User Code 96
Declaring the G2 Gateway Local Function in G2 97
Grammar for G2 Remote Procedure Argument Declarations 99
Invoking the G2 Gateway Local Function from G2 103
Passing a Varying Number of Arguments to the Same G2 Gateway Local

Function 105
How a Local Function Can Process Argument Arrays Received from

G2 106
vii

Making Remote Procedure Calls from a G2 Gateway Bridge to G2 107
Writing the G2 Procedure or Method to be Invoked by G2 Gateway 110
Declaring the Remote Procedure in the Bridge 110
Defining a Function to Receive Values Returned by G2 113
Defining a Function to Receive Error Values Returned by G2 114
Invoking the Remote G2 Procedure 115
Passing Items from a G2 Gateway Bridge to G2 116
Returning G2 Items from G2 Gateway Back to G2 117
Passing Network Handles as the Class in RPCs 118
Passing UUIDs Referring to Items in RPCs 120

Developing a Bridge Using Only Remote Procedure Calls 122

Call Identifiers and Procedure User Data 123
Procedure User Data for Remote Procedure Calls 123
Call Identifiers for Remote Procedure Calls 125

Chapter 5 Error Handling 127

Introduction 127

Default Error Handling 128

Sending Error Information to Standard Output 128
Shutting Down the Context Where the Error Occurred 129

Customized Error Handling 129
Signalling Customized Error Conditions 129
Writing a Customized Error Handler 130
Installing a Customized Error Handler 130
Checking the Global Error Flag 130

Error Handling in Continuous and One-Cycle Modes 131
Errors that Shut Down a Context 133

Chapter 6 Troubleshooting Guidelines 135

Introduction 135

Connectivity 136

Data Collection and Transmission 138

Item Registration 141

Remote Procedure Calls (G2-to-G2 Gateway) 141

Reporting Problems to Gensym 142
viii

Part II Reference 143

Chapter 7 G2 Gateway Data Structures 145

Introduction 146

Summary of G2 Gateway Data Structures 146

Using Get and Set Functions for Data Structures 149

Referencing Data Structures in Your User Code 150

Accessing Data Structures through Other Data Structures 150

Type Tags of G2 Gateway Data Structures 152
Setting Type Tags 152
Setting the Type to Null 152

G2 Gateway Data Structures and Functions for Data Transfer Operations 153
Setting the Value of an External Data Point 154
Updating the Value of a GSI Variable 154
Receiving Unsolicited Updates of GSI Variables 155
Passing Objects through Remote Procedure Calls 156
Passing Items as Handles 157

Allocating and Reclaiming G2 Gateway Data Structures 158

gsi_registration Data Structures 159
Registering a GSI Variable or Item Handle 159
Getting a gsi_registration Structure 159
Accessing Components of a gsi_registration Structure 160

gsi_registered_item Data Structures 163
Returning Values to a GSI Variable 164
Setting Arguments of GSI Variables 164
Callbacks that Access gsi_registered_item Structures 164
Allocating and Reclaiming gsi_registered_item Structures 164
Accessing Components of a gsi_registered_item Structure 165

gsi_item Structures 167
Verifying that an Item is an Item 167
gsi_item Structures as Arguments of Remote Procedure Calls 168
Copying Contents of a gsi_item Structure 168
API Functions that Return gsi_item Structures 168
API Functions that Allocate and Reclaim gsi_item Structures 168
Returning gsi_item Values and Attributes to G2 168
Components of a gsi_item Structure 169

gsi_attr Structures 177
API Functions that Return gsi_attr Structures 177
API Functions that Allocate and Reclaim gsi_attr Structures 178
Components of a gsi_attr Structure 178
ix

gsi_symbol Structures 179
API Functions that Return gsi_symbol Structures 180
An API Function that Allocates a gsi_symbol Structure 180
Accessing Components of a gsi_symbol Structure 180

Chapter 8 Callback Functions 183

Introduction 184

Standard Callback Functions 185

Using Standard Callback Functions 185
Using GSI 4.1 Callbacks with G2 Gateway Linked Statically 185
Using GSI 4.1 Callbacks with G2 Gateway Linked Dynamically 186
Using Stub Versions of GSI 4.1 Callbacks 186
Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or

Dynamically 187
Using Stub Versions of G2 Gateway 5.0 Callbacks 188

Calling Other Functions from Callbacks 188

Values Returned by Callback Functions 189

Groups of Functionally Related Callback Functions 189
Application Initialization 189
Connection Management 189
Flow Control 189
Item Registration and Deregistration 190
Data Service 190
Error Handling 190
Message Passing 190
Run State Change 191

Standard Callbacks 192
gsi_close_fd 193
gsi_error_handler 194
gsi_g2_poll 195
gsi_get_data 198
gsi_get_tcp_port 201
gsi_initialize_context 203
gsi_missing_procedure_handler 208
gsi_not_writing_fd 209
gsi_open_fd 210
gsi_pause_context 211
gsi_read_callback 213
gsi_receive_deregistrations 214
gsi_receive_message 216
gsi_receive_registration 218
gsi_reset_context 221
gsi_resume_context 222
x

gsi_run_state_change 223
gsi_set_data 225
gsi_set_up 228
gsi_shutdown_context 230
gsi_start_context 232
gsi_write_callback 233
gsi_writing_fd 234

RPC Support Callback Functions 236
local functions 237
receiver functions 239
error receiver functions 241
watchdog functions 243

Using the Select Function in G2 Gateway 244
Supplying Arguments to the Select Function 244

Chapter 9 API Functions 249

Introduction 253

Groups of Functionally Related API Functions 254
G2 Gateway Entry Points 254
Initialization and Run State 254
Context Management 254
Data Structure Access 255
Data Service 256
Data Structure Allocation and Deallocation 257
Error Handling 257
File Descriptor Management 257
Interruptible Sleep 257
Message Passing 257
Missing Callback Declarations 257
Remote Procedure Support 258
Runtime Options 258
String Conversion 258
Symbol Access 258
User Data 259
Watchdog Function 259

Required Header File 259

Specifying Symbolic Values in API Function Calls 259

API Function Descriptions 260
gsi_attr_by_name 261
gsi_attr_count_of 262
gsi_attr_is_transient 263
gsi_attr_name_is_qualified 264
gsi_attr_name_of 266
xi

gsi_attrs_of 268
gsi_class_name_of 270
gsi_class_qualifier_of 272
gsi_class_type_of 274
gsi_clear_item 276
gsi_clear_last_error 277
gsi_close_listeners 278
gsi_context_is_secure 279
gsi_context_received_data 280
gsi_context_remote_host 281
gsi_context_remote_listener_port 282
gsi_context_remote_process_start_time 283
gsi_context_socket 284
gsi_context_user_data 285
gsi_convert_string_to_unicode 286
gsi_convert_unicode_to_string 287
gsi_convert_unicode_to_wide_string 288
gsi_convert_wide_string_to_unicode 289
gsi_current_context 290
gsi_current_context_is_secure 291
gsi_decode_timestamp 292
gsi_element_count_of 293
gsi_elements_of 294
gsi_encode_timestamp 296
gsi_error_message 298
gsi_establish_listener 299
gsi_establish_secure_listener 301
gsi_extract_history 303
gsi_extract_history_spec 305
gsi_flt_array_of 307
gsi_flt_list_of 308
gsi_flt_of 310
gsi_flush 311
gsi_handle_of 312
gsi_history_count_of 313
gsi_history_type_of 315
gsi_identifying_attr_of 316
gsi_initialize_callbacks 317
gsi_initialize_error_variable 318
gsi_initialize_for_win32 319
gsi_initiate_connection 320
gsi_initiate_connection_with_user_data 323
gsi_initiate_secure_connection 326
gsi_initiate_secure_connection_with_user_data 328
gsi_install_error_handler 330
gsi_int_array_of 331
gsi_int_list_of 332
xii

gsi_int_of 333
gsi_interval_of 334
gsi_is_item 335
gsi_item_of_attr 336
gsi_item_of_attr_by_name 337
gsi_item_of_identifying_attr_of 339
gsi_item_of_registered_item 340
gsi_kill_context 341
gsi_last_error 342
gsi_last_error_call_handle 343
gsi_last_error_message 344
gsi_listener_socket 345
gsi_log_array_of 346
gsi_log_list_of 347
gsi_log_of 349
gsi_long_of 350
gsi_make_array 351
gsi_make_attrs 352
gsi_make_attrs_with_items 353
gsi_make_item 354
gsi_make_items 355
gsi_make_registered_items 356
gsi_make_symbol 357
gsi_name_of 358
gsi_option_is_set 360
gsi_owner_of 362
gsi_pause 364
gsi_print_backtrace 366
gsi_reclaim_array 367
gsi_reclaim_attrs 368
gsi_reclaim_attrs_with_items 369
gsi_reclaim_item 370
gsi_reclaim_items 371
gsi_reclaim_registered_items 372
gsi_registration_of_handle 373
gsi_registration_of_item 374
gsi_reset_option 375
gsi_return_attrs 377
gsi_return_message 378
gsi_return_timed_attrs 379
gsi_return_timed_values 380
gsi_return_values 381
gsi_rpc_call 382
gsi_rpc_call_with_count 384
gsi_rpc_declare_local 386
gsi_rpc_declare_remote 387
gsi_rpc_declare_remote_with_error_handler_and_user_data 390
xiii

gsi_rpc_return_error_values 393
gsi_rpc_return_values 395
gsi_rpc_start 397
gsi_rpc_start_with_count 398
gsi_run_loop 399
gsi_set_attr_by_name 401
gsi_set_attr_count 402
gsi_set_attr_is_transient 404
gsi_set_attr_name 405
gsi_set_attrs 407
gsi_set_class_name 409
gsi_set_class_qualifier 410
gsi_set_class_type 412
gsi_set_context_limit 414
gsi_set_context_user_data 415
gsi_set_element_count 416
gsi_set_elements 417
gsi_set_flt 420
gsi_set_flt_array 421
gsi_set_flt_list 423
gsi_set_handle 425
gsi_set_history 427
gsi_set_include_file_version 429
gsi_set_int 430
gsi_set_int_array 431
gsi_set_int_list 433
gsi_set_interval 434
gsi_set_item_append_flag 435
gsi_set_item_of_attr 436
gsi_set_item_of_attr_by_name 437
gsi_set_log 439
gsi_set_log_array 440
gsi_set_log_list 442
gsi_set_long 444
gsi_set_name 445
gsi_set_option 446
gsi_set_pause_timeout 448
gsi_set_rpc_remote_return_exclude_user_attrs 449
gsi_set_rpc_remote_return_include_system_attrs 450
gsi_set_rpc_remote_return_include_all_system_attrs_except 451
gsi_set_rpc_remote_return_value_kind 452
gsi_set_run_loop_timeout 454
gsi_set_status 455
gsi_set_str 456
gsi_set_str_array 457
gsi_set_str_list 459
gsi_set_string_converson_style 461
xiv

gsi_set_sym 464
gsi_set_sym_array 465
gsi_set_sym_list 467
gsi_set_symbol_user_data 469
gsi_set_timestamp 470
gsi_set_type 471
gsi_set_unqualified_attr_name 474
gsi_set_update_items_in_lists_and_arrays_flag 475
gsi_set_user_data 476
gsi_set_usv 477
gsi_signal_error 478
gsi_signal_handler 479
gsi_simple_content_copy 480
gsi_start 481
gsi_status_of 483
gsi_string_conversion_style 484
gsi_str_array_of 485
gsi_str_list_of 487
gsi_str_of 489
gsi_sym_array_of 491
gsi_sym_list_of 492
gsi_sym_of 493
gsi_symbol_name 494
gsi_symbol_user_data 495
gsi_timestamp_of 496
gsi_type_of 497
gsi_unqualified_attr_name_of 498
gsi_unwatch_fd 499
gsi_unwatch_fd_for_writing 501
gsi_update_items_in_lists_and_arrays_flag 503
gsi_user_data_of 504
gsi_usv_length_of() 505
gsi_usv_of 506
gsi_version_information 507
gsi_wakeup 508
gsi_watch_fd 509
gsi_watch_fd_for_writing 511
gsi_watchdog 513

Chapter 10 Preprocessor Flags and Runtime Options 515

Introduction 515

G2 Gateway C Preprocessor Flags 515
GSI_USE_NEW_SYMBOL_API 517
GSI_NON_C 517
GSI_USE_WIDE_STRING_API 518
xv

Defining C Preprocessor Flags 518

G2 Gateway Runtime Options 519
GSI_NO_SIGNAL_HANDLERS 519
GSI_ONE_CYCLE 520
GSI_PROTECT_INNER_CALLS 521
GSI_STRING_CHECK 521
GSI_SUPPRESS_OUTPUT 522
GSI_TRACE_RUN_LOOP 522
GSI_TRACE_RUN_STATE 522
Setting and Resetting Runtime Options 522

Chapter 11 Building and Running a G2 Gateway Bridge 525

Introduction 526

G2 Gateway Files 526

Compiling G2 Gateway on UNIX 527
Configuration Requirements 527
Compiling and Linking G2 Gateway Applications on UNIX Platforms 527
Running the Bridge 528

Compiling G2 Gateway on Windows 529
Configuration Requirements 530
Compiling and Linking G2 Gateway on Windows 530
Compiling and Linking G2 Gateway Applications on Windows

Platforms 532
Compiling and Linking a Windows Application 533
Compiling and Linking a Console Application 534
Running the Bridge 535

Command-Line Options and Arguments 535
cert 537
help 538
log 539
rgn1lmt 540
rgn2lmt 542
secure 544
tcpipexact 547
tcpport 548

Starting a G2 Gateway Bridge from within G2 553

Placement of the GSI Interface 554

Representing the Bridge Process Information 554

Stopping G2 Gateway from within G2 554
xvi

Part III Appendixes 555

Appendix A Functions by Argument and Return Type 557

Introduction 557

Functions by Argument Type 557

Functions by Type of Return Value 573

Functions with No Arguments 580

Appendix B Constants 581

Introduction 581

Appendix C G2 Gateway Error Messages 585

Introduction 585

Appendix D G2 Gateway Data Types 595

Introduction 595

Data Types Supported by G2 Gateway 595
Floats 595
Integers 596
Long integers 596
Null 596
Logicals 596
Strings 596
Symbols 597
Sequence and Structure Types 600
Wide String Type 600

G2 Data Types and G2 Gateway Type Tags 601

G2 Gateway Data Types for RPC Arguments 604

Appendix E Limits and Ranges 609

Introduction 609

Limits on Contexts, Objects, Attributes, and Error Codes 610

Limits on G2 Data Types 611

Limits on Callback Functions 612

Limits on API Functions 612

Limits on Remote Procedure Calls 613
xvii

Appendix F How G2 and G2 Gateway Exchange Data 615

Introduction 615

Setting an External Data Point and Updating a GSI Variable 616

Receiving Unsolicited Data from a G2 Gateway Bridge 617

Invoking a Local Function in a G2 Gateway Bridge from G2 618

Invoking G2 Procedures and Methods from a G2 Gateway Bridge 620

Exchanging Text Messages Between G2 and a G2 Gateway Bridge 621

Appendix G Upgrading G2 Gateway Applications 623

Introduction 623

Support of Earlier GSI Versions 624
GSI 4.1 Support Policy 624

New G2 Gateway 6.0 Features 624
New API Functions 625
New Runtime Options 625

Changes to G2 Gateway 6.0 626
Make File Changes 626
gsi_main.c Changes 626
gsi_misc.h Changes 626
Superseded Practices 626
32-bit and 64-bit Support for G2 Gateway 627

Previously Undocumented Changes in 5.0 627
Changes to API Functions in G2 Gateway 5.0 628

Upgrading from GSI 4.1 to G2 Gateway to 7.0 628

Upgrading from G2 Gateway 5.0 to 7.0 629

Glossary 631

Index 641
xviii

Preface
Describes the G2 Gateway Bridge Developer’s Guide and the conventions that it
uses.

About this Guide xxi

Product Name xxi

Audience xxii

Organization xxii

A Note About the API xxiv

Conventions xxiv

Related Documentation xxvi

Customer Support Services xxviii

About this Guide
This guide describes the G2 Gateway standard interface (GSI), which allows you
to create generic bridges between G2 and external systems. Gensym provides a
number of higher-level bridges between G2 and standard databases and
standards such as ActiveX, Java, CORBA, and OPC. If your application needs to
communicate with databases or standards, use one of these bridges instead of
G2 Gateway.

Product Name
In G2 5.0, the GSI product name changed to G2 Gateway. Within G2, however, no
such change has been made: grammar prompts and item names still refer to GSI,
rather than to G2 Gateway. Changing these references would caused existing
applications to fail.
xix

This manual uses “G2 Gateway” to refer to the product as a whole, and it refers to
“GSI” when an internal component of it is described, such as a GSI interface.

Audience
This guide is intended for developers of G2 Gateway bridge applications, whom
it addresses throughout as “you”. It assumes that you have a working knowledge
of programming in the C language. It also assumes that you know how to create
and configure G2 objects such as classes, class instances, rules, and procedures.

Organization
This guide contains 12 chapters and six appendixes in four parts:

Title Description

Part I User’s Guide

1 G2 Gateway Solutions
for Connectivity Problems

Describes how you can develop solutions
to your communication problems, by
using G2 Gateway bridges, through which
G2 applications and dynamic external
processes can communicate with each
other.

2 Configuring the
G2 Knowledge Base

Describes how to create GSI interfaces,
GSI variables, and GSI message servers
that enable your G2 knowledge base to
communicate with a G2 Gateway bridge.

3 Preparing the Bridge User
Code

Describes how to organize and code the
customized portion of the G2 Gateway
bridge.

4 Remote Procedure Calls Describes how a G2 Gateway bridge and a
G2 application can make remote
procedure calls to each other.

5 Error Handling Describes how G2 Gateway handles errors
by default, and how you can customize
error handling in your G2 Gateway
bridge.

6 Troubleshooting
Guidelines

Describes how to identify problems in
your G2 Gateway bridge user code.
xx

Organization
Part II Reference

7 G2 Gateway
Data Structures

Describes how G2 Gateway data
structures store information that is useful
to your application, and how your G2
Gateway user code can access this
information.

8 Callback Functions Describes the callback functions that you
complete to implement your G2 Gateway
user code.

9 API Functions Describes the capabilities and syntax of
the API functions supported by
G2 Gateway.

10 Preprocessor Flags
and Runtime Options

Describes C preprocessor macros and
runtime options that you can use to
modify the behavior of your G2 Gateway
bridge.

G Upgrading G2 Gateway
Applications

Describes how to upgrade existing GSI
applications to G2 Gateway 6.0.

11 Building and Running a G2
Gateway Bridge

Describes how to compile, link, and run a
G2 Gateway bridge executable image, and
how to start and stop a G2 Gateway
bridge process from within a G2
procedure.

Part III Appendixes

A Functions by Argument
and Return Type

Lists the API and callback functions
provided by G2 Gateway, grouped by the
data types of their arguments and their
return values.

B Constants Lists symbolic constants defined in G2
Gateway header files.

C G2 Gateway
Error Messages

Lists and describes the standard error
messages returned by G2 Gateway.

D G2 Gateway Data Types Describes the data types defined for use in
G2 Gateway user code.

Title Description
xxi

A Note About the API
The G2 Gateway API, as described in this guide, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the release that includes them.

Therefore, it is essential that you use G2 Gateway exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since G2 Gateway may change, or in the present, because the
code may not correctly manage the internal operations of G2 Gateway.

If G2 Gateway does not seem to provide the capabilities that you need, contact
Gensym Customer Support at 1-781-265-7301 (Americas) or +31-71-5682622
(EMEA) for further information.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

E Limits and Ranges Describes limits and ranges applicable in
G2 Gateway.

F How G2 and G2 Gateway
Exchange Data

Provides a brief summary of techniques
for exchanging data between a G2
Gateway bridge and a G2 KB.

Title Description

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
xxii

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xxiii

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide
xxiv

Related Documentation
• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide
xxv

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxvi

Customer Support Services
xxvii

xxviii

Part I
User’s Guide
Chapter 1: G2 Gateway Solutions for Connectivity Problems

Describes how you can develop solutions to your communication problems, by using G2
Gateway bridges, through which G2 applications and dynamic external processes can
communicate with each other.

Chapter 2: Configuring the G2 Knowledge Base

Describes how to create GSI Interfaces, GSI variables, and GSI message servers that enable
your G2 knowledge base to communicate with a G2 Gateway bridge.

Chapter 3: Preparing the Bridge User Code

Describes how to organize and code the customized portion of the G2 Gateway bridge.

Chapter 4: Remote Procedure Calls

Describes how a G2 Gateway bridge and a G2 application can make remote procedure calls to
each other.

Chapter 5: Error Handling

Describes how G2 Gateway handles errors by default, and how you can customize error
handling in your G2 Gateway bridge.

Chapter 6: Troubleshooting Guidelines

Describes how to identify problems in your G2 Gateway bridge user code.
1

2

1

G2 Gateway Solutions
for Connectivity Problems
Describes how you can develop solutions to your communication problems, by
using G2 Gateway bridges, through which G2 applications and dynamic external
processes can communicate with each other.

Introduction 3

Capabilities of G2 Gateway Bridges 4

Developing G2 Gateway Applications 6

Deploying G2 Gateway Bridges 12

Starting G2 Gateway Bridge Processes 13

How a G2 Gateway Bridge Works 13

Introduction
This manual describes how to use Gensym’s G2 Gateway to develop interfaces, or
bridges, that support two-way communication between dynamic external
processes and G2 applications.

Through a G2 Gateway bridge to an external system, a G2 application can quickly
obtain real-time data that it needs to make intelligent control decisions in a time-
critical processing environment. The G2 application can also update the state of
an external system — for example, by writing or updating a record in a database,
or by controlling a PLC.

A G2 Gateway bridge process and a G2 process run concurrently, enabling the G2
application to continue to perform its tasks while the G2 Gateway bridge
manages the communication between G2 and an external system.
3

G2 Gateway bridges enable G2 KBs to communicate with a wide variety of
external systems, such as:

• Database management systems (DBMSs)

• Programmable logic controllers (PLCs)

• Supervisory control and data-acquisition (SCADA) systems

• Distributed control systems (DCSs)

• C/C++ programs

• Non-G2 operator consoles or displays

• External simulation software

G2 Gateway bridges can communicate across networks that use the TCP/IP
protocol. Gensym’s Intelligent Communications Protocol (ICP), which is built into
G2 Gateway, handles details of network communication automatically, enabling
you to develop distributed systems among heterogeneous platforms without
having detailed knowledge of protocols or of network software in general.

Gensym and its Solution Partners provide bridge products implemented with G2
Gateway that support communication between G2 and a wide range of external
systems, including many common databases and programmable logic controllers.
Call your Gensym account representative for information about Gensym’s bridge
products.

Capabilities of G2 Gateway Bridges
G2 Gateway is shipped with C code libraries of high-level functions that enable a
G2 application and a G2 Gateway bridge to provide real-time data service for G2
variables, make remote procedure calls into each other, and exchange copies of
G2 objects.

Providing Data Service for G2 Variables

G2 Gateway can act as a high-performance data server for variables in G2.
Through a G2 Gateway bridge, a G2 application can both send data values to and
receive values from an external system. The data can be numbers, symbols, truth
values, text messages, arrays, or lists.

The G2 application can actively solicit data from an external system, and an
external system can send data to G2 without having received a request from G2
for the data.
4

Capabilities of G2 Gateway Bridges
Invoking Remote Procedures

A G2 KB can invoke user-written functions in a G2 Gateway bridge, and a G2
Gateway procedure can invoke G2 methods and procedures. When a remote
procedure is invoked by G2, G2 continues to perform its other tasks while the
procedure call returns values and completes.

Through remote procedure calls, a G2 application and a G2 Gateway bridge can
exchange data values, references to G2 objects, or copies of G2 objects as
explained in the following section.

Passing Objects

A G2 application typically stores important real-time data in attributes of G2
objects. Through remote procedure calls, a G2 application and a G2 Gateway
bridge can exchange copies of these data-rich objects. A G2 application and a G2
Gateway bridge can exchange copies of any G2 object that inherits from the G2
item class.

A G2 application can pass a copy of a G2 object to the bridge by invoking a G2
Gateway bridge function as a remote procedure. G2 specifies the object to be
passed as an argument of the remote procedure call.

When a G2 Gateway bridge receives a copy of the G2 object, it creates its own data
structures to represent the object. The G2 Gateway bridge can read from and
write to the data contained in these data structures. The G2 Gateway bridge can
return these data structures to G2 through remote procedure calls to G2
procedures. G2 creates objects of existing G2 classes based on the data structures
that it receives from the G2 Gateway bridge.

Other Support for Dynamic Real-Time Processing

G2 Gateway provides other features in support of dynamic real-time processing,
including:

• Time-stamping of data exchanged between a G2 application and a G2
Gateway bridge.

• Exchange of text messages with the external system: a G2 application can send
text messages to the G2 Gateway bridge, and the G2 Gateway bridge can post
messages on the G2 Message Board.
5

Developing G2 Gateway Applications
To implement a solution to your connectivity problems, you create a G2 Gateway
application consisting of one or more G2 Gateway bridges, and one or more G2
KBs. The following figure illustrates the possible components of a G2 Gateway
application.

As the figure above illustrates:

• Each G2 KB can be connected to more than one G2 Gateway bridge process.
Each G2 KB contains objects that support communication with the bridge
processes.

• Each G2 Gateway bridge can be connected to more than one G2 KB (as many
as 50 KBs), and to more than one external system.

Steps for Developing a G2 Gateway Application

To develop a G2 Gateway application, you must:

• Create and configure G2 Gateway objects in each G2 KB that will
communicate with a G2 Gateway bridge process.

• Create one or more executable G2 Gateway bridges.

G2

G2
G2
Objects

G2
Objects

G2 Gateway Application
Bridge Databases

Network
systems

Control
systems

C/C++
programs

End user
displays

Other
systems

ICP

(TCP/IP)

ICP

Bridge

Bridge

Bridge

Bridge

Bridge

(TCP/IP)
6

Developing G2 Gateway Applications
Preparing a G2 KB to Communicate with a
G2 Gateway Bridge

The following figure illustrates the G2 objects that you create and configure in a
G2 KB to enable it to communicate with a G2 Gateway bridge:

G2 Objects that Support Communication with a G2 Gateway Bridge

User code responds
to requests from
G2 to:

• Get new values
for GSI variables
from external
data points.

• Write values of
GSI variables to
external data
points.

Bridge can send
unsolicited updates
to GSI variables.

User-written local
function, invoked by
G2 procedure.

User code calls
G2 procedure.

Bridge receives text
from G2.

GSI interface configures a
single connection between
G2 and the bridge.

G2 Gateway BridgeG2 Knowledge Base
7

To prepare the G2 KB for communication with a G2 Gateway bridge:

1 Create a GSI interface to define operating characteristics of each connection
between a G2 KB and a G2 Gateway bridge process. A GSI interface is required
for any communication between a G2 KB and a G2 Gateway bridge process.

Each GSI interface must be an instance of the standard class gsi-interface, or of
a subclass of this class. You create a GSI interface using the standard G2 menu
for creating new objects. You then edit attributes of the GSI interface to
identify the G2 Gateway process with which G2 will communicate over this
connection and to define operating characteristics of the connection.

A GSI interface is created automatically when a G2 Gateway bridge initiates a
connection to G2 by calling the API function gsi_initiate_connection().
For information about this function, see gsi_initiate_connection.

2 Create a GSI variable to represent each data point in an external system that
your G2 KB needs to read from or write to. These variables will receive data
service from the G2 Gateway bridge.

To create GSI variables, you first define an object class that includes the G2
mixin class gsi-data-service as a direct superior class. You then create
instances of your GSI variable class to represent separate data points in the
external system.

3 Create G2 procedures that the G2 Gateway bridge can call as remote
procedures. You create these procedures using the standard G2 menu for
creating new object definitions.

In your G2 Gateway user code, call gsi_rpc_declare_remote() to declare
each G2 procedure that your G2 Gateway bridge process needs to invoke as a
remote procedure.

4 To support remote procedure calls from G2 to the G2 Gateway bridge, create
one or more local functions in your G2 Gateway user code.

Through calls to G2 Gateway procedures, your G2 KB can send copies of G2
objects, references to G2 objects, and data values to the G2 Gateway bridge.
The bridge can return objects, references, and values to G2 through remote
procedure calls.

In your G2 Gateway user code, invoke gsi_rpc_declare_local() to declare
each local function that G2 needs to invoke as a remote procedure.

In your G2 KB, create a remote procedure declaration for each G2 Gateway
local function that your G2 KB needs to invoke as a remote procedure. You
create remote procedure declarations using the standard G2 menu for creating
new object definitions.

For information about how to make remote procedure calls, from G2 to G2
Gateway and from G2 Gateway to G2, see Remote Procedure Calls.
8

Developing G2 Gateway Applications
5 Create a GSI Message Server, to enable your G2 KB to send text messages to
an external system.

To create a GSI Message Server, you first define a new object class that
includes the G2 mixin class gsi-message-service as a direct superior class.
You then create an instance of your message server class. To send a text
message to the G2 Gateway bridge, a G2 KB runs an Inform action on the
message server. In your G2 Gateway bridge process, you must complete the
callback gsi_receive_message() to receive the message from G2 and send it
to the external system.

The steps that you follow to create GSI interfaces, GSI variables, and GSI
message servers are described in Configuring the G2 Knowledge Base. For
information about gsi_receive_message(), see gsi_receive_message.

Building a G2 Gateway Bridge Executable

You build the executable image of your G2 Gateway bridge by compiling and
linking your G2 Gateway user code written in the C or C++ programming
language with G2 Gateway libraries, and, optionally, with libraries of API
functions provided with external systems.

The following figure illustrates the components that you build into the executable
image of a G2 Gateway bridge process:

On Windows platforms, the G2 Bundle ships with two G2 Gateway directories,
one called gsi-intc, which contains the GSI libraries and examples compiled
with the Intel compiler, and the other called gsi-msvc, which contains the GSI

Components of a G2 Gateway Bridge Process

G2 Process

Knowledge
Base

Communications link

Objects
configured
to support
G2 Gateway

G2
Gateway
libraries

User
code

External
system
API
libraries

G2 Gateway Bridge Process

External
System
9

libraries and examples compiled with Microsoft Visual Studio. The components
of the executable image are:

• G2 Gateway libraries of network-oriented application programmer interface
(API) functions that can perform the following tasks for your bridge:

– Establishing and maintaining the communications link to the G2 process,
automatically managing all communications across the link.

– Supporting the G2 Gateway main processing loop, in which the G2
Gateway bridge process responds to network activity on connections to
G2 by invoking appropriate user code functions.

– Receiving requests to send values to data points in the external system
from the G2 knowledge base and calling appropriate user code functions
to handle the requests.

– Sending data to G2 at the request of the G2 Gateway user code.

• User code, which processes G2 requests and reacts to events in external
systems. User code includes:

– gsi_main.h: This is a source code header file provided by Gensym that
you must include in all your user code files. Do not modify this header
file.

– gsi_main.c. This is a C source code file provided by Gensym that contains
a sample of the main() routine from which G2 Gateway is started. Modify
this file or replace it to suit your application.

– (on Windows) gsimmain.c. This is a C source code file provided by
Gensym that performs special initializations required only on Windows
platforms when building a windows application, and then calls the
main() function that you define in the gsi_main.c file. The file gsimmain.
c is not needed when building a console application.

Note On Windows platforms, you must compile and link the file gsimmain.c with
your G2 Gateway application. When building a windows application,
gsimmain.c performs special initializations required only on Windows
platforms, and then calls the main() function that you define in the gsi_main.
c file. You do not need to make any changes to gsimmain.c. The file
gsimmain.c is not needed when building a console application on Windows.

– One or more source files of callback functions. G2 Gateway invokes each
callback function automatically in response to a particular network event
on a connection between the G2 Gateway bridge and G2, such as the
activation of the connection or a request from G2 for a new value for a
variable.

Gensym provides a source file, skeleton.c, of uncompleted callback
functions. You complete the code of the callback functions that you need
10

Developing G2 Gateway Applications
for your application, and leave the other callback functions in their
uncompleted form.

Within the callback functions, you include code that implements your G2
Gateway bridge’s response to the network event. Callback functions can
include calls to G2 Gateway API functions, to API functions of an external
system, to user written procedures, or to any other procedures or
functions available to a C or C++ program.

– User-written functions that G2 can invoke through remote procedure
calls.

• External system application programmer interface libraries, which provide a
programmable interface between the G2 Gateway bridge and the external
system.

To build the G2 Gateway bridge executable image:

1 Complete callback functions in the skeleton.c file provided with G2
Gateway.

In order to link properly, your G2 Gateway bridge code must include at least
the stub version of every callback function in skeleton.c. The G2 Gateway
functions and the G2 Gateway data structures that callback functions can
invoke and access are described in Part II, Reference, of this manual.

2 Modify or replace the main() routine in the gsi_main.c source code file as
needed for the purposes of your G2 Gateway bridge.

The main() function initializes G2 Gateway data structures and passes control
to the G2 Gateway bridge’s own processing loop.

On Windows, you can edit the main() and WinMain() procedures before
compiling and linking gsi_main.c and gsimmain.c. Use this option if your
application includes Windows code, which you place in WinMain().

3 Write and declare G2 Gateway functions that G2 can call as remote
procedures.

4 Compile your user code and link it with the G2 Gateway libraries and with
any libraries of external API functions required by your bridge.

These steps are described in detail in Preparing the Bridge User Code and in
Remote Procedure Calls.

Building and Running a G2 Gateway Bridge describes the requirements for
compiling and linking the executable image on each supported platform.
11

Deploying G2 Gateway Bridges
The following figure illustrates several ways that you can deploy G2 Gateway
bridges and the G2 KBs with which they communicate:

As the figure above illustrates:

• A G2 process and the G2 Gateway bridge with which it communicates can run
on the same computer or on different computers.

• A G2 Gateway bridge can be used to exchange data with a G2 process alone,
or with both a G2 process and an external system. A G2 Gateway bridge that
is not connected to an external system can provide data for G2 variables, or
perform a special computation at the request of the G2 KB.

Deploying G2 Gateway Bridge Processes

G2

G2

G2

G2 Bridge

Bridge

Bridge

Bridge

External system

External system

Computer

Computer

Computer

Computer

Computer

Computer
12

Starting G2 Gateway Bridge Processes
Starting G2 Gateway Bridge Processes
In both of the previous cases, G2 Gateway bridge runs as a separate process,
distinct from any G2 process. You can start a G2 Gateway bridge process from
within a G2 process, or independently of any G2 process.

For information about how to start a G2 Gateway bridge process from G2, see
Starting a G2 Gateway Bridge from within G2.

How a G2 Gateway Bridge Works
After you start a G2 Gateway bridge process, the bridge process initializes both its
private data structures and the application-defined data structures.

The G2 Gateway bridge process then waits for one or more G2 processes to
initiate a connection to it. The G2 Gateway bridge process can itself initiate a
connection to a G2 KB, calling the API function gsi_initiate_connection().

Procedural Flow of a G2 Gateway Bridge Process

The main() function in your G2 Gateway bridge user code must call the G2
Gateway API function gsi_start() before it calls any other API function. gsi_
start() takes as input the argc and argv arguments that were passed to the
main() function of your G2 Gateway program and uses these arguments to set up
listeners as specified in the command line.

The gsi_start() function in turn calls:

• gsi_set_up(), a callback that is useful for performing tasks that are required
only once during the lifetime of the G2 Gateway bridge process, such as
installing customized error handlers, setting or resetting initial G2 Gateway
run-time options, declaring local functions in the user code as remote
procedures, and allocating arrays of G2 Gateway data structures.

• gsi_get_tcp_port(), a callback that can provide a default TCP/IP port
number that G2 Gateway will listen on for connections from a G2 process, if
no port number or a port number of 0 is specified on the command line used
to start the G2 Gateway bridge process.
13

• gsi_run_loop(), an API function that provides the main processing loop of
the G2 Gateway bridge process. When gsi_run_loop() is executing, G2
Gateway does the following:

– Makes any new connections requested by G2.

– Responds to all outstanding messages received from G2 over each
currently active connection. In response to these messages, G2 Gateway
can invoke local functions called by G2 as remote procedures, or invoke
callback functions in response to particular network events or requests
from G2. For information about how to use gsi_run_loop(), see
Processing Events through gsi_run_loop().

Run-Time Modes of Bridge Operation

To provide you with greater flexibility in the design of your user code, G2
Gateway supports two run-time modes of bridge operation: continuous mode
and one-cycle mode. The modes affect the behavior of gsi_run_loop() and the
procedural flow of the G2 Gateway bridge process:

• In continuous mode (the default mode), gsi_run_loop() loops repeatedly as
long as no fatal error occurs. (For a list of G2 Gateway fatal errors see
Appendix C, G2 Gateway Error Messages.) Your user code does not call gsi_
run_loop() explicitly. At the end of each loop, gsi_run_loop() calls gsi_
pause(), which causes the bridge process to enter an interruptible sleep. The
bridge awakens when it detects network activity to which it must respond.

Continuous mode is the better mode for bridges designed to obtain data from
external systems by polling them actively.

• In one-cycle mode, gsi_run_loop() executes once automatically, and then
exits. To reenter gsi_run_loop(), you must include an explicit call to gsi_
run_loop() in your G2 Gateway user code. Running the bridge in one-cycle
mode enables you to pass control from gsi_run_loop() to other functions
within your G2 Gateway bridge process, as required by your application.

One-cycle mode is the better mode for bridges designed to respond to
network activity on connections to external systems, rather than those
designed to poll the external systems actively.

Providing Data Service for GSI Variables in a G2 KB

A G2 Gateway bridge can provide data service for G2 variables in the current KB
of a G2 process. G2 variables that receive data service from a G2 Gateway bridge
process are called GSI variables.
14

How a G2 Gateway Bridge Works
GSI variables in a G2 KB can receive values from a G2 Gateway bridge through
either solicited or unsolicited data service, as follows:

• Solicited data service occurs when G2 requests the G2 Gateway bridge to
produce (or to obtain from the external system) data at regular time intervals.
G2 passes this time interval to the G2 Gateway bridge before data service
begins. If the G2 Gateway bridge must, in turn, request that data from the
external system, it does so at the same time interval.

The G2 Gateway bridge can also provide solicited data to G2 on demand —
for example, when G2 requests an updated value for a particular GSI variable.

• Unsolicited data service occurs when G2 receives data from the G2 Gateway
bridge that it has not requested. A G2 Gateway bridge process can obtain
unsolicited data from an external system by polling the external system (in
continuous mode), or by responding to messages sent to it by the external
system (in one-cycle mode). The G2 Gateway bridge then transfers the data
to G2.

Each GSI variable references a GSI interface, which identifies a single network
connection to a G2 Gateway bridge process and records the status of that
connection. See Configuring the G2 Knowledge Base, for information about how
to create and configure GSI variables and GSI interfaces.

Setting Data Values in an External System

You can use the G2 set action to assign values to data points in an external
system. You run the set action on a GSI variable, which causes G2 to send the
value specified in the set action to the G2 Gateway bridge. Your bridge in turn
sets a particular data point in the external system to the value that it receives from
G2. The G2 Gateway bridge maintains a mapping between the GSI variable in the
G2 KB and a data point in the external device, application, or data-processing
system.

When the G2 KB performs the set action on a GSI variable, G2 sends the specified
value to the G2 Gateway bridge by means of the specified GSI interface. When the
G2 Gateway bridge receives the value, it calls the gsi_set_data() callback
function in the user code of the G2 Gateway bridge. You must include code in this
callback to send the communicated value to the appropriate bridge data structure
or to the external system.

To echo that value back to the GSI variable in G2, you can include a call to the API
function gsi_return_values() in the gsi_set_data() callback.
15

Sending Text Values to and from the G2 Gateway
Bridge

A G2 KB can pass text messages to an external system through a G2 Gateway
bridge process. To do this, in the G2 KB you define a user-defined class that must
inherit from the standard G2 mixin class gsi-message-service. Your G2 KB sends
the text by running an inform action on an instance of this user-defined class. In
your G2 Gateway bridge process, you must complete the callback gsi_receive_
message(), so that it responds to the message from G2 as required by your
application. For more information about how a G2 KB can send text messages to
an external system, see Creating and Configuring GSI Message Servers.

To send a text message to G2, your G2 Gateway user code can call the API
function gsi_return_message(), which prints a message on the G2 message
board. For information about how to do this, see gsi_return_message.

Making and Receiving Remote Procedure Calls

Using the remote procedure call (RPC) mechanism, a procedure in a G2 KB can
directly invoke a user-written function in a G2 Gateway bridge process. G2 can
send simple data values, copies of G2 objects, or references to G2 objects to the G2
Gateway bridge process, through remote procedure calls to user-written G2
Gateway functions.

Similarly, a user-written function in a running G2 Gateway bridge can directly
invoke a procedure in the current KB of a running G2 process.

For more information about how a G2 Gateway bridge and G2 can communicate
through remote procedure calls, see Remote Procedure Calls.
16

2

Configuring the
G2 Knowledge Base
Describes how to create GSI Interfaces, GSI variables, and GSI message servers
that enable your G2 knowledge base to communicate with a G2 Gateway bridge.

Introduction 17

Configuring Connections between G2 and G2 Gateway 18

Configuring GSI Variables in the KB 40

Creating and Configuring GSI Message Servers 46

Introduction
This chapter describes how to:

• Configure a connection between the G2 knowledge base and a G2 Gateway
bridge. To do this, you create a GSI interface in the G2 knowledge base.

• Create GSI variables that your G2 knowledge base uses to write to and read
from data points in an external system. You create GSI variables as instances
of a GSI variable class, which you must define.

• Create a GSI Message Server in the G2 knowledge base, and use it to send text
messages to a G2 Gateway bridge. To send the messages, you run the G2
inform action on the GSI Message Server.

For information about how to prepare your G2 knowledge base to communicate
with a G2 Gateway bridge through remote procedure calls, see Remote
Procedure Calls.
17

Configuring Connections between G2 and
G2 Gateway

You must create and configure a GSI interface for each connection between a G2
knowledge base and a G2 Gateway bridge. You edit attributes of the GSI interface
to configure one connection between G2 and G2 Gateway.

A GSI interface serves the following purposes:

• To identify a G2 Gateway bridge with which this G2 process will attempt to
establish a network connection.

• To specify whether G2 or the G2 Gateway bridge determines when data is
passed from the bridge to G2.

• To indicate whether the G2 Gateway bridge will receive unsolicited data from
the external system.

• To designate as many as six user-defined attributes of each class of GSI
variables as the identifying attributes of that class. The values of a GSI
variable’s identifying attributes must distinguish it from all other variables in
the KB. The identifying attributes of a GSI variable provide a unique
identification for the variable, which G2 Gateway needs in order to map it to a
data point in an external system.

• To contain a status value for a particular connection between this G2 and the
G2 Gateway bridge. This status reflects the condition of the connection to the
G2 Gateway bridge.

After a network connection has been established between a G2 process and a
G2 Gateway bridge across a particular GSI interface, the G2 knowledge base
can consult that GSI interface for the status of that connection.

A GSI interface must be activated in order to support a connection between the
G2 process and a G2 Gateway bridge. When the GSI interface is activated, G2
attempts to make a network connection with the specified G2 Gateway bridge.
When the GSI interface is deactivated, G2 breaks the connection (if one still exists)
between itself and the G2 Gateway bridge. For information about how to activate
and deactivate a GSI interface, see Activating and Deactivating a GSI Interface.

A GSI interface can reside on any kb-workspace in the G2 knowledge base. A GSI
interface can be an attribute of another G2 object.

Number of GSI Interfaces Required

A G2 knowledge base must contain at least one GSI interface for each G2 Gateway
bridge with which it is communicating.

A G2 knowledge base can also communicate with the same G2 Gateway bridge
through more than one GSI interface.
18

Configuring Connections between G2 and G2 Gateway
Using more than one GSI interface might be necessary when a G2 Gateway bridge
provides data service for the G2’s variables, but the bridge obtains data for some
of the variables in a solicited manner and for others in an unsolicited manner.
Using more than one GSI interface might also be necessary when the same G2
Gateway bridge provides both data service for a G2’s variables and functions that
the G2 can invoke through remote procedure calls.

Note Variables that require G2 Gateway data service, items that require GSI message
service, and the knowledge base’s executable items can use the same named GSI
interface to refer to the same G2 Gateway bridge.

Creating a GSI Interface

A GSI interface is an instance either of the G2 standard gsi-interface class or of a
user-defined subclass of the gsi-interface class.

To create and configure a GSI interface:

1 Create an instance of gsi-interface by selecting:

KB Workspace > New Object > network-interface > gsi-interface
(or a subclass of gsi-interface)

2 Open the attribute table of the GSI interface for editing by selecting:

gsi interface > table

Setting Attributes of a GSI Interface

The following table summarizes the attributes of a GSI interface that you edit to
configure a connection between a G2 knowledge base and a G2 Gateway bridge.

GSI Interface Attributes

Attribute Description

names One or more unique names for the object.

Allowable values: Any valid object name (symbol).

Default value: none

Notes: Every GSI variable and Message Server must
reference one of the names listed in the names
attribute of a GSI interface.
19

gsi-connection-
configuration

Specifies the communications protocol and
location of the G2 Gateway bridge process.

Allowable values: tcp-ip host "hostname" port-number tcp-ip-port-
number secure {yes | no}

Default value: none

Notes: See Gsi-Connection-Configuration Attribute.

external-system-has-
a-scheduler

Specifies whether G2 or the G2 Gateway bridge
determines when data is returned to G2.

Allowable values: yes: G2 assumes that the G2 Gateway user code
handles the return of data to G2, without
explicit requests from G2.

no: G2 Gateway continuously reads a queue of
requests for data from G2.

Default value: no

Notes: See External-System-Has-a-Scheduler Attribute.

GSI Interface Attributes

Attribute Description
20

Configuring Connections between G2 and G2 Gateway
poll-external-system-
for-data

Determines whether the G2 Gateway bridge
receives unsolicited data from the external
system by executing the callback function gsi_
g2_poll() every cycle.

Allowable values: yes: The G2 Gateway bridge calls gsi_g2_
poll() every cycle.

no: The G2 Gateway bridge does not call gsi_
g2_poll().

Default value: no

This is the recommended setting.

Notes: You must set this attribute to yes if you want the
bridge to receive unsolicited data. For more
information, see Poll-External-System-for-Data
Attribute.

interval-to-poll-
external-system

Controls the polling interval when the poll-
external-system-for-data attribute is set to yes.

Allowable values: Time interval from 1 second to G2’s maximum
allowable time interval

Specify the time interval in the form:

integer {second[s] | minute[s] | hour[s] |
day[s] | week[s] }

use default (equivalent to 1 second)

Default value: use default

GSI Interface Attributes

Attribute Description
21

grouping-
specification

(Optional) Enables you to group requests for
data service using one or more of the identifying
attributes of a variable.

Allowable values: group requests by attribute [, attribute]...
no grouping

Default value: no grouping

Notes: If this attribute specifies group requests by an
attribute or attributes, G2 uses a single message
to request data service for all GSI variables that
have the same values for the specified
attribute(s). If more than 21 GSI variables have
the same values for the specified attributes, G2
requests data service for GSI variables in
separate groups of 21. You can specify any
identifying attribute or attributes of a GSI
variable, including class-qualified attributes.

If this attribute specifies no grouping, G2 does
nothing to group requests for data service for
GSI variables.

identifying-attributes List of names of attributes whose values
together uniquely identify each GSI variable
that receives GSI data service through this
GSI Interface.

Allowable values: attribute [, attribute] ...
none

Default value: none

Notes: You can specify class-qualified attribute names
in this attribute.

See the section Identifying-Attributes Attribute.

GSI Interface Attributes

Attribute Description
22

Configuring Connections between G2 and G2 Gateway
remote-process-
initialization-string

String passed from G2 to the gsi_initialize_
context() function in the G2 Gateway bridge
user code, when G2 directs the G2 Gateway
bridge to initialize itself.

Allowable values: "series-of-gensym-character-set-characters"

Default value: "" (empty string)

Notes: The maximum length of this string is 65,535
characters.

See the section Remote-Process-Initialization-
String Attribute.

GSI Interface Attributes

Attribute Description
23

interface-timeout-
period

Specifies how long G2 waits for a response after
sending a request to the G2 Gateway bridge.

The following three timeout intervals apply to
G2-to-G2 and GSI interfaces:

1 Establish a connection.

2 Initialize the connection.

3 Wait for a response.

This attribute specifies the timeout period for
the first and third intervals. The interface-
initialization-timeout-period attribute applies to
the second interval.

In addition, if the poll-external-system-for-data
attribute is set to yes, this attribute specifies how
long the G2 Gateway bridge waits for calls to
gsi_g2_poll() to complete. If the call to gsi_
g2_poll() does not complete within the
specified interval, the bridge sets the gsi-
interface-status value of this GSI interface to -1.
If the poll-external-system-for-data attribute is
set to no, this attribute has no meaning after the
connection is established.

If you specify use default for this attribute, G2
uses the default time interval of 10 seconds.

Allowable values: Time interval from 1 second to G2’s maximum
allowable time interval

Specify the time interval in the form:

integer {second[s] | minute[s] | hour[s] |
day[s] | week[s] }

use default (equivalent to 10 seconds)

Default value: use default

Notes: For more information, see Interface-Timeout-
Period Attribute.

GSI Interface Attributes

Attribute Description
24

Configuring Connections between G2 and G2 Gateway
interface-
initialization-timeout-
period

Specifies how long G2 waits to initialize a
connection using Gensym (ICP) protocols.

The following three timeout intervals apply to
G2-to-G2 and GSI interfaces:

1 Establish a connection.

2 Initialize the connection.

3 Wait for a response.

This attribute applies to the second interval. The
interface-timeout-period attribute specifies the
timeout period for the first and third intervals.

Allowable values: Possible values are:

• An integer specifying some number of
seconds

• unlimited: the initialization interval never
times out

• use default: the interface-initialization-
timeout-period is the same as the interface-
timeout-period

Default value: unlimited, which specifies that the initialization
interval never times out

GSI Interface Attributes

Attribute Description
25

gsi-interface-status Status of the connection between this G2 and the
G2 Gateway bridge specified in this item’s Gsi-
connection-configuration attribute. This attribute
is automatically updated by G2 after each
transmission between G2 and the G2 Gateway
bridge.

Allowable values: 2 (ok)
 1 (in transition)
 0 (inactive)
-1 (timeout)
-2 (error)

For more information about the meaning of
these values, see Identifying the Status of a
Connection.

Default value: 0 (zero)

Notes: This attribute is read-only.

gsi-interface-is-
secure

Whether the GSI interface is a secure connection.

Allowable values: yes | no

Default value: no

Notes: This attribute is read-only.

GSI Interface Attributes

Attribute Description
26

Configuring Connections between G2 and G2 Gateway
interface-warning-
message-level

Sets the severity level for error and warning
messages that G2 provides for the interface
object.

Allowable values: 0 to 3: Level 0 is the lowest severity level, and
provides the least error information. Increasing
the warning message level causes G2 to provide
more information about errors and failures that
are otherwise only detectable through the value
of the gsi-interface-status attribute. Messages
are posted to the Operator Logbook by default.

For example, when the warning message level is
at 0 or 1, a failure to connect to a bridge causes
the gsi-interface-status to change to -2 (Error),
but no information is made available about why
the failure occurred. If the warning message
level were set to 3 and the same connection
failure occurred, G2 would post a message
describing why the connection failed.

Default value: The value of interface-warning-message-level
defaults to warning message level. This value
causes the Interface-warning-message-level to
take on the value of the Warning-message-level
attribute in the Debugging Parameters system
table.

GSI Interface Attributes

Attribute Description
27

Note The notes, item-configuration, and names attributes of a GSI interface are
common to all G2 items. For information about these attributes, see the
G2 Reference Manual.

Names Attribute

You must specify one or more names for the GSI interface in the names attribute.
An unnamed GSI interface cannot support communication between a G2
Gateway bridge and a G2 KB.

G2 objects refer to a named GSI interface as follows:

• For a GSI variable to receive data service through a G2 Gateway bridge, the
variable’s gsi-interface-name attribute must name the activated GSI interface
that, in turn, identifies the G2 Gateway bridge that provides the actual data
service.

• In an item that can execute actions (such as rules, procedures, and methods), a
start or call action invokes a function in the G2 Gateway bridge through a
remote procedure call. The start or call action must specify which bridge by
including the across gsi-interface-object phrase, as described in the
G2 Reference Manual.

• For a GSI message server item to be the source or destination of a text message
sent between a G2 and a G2 Gateway bridge, its gsi-interface-name attribute

disable-interleaving-
of-large-messages

 Controls whether G2 Gateway interleaves
(changes the transmission order of) message
packets.

Allowable values: yes: G2 Gateway transmits messages without
interleaving, preserving their transmission
order. With this setting, overall performance can
suffer when the messages have very different
lengths, because many short messages may have
to wait for one long message to complete.

no: G2 Gateway transmits messages with
interleaving, which reorders the message
packets so that large messages do not lock out
smaller messages during large message
transmission.

Default value: no

GSI Interface Attributes

Attribute Description
28

Configuring Connections between G2 and G2 Gateway
must specify an activated GSI interface that, in turn, identifies an active
connection to a running G2 Gateway bridge.

Note An unnamed GSI interface created by the API function gsi_initiate_
connection() can be used for remote procedure calls, but not for data service for
GSI variables. For information about his function, see gsi_initiate_
connection.

Gsi-Connection-Configuration Attribute

This attribute contains an expression that identifies a running G2 Gateway bridge.
In order for G2 to establish a connection to the specified G2 Gateway bridge, the
gsi-connection-configuration attribute must match:

• The name of the machine that runs the G2 Gateway bridge, or

• The IP address of the machine that runs the G2 Gateway bridge, or

• localhost, a special hostname that represents the local machine, and

• The TCP/IP port number displayed by the G2 Gateway bridge on the
command line where the bridge is started, and

• Whether the connection is secure.

For example, the following expression specifies a G2 Gateway bridge process
with port number 22041 that runs on the local computer (the computer on which
G2 is running) and to which this G2 connects using the TCP/IP protocol:

tcp-ip host "localhost" port-number 22041

Note The TCP/IP port number of a G2 Gateway bridge can range from 3001 to 29,999,
but cannot be in use by another process on that computer.

A G2 Gateway bridge process’s TCP/IP port number can be specified or accepted
as follows:

• Specified as a command line argument (see Building and Running a G2
Gateway Bridge.)

• Specified within the user code function gsi_get_tcp_port()

• Accepted by default, using TCP/IP port number 22041

External-System-Has-a-Scheduler Attribute

The external-system-has-a-scheduler attribute affects when the callback function
gsi_get_data() is invoked.
29

G2 Gateway calls gsi_get_data() to respond to requests from G2 for values for
GSI variables. For information about how to use gsi_get_data(), see Returning
Solicited Data to G2.

When the value of external-system-has-a-scheduler is yes, gsi_get_data() is
called:

• At creation, activation, or enabling of a GSI variable, provided that the
variable has a default-update-interval other than none.

• At the request of a rule, a readout table, or a collect data statement within a G2
procedure, if the validity-interval of the GSI variable has expired.

• Unconditionally as a result of an update action within a G2 rule or procedure.

When the value of external-system-has-a-scheduler is no, gsi_get_data() is
called: under the same conditions, with one addition. It is also called at the
expiration of a GSI variable’s default-update-interval, if this interval is other
than none.

Regardless of the setting of external-system-has-a-scheduler attribute, a GSI
variable is registered in the following circumstances:

• If the default-update-interval of a GSI variable is a value other than none, G2
sends to G2 Gateway a request to register and update the variable when the
GSI interface is activated.

• If the default-update-interval of a GSI variable is none, the variable is
registered the first time the G2 set or update action is performed on it.

When a GSI variable is registered (and again whenever a set or update action is
subsequently performed on the variable), G2 sends the default-update-interval
value of the variable to the G2 Gateway bridge. The value is stored in data
structures that your user code can access through API functions. Your bridge user
code can use this value when it communicates with an external system, or it can
ignore the value, as your G2 Gateway application requires. For information about
how your user code can access the default update interval values stored in the
data structures, see G2 Gateway Data Structures.

Regardless of the setting of the external-system-has-a-scheduler attribute, G2 can
always explicitly request values for GSI variables from the G2 Gateway bridge.

Poll-External-System-for-Data Attribute

If this attribute is set to yes, the G2 Gateway bridge obtains unsolicited data by
executing the gsi_g2_poll() callback at regular intervals. For information about
how to use this callback, see gsi_g2_poll.

If this attribute is set to no, the G2 Gateway bridge does not call the gsi_g2_
poll() callback.
30

Configuring Connections between G2 and G2 Gateway
Interval-to-Poll-External-System Attribute

This attribute controls the polling interval when the poll-external-system-for-data
attribute is set to yes. By default, polling happens every second, but you can
change this by setting the value of the interval-to-poll-external-system attribute.
Allowable values are any time interval from 1 second to G2’s maximum allowable
time interval.

When the poll-external-system-for-data attribute is yes and the interface is
connected, G2 sends a message to G2 Gateway at intervals specified by the
interval-to-poll-external-system attribute. If G2 Gateway is running (if it is in gsi_
start() or in gsi_run_loop()), it reads the message, sends a reply back to G2,
and then calls the gsi_g2_poll() callback. G2 does not send any further poll
messages until it receives a reply from G2 Gateway.

If G2 does not receive a reply within the interval specified by the interface-
timeout-period attribute, then:

• The gsi-interface-status attribute of the gsi-interface object is changed to -1.

• G2 invokes any rules that check for a -1 value for this attribute.

During the interval that the gsi-interface-status remains at -1, the connection
remains open. If G2 receives a reply at some later time, the value of the gsi-
interface-status attribute is set to 2.

Identifying-Attributes Attribute

This attribute lists class-specific attributes of GSI variable classes that provide a
unique identifier for each GSI variable. The values of the identifying attributes of
each GSI variable must distinguish that GSI variable from all other GSI variables
in the KB.

G2 and the G2 Gateway bridge use the identifying attribute values of a GSI
variable to maintain a one-to-one mapping between that GSI variable and the
source of data in an external system.

When a GSI variable class is defined with one identifying attribute, G2 and the G2
Gateway bridge assume that each GSI variable of that class in the KB has a unique
value in this attribute.

When a GSI variable class is defined with more than one identifying attribute, G2
and the G2 Gateway bridge assume that each GSI variable of that class within the
KB has a unique combination of values for these attributes.

Note Data should not be returned to identifying attributes of GSI variables. Another
way of saying this is that the identifying attributes of a GSI variable should not
themselves be GSI variables. If the G2 Gateway bridge returns data to one or more
of a GSI variable’s identifying attributes, it causes the GSI variable to be
deregistered and then reregistered with the bridge.
31

The identifying-attributes attribute of a GSI interface lists the aggregate of the
identifying attributes of all classes of GSI variables that use this particular GSI
interface. If more than one class of GSI variables uses a particular GSI interface,
individual GSI variables of any of these classes will have only some of the
identifying attributes listed in the identifying-attributes attribute of the GSI
interface.

For information about how to specify identifying attributes, see Defining
Identifying Attributes.

Remote-Process-Initialization-String Attribute

This attribute specifies a string that G2 passes at startup time to the gsi_
initialize_context() function in the G2 Gateway bridge user code.

In the GSI bridge user code, you can add code to the gsi_initialize_context()
callback function that uses this initialization string during the initialization of the
G2 Gateway bridge process. For example, the initialization string can specify a list
of run-time parameters for the bridge process or can specify the pathname for a
file that the bridge process should open during bridge initialization.

Interface-Timeout-Period Attribute

For systems using the TCP/IP protocol, this attribute indicates how long G2
should wait for a response after sending a request to the G2 Gateway bridge. G2
uses this value when connecting to the G2 Gateway bridge process and after each
transmission that requests data from the bridge process. G2 measures a timeout
interval from the most recent time that data was received.

Three timeout intervals apply to G2-to-G2 and GSI interfaces. These set the
maximum time to:

1 Establish a connection at the TCP/IP network level.

2 Initialize the connection using Gensym (ICP) protocols.

3 Wait for a response to a message sent by G2.

The interface-timeout-period sets the timeout period for the first and third
intervals. The interface-initialization-timeout-period attribute sets the timeout
period for the second interval.

To specify all three timeouts to be the same:

1 Set the interface-timeout-period attribute to the desired interval.

2 Use the default setting for the interface-initialization-timeout-period attribute.

The interface-timeout-period time interval begins at the time that the request is
made. If the G2 process cannot obtain the status of the G2 Gateway bridge
process, the GSI interface times out. If tracing is at level 3, G2 reports the error on
its Operator Logbook.
32

Configuring Connections between G2 and G2 Gateway
If you specify use default for this attribute, G2 uses the default time interval of
10 seconds.

Interface-Initialization-Timeout-Period Attribute

This attribute specifies how long G2 waits to initialize a connection using Gensym
(ICP) protocols. G2 measures a timeout interval from the most recent time that
data was received.

The possible values for interface-initialization-timeout-period are:

• An integer specifying some number of seconds.

• unlimited: the initialization interval never times out.

• use default: the interface-initialization-timeout-period is the same as the
interface-timeout-period.

The default value is unlimited, which specifies that the initialization interval never
times out.

Three timeout intervals apply to G2-to-G2 and GSI interfaces. These set the
maximum time to:

1 Establish a connection at the TCP/IP network level.

2 Initialize the connection using Gensym (ICP) protocols.

3 Wait for a response to a message sent by G2.

The interface-initialization-timeout-period attribute sets the timeout period for the
second interval. The interface-timeout-period sets the timeout period for the first
and third intervals.

To specify all three timeouts to be the same:

1 Set the interface-timeout-period attribute to the desired interval.

2 Use the default setting for the interface-initialization-timeout-period attribute.

To specify a different timeout for the initialization interval:

 Set the interface-initialization-timeout-period attribute to the desired interval,
or to unlimited if no timeout is desired.
33

Disable-Interleaving-of-Large-Messages Attribute

This attribute controls whether G2 Gateway interleaves (changes the transmission
order of) message packets.

If set to no (the default):

• G2 transmits messages in packets. A large message occupies several packets.
A small message occupies a single packet.

• When more than one message requires transmission across an interface, G2
interleaves the packets that constitute the messages.

As a result of this behavior, large messages do not lock out smaller messages
during large message transmission, which can improve performance when
messages of different lengths are transmitted over the same interface.

However, a shorter message that begins transmitting after a longer message
begins can finish transmitting before the longer message finishes. This reverses
the effective transmission order of the messages, because a message cannot be
acted on until its transmission is complete. Messages of the same length can also
be reordered if network errors require packet retransmission.

If the original transmission order was significant, reordering of interleaved
messages can cause errors. For example, procedures that should have been
invoked in one order could be executed in another.

To prevent message interleaving from reordering messages:

 Set the disable-interleaving-of-large-messages attribute of the interface object
to yes before opening the connection.

Messages then transmit without interleaving, preserving their transmission order.
However, overall performance can suffer when the messages have very different
lengths, because many short messages may have to wait for one long message to
complete.

Changing disable-interleaving-of-large-messages does not affect an existing
connection.

To change the interleaving of an existing connection:

1 Set disable-interleaving-of-large-messages to yes or no.

2 Conclude the connection into itself as a structure.

The conclude closes and reopens the connection, which then reflects the new
attribute value. For example, to reconnect a G2-to-G2 interface object:

conclude that the icp-connection-specification of g21 = structure
(network-transport : the symbol tcp-ip, hostname: "london", port: 1114)
34

Configuring Connections between G2 and G2 Gateway
Initializing Attributes in Subclasses

There are some system-defined attributes that you can initialize for a GSI interface
subclass and some that you can initialize for a G2-to-G2 interface. The following
table lists the system-defined attributes that you can initialize for each:

Identifying the Status of a Connection

The gsi-interface-status attribute of each GSI interface indicates:

• Whether a connection exists between G2 and the specified G2 Gateway
bridge.

• If a connection exists, the last event that took place over the connection.

G2 automatically updates the value of the gsi-interface-status attribute. If a
connection exists between G2 and the specified G2 Gateway bridge, G2 updates
the value of the gsi-interface-status attribute whenever a network message is
passed between G2 and the G2 Gateway bridge.

When a gsi-interface object is activated and there is no bridge to connect to (i.e.,
bridge connection failure), the value of the gsi-interface object gsi-interface-status
attribute depends on whether the gsi-connection-configuration attribute has a
connection value or is none:

Attribute G2-to-G2 G2 Gateway

external-system-has-a-scheduler

poll-external-system-for-data

grouping-specification

remote-process-initialization-string

interval-to-poll-external-system

identifying-attributes

interface-warning-message-level

interface-timeout-period

interface-initializiation-timeout-period*

disable-interleaving-of-large-messages*

attribute-displays

stubs
35

• If the gsi-connection-configuration attribute has a value, the value of gsi-
interface-status is 1 (In transition).

• If the gsi-connection-configuration attribute is none, the value of gsi-interface-
status is 0 (Inactive).

The following table lists and describes the possible values of the gsi-interface-
status attribute:

Possible Values of Gsi-Interface-Status Attribute

-2 (error) Following a connection attempt (gsi-interface-
status value is 1), a value of -2 (Error) indicates a
connection failure. Possible causes:

• No bridge process at the port specified.

• The bridge process rejected the connection by
returning GSI_REJECT.

After a connection has been made, a value of -2
(Error) indicates that an error condition occurred,
and the connection has broken between G2 and
the bridge process.

-1 (timeout) The G2 process has not heard from the bridge
process within the interface-timeout-period
specified for the GSI interface. This status may
also indicate that a communications overload has
occurred.

This status can occur only when the poll-external-
system-for-data attribute of the GSI interface is set
to yes.

0 (inactive) The GSI interface is either disabled or inactive.
The GSI interface is inactive when it is either on
an inactive workspace, has no name, is otherwise
not ok, or G2 is not running.

When the GSI-connection-configuration attribute
value is none, activation cannot result in a
connection.
36

Configuring Connections between G2 and G2 Gateway
Triggering Rules when the Interface Status Changes

Changes to the gsi-interface-status attribute value of a GSI interface that occur
just before the interface becomes active can trigger rules.

Consistency of Status between a GSI Interface and Other G2 Objects

There can be a gap between the moment when G2 updates the status of a GSI
interface and when G2 updates the current value of a GSI variable that receives
G2 Gateway data service through that GSI interface. For this reason, your G2
knowledge base should not be designed to assume that if the gsi-interface-status
of a GSI interface is not OK, then the statuses of the variables that rely upon that
GSI interface for G2 Gateway data service are also not OK.

For example, when a G2 Gateway bridge is heavily loaded, it is possible for a GSI
variable in the G2 knowledge base to fail to receive a value, even though the G2
Gateway bridge is still running. The gsi-variable-status attribute of the GSI
variable might contain the value 0 (indicating that the data object in the G2
Gateway bridge memory was most recently known to be OK), although the
gsi-interface-status attribute of the variable’s associated GSI interface has the
value -1, indicating that the G2’s connection to the G2 Gateway bridge has
timed out.

In this case, it is not necessary to break and reestablish the connection between G2
and the G2 Gateway bridge. Instead, you can design your G2 knowledge base to
allow additional time for the G2 Gateway bridge to return a new value for the
variable when the gsi-interface-status attribute of a GSI interface receives a new
value that is not OK.

1 (in transition) This state indicates that G2 is either completing or
breaking a connection to G2 Gateway. In either
case, no G2 data service, RPC action, or message
service can be done on the GSI interface.

If a GSI interface was in state 0, and changed to 1,
this indicates that G2 is negotiating a new G2
Gateway connection. The next state will be 2 if
successful or -2 if the connection fails.

When a GSI interface is in state 2, and is
deactivated, it changes to state 1 until it is certain
that the G2 Gateway bridge has received and
acknowledged the connection shutdown. It will
time out after 15 seconds.

2 (ok) The connection between the G2 process and the
bridge process is successful and being
maintained.

Possible Values of Gsi-Interface-Status Attribute
37

Determining Whether the Interface is Secure

The gsi-interface-is-secure attribute determines whether the interface was started
with the secure yes option in the gsi-connection-configuration.

For more information, see secure.

Updating GSI Interface Attributes While the KB
is Running

You can apply edits to only two attributes of a GSI interface while the G2
knowledge base is running: grouping-specification and poll-external-system-for-
data. These attributes are updated immediately after you edit them.

Edits that you make to any other attributes of a GSI interface do not take effect
until you reset and start the G2 knowledge base.

Activating and Deactivating a GSI Interface

When a fully configured GSI interface becomes activated, G2 attempts to establish
a network connection to the G2 Gateway bridge identified in the gsi-connection-
configuration attribute of the GSI interface.

What fully configured means depends on which kinds of objects in the G2
knowledge base refer to that GSI interface. That is, it depends on whether a GSI
variable, or GSI Message Server, or executable item (i.e. one containing a start or
call action that invokes a G2 Gateway bridge function through a remote
procedure call), or any combination of these refers to the GSI interface.

Note An enabled item becomes activated when its parent workspace or superior object
becomes activated. See the G2 Reference Manual for information about how to
activate workspaces.

Successful Activation

A GSI interface becomes activated in the following ways:

• Explicitly, as a result of programmatically activating either the GSI interface’s
workspace or another workspace that is superior to the object in the
knowledge base’s workspace hierarchy.

• Implicitly, as a result of starting the G2 knowledge base.

• Through user actions that enable or disable the GSI interface itself.

If G2 successfully establishes a network connection with a particular G2 Gateway
bridge process, it automatically sets the GSI interface’s gsi-interface-status
attribute to indicate that the connection is open and functioning. If G2 fails to
establish the connection, it automatically sets the gsi-interface-status attribute to
38

Configuring Connections between G2 and G2 Gateway
indicate that the attempt failed. See Identifying the Status of a Connection for a
list of the possible values of the gsi-interface-status attribute.

The G2 knowledge base can use the value of the gsi-interface-status attribute in its
processing. For example, given that G2 automatically updates the value of the gsi-
interface-status attribute of any GSI interface whenever any data is exchanged
between the G2 and the G2 Gateway bridge process, you can include a whenever
rule that is triggered each time the gsi-interface-status attribute of any GSI
interface receives a value, as follows:

for any custom-gsi-interface C
whenever the gsi-interface-status of C receives a value

and when the gsi-interface-status of C = -1
then in order invoke timeout rules

and inform the operator that
"The GSI interface [the name of C] has timed out."

Hint Concluding a new value to a GSI interface’s gsi-connection-configuration attribute
or identifying-attributes attribute causes G2 to break the connection (if it exists)
with the G2 Gateway bridge process and then immediately to attempt to make a
new connection. You can use this technique to perform operations such as
resetting and reestablishing communication with a G2 Gateway bridge process or
switching the connection to another process. For example, to programmatically
toggle the connection of a GSI interface perform the following action:
change the text of the gsi-connection-configuration of MYIO to the text of the gsi-
connection-configuration of MYIO. Note that the value does not necessarily have
to be a different value.

Unsuccessful Activation

After G2 activates a GSI interface, G2 attempts to use it to establish a network
connection with a G2 Gateway bridge process. If the values in the GSI interface’s
attributes are incomplete or invalid, G2 places one or more messages to that effect
on the G2’s Operator Logbook. The Operator Logbook is described in the
G2 Reference Manual.

Deactivating a GSI Interface

A GSI interface becomes deactivated in these ways:

• Explicitly, as a result of programmatically deactivating either the GSI
interface’s workspace or another item that is superior to the object in the
knowledge base’s workspace hierarchy.

• Implicitly, as a consequence of resetting the G2 knowledge base.

• Explicitly, when a user disables the GSI interface itself.
39

When you deactivate an activated GSI interface that refers to an established
network connection between the G2 knowledge base and a G2 Gateway bridge
process, G2 automatically breaks that network connection.

Note Breaking a network connection between a G2 and a G2 Gateway bridge process
does not kill the G2 Gateway bridge process and does not cause it to stop
executing, unless the bridge programmer has arranged for this to happen
explicitly, in the bridge user code.

Deleting a GSI Interface

If a GSI interface is deleted, the connection is lost, but other connections are not
affected. The bridge does not exit unless the user has programmed that behavior.

Configuring GSI Variables in the KB
To enable your G2 knowledge base to read values from and write values to data
points in an external system, you must create GSI variables. A GSI variable is a
G2 variable that receives data service from a G2 Gateway bridge.

You map each GSI variable to a data point in an external system. Your G2
knowledge base then reads from and writes to the external data points through
the corresponding GSI variable. Each GSI variable must refer to a GSI interface.

To create GSI variables that your G2 knowledge base can use to read from and
write to data points in an external system, you must:

1 Define a class of GSI variables.

2 Create an instance of this class for each external data point that your G2
application needs to read from or write to.

3 Edit the attributes of each GSI variable to specify the GSI interface that it
references to communicate with the G2 Gateway bridge process, and to
specify other characteristics of the GSI variable.

Defining GSI Variable Classes

You can create different application-specific classes of GSI variables to represent
different types of data exchanged with the G2 Gateway bridge and with the G2-
based application’s external system.

The class definition for GSI variables can also be a subclass of any class that
inherits from these standard variable classes.
40

Configuring GSI Variables in the KB
To define a GSI variable class:

1 Create a class definition for your GSI variables by selecting:

KB Workspace > New Definition > class-definition > object-definition

An icon representing the new class definition appears on the workspace
where you are creating the class definition.

2 Open the menu for the class definition and select table.

The attribute table of the class definition appears.

3 In the attribute table, specify a name for your new class under class-name.

4 Under direct-superior-classes, specify one of the following standard variable
classes: integer-variable, float-variable, quantitative-variable, logical-variable,
symbolic-variable, text-variable, or sensor.

5 Also under direct-superior-classes, specify the G2 mixin class gsi-data-
service.

A variable must inherit from this class in order to receive data service from a
G2 Gateway bridge.

6 Under class-specific-attributes, specify any attributes that you want to add to
this class definition.

For more information about defining new classes, see the G2 Reference Manual.

Attributes of GSI Variables

You can modify all attributes of GSI variables, including their identifying
attributes, while the knowledge base is running (although the user code must be
written correctly for it to be effective).

The following table lists attributes that are of particular importance to the
behavior of a GSI variable. For information about the attributes of variables that
do not relate to G2 Gateway, see the G2 Reference Manual.
41

GSI Variable Attributes

Attribute Description

validity-interval The length of time that the last-recorded-value
of the variable remains current.

Allowable values: Any time-interval
indefinite

Default value: supplied

Note: A validity interval of supplied is not valid for a
variable whose data server is GSI data service.
You must specify a value for this attribute. For
information about how to set the validity
interval attribute, see the G2 Reference Manual.

data-server The data server for this variable.

Allowable values: The symbol gsi-data-server, or any unreserved
symbol that is defined in the knowledge base’s
Data Server Parameters system table as an alias
for gsi-data-server.

For information about how to define an alias for
a standard G2 data server, see “Data Server
Parameters” under “System Tables” in the
G2 Reference Manual.

Default value: gsi-data-server

Note: To prototype GSI variables in your KB, you can
specify the G2 Inference Engine as their data
server, and use formulas specified in formula
attributes of the GSI variables to compute values
for the variables. The formula attribute of a GSI
variable is not useful for any purpose other than
prototyping the variable. To provide a GSI
variable with data service from a G2 Gateway
bridge, you must specify GSI data server as the
data server of the variable.
42

Configuring GSI Variables in the KB
default-update-
interval

Specifies a regular time interval at which G2
obtains a value for this variable.

Allowable values: Any non-negative number
none

Default value: none

gsi-interface-name Name of the GSI interface that supports data
service for this variable. Must be specified to
allow this variable to exchange data with the G2
Gateway bridge.

Note: If you modify this attribute, you must
reset and start the knowledge base for the
changes to take effect.

Allowable values: Any unreserved symbol that names a
GSI Interface
none

Default value: none

Notes: When you create GSI variables
programmatically, this should be the last
attribute that you set, because setting this
attribute causes the GSI variable to be
immediately eligible for mapping to an external
data point. You may want to delay mapping
until all the attributes of the GSI variable are set.

gsi-variable-status Status of the data point or variable in an external
system that the G2 Gateway bridge maps to this
GSI variable

Allowable values: Integer value of 0 (zero) or higher

Default value: 0 (zero)

Notes: See Identifying the Status of the GSI Variable.

GSI Variable Attributes

Attribute Description
43

Defining Identifying Attributes

A GSI interface can designate as many as six different attributes of a GSI variable
class as identifying attributes for variables of that class. The values of a GSI
variable’s identifying attributes must distinguish it from all other variables in the
KB. The identifying attributes of a GSI variable provide a unique identification for
the variable, which G2 Gateway needs in order to map it to a data point in an
external system.

The identifying attributes of a GSI variable must be user-defined attributes —
either class-specific-attributes of the GSI variable’s own class, or class-specific-
attributes that the GSI variable inherits from a superior class. Class-qualified
attribute names can be used as identifying attributes.

The data type of an identifying attribute can be either a G2 value (an integer, float,
truth-value, symbol, or text) or a G2 parameter. An identifying attribute cannot be
an array, list, variable, or any other G2 item that is not a parameter.

For more information about defining a variable class, see the G2 Reference Manual.

You list the identifying attributes of a GSI variable class in the identifying-
attributes attribute of a GSI interface. Each instance of a GSI variable class must
use the GSI interface that lists its identifying attributes. The identifying-attributes
attribute of a GSI interface contains the aggregate of the identifying attributes of
all GSI variable classes that use that GSI interface.

G2 communicates the values of identifying attributes to the G2 Gateway bridge
whenever a GSI variable is registered or reregistered with the G2 Gateway bridge.

Whenever a value of an identifying attribute of a GSI variable is changed, that
variable is deregistered and reregistered. Updating the value of the identifying-
attributes attribute of a GSI interface causes G2 to request the G2 Gateway bridge
to deregister all registered variables that use this GSI interface, then to register
the set of variables that use the new set of identifying attributes listed in the GSI
interface.

Caution Because a GSI variable is reregistered whenever the values of any of the
identifying attributes are changed, do not return values, directly or indirectly, to
identifying attributes from the G2 Gateway bridge user code. This would result in
unnecessary exchanges of data between the G2 and the G2 Gateway bridges.
44

Configuring GSI Variables in the KB
The following figure illustrates a GSI variable class definition named gsi-quant-
var and a variable of this class named gsi-quant-var-1:

In the preceding figure, the GSI interface interface-1 specifies the equipment-type
and equipment-name attributes of the gsi-quant-var class as identifying attributes
for variables of this class. Note that the data-value attribute is not suitable for use
as an identifying attribute, because the G2 Gateway bridge sends values to this
attribute.

Identifying the Status of the GSI Variable

GSI variable status codes indicate the status of the external data point or variable
that is mapped to a GSI variable in a G2 KB. The status code is registered in the
gsi-variable-status attribute. Its value is set by G2 Gateway, depending on the
value of the status field set within the user code for this variable. This attribute
is read-only.

The possible values for the gsi-variable-status attribute of a GSI variable are:

• 0 (zero): the external variable is OK

• 1 to 5: reserved for use by G2 Gateway

• 6 and higher: Values set in the G2 Gateway bridge’s user code, which can
represent status messages from the bridge to G2 about this GSI variable’s
corresponding external data point
45

You can create whenever rules that depend on the value of this attribute. For
example, G2 invokes the following rule whenever the gsi-variable-status of any
GSI variable receives a value:

for any GSI variable G
whenever the gsi-variable-status of G receives a value then

inform the operator for the next 4 seconds that "The status of [the
name of G] is [the gsi-variable-status of G]."

For more information about whenever rules, see the G2 Reference Manual.

Specifying Initial Values for GSI Variables

It is good practice to provide initial values for all GSI variables, either by:

• Specifying an initial value for all the GSI variables of each GSI variable class.
To do this, specify the initial value in the attribute-initializations attribute of the
GSI variable class definition. For example, you can specify the following in the
attribute-initializations attribute of a class of integer variables:

initial value for integer-variable: 1

• Providing a value for the GSI variable when G2 registers the variable for data
service, through a call to gsi_return_values or related function in the
callback function gsi_receive_registration(). For information about this
function, see gsi_receive_registration.

If G2 is unable to obtain a value for a GSI variable within the amount of time
specified in the timeout-for-variables parameter of the Inference Engine
Parameters system table, G2 repeatedly attempts to obtain a value for the variable
at the interval specified by the retry-interval-after-timeout parameter of the
Inference Engine Parameters system table. This can result in repeated calls to the
callback function gsi_get_data(), at the specified interval specified by retry-
interval-after-timeout.

Creating and Configuring GSI Message Servers
A G2 KB can send text messages to a G2 Gateway bridge using a GSI message
server. A GSI message server is a G2 object that inherits from the G2 mixin class
gsi-message-service and at least one G2 class from which you can create
instances.

To send the text message to the external system, G2 runs an inform action on the
GSI message server. The inform action specifies the text message that G2 sends to
the G2 Gateway bridge.

When the G2 Gateway bridge receives the text message, it calls the gsi_receive_
message() callback function, which can pass the text that it receives from G2 to an
external system or handle the message in any other way that your application
requires. For information about gsi_receive_message(), see Callback Functions.
46

Creating and Configuring GSI Message Servers
To create and configure a GSI message server, follow these steps:

1 Create a message server class definition by selecting:

KB Workspace > New Definition > object-definition

An icon representing a class definition appears on the workspace.

2 Open the menu for the class definition and select table. The attribute table of
the class definition appears.

3 In the attribute table, specify a name for the message server class under
class-name.

4 Also in the attribute table, specify the following classes under direct-superior-
classes:

• The gsi-message-service mixin class.

• A G2 class from which you can create instances. This class can inherit from
the object, message, or connection standard G2 classes. For example:
text-variable.

A GSI message server class can optionally include the gsi-data-service mixin
class among its direct superior classes, but is not required to.

5 Close the attribute table of the message server class definition.

6 Create a GSI message server.

To do this, select create instance from the menu of the message server class
definition. The GSI message server appears on the workspace near the icon for
the message server class definition.

7 In the attribute table of the GSI message server, specify a name for the
message server under names.

8 Also in the attribute table of the GSI message server, specify the name of a
gsi-interface under gsi-interface-name. Use the name of the GSI interface that
represents the connection between the G2 that sends the text message and the
G2 Gateway bridge that you intend to receive it.
47

Attributes of a GSI Message Server

The following table summarizes the class-specific attributes of a GSI message
server:

These attributes are contributed by the G2 standard gsi-message-service mixin
class.

GSI Message Server Attributes

Attribute Description

gsi-interface-name Name of the GSI interface that supports data
service for this GSI message server. You must
specify a GSI interface to enable the GSI
message server to send data to the G2 Gateway
bridge.

Allowable values: Any unreserved symbol that names a
GSI Interface
none

Default value: none

Notes: Setting the attribute causes the variable to be
immediately eligible for mapping. To delay
mapping until all the attributes are set properly,
set this attribute last.

data-server-for-
messages

The symbol gsi-data-server or any symbol
defined as an alias for the G2 standard data
server gsi-data-server.

Allowable values: The symbol gsi-data-server, or any unreserved
symbol that is defined in the knowledge base’s
Data Server Parameters system table as an alias
for gsi-data-server.

For information about how to define an alias for
a standard G2 data server, see “Data Server
Parameters” under “System Tables” in the
G2 Reference Manual.

Default value: gsi-data-server
48

Creating and Configuring GSI Message Servers
Running an Inform Action on a GSI Message Server

To send a text message to a G2 Gateway bridge through a GSI message server, a
G2 KB runs the inform action on the GSI message server. In the inform action, you
specify the text of the message that you want to send in double quotation marks.

For example, the following rule runs the inform action on a GSI message server
named gsi-msg-var-1, and sends the text message: “The temperature of vat-1 is
too high.”

If the temperature of gauge-1 is too-high then
inform gsi-msg-var-1 that "The temperature of vat-1 is too high."

Similarly, the following rule runs the inform action on a GSI message server
named operator-2:

if product-ph < 7 and hydroxide-feed-rate = max-hydroxide-feed-rate then
inform operator-2 that "Product is too acid to neutralize. pH =
[product-ph] with maximum hydroxide input."

If the pH of the product is less than 7 (for example, 5.72), and the system is unable
to feed the hydroxide any faster, G2 invokes this rule and sends the text message:

"Product is too acid to neutralize. pH = 5.72 with maximum hydroxide input."

to the G2 Gateway bridge through the GSI interface used by the GSI message
server named operator-2.

For information about how to invoke the inform action, see the G2 Reference
Manual.
49

50

3

Preparing the
Bridge User Code
Describes how to organize and code the customized portion of the G2 Gateway
bridge.

Introduction 52

Components of G2 Gateway User Code 52

Structure of G2 Gateway User Code 53

Using gsi_start() 57

Managing a Connection between G2 and a G2 Gateway Bridge 60

Processing Events through gsi_run_loop() 62

Implementing Data Service in G2 Gateway 67

Message Passing 76

Item Passing 76

Registering and Deregistering Items 77

Context Control 82

User Watchdog Functions 83

Memory Management Responsibilities of G2 Gateway User Code 85

Write Buffer Management 87

Using and Disabling Abbreviated Function Name Aliases 87

Using and Disabling ANSI C Prototypes for API Functions 88
51

Introduction
The user code is the part of a G2 Gateway bridge that acts as an interface between
the bridge and G2. This chapter describes the structure of your user code, the
tasks that it can perform, and the functions, data structures, and data types that it
uses to perform these tasks.

This chapter does not describe the G2 Gateway bridge code that you must write to
provide an interface between your G2 Gateway bridge and external systems such
as databases or PLCs. For information about how to write this part of your bridge
code, see the documentation for your external system.

Language Support for G2 Gateway User Code

Gensym supports user code development in the C programming language. If you
use any other language to develop your bridge, you must provide the appropriate
links to G2 Gateway C routines called by your user code functions.

The following discussion of G2 Gateway user code assumes that you are
developing the code in C.

Single-Threaded Programming and Reentrancy

Applications developed with GSI 4.0, G2 Gateway 5.0, and later versions are
designed to run in single-threaded programming environments.

The G2 Gateway library of API functions is not thread-safe; that is, it cannot be
used by programs running under a thread package that supports multiple threads
of control. Attempts to run a G2 Gateway application in a multi-threaded
programming environment will cause serious errors.

A G2 Gateway program is not re-entrant; this is, it cannot be executed
simultaneously by multiple threads of control. However, you may have any
number of G2 Gateway processes running simultaneously.

Components of G2 Gateway User Code
You develop the user code part of your G2 Gateway bridge by:

• Completing the code for predeclared callback functions provided with G2
Gateway. G2 Gateway callback functions form the basis of your user code. For
information about these functions, see Callback Functions.

G2 Gateway calls callback functions automatically in response to events in G2,
such as requests by G2 to get or set the values of data points in an external
system. You do not need to invoke callback functions explicitly from
anywhere in your user code, and should not attempt to do this.
52

Structure of G2 Gateway User Code
• Writing functions that G2 can invoke as remote procedures. For information
about how to write these functions, see Remote Procedure Calls.

• Writing user functions to perform computations or any customized
processing required by your G2 Gateway application.

Callback functions, remote procedures, and user functions can invoke API
functions provided with G2 Gateway to perform a wide variety of tasks, such as
accessing data received from G2, supporting data service of G2 variables,
supporting remote procedures, and error handling. For information about API
functions, see API Functions.

You can write user code that handles all interactions between G2 and G2 Gateway
through remote procedure calls. For information about how to do this, see
Developing a Bridge Using Only Remote Procedure Calls.

For information about how to compile, link, and run your code, see Building and
Running a G2 Gateway Bridge.

Structure of G2 Gateway User Code
As in any C program, main() is the first function in the user code portion of your
bridge to be executed.

From within main(), you can call G2 Gateway API functions and any other
functions available to a C or C++ program. Note, however, that you do not call G2
Gateway callback functions directly from within main(). G2 Gateway calls the
callback functions automatically in response to network events on a connection to
a G2 KB. Instead, you supply code that performs tasks for your application for the
time the function is called.

Contents of the main() Function

The only function that your main() function must call is gsi_start(). This API
function initializes G2 Gateway, performs setup operations, and passes control to
the API function gsi_run_loop(), which establishes the main event processing
loop of your G2 Gateway bridge process. For more information about gsi_
start(), see Using gsi_start().

Your main() function can optionally include:

• (In one-cycle mode) Code defining an event processing loop that executes
under control of your user code. For information about how to establish a
processing loop under control of your user code, see Processing Events
through gsi_run_loop().

• Statements that set global GSI variables to specify the version of the G2
Gateway user header file gsi_main.h to use, and to ensure that this header
53

file matches the version of the G2 Gateway object libraries with which you
link your user code.

To do this, include the following statements in main():

gsi_include_file_major_version = GSI_INCLUDE_MAJ_VER_NUM;
gsi_include_file_minor_version = GSI_INCLUDE_MIN_VER_NUM;
gsi_include_file_revision_version = GSI_INCLUDE_REV_VER_NUM;

Note You cannot use the gsi_include_file_major_version, gsi_include_
file_minor_version, and gsi_include_file_revision_version
variables with a G2 Gateway that is delivered as a DLL. Thus, if you are using G2
Gateway on WIN32 platforms (in addition to being delivered as three libraries, as
before), use the gsi_set_include_file_version() function to specify the minor
version, major version, and revision.

You can use gsi_set_include_file_version() to specify versions on any
platform.
54

Structure of G2 Gateway User Code
The following illustrates the basic structure of your G2 Gateway user code.

Structure of G2 Gateway User Code

What the user codes
(API functions and callbacks)

What G2 Gateway does
(callbacks)

main(argc, argv)
{

gsi_set_options_from
_compile()
/* Only if not present
in gsi_main.c. */

 ...
gsi_start(argc, argv)
 ...
/* User-defined event loop
(Only in one-cycle mode) */
 for (;;)

{
...
gsi_run_loop()

...
/* Other function calls.*/

}
}

/*Callback functions:*/

gsi_set_up()
{

 ...
/* Invoke API functions
to perform application-
specific operations */
...

}

gsi_get_tcp_port()
{

...
/* Specifies default
TCP/IP port number used
if port number is omitted
from command line */

}

gsi_start(argc,argv)
{

...
gsi_set_up()
...
gsi_get_tcp_port()
...
gsi_run_loop()

}

gsi_run_loop()
{

...
do {
...

/* Accept new connections
from G2 */

...
/* Invoke callback functions
to process events on
connection to G2 */

...
 } while in continuous

mode
}
55

Passing Command-Line Arguments to the Bridge Through main()

Your main() function receives two arguments from the operating system’s
command-line interpreter: argc and argv:

• argc represents the number of command line arguments.

• argv is an array of strings in which the command line arguments are stored.
argv[0] is reserved for the name of your bridge program and argv[1] is
reserved for the TCP/IP port number. Other elements of argv are available to
users.

On systems that use the TCP/IP protocol, if a 0 is passed as the first argument
(argv[1]), the callback function gsi_get_tcp_port() is called to return a
default port number. For information about this function, see Callback
Functions.

Your main() passes the argc and argv arguments to the API function gsi_
start(), which starts and initializes the bridge process.

If your application requires command line arguments other than those expected
by gsi_start(), you can remove the non-standard arguments from argv and
adjust argc before passing them to gsi_start(). See your C manual for
information about how to manipulate the command line argument structures.

The main() Function in Continuous and One-Cycle Modes

G2 Gateway supports two modes of bridge operation: continuous and one-cycle.
These modes affect the behavior of gsi_run_loop() and the flow of control in
your G2 Gateway bridge:

• In continuous mode, the bridge runs entirely within the gsi_run_loop()
event-processing loop initiated by the API function gsi_start(). If you
intend to run your bridge only in continuous mode, a call to gsi_start() is
the only required statement in the main() function.

• In one-cycle mode, gsi_start() exits after gsi_run_loop() completes one
cycle, and control passes to your user code. If you intend to run your bridge in
one-cycle mode, you must add code to main() that defines an event
processing loop, which receives control of your program when gsi_start()
finishes executing the first time.

Your user code can change modes at any time, using the following statements:

• gsi_set_option(gsi_one_cycle), which sets the bridge to run in one-cycle
mode.

• gsi_reset_option(gsi_one_cycle), which sets the bridge to run in
continuous mode.

By default, the gsi_one_cycle option is reset, causing your bridge to run in
continuous mode.
56

Using gsi_start()
For information about the uses of continuous and one-cycle modes, see Behavior
of gsi_run_loop() in Continuous and One-Cycle Modes.

Sample main() Function

Gensym provides a source file named gsi_main.c as a sample main() function.
The default contents of this file are:

#include "gsi_main.h"

int main(argc, argv)
int argc;
char *argv[];

{
GSI_SET_OPTIONS_FROM_COMPILE();
gsi_start(argc,argv);
return 0;

}

For continuous mode operation, you can use the main() function in gsi_main.c
without modification. If you want to operate your bridge in one-cycle mode, you
must add code to main() that establishes and controls an event processing loop.

Using gsi_start()
Within your main() function, the first G2 Gateway API function called must be
the API function gsi_start(), which starts and initializes G2 Gateway.

Caution main() cannot call any other function before gsi_start().

gsi_start() does the following:

• Receives the argc and argv arguments from main().

• Initializes G2 Gateway internals.

• Executes the callback function gsi_set_up().

• Establishes network listeners as specified by the command line arguments or
by the callback function gsi_get_tcp_port().

• Passes control to the API function gsi_run_loop(), which provides the main
event loop of the G2 Gateway bridge. For information about this function, see
Processing Events through gsi_run_loop().
57

Performing Once-Only Operations through gsi_set_
up()

The intended use of the callback function gsi_set_up() is to perform operations
that need to be performed only once in the lifetime of a G2 Gateway process. For
this reason, gsi_start() calls gsi_set_up() only once.

You can use gsi_set_up() to perform operations such as:

• Selecting initial G2 Gateway runtime options. G2 Gateway’s run-time options
are global variables that control G2 Gateway operations and communications.
You can set and reset options at any time during the execution of a bridge. For
more information about G2 Gateway options. see Preprocessor Flags
and Runtime Options.

• Registering customized error handlers. For information about error handlers,
see Error Handling.

• Declaring local functions in the bridge that G2 can invoke as remote
procedures. For information about how to write and declare these functions,
see Remote Procedure Calls.

• Allocating G2 Gateway data structures that you intend to use repeatedly.

Note Calls to gsi_set_option(), gsi_rpc_declare_local(), and other functions that
are best called from gsi_set_up() do not work if gsi_start() has not been
called.

The following example illustrates a gsi_set_up() function used in a G2 Gateway
application that handles alarms:

void gsi_set_up()
{

gsi_attr *attrs;

/* Set this application to run in one-cycle mode. */
gsi_set_option(GSI_ONE_CYCLE);

/*
* Install customized error handler to be called after
* G2 Gateway internal errors occur and are handled by
* the internal error handler.
*/
gsi_install_error_handler(my_custom_error_handler);

/* Declare local functions to be remotely invocable. */
gsi_rpc_declare_local(enable_alarming,

"ENABLE-ALARMING");
gsi_rpc_declare_local(disable_alarming,
58

Using gsi_start()
"DISABLE-ALARMING");
}

This example of a gsi_set_up() function does the following:

• Sets the runtime option to one cycle mode.

• Installs a customized error handler. For information about how to create and
install customized error handlers, see Error Handling.

• Declares user-written G2 Gateway functions as remote procedures that G2 can
call. For information about how to declare G2 Gateway functions as remote
procedures, see Making Remote Procedure Calls from G2 to the G2 Gateway
Bridge.

For information about the functions invoked from this example, see API
Functions.

Specifying a Default TCP/IP Port Number

G2 Gateway invokes the callback function gsi_get_tcp_port() only when the
command line used to start the G2 Gateway bridge process specifies no port
number, or 0 for the port number.

gsi_get_tcp_port() returns a user-specified default TCP/IP port number for
the ICP socket used by G2 Gateway to connect to an external system over a
TCP/IP link. If gsi_get_tcp_port() returns 0, G2 Gateway uses Gensym’s
default port number 22041. If 22041 is not available, G2 Gateway uses the first
available port number within the next 99 addresses.

In the following example, gsi_get_tcp_port() returns 0, which causes G2
Gateway to use the default port number 22041 or the first available number
within the next 99 addresses:

#define TCPIP_PORT_NUMBER 0

...

gsi_int gsi_get_tcp_port()
{

return(TCPIP_PORT_NUMBER);
}

For information about the syntax of the command line for starting the bridge, see
Building and Running a G2 Gateway Bridge.

If TCP/IP is not installed, gsi_get_tcp_port() has no effect.
59

Managing a Connection between G2 and a
G2 Gateway Bridge

You can use the following G2 Gateway callback functions to control the
connection between the G2 Gateway bridge process and G2:

• gsi_initialize_context(), called when a connection between G2 and G2
Gateway is established.

• gsi_pause_context(), called when G2 pauses its KB.

• gsi_resume_context(), called when G2 resumes its KB.

• gsi_shutdown_context(), called when a connection between G2 and G2
Gateway is shut down.

Initializing a Connection

Whenever a GSI interface is enabled, G2 sends an initialization request to the G2
Gateway bridge process, which then calls the callback function gsi_initialize_
context() Each context corresponds to a single GSI interface in G2.

Hint Since context numbers are contiguous integers they can be used as array indices
to access contexts stored in an array.

You can use gsi_initialize_context() to initialize a connection between a
single GSI interface in G2 and GSI, and give G2 Gateway the option of rejecting
the connection. gsi_initialize_context() can perform tasks such as:

• Validating connections from G2, as for a login procedure.

• Declaring G2 procedures as remote procedures that your G2 Gateway bridge
can invoke, using the API function gsi_rpc_declare_remote(). These
remote procedure declarations are valid only for the context through which
the G2 process is connected to the G2 Gateway bridge.

• Allocating and/or initializing global tables on a per-connection basis; that is,
tables that are unique to this connection.

For more information about gsi_initialize_context(), see Callback Functions.

Pausing a Connection

G2 Gateway calls the callback function gsi_pause_context() whenever G2
pauses a KB. The gsi_pause_context() function accepts no arguments and
returns no value.
60

Managing a Connection between G2 and a G2 Gateway Bridge
gsi_pause_context() is useful for pausing any functions in your G2 Gateway
bridge that operate independently of G2. gsi_pause_context() can suspend
these functions until G2 resumes operation. For example, you can use gsi_pause_
context() to halt unsolicited data collection from a queue in the external system,
record an event in a log file, or stop the G2 Gateway watchdog timer invoked
through the API function gsi_watchdog().

Calls to gsi_g2_poll() are stopped when the G2 process pauses its current KB.

Resuming a Connection After a Pause

G2 Gateway calls the callback function gsi_resume_context() whenever G2
resumes a paused KB.

You can use gsi_resume_context() to prepare the external system to access data,
resume unsolicited data collection, record events in a log file, or inform a G2
operator that the application has resumed. gsi_resume_context() accepts no
arguments and returns no value.

If your G2 application initiates all read and write access requests, you can leave
gsi_pause_context() in its stub form, because all read and write requests are
stopped when the G2 application is stopped. If you do not use gsi_pause_
context(), you can also leave gsi_resume_context() in its stub form.

Shutting Down a Connection

G2 Gateway calls the callback function gsi_shutdown_context() whenever G2 is
reset or the GSI interface is deactivated or deleted. gsi_shutdown_context() is
called once for each active G2 Gateway context. It accepts no arguments and
returns no value.

You can use gsi_shutdown_context() to perform the tasks necessary to shut
down the external system and clean up the G2 Gateway bridge process. Possible
uses for gsi_shutdown_context() include:

• Shutting down your external system.

• Disabling all data collection.

• Resetting your data collection functions.

• Closing files.

• Recording events in a log file.

• Freeing any memory allocated by the bridge.

Before you call gsi_shutdown_context(), make certain that you free any
dynamically allocated memory not freed in the body of the gsi_receive_
deregistrations() callback. For information about how to do this, see Using
gsi_receive_deregistrations().
61

Processing Events through gsi_run_loop()
The API function gsi_run_loop() initiates the main event loop of the G2
Gateway bridge. This event loop handles network activity on connections to G2
processes and to external systems.

Each time gsi_run_loop() is executed, it does the following:

1 Makes any new connections requested by G2.

2 In each currently active context, responds to all outstanding messages
received from G2.

gsi_run_loop() processes all messages that are outstanding at the time when
it is called. Because G2 Gateway is single-threaded, gsi_run_loop()
processes only those messages that are already completed at the time when
gsi_run_loop() is called. Any messages that arrive or are completed during
the current call to gsi_run_loop() are processed by the next call to gsi_run_
loop().

gsi_run_loop() executes until it has nothing to do, or until the run loop timeout
period is reached, whichever happens first. By default, the run loop timeout
period is 200 ms. You can call gsi_set_run_loop_timeout() to specify a
different timeout period for gsi_run_loop(). For information about this function,
see gsi_set_run_loop_timeout.

gsi_run_loop() is executed automatically by the API function gsi_start(). In
one-cycle mode, you can execute gsi_run_loop() explicitly, outside of gsi_
start(). The following sections describe the behaviors and uses of gsi_run_
loop() in continuous and one-cycle modes.

Behavior of gsi_run_loop() in Continuous and
One-Cycle Modes

In continuous mode, the bridge executes entirely inside the call to gsi_start(),
which calls gsi_run_loop() repeatedly as long as no fatal error occurs.
Continuous mode is the default mode of bridge operation.

In one-cycle mode, gsi_start() exits after the first call to gsi_run_loop() is
completed. Your G2 Gateway bridge then executes under control of user code that
you provide.

gsi_run_loop() in Continuous Mode

When the G2 Gateway bridge is running in continuous mode, it executes entirely
within gsi_start(), which invokes gsi_run_loop() repeatedly as long as no
fatal error occurs.

Control passes from gsi_run_loop() to your user code only when GSI, in
response to network activity, invokes callback functions or functions declared as
62

Processing Events through gsi_run_loop()
remote procedures. Control returns to gsi_run_loop() when the callback or
remote procedure finishes executing.

When there is no network activity to which the bridge must respond, gsi_run_
loop() calls the API function gsi_pause() internally, which causes the G2
Gateway bridge to enter an interruptible sleep. The bridge awakens when it
detects network activity to which it must respond. The bridge can sleep for no
longer than 1 second, after which time it awakens automatically; if there is no
network activity to which it must respond, it reenters the interruptible sleep.

Continuous mode is the better mode for polling an external system for data. The
bridge can poll the external system using the callback function gsi_g2_poll(),
which is invoked by G2 Gateway approximately once per schedule cycle (one
second by default).

gsi_run_loop() in One-Cycle Mode

When the G2 Gateway bridge is running in one-cycle mode, control passes from
gsi_start() when gsi_run_loop() completes execution for the first time.
Control then passes to your user code, which can subsequently execute gsi_run_
loop() as needed.

In one-cycle mode, your user code must provide the main event loop of the
bridge. This loop must make periodic calls to gsi_run_loop() to respond to the
network events that the G2 Gateway bridge detects on active connections to G2
applications. When gsi_run_loop() has responded to all these events, it returns
control to the main event loop provided by your user code, which can process
other events before calling gsi_run_loop() again.

One-cycle mode is the better mode for bridges designed to respond to network
activity on connections to external systems, rather than to poll the external
systems actively.

The following figure illustrates a G2 Gateway bridge process that enables a G2
knowledge base to communicate with a PLC:

PLC

registers

port 3000
Bridge

Process port 22041
G2 Knowledge

Base

GSI Variables
63

The following code illustrates how user code running in one-cycle mode can
respond to messages both from the PLC and from the G2 knowledge base:

main(argc, argv)
int argc;
char *argv[];

{

/* One-cycle mode is selected by the gsi_set_up()
callback invoked through gsi_start(). */

gsi_start();

/* Code to connect to PLC */
.
.
.

/* A file descriptor is specified by user-defined
global variable PLC_FD, corresponding to port
30000. */

gsi_watch_fd(PLC_FD);

/* User-defined event loop. */

for (;;) {
gsi_pause();

/* Check for data or messages from the PLC.*/
my_get_plc_data();

/* Check for data or messages from G2.*/
gsi_run_loop(); }

}

The example above assumes that the callback gsi_set_up(), invoked by gsi_
start(), calls gsi_set_option(GSI_ONE_CYCLE) to set the bridge to run in one-
cycle mode. (Continuous mode is the default.)

The gsi_watch_fd(PLC_FD) statement then sets the bridge to watch the file
descriptor specified by a global variable, PLC_FD. This global variable corresponds
to port 30000.
64

Processing Events through gsi_run_loop()
Control then passes to the for() loop, which loops indefinitely as long as no fatal
error occurs. The first function called in the for() loop is gsi_pause(), which
causes the G2 Gateway bridge to enter an interruptible sleep. The G2 Gateway
bridge wakes up when:

• The PLC sends data to the bridge on port 30000. The bridge then calls the
user-defined procedure my_get_plc_data(), which receives the data from the
PLC and sends it to G2. To send the data to G2, my_get_plc_data() can call
the API functions gsi_return_values(), gsi_return_attrs(), gsi_return_
timed_values(), or gsi_return_timed_attrs(). When my_get_plc_data()
completes, control passes to gsi_run_loop(). If gsi_run_loop() finds no
messages from G2, it exits and control passes to the beginning of the for()
loop.

• G2 sends a message to the bridge on any active connection. The bridge then
calls my_get_plc_data(), which finds that there is no message from the PLC.
Control then passes to gsi_run_loop(), which responds to the message from
G2. When gsi_run_loop() completes one loop, it exits and control passes to
the beginning of the for() loop.

Communicating with G2 After Running Outside of gsi_run_loop()

If your G2 Gateway bridge has been running outside of gsi_run_loop() for any
length of time, your user code should call gsi_run_loop() at least once before it
attempts to send values to G2 or attempts to communicate with G2 in any other
way. Running gsi_run_loop() gives your user code a chance to respond to any
outstanding messages from G2 that it may have received while running outside of
gsi_run_loop(). Thus, your user code can become informed about changes that
have taken place within the G2 KB before it attempts to communicate with the
KB.

For example, while the bridge was running outside of gsi_run_loop(), GSI
variables may have been deregistered by an event in G2 such as the deactivation
of the workspace on which the variables reside. The G2 Gateway bridge user code
remains unaware of the deregistrations because gsi_receive_
deregistrations() is never invoked while the bridge is running outside of gsi_
run_loop(). Thus, your user code might attempt to communicate with GSI
variables that have been deregistered. Before your user code attempts to send
values to the GSI variables, it should call gsi_run_loop() so that gsi_receive_
deregistrations() can be invoked, if necessary, to deregister any GSI variables
that were deregistered by G2 while the bridge was running outside of gsi_run_
loop().

Interruptible Sleep

To save system resources, a G2 Gateway bridge can enter an interruptible sleep
when there is no network activity to which it must respond. What causes a bridge
65

to enter an interruptible sleep depends on the mode in which the bridge is
running.

In continuous mode, G2 Gateway causes a bridge to enter an interruptible sleep
automatically when there is no network activity to which the bridge must respond.
If the bridge detects such network activity, it awakens. The bridge can sleep for no
longer than 1 second, after which it awakens automatically; if there is no network
activity, the bridge goes back to sleep.

In one-cycle mode, the bridge enters an interruptible sleep only when your user
code calls the gsi_pause() function. The bridge does not enter an interruptible
sleep automatically.

In either mode, the bridge is awakened when network activity is detected on:

• Any active connections to G2 processes. G2 Gateway automatically watches
these connections. You do not have to instruct the bridge process to watch
connections to G2.

• Particular connections to external systems that you instruct the bridge to
watch for network activity.

You use the gsi_watch_fd() API function to instruct the bridge to watch the
file descriptor for a particular connection. You can use the gsi_unwatch_fd()
function to cause the bridge not to watch a particular file descriptor.

The gsi_watch_fd() API function is useful mainly in one-cycle mode, which
is the better mode for applications designed to respond to network activity on
connections to external systems, rather than to poll the external systems
actively.

However, you can use gsi_watch_fd() in continuous mode if you want your
bridge process to awaken as soon as there is activity on a connection to an
external system, rather than waiting for activity on a connection to a G2
process. In this case, you can use the callback function gsi_g2_poll() to
respond to messages on the connection specified in the gsi_watch_fd()
function call.

For information about gsi_watch_fd() and gsi_unwatch_fd(), see API
Functions.

Implementing a Customized Sleep Facility in One-Cycle Mode

For some purposes, you may want to implement a customized sleep facility for
your G2 Gateway application, or integrate an existing sleep facility with it. To use
a customized sleep facility, you must run the bridge process in one-cycle mode,
which gives control over sleep to your user code.

You implement a customized sleep facility using the select statement or other
operating system facility.
66

Implementing Data Service in G2 Gateway
G2 Gateway provides two API functions, gsi_listener_socket() and gsi_
context_socket() for implementing a customized sleep facility. These functions
enable you to obtain a complete list of the file descriptors on which input and
output can occur:

• gsi_listener_socket() returns the UNIX file descriptor associated with the
bridge’s TCP listener.

• gsi_context_socket(), which returns the file descriptor associated with a
particular context.

For more information about gsi_listener_socket() and gsi_context_
socket(), see API Functions.

Handling Interrupts

Interrupts can occur during execution of a G2 Gateway bridge process. Your G2
Gateway bridge can invoke interrupt handling routines that you write to manage
these interrupts.

Caution Your interrupt handling routines must not invoke G2 Gateway API functions,
because doing this can interfere with the work that was interrupted.

Implementing Data Service in G2 Gateway
G2 Gateway supports the G2 data service feature, which provides an interface for
reading from and writing to data points in an external system controlled by GSI
variables in a G2 KB.

G2 uses GSI variables to map data in your KB to data points in external systems.
A GSI variable is a G2 variable that inherits from the class gsi-data-service.

Using the data service feature, G2 can write the values of GSI variables to external
data points or read values from external data points to update the values of GSI
variables. G2 can provide data service only for GSI variables, and not for G2
arrays, lists, or other items.

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not as a side-effect of data service on GSI variables.
For information about remote procedure calls, see Remote Procedure Calls.
67

Solicited and Unsolicited Data Transfers

G2 Gateway supports both solicited and unsolicited data transfers:

• In solicited data transfers, G2 schedules regular requests for values from the
external system through G2 Gateway.

• In unsolicited data transfers, G2 Gateway is responsible for updating the
values of GSI variables at regular intervals, or whenever their values change
in the external system.

You can use the following G2 Gateway callback functions in your user code to
support data service for GSI variables:

• gsi_get_data(), which G2 Gateway calls whenever G2 requests a value for a
GSI variable. You can implement this callback to retrieve a value from an
external system and return it to G2.

• gsi_g2_poll(), which G2 Gateway calls at regular intervals. You can
implement this callback to seek data from an external system and return it to
G2, or to perform other user-specified actions.

• gsi_set_data(), which G2 Gateway calls whenever G2 requests the bridge to
set the value of an external data point. G2 makes this request when a set
action is run on a GSI variable.

The gsi_get_data() and gsi_g2_poll() callbacks can use the following API
functions to return data to GSI variables in G2:

• gsi_return_values(), which returns one or more values to the last-recorded-
value attributes of one or more GSI variables.

• gsi_return_timed_values(), which returns one or more timestamped
values to the last-recorded-value attributes of one or more GSI variables. If the
GSI variables have history-keeping specifications, the values are stored in G2
history.

• gsi_return_attrs(), which returns a value to the last-recorded-value
attribute of a GSI variable, and returns one or more values (an array) to
attributes of the same GSI variable.

• gsi_return_timed_attrs(), which returns a timestamped value to the last-
recorded-value attribute of a GSI variable, and returns one or more values
(some, all, or none of which may be timestamped) to attributes of the same
GSI variable.

For more information about these functions, see Part II, Reference, of this manual.
68

Implementing Data Service in G2 Gateway
Returning Solicited Data to G2

When G2 asks G2 Gateway for a value for a GSI variable, G2 Gateway calls the
gsi_get_data() callback to get the value from the external system and return it
to G2. Data requested by G2 under these conditions is known as solicited data.

G2 asks G2 Gateway for a value for a GSI variable only if the validity-interval of the
variable has expired, indicating that the current value of the variable can no
longer be considered valid. The conditions under which G2 then requests G2
Gateway for a value depend on the setting of the external-system-has-a-
scheduler attribute of the GSI interface that G2 is using to communicate with G2
Gateway.

If the external-system-has-a-scheduler attribute is set to yes, G2 Gateway calls
gsi_get_data() when:

• A GSI variable is created, activated, or enabled, and the default-update-
interval attribute of the variable is set to a value other than none.

• A display item such as a readout table, trend chart, dial, or meter requests a
value for the GSI variable.

• A local name declaration or a collect data or wait until statement within a G2
procedure requests a value for the GSI variable.

• A rule that refers to the GSI variable is invoked.

• An update request is made through the G2 update action within a G2 rule or
procedure.

If the external-system-has-a-scheduler attribute of the GSI interface is set to no,
G2 Gateway calls gsi_get_data() in the same circumstances as when this
attribute is set to yes. But in addition, G2 Gateway calls gsi_get_data() at each
expiration of a GSI variable’s default-update-interval, if this interval is other than
none.

At every G2 scheduler cycle:

• The handles of any GSI variables that require updates are sent to G2 Gateway
and packaged into gsi_registered_item structures, and are then passed to
gsi_get_data(). The handle is an integer that uniquely identifies the item.
Procedures in a G2 Gateway bridge can use the handles to refer to particular
objects in G2.

• For all requests for set operations, either through a rule or a procedure, that
have occurred since the last clock tick, handles are sent to G2 Gateway and
packaged into gsi_registered_item structures, and are then passed to gsi_
set_data().

If you have specified a value other than none for the grouping-specification
attribute of the GSI interface, G2 groups the requests according to the identifying
attributes you specified for the attribute. You can group requests using more than
69

one identifying attribute, but you can only group requests with identifying
attributes. For best performance, do not use grouping unless it is needed for
other reasons.

Using gsi_get_data()

G2 Gateway calls the callback function gsi_get_data() when G2 requests a
value for one or more GSI variables. Within gsi_get_data(), you can include:

• Code that gets the value of a data point in an external system.

• The API functions gsi_return_values(), gsi_return_timed_values(),
gsi_return_attrs(), or gsi_return_timed_attrs(), which return values to
the GSI variable in the G2 knowledge base.

G2 Gateway builds an array of gsi_item structures and assigns to each structure
the handle of a GSI variable requesting data. When G2 Gateway receives a data
request from G2 for one or more GSI variables, it calls gsi_get_data() and
passes to it the array of gsi_registered_item structures.

For information about the gsi_registered_item structure, see G2 Gateway
Data Structures.

To return the data to G2, place a call inside gsi_get_data() to one of the G2
Gateway API return functions. In the typical case where gsi_return_values() is
used to return data to G2, you would reuse the array of gsi_registered_item
structures passed to gsi_get_data(), looping through them and filling in the
value and status fields of each element, and passing the same array of structures
as an argument to gsi_return_values().

Using gsi_set_data()

G2 Gateway calls the callback function gsi_set_data() when G2 requests the
bridge to set the value of a data point in an external system. Your G2 KB can set
the value of an external data point using the set action on a GSI variable that is
mapped to the data point.

If the GSI variable is not already registered with the bridge when the set action is
run on it, the variable is registered with the bridge automatically, causing G2
Gateway to call the callback function gsi_receive_registration().

After the values are successfully set in the external system, you can echo the
values back to the GSI variables in G2. Echoing values back to G2 ensures that
values just set in the external system are consistent with the last recorded values
of the variables in the G2 knowledge base.

The G2 set action does not change the last-recorded-value attribute of a GSI
variable. However, you can set last-recorded-value to the value that you specify
in the set action by causing G2 Gateway to echo the value back to the
GSI variable.
70

Implementing Data Service in G2 Gateway
To echo back the value, call one of the G2 Gateway data return functions gsi_
return_values(), gsi_return_attrs(), gsi_return_timed_values(), or gsi_
return_timed_attrs() and use the same gsi_item structure you passed to gsi_
set_data(). A value set with gsi_set_data() will only be echoed back to the
GSI variable in G2 if gsi_set_data() returns the value through a data return
function. Using the set action with a GSI variable does not automatically cause
that value to be returned to G2 as the last recorded value of the variable.

Using the Gsi-Variable-Status Attribute

The gsi-variable-status attribute of a GSI variable indicates the status code value
of the external data point or variable to which a GSI variable in G2 is mapped.

The possible values for the gsi-variable-status attribute are:

• 0: OK.

• 1 - 5: Reserved by Gensym for future releases.

• 6 and up: These status codes are application-specific. You can establish any set
of status codes needed for your application. See Identifying the Status of the
GSI Variable for information about how the G2 knowledge base can use these
status codes.

You set the gsi-variable-status in your G2 Gateway code with the gsi_set_
status API function. For information on this function see gsi_set_status.

When you set the status of your gsi_registered_item data structure to 0:

• Your variable will receive its value if the value returned is a non-null
data type.

• You will receive a G2 Gateway programming error if you return a null data
type. Never give a null data type a status code of 0.

When you set the status of your gsi_registered_item data structure to a value
other than 0:

• Your variable will receive its value if the value returned is a non-null
data type.

• Your variable will not be updated if your value has a null data type.
71

Sending Unsolicited Data to G2

Unsolicited data is data that a bridge sends to G2 without having received a
request from G2 for the data. Common examples of unsolicited data are:

• Alarm conditions raised in an external system.

• Reports of values in an external system that have gone out of range.

• Updates sent to G2 automatically to relieve G2 of the processing load of
scheduling and sending update requests to G2 Gateway.

Unsolicited data can be sent to G2 in two ways:

• When an external system sends the unsolicited data to the bridge without
having received a request for the data from the bridge. Getting unsolicited
data this way is better done in one-cycle mode.

• When G2 Gateway retrieves data from the external system by calling the
callback function gsi_g2_poll(). Getting unsolicited data this way is better
done in continuous mode.

Note G2 causing gsi_g2_poll to be called would seem like solicitation. It is not,
however, because G2 is not soliciting values for any specific variable.

Reporting by Exception

If your external system supports reporting by exception, you can achieve best
performance by running your G2 Gateway application in one-cycle mode and
placing the user code that responds to exceptions outside the gsi_run_loop() call
tree. Your user code can return the exceptions to G2 as they occur, using the G2
Gateway data return functions.

If you return values reported as exceptions to G2 in this way, it is important to
identify the numbers of the contexts in which the variables are defined. Outside of
the gsi_run_loop() call tree, the current context number is undefined, and you
must specify the context number in order to refer to the intended variable.

To get data to G2 from an external system that supports reporting by exception:

1 Verify that your external system supports reporting by exception.

2 Find out which file descriptor represents the socket to which the external
system is connected.

3 In your gsi_set_up() callback function, include the following call to change
the mode to one-cycle:

gsi_set_option(GSI_ONE_CYCLE);

4 In your main() function, call gsi_watch_fd() to specify the socket to watch
for messages from the external system.
72

Implementing Data Service in G2 Gateway
5 Write a for(;;) loop that repeatedly calls gsi_pause(), gsi_run_loop(), and
the code that you write to handle the data from the external system. gsi_
pause() causes G2 Gateway to enter an interruptible sleep from which it
awakens when there is network activity on connections to G2 or on
connections to external systems that the bridge is watching.

gsi_run_loop() handles messages sent to the bridge from G2, and your user
code handles data and messages from the external system in whatever way is
appropriate for your application.

The following code illustrates one way to get unsolicited data from an external
system. Note that this example is similar to the one-cycle PLC code in the section
called gsi_run_loop() in One-Cycle Mode.

gsi_int EXT_SYS_FD = 30000; /* Global variable
representing socket to
external system */

main(argc, argv)
int argc;
char *argv[];

{
/* gsi_start() must be called in main() before any

Gateway calls */

gsi_start(); /* Invokes gsi_set_up() to change mode
 to one-cycle. */

/* User code to connect to external system */

gsi_watch_fd(EXT_SYS_FD); /* Specify file
 descriptor to watch. */

for (;;)
{

gsi_pause(); /* Enter interruptible sleep. */
gsi_run_loop(); /* Check for messages from G2. */
my_code(); /* Check for messages or data

 from external system. */
}

}

Polling an External System for Data

A G2 Gateway bridge can also receive unsolicited data by polling the external
system for data, without being requested by G2 to get new data values. You can
choose to send values to G2 only when the data values that the bridge obtains
differ from previously stored values.
73

When the poll-external-system-for-data attribute for the GSI interface is set to yes,
G2 Gateway calls gsi_g2_poll() to enable the external system to return
unsolicited values to G2.

When the external-system-has-a-scheduler attribute for the GSI interface is set to
yes, the default update interval is sent to G2 Gateway in calls to gsi_receive_
registration(), gsi_set_data(), and gsi_get_data() which are then called
only in cases of explicit updates (G2 update action).

You can use gsi_initialize_context() to initialize any structures used for
providing unsolicited data. gsi_g2_poll() can access the handle for a variable
and any information for filtering from gsi_receive_registration().

When your user code retrieves data from the external system, it can allocate
arrays in which to return the data to G2:

• For single data values, it can allocate arrays of gsi_item or gsi_registered_
item structures.

• For arrays of attribute values, it can allocate arrays of gsi_attr structures.

To send the data values to G2, your user code writes the data values into these
arrays and passes the arrays to the API functions gsi_return_values(), gsi_
return_attrs(), gsi_return_timed_values(), or gsi_return_timed_attrs().
Each of these API functions requires handles to identify the GSI variables to
which it is returning values.

Setting Values in the External Application

You can use the G2 set action to assign values to external data points that are
mapped to the GSI variables in your knowledge base. Running a set action on a
GSI variable causes the variable to be registered automatically, if it is not
currently registered.

You can invoke the set action in a G2 rule or procedure. The following are
examples of the set action in a rule:

unconditionally set spindle-motor-on-off to 0

initially set the set-point of device-controller-1 to the symbol on

If the GSI variable is not registered with the bridge when you run the set action
on it, it is registered automatically; this causes G2 Gateway to invoke the callback
function gsi_receive_registration().
74

Implementing Data Service in G2 Gateway
Note The set action does not conclude a value back to the last-recorded-value of the
GSI variable. To conclude the value back to the GSI variable in the G2 knowledge
base, your G2 Gateway user code must call the API function gsi_return_
values(). You can place a call to gsi_return_values() in the gsi_set_data()
callback function that G2 Gateway invokes to process the set action. See Using
gsi_set_data() for more information.

If you want to be able to set the value of an attribute of a GSI variable, you must
define that attribute to be a GSI variable itself. For more information on the G2 set
action, refer to the G2 Reference Manual.

Caution Because a GSI variable is reregistered whenever the values of any of the
identifying attributes are changed, do not return values, directly or indirectly, to
identifying attributes from the G2 Gateway bridge user code. This would result in
unnecessary exchanges of data between the G2 and the G2 Gateway bridges.

When G2 makes a set request to the bridge, G2 Gateway builds an array of gsi_
registered_item structures to hold the information for each GSI variable
whose external data point is affected by the request. G2 Gateway then calls the
gsi_set_data() callback function and passes to it the array of gsi_
registered_item structures.

The syntax for gsi_set_data() is:

void gsi_int gsi_set_data(registered_items, count)
gsi_registered_item *registered_items;
gsi_int count;

where:

registered_items is an array of gsi_registered_item structures. It is defined
by G2 Gateway and initialized to point to the first element of the objects
array built by G2 Gateway. Each element of the array contains the handle and
value of the corresponding data point to be set.

count is a gsi_int value specifying the number of gsi_registered_item
structures in the array. Use count to loop through and process each gsi_
registered_item in the array.

Requests to set GSI variables can be grouped by G2 according to the grouping-
specification attribute of the GSI interface. For information about this attribute,
see Setting Attributes of a GSI Interface.
75

Message Passing
A G2 KB can send text messages to a G2 Gateway bridge, using GSI Message
Servers and the gsi_receive_message() callback function. A G2 Gateway bridge
can send text messages to the Message Board in G2 from the G2 Gateway bridge,
using the gsi_return_message() API function.

Sending Messages from G2 to the External System

A G2 KB can send text messages to a G2 Gateway bridge using a GSI Message
Server. A GSI Message Server is a G2 object that inherits from the G2 mixin class
gsi-message-service and from at least one other G2 class.

To send the text message to the external system, G2 runs an inform action on the
GSI Message Server. The inform action specifies a text message that is sent to the
G2 Gateway bridge. For information about how to create and configure a GSI
Message Server, see Creating and Configuring GSI Message Servers.

When the G2 Gateway bridge receives the text message, it invokes the gsi_
receive_message() callback function, and passes the message to this function.
You complete the code of the gsi_receive_message()callback to specify how the
callback sends the message to the external system.

gsi_receive_message() can also return data to G2, by calling one of the data
return API functions gsi_return_values(), gsi_return_timed_values(), gsi_
return_attrs(), or gsi_return_timed_attrs(). For more information about
gsi_receive_message(), see Callback Functions.

Returning Text Messages to G2

GSI Message Servers cannot be used to send a text value from the G2 Gateway
bridge to G2.

A G2 Gateway bridge can send text messages to the Message Board in G2 by
calling the API function gsi_return_message(). For information about gsi_
return_message(), see API Functions.

Item Passing
Through remote procedure calls, a G2 application can send G2 items with their
attributes to the G2 Gateway bridge, and the bridge can send structures that
correspond to the objects and their attributes to G2. This exchange of data is called
item passing.

For information about how to do this, see Remote Procedure Calls.
76

Registering and Deregistering Items
Registering and Deregistering Items

G2 registers certain items when it passes them to a G2 Gateway bridge over a
G2-to-G2 Gateway network connection. G2 registers items to provide a G2
Gateway bridge with the information that it needs to refer to and access the items
in G2.

An item’s registration is valid for one specific network connection between G2
and G2 Gateway, as configured by a GSI interface.

Kinds of Items Registered by G2

G2 registers two kinds of items:

• Data-served GSI variables.

When data service is requested for a GSI variable in a G2 KB, G2 creates a
copy of the variable, registers the copy, and sends the copy to G2 Gateway. A
G2 Gateway bridge uses information in the registered copy to service the
request for an updated value. G2 Gateway assigns each registered variable a
handle, which is an integer that uniquely identifies the item, beginning with
the number 1.

• Items passed to G2 Gateway as handles through remote procedure calls made
by G2.

The handle is an integer that uniquely identifies the item, beginning with the
number 1. Procedures in a G2 Gateway bridge can use the handles to refer to
particular objects in G2. In G2, the procedure that passes the item as a handle
must be declared as a remote procedure with the as handle grammar.

G2 does not register the following items, which can be exchanged between G2 and
G2 Gateway without being registered:

• Values of variables, values of parameters, or object copies (as opposed to
handles) that G2 passes to G2 Gateway as arguments to remote procedure
calls.

• Text sent to G2 Gateway through a gsi-message-server.

Registering Items Automatically

G2 registers items automatically when the following events occur:

• A GSI variable is registered automatically if it cites a connected GSI interface,
is active and has a default-update-interval other than none or, if its validity-
interval is indefinite, the first time a read or write operation from or to a G2
Gateway bridge is performed on a data-served GSI variable for the first time
after the GSI variable is created or activated.
77

• One of the identifying attributes of a GSI variable is modified. This causes the
GSI variable to be deregistered and then reregistered automatically.

• G2 passes an object as a handle, through a remote procedure call that is
declared in G2 with the as handle grammar.

A G2 item is registered when it passes to a G2 Gateway bridge process through a
particular context for the first time. Thus, a single G2 item can have more than
registration and more than one item handle. For example, if data service is
performed on a GSI variable through two separate contexts, the GSI variable is
registered twice. The variable now has two separate registrations and two
separate handles. Handles are unique only within a context. If a G2 item has
handles in several different contexts, there is no guarantee that they will be
different from each other.

Registering Items Explicitly

You can register any item explicitly by calling the G2 system procedure
g2-register-on-network(). This procedure enables you to register a G2 item that
you can later pass to G2 Gateway as an item handle, by calling a remote
procedure declared with the as handle grammar.

For information about g2-register-on-network(), see the G2 System Procedures
Reference Manual.

What G2 Gateway Does When G2 Registers an Item

When G2 registers a GSI variable or a handle, G2 Gateway does the following:

1 Creates a gsi_registration structure. This structure contains information,
provided by G2, that the bridge can use to complete any read or write
operations on the registered item.

Because the bridge can use the information in the gsi_registration
structure to service any number of read or write requests on the same item,
the gsi_registration structure remains in existence until the item is
deregistered.

2 Calls the callback function gsi_receive_registration(), and passes the
gsi_registration structure to the function call.

You can use gsi_receive_registration() to perform tasks such as
initializing the external data point to which you are mapping the registered
item, allocating memory, or returning the handle to an attribute of the
variable for some future use.

For more information about the gsi_registration and gsi_registered_
item data structures, see G2 Gateway Data Structures.
78

Registering and Deregistering Items
3 For each request to read from or write to a data-served GSI variable, G2
Gateway creates a gsi_registered_item structure, and passes this structure
to the gsi_set_data() or gsi_get_data() that it calls to service this request.

The gsi_registered_item structure contains information needed to complete
the current read or write operation on the registered GSI variable. For this
reason, the gsi_registered_item structure remains in existence only during
execution of the current gsi_get_data() or gsi_set_data() procedure.

How G2 Gateway Stores Information Associated
with Registered Items

When G2 Gateway receives registered items, it creates internal data structures
that store information associated with the registered items. These internal
structures are referenced by the following void * pointers provided with G2
Gateway:

• gsi_registration, which is created by G2 Gateway when G2 first registers a
data-served GSI variable or a handle that G2 passes through a remote
procedure call. The gsi_registration structure stores the item handle,
name, data type, six identifying attributes, attribute count, and default update
interval of the variable being registered. It can also store user data that your
G2 Gateway user code chooses to associate with this registered item.

• gsi_registered_item, which is created by G2 Gateway each time G2
requests G2 Gateway to read from or write to a data-served GSI variable. The
gsi_registered_item structure stores the item handle, status, default update
interval, and a pointer to a gsi_item structure, which contains additional
information associated with a registered item, such as its value.

At every G2 scheduler cycle:

– For any GSI variables that require updates, G2 sends handles to G2
Gateway, which packages them into gsi_registered_item structures and
passes them to the callback function gsi_get_data().

– For any requests for set actions on GSI variables, either through a rule or a
procedure, that have occurred since the last clock tick, G2 sends handles of
the GSI variable to G2 Gateway, which packages them into gsi_
registered_item structures and passes them to the callback function
gsi_set_data().

Your user code can access the information stored in these structures by calling
API functions provided with G2 Gateway. For information about these API
functions, see API Functions.

For a description of the information in G2 Gateway data structures that you can
access through API functions, see G2 Gateway Data Structures.
79

Associating User Data with a Registered Item

For some purposes, your application may need to store application-specific
information on the objects that it registers with G2 Gateway. To do this, your G2
Gateway user code can associate data with each registered object through the
user data component of the object’s gsi_registration structure.

The user data component points to a location that your G2 Gateway user code
can both write to and read from. G2 Gateway itself neither reads from nor writes
to the structure pointed to by the user data component.

You use the API function gsi_set_user_data() to set the user data component
of a gsi_registration structure, as illustrated in the following example:

void gsi_receive_registration(item_reg)
gsi_registration item_reg;
{

struct tag_type *tag_ptr;
/*

Create a new tag structure, attach it to the main
object array and call a routine to translate
the identifying attributes stored in the
gsi_registration into tag data for quick access
later.

*/
tag_ptr = (tag_type *) malloc(sizeof(tag_type));
gsi_set_user_data(item_reg,(void*)tag_ptr);
fill_tag_struct_using_item_reg

(tag_ptr,gsi_handle_of(item_reg));
}

You use the API function gsi_user_data_of() to obtain the contents of the user
data component of a gsi_registration structure. For information about gsi_
set_user_data() and gsi_user_data_of(), see API Functions.

Note The enclosing gsi_registration structure is reclaimed when the item is
deregistered, but the unallocated memory is the responsibility of the user.
Typically this happens in the callback function gsi_receive_
deregistrations().
80

Registering and Deregistering Items
Deregistering Items Automatically

Items are deregistered automatically when:

• A GSI interface is disabled, deactivated, or deleted. All registered items
associated with that GSI interface are immediately deregistered before the
connection to G2 Gateway is shut down.

• An individual registered item is disabled, deactivated or deleted.

• Any identifying attribute of a GSI variable is changed. In this case, the GSI
variable is deregistered and reregistered automatically, with the same handle.

• When the G2 knowledge base is reset, at which time any active items must
stop receiving data.

• The workspace where the item is located is deactivated.

When registered items are deregistered, their handle numbers are sent to G2
Gateway where they are packaged into gsi_registration structures, and passed
to the user in one or more calls to the callback function gsi_receive_
deregistrations(). This callback deregisters more than one item in a single call.
In contrast, the callback function gsi_receive_registration() registers only
one item in a single call.

Using gsi_receive_deregistrations()

G2 Gateway calls the callback function gsi_receive_deregistrations() when
an item is deregistered. Your bridge must delete any internal mapping of the item
to prevent future confusion, because its handle may be recycled by G2.

The callback function gsi_receive_deregistrations() has the following
syntax:

void gsi_receive_deregistrations(registered_items,count)
gsi_registered_item *registered_items;
gsi_int count;

where:

registered_items is an array of gsi_registered_item structures.

count is a gsi_int value that gives the number of gsi_registered_item
elements in the array.

gsi_receive_deregistrations() should unpack the array pointed to by
registered_items and identify the items it contains. For each item in the array that
is a GSI variable, it must remove the item from the data acquisition queue of the
external system. If the external system has a scheduler, the external system must
be notified that the items are no longer receiving data.
81

Deregistering Items Explicitly

You can explicitly deregister an item using the G2 system procedure
g2-deregister-on-network(). For information about this procedure, see G2 System
Procedures Reference Manual.

Context Control
Each instance of a GSI interface connecting to a G2 Gateway bridge process is
referred to as a context. All GSI interfaces, whether of the same or of different G2
processes, can communicate with the same G2 Gateway bridge process, but use
separate contexts. G2 Gateway manages the separate contexts (maximum 50) and
tracks which GSI interface is served in each context.

Contexts are identified by a number. At any time, your program can call the G2
Gateway API function gsi_current_context() to get the current context
number.

Note Outside the gsi_run_loop() call tree, the current context is undefined. If the
current context is undefined, gsi_current_context() returns -1.

If you plan to support more than one context and you have global variables or
structures whose scope is limited to a single context, you must create an array that
provides for a duplicate set of these objects for each context you plan to support.

G2 Gateway API functions that access G2 applications — for example, to send
data to the G2 application, or to make remote procedure calls to it — include a
context argument that enables you to specify the context through which the G2
application is accessed. The specified context can be the current context or any
other active context.

Remote Procedure Calls within a Context

Over all active contexts, as many as 4096 remote procedure calls can be
outstanding at one time.

Within the same context, any number of calls to different remote procedures can
be outstanding at the same time. In addition, any number of calls to the same
remote procedure from different contexts can be outstanding at the same time,
subject to the overall 4096 limit.
82

User Watchdog Functions
User Watchdog Functions
The gsi_watchdog() API function calls a function that you specify when the gsi_
watchdog() function’s time-out interval expires. When gsi_watchdog() is called,
its timer begins counting down to zero from the specified time. If gsi_
watchdog() is called again before the time-out period is reached, the timer is reset
to the latest specified time. The watchdog timer can be reset or disabled at any
time, whenever gsi_watchdog() is called.

Note The gsi_watchdog() function is not available on Windows platforms.

gsi_watchdog() returns no value, and accepts the following arguments:

user_watchdog_function, a pointer to a user-written function that G2 Gateway
executes after the timeout_interval expires.

timeout_interval, an integer greater than or equal to zero, that specifies the
time-out interval in seconds. If timeout_interval is set to zero (0), the G2
Gateway watchdog timer is disabled.

Suppose a call to gsi_watchdog() specifies a time period of 90 seconds. Another
call to gsi_watchdog(), made 80 seconds later, also specifies a time period of 90
seconds. The second call causes the timer for the watchdog process to be reset to
90; the G2 Gateway bridge can then go for another 90 seconds before it times out,
rather than for only 10 seconds.

To use the watchdog function, include calls to gsi_watchdog() in any of the
functions in the user code, with appropriate periods for each. You may need to
experiment to find a good expiration period for your application.

gsi_watchdog() is useful when you need to execute a function at a specified
period of time, or when the G2 Gateway bridge stops communicating with G2
and you either want to re-establish communication or run a clean-up function and
exit the G2 Gateway bridge process. If there is no communication between the G2
Gateway bridge and the G2 process within a period of time that you specify
(perhaps due to the G2 Gateway bridge being hung), the watchdog process causes
the G2 Gateway bridge to execute a specified function or to exit.

Thus, if communication between the processes breaks down and G2 loses control
of the G2 Gateway bridge, the bridge process can exit and automatically close.
83

The following code illustrates the use of gsi_watchdog():

gsi_int gsi_initialize_context(str, str_len)
gsi_char *str;
gsi_int str_len;
{

/*Set the timer initially.*/
gsi_watchdog(my_exit_func,100);

}

void gsi_g2_poll() /* Called every second */
{

/* Resets timer to 100 seconds.*/
gsi_watchdog(my_exit_func,100);

}

void gsi_pause_context()
{

/* Disable timer. */
gsi_watchdog(my_exit_func,0);

}

void my_exit_func()
{

/* Called when the watchdog timer expires.*/
exit(0);

}

In this example, if one of the user code functions hangs for some reason, gsi_g2_
poll() is not called every second, its watchdog timer counts down to zero, and
my_exit_func() is then called by the system. This watchdog function merely
exits.

A whenever rule in G2 can monitor the gsi-interface-status of interface objects, so
that if a connection to G2 Gateway times out and closes, G2 deactivates and
reactivates the corresponding GSI interface. This cleanly restarts the G2 Gateway
bridge process.

gsi_watchdog() must be called at least once for its timer to begin. gsi_
initialize_context() is a typical function from which to call the watchdog
function, because the G2 Gateway bridge calls gsi_initialize_context() when
it starts to initialize the data objects in G2 Gateway. Another function in which
you could include a call to gsi_watchdog() is gsi_resume_context().
84

Memory Management Responsibilities of G2 Gateway User Code
You most likely will want the functions gsi_pause_context() and gsi_
shutdown_context() to call gsi_watchdog() with a period of 0 to disable the
timer, so that neither one causes G2 Gateway to time out.

gsi_watchdog() can be used to reset the timer in gsi_g2_poll(), which is called
each second if the poll-external-system-for-data attribute of the GSI interface has
the value yes.

If you are controlling the processing loop by running G2 Gateway in one-cycle
mode, include a single call to gsi_watchdog() after the call to gsi_run_loop().

Memory Management Responsibilities of
G2 Gateway User Code

For most purposes, G2 Gateway automatically manages memory for data
structures and the strings and arrays that they contain. However, for some
purposes, your G2 Gateway user code can or must manage memory for these
items.

Managing Data Structures

Your G2 Gateway user code is responsible for deallocating memory for any data
structures that it has allocated itself. Your user code can allocate data structures
using the API functions gsi_make_attrs(), gsi_make_attrs_with_items(),
gsi_make_items(), or gsi_make_registered_items(). Your user code can
reclaim this memory whenever it has no further use for it, using the API functions
gsi_reclaim_attrs(), gsi_reclaim_attrs_with_items(), gsi_reclaim_
items(), or gsi_reclaim_registered_items().

Your G2 Gateway user code does not need to deallocate any gsi_registration,
gsi_registered_item, gsi_item, or gsi_attr structures that G2 Gateway
allocates automatically, and should not attempt to do so:

• G2 Gateway automatically allocates a gsi_registration structure for each
item that is registered with the G2 Gateway bridge. A gsi_registration
structure lasts until the corresponding item is deregistered. Your user code
cannot either allocate or deallocate gsi_registration structures.

• G2 Gateway automatically allocates gsi_registered_item, gsi_item, or
gsi_attr data structures when it invokes callback functions. These data
structures last only for the duration of the current invocation of the callback.

To determine whether a given data structure was created by user code or
generated automatically by G2 Gateway, use the API function gsi_owner_of().
For information about this function, see API Functions.
85

Managing Arrays and Lists

API functions that set the values of arrays and lists with arrays or lists provided
by your user code can be grouped into two categories:

• Functions that make copies of the arrays or lists that your user code passes to
them. These include all API functions that set an array or list to elements of a
particular type, such as gsi_set_flt_array() or gsi_set_sym_list().

• Functions that do not make copies of the arrays or lists. There are two such
functions: gsi_set_elements() and gsi_set_attrs().

The API functions that set arrays or lists to elements of a particular type all make
copies of the arrays or lists that your user code passes to them. If your user code
has no further use for the elements after these API functions complete, it can
deallocate the elements.

For example, the API function gsi_set_flt_array() makes a copy of a floating-
point array that user code passes to it and writes this copy into a gsi_item. If this
array is located in a block of memory that the user code previously allocated with
malloc(), it can free() this memory after gsi_set_flt_array() completes if it
no longer needs the memory.

In contrast, the API functions gsi_set_elements() and gsi_set_attrs() do not
make copies of the arrays that your user code passes to them. These functions
accept existing arrays that your user code has allocated:

• The function gsi_set_elements() accepts an array of gsi_item elements that
your user code has allocated by calling gsi_make_items(). gsi_set_
elements() uses this array to set the value component of a gsi_item. Your
user code can call gsi_reclaim_items() to deallocate the array after gsi_
set_elements() completes, it if no longer needs the array.

• The function gsi_set_attrs() accepts an array of gsi_attr elements that
your user code has allocated by calling gsi_make_attrs(). gsi_set_attrs()
uses this array to set the attribute(s) component of a gsi_item structure.
Your user code can call gsi_reclaim_attrs() to deallocate these structures
after gsi_set_attrs() completes, if it no longer needs them.

API functions that return pointers to arrays of particular data types do not make
copies of the arrays. The arrays persist only as long as the data structures that
contain them. If your user code needs to use the arrays after the data structures
have been deallocated, it must make copies of the arrays before the data
structures are deallocated.

For example, the API function

double *gsi_flt_array_of(item)

returns an array of floating-point values stored in a gsi_item structure specified
by item. This array persists only as long as the gsi_item persists. If your user code
86

Write Buffer Management
needs to use this array after the gsi_item deallocated, your user code must make
a copy of the array before it is deallocated.

The API functions gsi_elements_of() and gsi_attrs_of() do not allocate any
new memory. Their return value point to existing arrays or lists stored in G2
Gateway data structures. These array and lists, and their elements, persist as long
as the data structures that contain them.

Reclaiming Memory

Any memory you create with C functions such as malloc() is your responsibility
to reclaim with free(). G2 Gateway will not do this, even for memory you have
stored as user data.

Write Buffer Management
Each context in G2 Gateway has its own write buffer of fixed size (999,999 bytes).
Every G2 Gateway API that sends data to G2, such as gsi_return_values(),
places the data in the write buffer for the specified context and then flushes the
buffer out to G2.

Using and Disabling Abbreviated Function
Name Aliases

The header file gsi_main.h defines macros for abbreviated names of G2 Gateway
API functions and G2 Gateway types. For example:

#define NULL_TAG GSI_NULL_TAG
#define context_socket(c) gsi_context_socket(c)

You can define the __GENSYM_NOALIAS__ C preprocessor flag to force the gsi_
main.h header file to omit the abbreviated names and macros for G2 Gateway
API functions and types. Omitting abbreviated names can avoid conflicts between
the abbreviated names used by the user code and the external system.

Be sure to define __GENSYM_NOALIAS__ before you include gsi_main.h. For
example:

/* G2 Gateway */
#define __GENSYM_NOALIAS__
#include "gsi_main.h"

For more info on defining C preprocessor flags see Defining C Preprocessor Flags.

Note This manual uses the unabbreviated names of API and callback functions.
87

Using and Disabling ANSI C Prototypes for
API Functions

By default, the G2 Gateway header file gsi_main.h defines ANSI prototypes for
the API functions of GSI. These prototypes are used whenever the bridge source
program is compiled with an ANSI-compliant C compiler. These compilers define
a preprocessor flag named __STDC__ to indicate that the compiler is using
ANSI C.

However, you can disable the ANSI prototypes and use the Kernighan and
Ritchie style function declarations. To do this, you must compile your G2
Gateway code with the __GENSYMKR__ C preprocessor flag defined or use the
corresponding compile time switch.

However, you can disable the ANSI prototypes and use the Kernighan and
Ritchie style function declarations. To do this, define the C preprocessor flag __
GENSYMKR__ before you include the header file gsi_main.h. For example:

/* G2 Gateway*/
#define __GENSYMKR__
#include "gsi_main.h"

For more info on defining C preprocessor flags see Defining C Preprocessor Flags.
88

4

Remote
Procedure Calls
Describes how a G2 Gateway bridge and a G2 application can make remote
procedure calls to each other.

Introduction 89

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge 91

Making Remote Procedure Calls from a G2 Gateway Bridge to G2 107

Developing a Bridge Using Only Remote Procedure Calls 122

Call Identifiers and Procedure User Data 123

Introduction
Remote procedure calls provide a powerful and flexible means of communication
between a G2 and a G2 Gateway bridge. Through remote procedure calls:

• A G2 procedure can invoke user-written C functions in a G2 Gateway bridge.
The user-written functions are known as G2 Gateway local functions.

• A G2 Gateway bridge can invoke user-written G2 procedures or methods of
G2 objects.
89

Kinds of Data that G2 Can Pass to G2 Gateway

When a G2 procedure invokes a G2 Gateway local function, it can pass the
following kinds of data to the local function:

• Variable or parameter, or simple values such as float or int, whether
directly computed or as the value of a G2 variable or parameter.

• References to items, including both items that inherit from the object class and
those that do not.

• Copies of items, including both items that inherit from the object class and
those that do not.

Kinds of Data that G2 Gateway Can Pass to G2

When a G2 Gateway bridge invokes a G2 procedure or method, it can pass the
following kinds of data to the procedure or method:

• Variable or simple values whose types map to G2, such double or C integer
types.

• References to items all classes, including both items that inherit from the
object class and those that do not.

• Copies of data structures, which G2 uses to create instances of existing G2
classes. These can be either:

– Data structures that your G2 Gateway user code allocates by calling the
API functions gsi_make_item(), gsi_make_items(), gsi_make_array(),
gsi_make_attrs_with_items(), or gsi_make_attrs(). These become
genuine items when they reach G2, no different from items local to that
G2.

– Data structures that G2 Gateway previously allocated to represent a copy
of an object that it received from G2 through a remote procedure call.
90

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
Making Remote Procedure Calls from G2 to the
G2 Gateway Bridge

To enable G2 to make remote procedure calls to G2 Gateway local functions:

1 Write the G2 Gateway local functions that G2 can call or start, making certain
that you include the required arguments.

2 Declare the G2 Gateway local functions in your bridge user code, using the
API function gsi_rpc_declare_local() within the gsi_set_up() callback
function.

For information about how to write and declare local functions, see Writing a
G2 Gateway Local Function to be Called by G2.

3 In G2, declare each G2 Gateway local function as a remote procedure. For
information about how to do this, see Declaring the G2 Gateway Local
Function in G2.

4 Write G2 procedures that start or call the G2 Gateway local functions.

G2 procedures start G2 Gateway local functions that do not return data to G2.

G2 procedures call G2 Gateway local functions that return data to the G2
procedures. You can write these G2 procedures to use any data returned by
the G2 Gateway local functions.

Local functions that G2 invokes with either call or start can return error
information to G2, if you code them to call the API function gsi_rpc_return_
error_values().
91

The following figure summarizes how G2 can invoke G2 Gateway local functions
as remote procedures.

Note G2 can make remote procedure calls only to user-defined functions (G2 Gateway
local functions). G2 cannot make remote procedure calls to any of the standard
functions provided with G2 Gateway.

 Invoking G2 Gateway Local Functions from G2

G2 Gateway Bridge G2 Process

Local function receives item or data
value from G2. Local function can
call:

value,
item,
handle,
or item
with
handle

Remote Procedure Declaration
for GSI local function with empty
return value.

start action invokes GSI local
function.

Remote Procedure Declaration for
GSI local function with return value
or values.

call statement in G2 procedure
invokes GSI local function.

void gsi_rpc_declare_local
(local-function, g2_function_name)

gsi_rpc_return_values() to
return a value or values to G2
procedure.

gsi_rpc_return_error
_values() to signal error to G2
error object.

Error handler procedure of the G2
procedure, or of a caller of this
procedure, or the default error
handler.

Error handler procedure of the G2
procedure, or of a caller of this
procedure, or the default error
handler.

Local function receives item or data
value from G2.

If an error occurs, local function
can call gsi_rpc_return_error
_values() to signal error to G2
procedure.
92

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
Writing a G2 Gateway Local Function to be Called
by G2

Each G2 Gateway local function that you want to call from G2 must have the
arguments: rpc_arguments, count, and call_identifier. It can optionally have a
procedure_user_data argument. In the description below, arguments enclosed in
square brackets [] are optional.

The syntax is:

void local_function(procedure_user_data, rpc_arguments,
count, call_identifier)
[gsi_procedure_user_data_type procedure_user_data;]
gsi_item *rpc_arguments;
gsi_int count;
gsi_call_identifier_type call_identifier;

where:

local_function is the unique name of the G2 Gateway local function.

procedure_user_data is user data that G2 associates with the call to G2
Gateway. For information about the use of the procedure_user_data argument,
see Call Identifiers and Procedure User Data. This argument is enabled only if
the compile time switch GSI_USER_DATA_FOR_CALLBACKS is set. This switch is
set automatically if you compile your G2 Gateway application with the GSI_
USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

rpc_arguments is an array of gsi_item. Items passed from G2 to G2 Gateway
are stored as elements of this array.

count is an integer that indicates the number of gsi_item structures in the
array.

call_identifier is an integer that G2 generates to identify a particular remote
procedure call to a G2 Gateway local function, within the current context. The
API functions gsi_rpc_return_values() and gsi_rpc_return_error_
values() reference call_identifier to indicate which outstanding remote
procedure call within a specified context to return values to in G2. If the G2
Gateway local function is invoked by a start action in G2, the call_identifier
argument of the local function is set to CALL_HANDLE_OF_START.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare_gsi_rpc_local_fn to create the appropriate
prototype declaration. The syntax is:

specifier declare_gsi_rpc_local_fn(local_function_name);
93

For example:

static declare_gsi_rpc_local_fn(my_local_function);

Note If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

The return value of a G2 Gateway local function must be declared void.

Returning Values to G2 Through a G2 Gateway Local Function

When a G2 Gateway local function is invoked by a G2 call action, it can call the
API function gsi_rpc_return_values() to return values to G2.

Note If the G2 Gateway local function is invoked by a start action in G2, the local
function should not attempt to return values to G2, because G2 is not expecting it
to return any values. However, the local function can call gsi_rpc_return_
error_values() to signal an error to G2.

The first argument to gsi_rpc_return_values() is an array of GSI items (type
gsi_item *). To provide this argument, you can either allocate your own GSI
items or reuse the array of GSI items pointed to by the rpc_arguments argument
of the local function. For more information about gsi_rpc_return_values(), see
API Functions.

If you reuse the item array received by the local function in rpc_arguments to
return items to G2, do not change the values of these items before you finish
reading them, and do not try to add items to rpc_arguments before returning it to
G2. However, you do not need to return all the items that the G2 Gateway local
function received in rpc_arguments.

If you allocate your own GSI items as return values, you must either reclaim them
when you no longer need them, or allocate them once in gsi_set_up() and reuse
them repeatedly. If you allocate them in gsi_set_up(), the arguments persist
until the bridge process terminates.
94

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
The following example illustrates a G2 Gateway local function named addnums
that adds any number of integers and returns their sum to G2:

void addnums(arguments, count, call_identifier)
gsi_item *arguments;
gsi_int count;
gsi_call_identifier_type call_identifier;
{

gsi_int i, sum = 0;
gsi_item return_value;
gsi_item *return_value_pointer;

return_value_pointer = gsi_make_items(1);
return_value = *return_value_pointer;

for (i = 0; i < count; i++, arguments++)
sum += gsi_int_of(arguments);

gsi_set_int(return_value,sum);
gsi_rpc_return_values(&return_value, 1,

call_identifier,gsi_current_context());
gsi_reclaim_items(return_value_pointer);

}

In this example, the function addnums calls the following API functions:

• gsi_make_items(), which allocates the item pointed to by return_value_
pointer. G2 Gateway automatically allocates and reclaims data structures
for items that the bridge receives from G2. The gsi_make_items() function is
included in this example to illustrate how to allocate data structures to
represent values that originate in the bridge or in an external system and were
not previously sent to the bridge by G2.

• gsi_int_of(), which gets the integer values of the items pointed to by
arguments

• gsi_set_int(), which sets the integer value of return_value to the sum of
the integer values in the items pointed to by arguments.

• gsi_rpc_return_values(), which returns the item to the calling procedure in
G2.

• gsi_reclaim_items(), which frees the memory allocated by the call to gsi_
make_items().
95

Setting Behavior for Writing to G2 Lists or Arrays

Two internal G2 Gateway flags determine the behavior of gsi_rpc_return_
values() when it is used to return values to a G2 list or array:

• item_append_flag.
When this flag is set (turned on), gsi_return_values() appends the contents
of a gsi_item with a list or array type to values in an existing G2 list or array.
You can turn this flag on and off using the function gsi_set_item_append_
flag().

• update_items_in_list_or_array_flag.
When this flag is set (turned on), the attribute values of items in a G2 list or
array are updated with attribute values of the corresponding items in a list or
array returned to G2 by gsi_return_values(). You can turn this flag on and
off using the function gsi_set_update_items_in_list_or_array_flag().

The default behavior when either of these flags is set is to overwrite the contents
of the G2 list or array.

Declaring the Local Function in Your G2 Gateway
User Code

After you write a G2 Gateway local function, you must declare that function in
your G2 Gateway user code, so that G2 Gateway knows which function to execute
when G2 calls the function.

To declare G2 Gateway local functions, use the API function gsi_rpc_declare_
local(). Call this API function from gsi_set_up() or from a function called
from gsi_set_up(). In the description below, arguments enclosed in square
brackets [] are optional. The syntax is:

void gsi_rpc_declare_local(local_function, procedure_user_data,
g2_function_name)
gsi_rpc_local_fn_type *local_function;
[gsi_procedure_user_data_type procedure_user_data;]
char *g2_function_name;

where:

local_function is a pointer to the G2 Gateway local function.

procedure_user_data is user data associated with the call that G2 makes to the
local function. For information about the use of the procedure_user_data
argument, see Call Identifiers and Procedure User Data. This argument is
enabled only if the compile time switch GSI_USER_DATA_FOR_CALLBACKS is set.
This switch is set automatically if you compile your G2 Gateway application
with the GSI_USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or
you use the corresponding compile time switch. For information about these
flags and options, see Preprocessor Flags and Runtime Options.
96

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
g2_function_name is a string that gives the name of the G2 Gateway local
function. The string must match exactly the string specified in the name-in-
remote-system attribute of the remote procedure declaration in G2.

For example, the following call to gsi_rpc_declare_local() declares a function
named receive_and_return_copy() as a G2 Gateway local function. In G2, the
name-in-remote-system attribute of the remote procedure declaration that
invokes this procedure is receive-and-return-item-copy.

gsi_rpc_declare_local(receive_and_return_copy,
"RECEIVE-AND-RETURN-ITEM-COPY");

Note It is not necessary to declare G2 Gateway local functions more than once. For this
reason, it is good practice to invoke gsi_rpc_declare_local() in the gsi_set_
up() callback function, which is called only once during the life of the G2
Gateway process. For information about gsi_set_up(), see gsi_set_up.

Declaring the G2 Gateway Local Function in G2

You must declare the G2 Gateway local function as a remote procedure within
your G2 knowledge base, so that G2 can call or start the function as a remote
procedure. The declaration tells G2 the name of the function, the number and type
of arguments that it requires, and the number and type of values, if any, that it
returns to G2.

To declare the G2 Gateway local function as a remote procedure that you can
invoke from your G2 application:

1 Select KB Workspace > New Definition > remote-procedure-declaration.

2 In the G2 text editor window that appears, create the remote procedure
declaration. The syntax is:

declare remote remote-procedure-name (argument-type(s)) =
(return-type(s))

where:

remote-procedure-name specifies the name of the G2 Gateway local
function, as it is known in G2. This is the name used in G2 to call or start
the local function. By default, the name you specify here will be
duplicated as a string in upper case letters in the name-in-remote-system
attribute in the attribute table of this remote procedure declaration.

argument-type(s) are the G2 data types of the arguments passed to the
local function. Argument types can be simple data types (float, integer,
truth-value, symbol, or text), compound data types (sequence and
structure), abstract data types (item-or-value, value, quantity), or items. For
97

more information about how to specify argument-type(s), see Grammar
for G2 Remote Procedure Argument Declarations.

return-type(s) are G2 data types of the values returned by the function.
Return values can be item classes, as handles or objects, or data types of
float, integer, truth-value, symbol, or text.

For example:

In this example, the name of the G2 Gateway local function declared as a
remote procedure in G2 is addnums. The two arguments and the return value
of the remote procedure are declared as integer values. The local function
must call the G2 Gateway API function gsi_rpc_return_values() to return
the integer value to the calling procedure in G2.

For more information about declaring a G2 Gateway local function as a
remote procedure, see the discussion of the G2-to-G2 interface in the
G2 Reference Manual.

3 Display the attribute table of the remote procedure declaration to set the
name-in-remote-system attribute to a string that specifies the name of the
local function in G2 Gateway. For example:

The name-in-remote-system string must be identical to the g2_function_name
argument of the gsi_rpc_declare_local() function called in the G2
Gateway user code to declare the local function. You must enclose the string
in double quotation marks (““).

For detailed information about how to declare a remote procedure, see the
G2 Reference Manual.
98

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
Caution If you start the remote procedure, be careful not to modify or delete any G2 item
that you are passing through the remote procedure call until the item has been
successfully passed to G2 Gateway. If you modify the item before it is fully
passed, it may be passed with some of your modifications. If you delete the item
before it is passed, the item may not be passed successfully, with unpredictable
results.

To avoid this problem, call the remote procedure (rather than start it), and call
gsi_rpc_return_values() in your bridge to send an acknowledgment to G2
indicating that the item has been received. When G2 receives the
acknowledgment, it is safe to modify or delete the item. To send the
acknowledgment, you can use a call of the form:

gsi_rpc_return_values(NULL_PTR, 0, call_identifier,
 gsi_current_context());

Grammar for G2 Remote Procedure Argument
Declarations

G2 remote procedure declarations enable you to specify the following
information about remote procedure calls:

• The number and type of the arguments passed to the local function in
G2 Gateway.

• The number and type of the values returned to G2 by the local function.

Specifying the Data Type of Arguments in the Remote Procedure Call

For the data types of arguments to remote procedure calls, you can specify the
following G2 data types:

• Simple data types (float, integer, truth-value, symbol, or text)

• Compound data types (sequence and structure)

• Abstract data types (item-or-value, value, quantity)

• Items
99

A G2 application can send G2 items with their attributes to the G2 Gateway
bridge. G2 can pass items through arguments of any type except the simple data
types. Note that:

• An item-or-value can be an item, a value, a sequence, or a structure.

• A value can be a sequence, a structure, or any other value.

• A sequence or structure can contain items, any value types, or any other
sequence or structure.

When you declare an argument of any data type through which you can pass
items, you can include item-passing grammar that enables you to specify:

• Whether to pass a copy of the item, only a handle that refers to the item, or a
copy with a handle.

• If you are passing a copy, which attributes of the copy to pass.

The following figure illustrates the item-passing grammar that you can use in G2
remote procedure declarations:

Item-Passing Grammar for G2 Remote Procedure Declarations

item-or-value
value
structure
sequence

class class-name

as handle

with handle

including

excluding the user attribute(s)...

all system attributes

the system attribute(s)...

only the user attribute(s).

including

excluding the user attribute(s)

all system attributes

the system attribute(s)...

only the user
attribute(s)...

Argument types Item-passing grammar
100

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
If you do not specify any item-passing grammar, the item is passed by default as a
copy, with no handle, with all of its user-defined attributes, and with none of its
system attributes.

The following table lists the elements of item-passing grammar and describes
their meanings:

Elements of Item-Passing Grammar

Grammar Meaning

as handle Pass only a reference to the item. Do not pass a copy of
the item, or any attributes of the item.

Note: When you pass a sequence or a structure using
as handle, the sequence or structure itself is passed as
a copy, and each item contained in the sequence or
structure is received by G2 Gateway as a gsi_item
with the G2 Gateway type tag GSI_HANDLE_TAG. A
sequence or a structure that is contained within the
attribute of another sequence or a structure is
processed in exactly the same way as the outer,
containing sequence or a structure: the embedded
sequence or structure is passed as a copy, and any
items that it contains are passed as items that have the
G2 Gateway type tag GSI_HANDLE_TAG.

with handle Pass both a copy of the item as of the time of the call
and a reference to it.
101

Note The item-passing grammar with handle can be used only following class
classname, and cannot be used to pass sequence or structure types.

For example, the following remote procedure declaration passes an item-or-value
object with no system attributes and all user-defined attribute except temperature,
pressure, and volume:

declare remote tank-data-function(item-or-value
excluding the user attributes: temperature, pressure, volume) = (integer)

For more information about G2 remote procedure declarations, see the
G2 Reference Manual.

Passing Attributes of Structures and Sequences

All attributes of any structure or sequence are passed with the structure or
sequence; you cannot select which attributes to pass. However, for those
attributes of the structure or sequence that are items in G2, you can specify which
attributes of the items in the structure or sequence are passed with those item. To
do this, you use the item-passing grammar for remote procedure declarations.

including Specifies the attribute or attributes to pass when you
pass a copy of an item. The following grammar
enables you to specify which attributes are passed:

• all system attributes

Pass only the system attributes of the item. By
default, no system attributes are passed. For
information on system attributes see the
G2 Reference Manual.

• the system attribute(s)

Pass only the system attribute or attributes that
you specify by name.

• only the user attribute(s)

Pass only the user attributes that you specify by
name. By default, all user attributes are passed.

excluding the
user attributes

Specifies the user -defined attributes that are not
passed. By default, all user attributes are passed.

Elements of Item-Passing Grammar

Grammar Meaning
102

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
For example, the following remote procedure declaration specifies that all system
attributes of each item in a sequence are passed to G2 Gateway with that
sequence:

declare remote tanks-array-function(sequence
including all system attributes) = (integer)

Invoking the G2 Gateway Local Function from G2

G2 can make a remote procedure call to any of your G2 Gateway local functions,
either by a call statement or by a start action. G2 supports up to 4096 simultaneous
outstanding calls.

Invoking a G2 Gateway Local Function that Returns Values to G2

If the G2 Gateway local function in the bridge user code is to return values to G2,
it should be invoked from G2 by a call procedure statement. The call statement
can be used only in G2 procedures.

Caution Do not use the start action to invoke a G2 Gateway local function that needs to
return a value to G2.

After G2 executes the call statement within a procedure, the procedure waits
indefinitely for the function accessed by the remote procedure call to complete
and return a value. When the calling procedure receives the return value, it
resumes execution. If G2 Gateway returns an error through gsi_return_timed_
values(), G2 looks for an error handler. If G2 Gateway closes the connection over
which the remote procedure call was made, G2 aborts the calling procedure.

Note If the remote procedure call is one branch of a do in parallel [until one completes]
statement, and the other branch statement finishes first, G2 may abort the remote
procedure call but continue to process the calling procedure. If that happens, data
is not returned from the remote procedure call.

The call statement in G2 has the same priority as the procedure that contains it.
This priority has no effect on calls when they are handled by the bridge process.

The syntax is:

[x, y ...] = call remote-procedure-name (arguments) across gsi-interface-object

where:

x, y are names of G2 objects (such as GSI variables) in which G2 places the
values returned by the called G2 Gateway function. The number and order of
the objects [x, y...] must match the number and order of the values returned. If
any objects are returned, they will be transient within G2. To prevent a
memory leak, you must either delete them or make them permanent.
103

remote-procedure-name is the name of the remote procedure declaration
specifying the local function called by your G2 Gateway bridge.

arguments are the supplied argument(s) used by the called function. Separate
the arguments with commas.

gsi-interface-object is the name of the GSI interface used by G2 to connect to
the bridge.

An example is:

sum = call addnums (integer1, integer2) across interface-10

In this example, sum, integer1, and integer2 are local variables in the G2
procedure, addnums is the name of the remote procedure declaration that
specifies the G2 Gateway local function in the bridge that is called by G2, and
interface-10 is the name of the GSI interface used by G2 to access the bridge.
When addnums completes, it returns a value to sum.

Note If you use a G2 call statement to call a G2 Gateway local function that does not
return values, you should include in the local function a call to the API function
gsi_rpc_return_values(), with a 0-length argument list.

Invoking a G2 Gateway Local Function that Does Not Return Values
to G2

If the G2 Gateway local function in the G2 Gateway user code does not return
values to G2, use a G2 start action to invoke the function. You can use start actions
in both rules and procedures.

When G2 uses a start action to invoke a G2 Gateway local function, G2 continues
to execute the rule or procedure that contains the start action, without waiting for
the started function to complete. This is true even if the function does not exist or
if an error occurs in starting the function. If an error occurs, it can be recorded on
the Operator’s Logbook.

Use this syntax to start a local G2 Gateway function:

start remote-procedure-name (arguments) across gsi-interface-object(s)

where:

remote-procedure-name is the name of the remote procedure declaration that
specifies the local G2 Gateway function called by G2.

arguments are the arguments passed to the G2 Gateway procedure. Use
commas to separate arguments.

gsi-interface-object is the name of the GSI interface used by G2 to connect to
the bridge, or a list or array of GSI interface objects across which you can
broadcast the start action. The list or array can contain g2-to-g2-data-interface
and/or gsi-interface objects in any combination.
104

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
For example:

start sendnums (integer1, integer2) across interface-10

where integer1 and integer2 are variables in the G2 knowledge base, sendnums()
is the name of the remote procedure declaration for the function in the bridge that
is called by G2, and interface-10 is the name of the GSI interface used by G2 to
access the bridge. sendnums() does not return a value to G2.

Alternatively:

start rem-procs (10) across interface-array

which starts rem-procs with the argument 10 across every interface in interface-
array.

Enhancing Performance when Using the start Action

A broadcast start can execute several times faster than a series of single starts. This
improvement requires changes that are not available in versions of G2 and G2
Gateway prior to 5.1. It also requires that a connection not use message
interleaving, as described in “

To maximize the performance of a broadcast start:

• Specify only interfaces to G2 or G2 Gateway Version 5.1 or higher.

• Use only interfaces that do not use message interleaving.

If either of these rules is violated, the broadcast start will execute correctly, but its
performance advantage will not be fully realized.

Passing a Varying Number of Arguments to the
Same G2 Gateway Local Function

Your G2 application may need to make remote procedure calls with varying
numbers of arguments to the same G2 Gateway local function. Every G2 Gateway
local function has a count argument indicating the number of arguments that it
receives from G2 in any particular call.
105

If your G2 application needs make calls to the same local function with varying
numbers of arguments, you can either:

• Make a single G2 remote procedure declaration that passes a varying number
of arguments to the G2 Gateway local function. To do this, use the
all remaining grammar to allow the remote procedure declaration to accept a
varying number of arguments. Declare the all remaining arguments to be of
the type quantity, value, or item-or-value.

For example, the following remote procedure declaration accepts an integer
argument and a text argument, followed any number of arguments that are
declared item-or-value:

declare remote my-rpc (integer, text, all remaining item-or-value) = (integer)

• Make several different G2 remote procedure declarations, each of which
passes a different, but fixed, number of arguments to the G2 Gateway local
function.

In each G2 remote procedure declaration, specify a different remote-
procedure-name value and a different number of arguments, but specify the
same string in the name-in-remote-system attribute.

For example, if your G2 Gateway user code includes a local function that can
find the sum of any number of values received as arguments, you can create
several remote procedure declarations for this G2 Gateway local function. The
remote procedure declarations specify different numbers of arguments, but
they all specify the same string in their name-in-remote-system attributes. The
G2 Gateway local function can find the sum of the arguments passed to it by
G2 through any of these remote procedure declarations.

How a Local Function Can Process Argument
Arrays Received from G2

In G2 Gateway, a G2 item is represented by a gsi_item structure. The user-
defined attributes of the G2 item are represented by an array of gsi_attr
structures; each element of this array represents one attribute. Each element has
the same data type as the G2 item attribute that it represents.

To access gsi_item or gsi_attr structures, your user code must call API
functions provided with G2 Gateway. For example, it can call gsi_attrs_of() to
get the attributes of a gsi_item structure, gsi_attr_name_of() to get the name of
a gsi_attr structure, and other API functions to get similar kinds of information.
For information about these API functions, see API Functions..

Note Your user code cannot access gsi_item or gsi_attr structures directly. It must
use the API functions provided with G2 Gateway.
106

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
To process each element of the array that is received as arguments, the G2
Gateway local function can:

• Find out whether the element corresponds to a G2 item, using the API
function gsi_is_item().

• If the element corresponds to a G2 item:

– Invoke gsi_attr_count_of(), which returns the number of attributes in
the item.

– Invoke gsi_attrs_of(), which returns an array containing the attributes
of the item. You can use the value returned by gsi_attr_count_of() as
the size of this array.

– Loop over the array of attributes, using gsi_is_item() to determine
whether each subattribute corresponds to a G2 item, and then process the
attribute accordingly.

For example, if gsi_is_item is true of an attribute, you can use gsi_
attrs_of() to return its attributes to an array, and then loop over the
elements of this array to process them as your application requires. If the
attribute is a constant value, the G2 Gateway local function can evaluate
and use the attribute value as your application requires.

• If the element is a not a G2 item, the G2 Gateway local function can evaluate
and use the value as your application requires.

Making Remote Procedure Calls from a
G2 Gateway Bridge to G2

Your G2 Gateway bridge user code can make remote procedure calls to user-
defined G2 procedures and to methods of user-defined G2 classes.

To enable your G2 Gateway bridge to make remote procedure calls to a G2 KB:

1 Write the G2 procedures or G2 object methods that the G2 Gateway bridge
can call.

No special configuration is required in G2 for these procedures or methods.

2 In your G2 Gateway user code, declare the G2 procedures or methods as
remote procedures, by calling gsi_rpc_declare_remote() or gsi_rpc_
declare_remote_with_error_handler_and_user_data()within the gsi_
initialize_context() callback function.
107

For each procedure or method that you declare, you must create a global
variable called a function handle. The type of a function handle variable must
be gsi_function_handle_type. The function handle holds a pointer to your
receiver function (see below).

Your G2 Gateway user code can use the API function gsi_rpc_start() to
invoke a G2 procedure or method that does not return values to the bridge, or
gsi_rpc_call() or gsi_rpc_call_with_count() to invoke a G2 procedure
or method that returns values to the bridge.

3 If a G2 procedure or method that your bridge invokes as a remote procedure
is to return values to the G2 Gateway bridge, you must write a function in
your G2 Gateway user code that can receive these return values from G2.

Such a function is called a receiver function.
108

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
The following figure summarizes how a G2 Gateway bridge can invoke G2
procedures and methods:

 Invoking G2 Procedures or Methods from a G2 Gateway Bridge

gsi_rpc_call (function-handle,
arguments, context)

gsi_rpc_declare_remote
(function_handle, g2_function,
receiver_function, arg_count, return_count,
context)

G2 Gateway Bridge G2 Process

g2-function, a user-defined
G2 procedure or method of
G2 object, receives value
from G2 Gateway.

receiver_function, a GSI user function,
receives value returned by G2. return statement in

g2-function can
return value to
receiver_function.

gsi_rpc_start (function-handle, arguments,
context)

gsi_function_handle_type
function-handle;

gsi_rpc_declare_remote_with_error
_handler_and_user_data (function_handle,
g2_function, receiver_function, error_
handler, user_data, arg_count, return_count,
context)

value,
item,
handle,
or item
with
handle.

Error receiver function, invoked to handle
errors from g2-functions declared with gsi_
rpc_declare_remote_with_error_handler_
and_user_data().

g2_function, a user-
defined G2 procedure or
method of G2 object,
receives value from G2
Gateway.

Standard error handler, invoked to handle
errors from g2-function declared with gsi_
rpc_declare_remote().
109

Writing the G2 Procedure or Method to be Invoked
by G2 Gateway

To write G2 procedures or methods to be invoked by G2 Gateway, you can use
the same syntax that you use to write any other G2 procedures or methods. For
information about how to write G2 procedures and methods, see the G2 Reference
Manual.

The following example illustrates a G2 procedure that you can declare as a remote
procedure in the bridge:

display-new-alarm(new-alarm: class alarm)
begin

transfer new-alarm to the workspace of the item
superior to this workspace at (alarm-x-pos,
alarm-y-pos);

end

The following sections illustrate how to declare a G2 procedure or method as a
remote procedure in the bridge.

Declaring the Remote Procedure in the Bridge

Recall that local functions are cross-context and can therefore be declared in gsi_
set_up() but remote declarations are context-specific and are better declared in
gsi_initialize_context().

You must declare G2 procedures and methods to which the bridge makes remote
procedure calls, using the API function gsi_rpc_declare_remote() or gsi_rpc_
declare_remote_with_error_handle_and_user_data(). The first argument,
function_handle, points to a global variable that enables the bridge to identify the
remote procedure or method. In your G2 Gateway user code, you must create a
function handle for each G2 procedure or method that you declare as a remote
procedure.

Creating a Handle for the Remote Procedure

The G2 Gateway bridge process needs a gsi_function_handle_type global
variable, or handle, to identify each G2 procedure or method that it invokes as a
remote procedure. For each handle that you need, include a declaration of the
handle in your user code before you use the handle in declaring or invoking the
remote procedure. The syntax is:

gsi_function_handle_type handle;

where handle is the name by which the user code refers to the G2 procedure or
method.
110

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
For example, if the name that you want to use in your user code to refer to the G2
procedure is display_new_alarm, you can declare the handle as:

gsi_function_handle_type display_new_alarm;

If you want to declare a G2 procedure as a remote procedure for use in more than
one context, you can declare an array of gsi_function_handle_type, and use the
number of the current context to index the array. This takes advantage of the fact
that context numbers are contiguous integers, suitable for such array indices.

Using gsi_rpc_declare_remote() and gsi_rpc_declare_remote_with_
error_handler_and_user_data()

To declare the G2 procedure or method as a remote procedure, include a call to
the G2 Gateway API function gsi_rpc_declare_remote() or gsi_rpc_declare_
remote_with_error_handler_and_user_data() once for every context in which
the remote procedure is used. To do this, include the calls to these API functions
in gsi_initialize_context(), which is called each time a new context is
established.

The syntax of gsi_rpc_declare_remote() is:

void gsi_rpc_declare_remote(function_handle,
g2_function_name,receiver_function, procedure_user_data,
argument_count,return_count, context_number)
gsi_function_handle_type *function_handle;
gsi_char *g2_function_name;
gsi_rpc_receiver_fn_type *receiver_function;
[gsi_procedure_user_data_type procedure_user_data;]
gsi_int argument_count;
gsi_int return_count;
gsi_int context_number;

where:

function_handle is a pointer to a global variable used in the G2 Gateway user
code to identify the G2 procedure or method.

g2_function_name is the name of the G2 procedure or method as it is known
in G2. This string must be enclosed in double quotation marks (““), and must
match the format of the procedure as it appears in G2.

If g2_function_name refers to a method of a G2 object, you can specify the
method either by its name alone (generically), or by its name prefixed with the
name of its class followed by two colons (directly). For example, you can
specify the method fill of a G2 class flask as "FILL" (generically) or as
"FLASK::FILL" (directly). For more information about how to invoke G2
methods, see the G2 Reference Manual. For more information about how to
invoke a method, see Invoking Methods of G2 Items from G2 Gateway.
111

receiver_function is a pointer to the receiver function that receives values
returned by the G2 procedure to the bridge, or NULL_PTR if no values are
returned.

procedure_user_data is user data associated with this remote procedure call to
G2. Procedure user data can be associated with the call only if the compile
time switch GSI_USER_DATA_FOR_CALLBACKS is set. This switch is set
automatically if you compile your G2 Gateway application with the GSI_USE_
USER_DATA_FOR_CALLBACKS C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

argument_count is the number of arguments passed to the remote procedure.

return_count is the number of values returned by the remote procedure to the
bridge.

context_number is the context used by this function. The context identifies one
particular connection to G2.

An example of a call to gsi_rpc_declare_remote() is:

gsi_rpc_declare_remote(&display_new_alarm,
“DISPLAY-NEW-ALARM”, NULL_PTR, 1, 0,
gsi_current_context());

The G2 procedure is known in G2 as display-new-alarm. In your bridge user code,
you can refer to the procedure using the handle variable display_new_alarm.

The API function gsi_rpc_declare_remote_with_error_handler_and_user_
data() is similar to gsi_rpc_declare_remote(), but in addition it allows user
data to be associated with this remote procedure call, and specifies an error
receiver function that receives error values returned by the G2 procedure. The G2
procedure can signal error values to the error receiver function if it is invoked
with gsi_rpc_call(), but not if it is invoked with gsi_rpc_start().

Invoking Methods of G2 Items from G2 Gateway

When you use gsi_rpc_call() or gsi_rpc_start() to invoke a method of a G2
item, the first argument included in the list of arguments (gsi_item *arguments)
passed to the G2 method must be the G2 item whose method is invoked.

This first argument passed to the G2 method can be either:

• a gsi_item with GSI_HANDLE_TAG for its type tag component, to reference
the G2 item by handle. This call invokes the G2 method but does not pass
attribute data to the G2 item.

• a gsi_item with a valid G2 class name for its class name component. This
call causes G2 to create a new G2 item of the specified class, and passes
attribute data to the specified method of that item.
112

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
Defining a Function to Receive Values Returned
by G2

When the bridge process invokes a G2 procedure, it does not wait for the G2
procedure to complete and return values before continuing with processing. To
make it possible for G2 to return values to the bridge, you must create a function
in your G2 Gateway user code known as a receiver function to receive values
from G2.

When the G2 procedure called by G2 Gateway has completed execution, G2 sends
its return value to G2 Gateway, which causes G2 Gateway to invoke the receiver
function. The receiver function then receives the return value.

The receiver function can perform any operations necessary for the application,
including evaluation of the data returned by G2.

The syntax for a receiver function is:

void receiver_function(procedure_user_data, arguments,
count, call_identifier)
gsi_procedure_user_data_type procedure_user_data;
gsi_item *arguments;
gsi_int count;
gsi_call_identifier_type call_identifier;

where:

receiver_function is the unique name of the receiver function.

procedure_user_data is procedure user data associated with the call that G2
makes to the receiver function. The receiver function can receive procedure
user data only if the compile time switch GSI_USER_DATA_FOR_CALLBACKS is
set. To set this switch, you must compile your G2 Gateway code with the GSI_
USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or use
the corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

arguments is an array of gsi_item, which contains the data values that G2 is
returning to the bridge process.

count is an integer specifying the number of values in the arguments array.

call_identifier is a user-specified call identifier value that G2 Gateway
associated with its call to the G2 procedure and that G2 associates with its
return call to the receiver function. The receiver function can receive a call
identifier only if the compile time switch GSI_USER_DATA_FOR_CALLBACKS is
set. To set this switch, you must compile your G2 Gateway code with the GSI_
USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or use
the corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.
113

Note You can enable procedure_user_data and call_identifier using the compile time
switch GSI_USER_DATA_FOR_CALLBACKS. This switch is set automatically if you
compile your G2 Gateway application with the GSI_USE_USER_DATA_FOR_
CALLBACKS C preprocessor flag defined or you use the corresponding compile
time switch. For information about preprocessor flags and runtime options, see
Preprocessor Flags and Runtime Options.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare_gsi_rpc_receiver_fn to create the appropriate
prototype declaration. The syntax is:

specifier declare_gsi_rpc_receiver_fn(receiver_function_name);

For example:

static declare_gsi_rpc_receiver_fn(my_receiver_function);

Note If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

Defining a Function to Receive Error Values
Returned by G2

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you can specify an error receiver callback function in the
bridge to which G2 can signal error values in the case of an error. To do this, you
must:

• Use the API function gsi_rpc_declare_remote_with_error_handler_and
_user_data() to declare the G2 procedure as a remote procedure. For
information about this function, see gsi_rpc_declare_remote_with_
error_handler_and_user_data.

• Write an error receiver callback function in your G2 Gateway user code to
which the remote G2 procedure can signal error values.

The error receiver function can perform any operations necessary for the
application, including examination of the error data returned by G2. The error
receiver function can signal an error back to G2 by call the API function gsi_rpc_
return_error_values().

The syntax for an error receiver function is:

void error_handler(arguments)
gsi_item *arguments;
114

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
where:

arguments can be either:

• a gsi_item representing an error object in G2.

• a symbolic-expression and a text-expression, similar to the arguments of the
signal G2 procedure statement.

These arguments are identical in meaning to the error_arguments in a call to
gsi_rpc_return_error_values(). For more information about these
arguments, see gsi_rpc_return_error_values.

For information about how to write error receiver functions, see Callback
Functions.

Invoking the Remote G2 Procedure

After you declare remote procedures with gsi_rpc_declare_remote(), you can
invoke them using the API functions gsi_rpc_call(), gsi_rpc_call_with_
count(), and gsi_rpc_start().

A G2 Gateway function containing a call to gsi_rpc_call(), gsi_rpc_call_
with_count(), or gsi_rpc_start() continues after it executes the call, and does
not wait for the remote procedure in G2 to complete.

A remote G2 procedure invoked by gsi_rpc_start() does not return values, so
your G2 Gateway user code does not need to include a corresponding receiver
function.

Calling a G2 Procedure that Returns Values to the Bridge

Use gsi_rpc_call() or gsi_rpc_call_with_count() if the procedure in G2 is to
return values to the bridge. For detailed information about gsi_rpc_call() and
gsi_rpc_call_with_count(), see API Functions.

gsi_rpc_call() and gsi_rpc_call_with_count() return immediately and do
not wait for return arguments. The remote procedure in G2 is executed as soon as
G2 receives the remote procedure call from G2 Gateway.

An example of a call to gsi_rpc_call() is:

gsi_rpc_call(display_new_alarm, alarm_args,
gsi_current_context());

In this example, the handle of the remote procedure passed is display_new_
alarm, and the pointer to the array of arguments is called alarm_args.

Your bridge user code must include a receiver function to accept the values
returned to G2 Gateway by the remote procedure in G2. You specify the receiver
function in the remote procedure declaration of the G2 procedure. For
information about how to write receiver functions, see Defining a Function to
Receive Values Returned by G2.
115

Note The receiver function is called only within the gsi_run_loop() call tree. If you are
running your G2 Gateway bridge in one-cycle mode, you must call gsi_run_
loop() to ensure that the receiver function is called.

Starting a G2 Procedure that Does Not Return Values to the Bridge

Use gsi_rpc_start() if the remote G2 procedure does not return values to the
bridge.

An example of a call to gsi_rpc_start() is:

gsi_rpc_start(start_timer, timer_args,
gsi_current_context());

In this example, the handle of the remote G2 procedure is start_timer, and the
pointer to the array of arguments is called timer_args.

Passing Items from a G2 Gateway Bridge to G2

A G2 Gateway bridge typically sends data to a G2 application at the request of an
external system. The bridge process can invoke a G2 Gateway user function to
send an item and its attribute values to G2. The user function must do the
following:

• Assemble the data to be passed to G2 into an array of gsi_item structures.
The gsi_item structures must correspond to existing class-definitions in G2.
To do this, your G2 Gateway user code must:

– Allocate an array of the gsi_item structures that you want to pass to G2.
To do this, invoke some combination of the API functions gsi_make_
items(), gsi_make_attrs(), or gsi_make_attrs_with_items().

– Invoke gsi_set_class_name() to set the class name component of each
gsi_item structure in the array that you allocated. Set the class name of
each gsi_item to the name of an existing item definition in G2.

gsi_set_class_name() does not reset the data type of the gsi_item If the
gsi_item structure was previously used, its G2 Gateway type tag may not
be appropriate for the class to which you are setting it. In this case, you
must reset the type of the gsi_item to a G2 Gateway data type that is
appropriate for the class. For a list of the API functions that set the types of
G2 Gateway structures, see gsi_set_type. For information about the G2
Gateway type tags that correspond to G2 data types, see G2 Data Types
and G2 Gateway Type Tags.

– Populate the array with the items to be passed.
116

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
• Invoke gsi_rpc_call(), gsi_rpc_call_with_count(), or gsi_rpc_start()
to pass the array of items to G2. If you have set gsi_use_data_for_
callbacks, a call to any of these functions should specify the call_identifier
value used in the call to your receiver function.

• Reclaim the items that you passed to G2. To do this, invoke the API functions
gsi_reclaim_items(), gsi_reclaim_attrs(), or gsi_reclaim_attrs_with_
items(), depending on how the items were created.

When G2 receives a gsi_item structure, it creates an item of the class specified by
gsi_set_class_name(), in exactly the same way that a create action creates an
item. Attributes for which G2 Gateway does not send values are given the default
values in the specified G2 item definition.

Returning G2 Items from G2 Gateway Back to G2

To enable a G2 Gateway bridge to pass items back to a G2 that originated there,
the API functions gsi_return_values(), gsi_return_attrs(), gsi_return_
timed_values(), and gsi_return_timed_attrs() accept gsi_item in their first
argument. The gsi_item must represent an item that G2 passed to the bridge
through a remote procedure call declared in G2 with the with handle grammar.

Thus, these API functions can be invoked with the following arguments:

void gsi_return_values(gsi_items, count, context_number)
void gsi_return_attrs(registered_item, attributes, count,

context_number)
void gsi_return_timed_values(registered_items, count,

context_number)
void gsi_return_timed_attrs(registered_item, attributes, count,

context_number)

where gsi_item or gsi_items refers to items passed to the bridge by G2 through
remote procedure calls declared using the with handle grammar.

Note These API functions can still be invoked with a gsi_registered_item as their
first argument, as in previous releases.

Attributes Passed with Items

The functions gsi_return_values(), gsi_return_attrs(), gsi_return_timed_
values(), and gsi_return_timed_attrs() can return the following attributes of
an item (represented by a gsi_item structure) to G2:

• User-defined attributes, including attributes that are class-qualified.

To exclude certain user-defined attributes, use gsi_set_rpc_remote_return_
exclude_user_attrs.
117

• System-defined attributes exported to the bridge by G2.

To specify the system-defined attributes to include, use gsi_set_rpc_
remote_return_include_system_attrs. To specify the system-defined
attributes to exclude, use gsi_set_rpc_remote_return_include_all_
system_attrs_except.

• A gsi_attr marked with an index value that specifies the location in a G2
item-array into which the item in the gsi_attr is to be placed.

You can set the index value of a particular element of the attribute array by
calling gsi_set_attr_array_index(). Array indexes start at 0. For example,
a gsi_attr within a gsi_item of class float-array whose index is 3 refers to the
fourth element of that array in G2.

Passing Network Handles as the Class in RPCs

You can pass the network handle of an item as an argument to an RPC in a G2
Gateway bridge, where the receiving procedure in the local G2 expects an item,
and G2 attempts to replace the handle with the item before calling the procedure.
If G2 does not find an item with that network handle, or if the handle is not of the
class the procedure is expecting, it signals a type-mismatch error to the caller.

Note To call a G2 procedure with a network handle in order to rendezvous with an
item, the procedure must declare its argument type to be a class of item; the
procedure cannot declare it to be an item-or-value.

Note To use this feature, you must register the item in the local G2 and pass the local
network handle as the argument to the RPC. For example, you might register a
number of items in the local G2 and pass a list of network handles to the G2
Gateway bridge, which can then be used to call a procedure remotely in the
originating G2 where item rendezvous can now occur.
118

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
This figure illustrates how item rendezvous occurs when passing network
handles:

Example of Passing Handles as the Class

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a G2 Gateway bridge:

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)
begin
post "received an item named [the name of i]";

end

In the G2 Gateway bridge, you would define a GSI interface and declare the
remote procedure. Note that the remote procedure declaration takes as its

Local G2 G2 Gateway

receiver(itm: class item)
begin

. . .
end

Remote
Procedure
Declaration
for receiver

network registration
handle in local G2

Item

Item

Receiving
procedure

Item must
be registered
in local G2.

Procedure sending
the network handle
119

argument a value, which is the argument type that is being passed to the RPC in
the remote G2, namely, a network handle.

In the G2 Gateway bridge, you can make a remote procedure call to receiver,
passing the network handle as the argument, in this case, the integer 1. Note that
this integer is the network handle of the item registration in the local G2, which
you must generate locally and pass to the G2 Gateway bridge.

Here is the send-handle procedure, which makes the remote procedure call,
passing the network handle as the argument, instead of the item:

send-handle(handle: integer)
begin
call receiver(handle) across interface;

end

Calling receiver across the GSI interface replaces the network handle with the
item, which posts the name of the item in the Message Board:

Passing UUIDs Referring to Items in RPCs

You can pass the text of the UUID of an item as an argument to an RPC in a G2
Bridge, where the receiving procedure in the local G2 expects an item, and G2
attempts to replace the UUID with the item before calling the procedure. If G2
does not find an item with that UUID, or if the UUID is not of the class the
procedure is expecting, it signals a type-mismatch error to the caller.

Note To call a G2 procedure with a UUID in order to rendezvous with an item, the
procedure must declare its argument type to be a class of item; the procedure
cannot declare it to be an item-or-value.
120

Making Remote Procedure Calls from a G2 Gateway Bridge to G2
This figure illustrates how item rendezvous occurs when passing UUIDs:

Example of Passing UUIDs Referring to Items

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a G2 Gateway bridge:

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)
begin
post "received an item named [the name of i]";

end

In the G2 Gateway bridge, you can make a remote procedure call to receiver,
passing the text of the UUID as the argument. Note that the remote procedure

Local G2 G2 Gateway

receiver(itm: class item)
begin

. . .
end

UUID

Item

Item

Receiving
procedure

Remote
Procedure
Declaration
for receiver

Procedure sending
the UUID
121

declaration takes as its argument a value, which is the argument type that is being
passed to the RPC in the G2 Gateway bridge, namely, a UUID.

Note You can also pass the UUID in compressed format; however, note that you cannot
see the value of the UUID in compressed format like you can the text format.

Here is the send-uuid procedure, which makes the remote procedure call, passing
the UUID as the argument, instead of the item:

send-uuid(uuid: text)
begin
call receiver(uuid) across interface;

end

Calling receiver across the GSI interface replaces the UUID with the item, which
posts the name of the item in the Message Board in the local G2:

Developing a Bridge Using Only Remote
Procedure Calls

To build your G2 Gateway application, relying on only RPCs to handle events or
transfer data between G2 and the bridge, the minimum that you must include in
your application is as follows:

• In G2:

– Create and configure one GSI interface for each connection that G2 needs
to establish to the bridge.

– Declare all of your G2 Gateway local functions (functions that G2 will
invoke as remote) inside the callback function gsi_set_up().

– Declare the G2 Gateway local functions as remote procedures that can be
invoked by G2.

• In G2 Gateway:

– Include all of the G2 Gateway callback functions in your G2 Gateway user
code. If you do not modify any of the callback functions for your own use,
you must still include them in their stub form (unmodified, except to
return GSI_ACCEPT or GSI_REJECT).
122

Call Identifiers and Procedure User Data
– Declare all of your remote procedures (G2 procedures invoked by the
bridge) in gsi_initialize_context().

– Declare a global variable of the type functon_handle_type to identify
each G2 procedure that G2 Gateway invokes as a remote procedure.

Call Identifiers and Procedure User Data
G2 Gateway enables remote procedure calls between G2 and G2 Gateway to
include:

• Procedure user data arguments, which contain values that identify particular
remote procedure declarations in the G2 Gateway user code.

• Call identifier arguments, which contain values that distinguish individual
remote procedure calls from each other.

To enable the use of these arguments, you must compile your G2 Gateway code
with the gsi_use_user_data_for_callbacks C preprocessor flag defined or use
the corresponding compile time switch. For information about the G2 Gateway
preprocessor flags and runtime options, see Preprocessor Flags and Runtime
Options.

Procedure User Data for Remote Procedure Calls

You can associate user data with calls to particular G2 procedures by including a
procedure_user_data argument in the calls. The procedure user data is returned to
G2 Gateway in the first arguments of G2 Gateway local functions, receiver
functions and error receiver callback functions. The procedure_user_data
argument of a remote procedure call can be data of any type.

You can include a user data argument in local functions and receiver functions
only if the compile time switch gsi_user_data_for_callbacks is set. This switch
is set automatically if you compile your G2 Gateway application with the
gsi_use_user_data_for_callbacks C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

Declare a procedure_user_data argument as follows:

gsi_procedure_user_data_type procedure_user_data

Procedure User Data in Receiver Functions and Error Receiver
Functions

As the first argument of receiver functions and error receiver functions, procedure-
user-data represents a value that was specified by the GSI programmer and
associated with a particular remote procedure declaration, using gsi_rpc_
declare_remote_with_error_handler_and_user_data().
123

Every call that the G2 Gateway bridge makes to a G2 procedure using this
declaration has the specified procedure user data value associated with it; the
procedure user data is, in effect, a label identifying a particular remote procedure
declaration. G2 never examines or uses the procedure user data, but associates it
with any return call that it makes to the receiver function or error receiver
function in the G2 Gateway bridge. The procedure user data then enables the
receiver function or error receiver function to know which G2 Gateway remote
procedure declaration was used to invoke the G2 procedure that is now sending a
response to the receiver function or error receiver function.

Procedure User Data in Local Functions

As the first argument of local functions, procedure user data represents a value
that was specified by the G2 Gateway programmer and associated with a
particular local procedure declaration, using gsi_rpc_declare_local().

When the local function is invoked by G2, it receives the procedure user data
value specified in the corresponding local procedure declaration. Each local
procedure declaration specifies a different g2-function-name, which must be
identical to the name-in-remote-system attribute of the G2 remote procedure
declaration through which G2 is invoking the local function.

Using Procedure User Data

For some purposes, you can use gsi_procedure_user_data_type arguments to
eliminate the need for separate local functions or receiver functions. For example,
you can include several calls to gsi_rpc_declare_local() in your user code,
with each call specifying the same user-written G2 Gateway local function, but
with different G2 names and gsi_procedure_user_data_type arguments. Thus,
the single local function in your bridge appears to G2 as several different remote
procedures, each with a different name. When G2 calls the function under one of
its names, it passes a value of whatever type to the gsi_procedure_user_data_
type argument local function. Your G2 Gateway user code can customize its
behavior based on the gsi_procedure_user_data_type value that it receives, in
a case statement or by other means.

Similarly, a single receiver function with a gsi_procedure_user_data_type
argument can handle return data from a variety of different G2 procedures
invoked from the bridge. Without the use of a gsi_procedure_user_data_type
arguments, several different receiver functions might be required to handle
different types of data returned by different G2 procedures.

Declaring a Local Function with a Procedure User Data Argument

When you declare a G2 Gateway local function, you specify the procedure user
data argument in the call to gsi_rpc_declare_local():

void gsi_rpc_declare_local
(local_function, procedure_user_data, g2_function_name)
124

Call Identifiers and Procedure User Data
Any G2 procedure that invokes the local function sends the procedure user data
associated with the invocation to the first argument (the procedure_user_data
argument) of the local function.

Declaring a G2 Procedure as a Remote Function with a Procedure
User Data Argument

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you specify the procedure_user_data argument in the call
to gsi_rpc_declare_remote():

void gsi_rpc_declare_remote
(function_handle, g2_function_name, receiver_function,
procedure_user_data, argument_count, return_count,
context_number)

A G2 procedure called by the G2 Gateway bridge through gsi_rpc_call() or
gsi_rpc_call_with_count() can return data of any type to the first argument
(the procedure_user_data argument) of the receiver function in the G2 Gateway
bridge.

Writing Receiver Functions and Error Receiver Callbacks with
Procedure User Data Arguments

You can include a procedure user data argument in G2 Gateway receiver
functions and error receiver callback functions. For information about the
argument syntax of these functions, see RPC Support Callback Functions.

Call Identifiers for Remote Procedure Calls

G2 Gateway supports the use of call identifiers both in calls from G2 Gateway to
G2, and in calls from G2 to G2 Gateway.

If a G2 Gateway bridge invokes the same G2 procedure repeatedly, there is no
guarantee that the G2 procedure will return the results of the separate invocations
to the bridge in the order in which the bridge made them. Thus, the bridge needs
a way to distinguish separate calls from each other. Similarly, G2 may make
repeated calls to local function in a G2 Gateway bridge, and need to distinguish
these calls from each other.

To make it possible for G2 Gateway to distinguish the values returned to the
bridge by different invocations of a remote G2 procedure, gsi_rpc_call() and
gsi_rpc_call_with_count() can include a call identifier argument that you
supply. For example:

void gsi_rpc_call(function_handle, arguments,
call_identifier, context_number)
125

The G2 procedure can send the original call_identifier value specified in the call to
gsi_rpc_call() or gsi_rpc_call_with_count() to a receiver function in the G2
Gateway bridge.The required syntax for a receiver function is:

void receiver_function(procedure_user_data,arguments,count,
call_identifier)

where call_identifier is a gsi_call_identifier_type value returned from G2
that is identical to the value returned by the call to gsi_rpc_call() or gsi_rpc_
call_with_count() that invoked the G2 procedure.

In calls that G2 makes to a G2 Gateway local function, the call identifier is a value
that G2 generates automatically to distinguish each call from other calls that it
may make to the same local function. G2 passes this value to the call_identifier
argument of the local function. The local function should return this value to G2
in calls that it makes to gsi_rpc_return_error_values() or gsi_rpc_return_
values(), but it can also use this value to distinguish between simultaneous calls
to the same local function.
126

5

Error Handling
Describes how G2 Gateway handles errors by default, and how you can customize
error handling in your G2 Gateway bridge.

Introduction 127

Default Error Handling 128

Sending Error Information to Standard Output 128

Customized Error Handling 129

Error Handling in Continuous and One-Cycle Modes 131

Introduction
G2 Gateway provides a default error handler that responds to a variety of system-
defined errors automatically, as they occur. It also enables you to signal user-
defined errors from your user code, and to create a customized error handling
procedure to perform any specialized processing of errors that your application
requires.
127

Default Error Handling
When an API function or callback detects an error, the default error handler:

• Sends information about the error to the G2 Gateway application’s standard
output device (stdout).

Your G2 Gateway application can suppress the output of error information.
For information about how to do this, see Sending Error Information to
Standard Output.

• If the error is fatal, shuts down the context (if known) in which the error
occurred.

If the error is non-fatal, the default error handler allows the context to
continue running.

For a complete list of standard error conditions, see Appendix C, G2 Gateway
Error Messages.

• If you have not installed a customized error handler, returns control to the
point in your user code that called the function that detected the error.

• If you have installed a customized error handler procedure, calls this
customized procedure.

See the table in the section called Error Handling in Continuous and One-Cycle
Modes for details.

Sending Error Information to Standard Output
When G2 Gateway detects an error condition in a G2 Gateway internal operation,
callback function, or API function, it prints information about the error on the G2
Gateway application’s standard output (stdout) device. This information
includes the error number, the message associated with the error, and the name of
the function that produced the error.

For a list of the standard errors signalled by G2 Gateway, see Appendix C, G2
Gateway Error Messages.

You can suppress the output of error messages to standard output by setting the
GSI_SUPPRESS_OUTPUT option. To do this, include a call to the following API
function in your gsi_set_up() callback function:

gsi_set_option(GSI_SUPPRESS_OUTPUT);
128

Customized Error Handling
Shutting Down the Context Where the Error
Occurred

After printing the error information about a fatal error, G2 Gateway
unconditionally shuts down the context in which the error occurred and passes
control back to gsi_run_loop().

If an error occurs in an API function called from outside the gsi_run_loop() call
tree, any context that the API function operated on is shut down. Some API
functions accept a context number argument to specify the particular context on
which they operate. If the API function does not specify a particular context, it is
of the sort that does not require that the context be shut down when an error
occurs.

Customized Error Handling
G2 Gateway enables you to extend the default error-handling of your G2
Gateway bridge process by:

• Signalling non-standard user errors from your user code, using the API
function gsi_signal_error(). The default error handler handles user-
defined errors in the same way that it handles standard errors.

• Creating a customized error handler procedure to respond to errors in
specialized ways required by your G2 Gateway bridge process. The
customized error handler responds to both standard and user-defined errors.

The customized error handler is called by the default error handler, and works in
conjunction with, not in place of, the default error handler.

The default error handler calls the customized error handler after the data is sent
to standard output and, in the case of a fatal error, after the current context has
been shut down.

Signalling Customized Error Conditions

Your user code can signal its own errors and make use of the internal G2 Gateway
error handling system by calling gsi_signal_error(). You can use values above
1024 for your user code errors.

When gsi_signal_error() signals a customized error, the G2 Gateway error
handler responds to it in the same way that it responds to errors generated by G2
Gateway internals.

For information about gsi_signal_error(), see API Functions.
129

Note The API functions gsi_signal_handler() handles C and UNIX signals, and not
signals raised by your user code by calling gsi_signal_error(). The term signal
has a different sense in the two cases.

Writing a Customized Error Handler

When an API function reports an error, the default error handler automatically
invokes your user error handler procedure, if you have installed one.

As arguments to the customized error handler, the default error handler passes
the number of the context where the error occurred, the error number, and the
error message that G2 Gateway associates with the error.

Your error handler procedure must use the following syntax:

void *handler_function(error_context, error_code, error_message)
gsi_int error_context;
gsi_int error_code;
gsi_char *error_message;

where:

error_context is the context number of the context in which the error occurred.

error_code is an integer that identifies the error condition.

error_message is the text of the G2 Gateway message associated with the error
number.

Installing a Customized Error Handler

You must install your customized error handler procedure by calling the API
function gsi_install_error_handler().

Because you install an error handler only once, it is good practice to invoke gsi_
install_error_handler() in the gsi_set_up() callback function.

The error-handling procedure that you install is called automatically by G2
Gateway’s internal error handler when an error occurs.

Checking the Global Error Flag

A global error flag is set by each API function when it finishes executing. If an
error occurs during the execution of an API function, G2 Gateway sets the global
error flag and saves the message associated with the error. The value to which the
API function sets the flag specifies the particular error that occurred during
execution of the function, or specifies that no error occurred.
130

Error Handling in Continuous and One-Cycle Modes
To read the global error flag, your error handler function can call gsi_last_
error_message(). This function returns the value of the error flag, which is a
number that identifies the error. Use gsi_last_error_message() rather than
gsi_error_message(), which can return formatting templates rather than the
simple text of the error message.

Your user code can pass the error number returned by gsi_last_error() to the
API function gsi_error_message(), which returns a string containing the
message associated with a specified error code.

You can clear the global error flag by calling the API function gsi_clear_last_
error(), which sets the last error number to zero.

Error Handling in Continuous and One-Cycle
Modes

G2 Gateway performs both default and customized error handling differently in
one-cycle and continuous modes.

The following table summarizes the default and customized error-handling
behavior of G2 Gateway in continuous and one-cycle modes:
131

 Error Handling in Continuous and One-Cycle Modes

Default Error Handling Customized Error Handling

Continuous
Mode

1 Send error information to
stdout.

2 Shut down context where
the error occurred. Not all
errors shut down the
context. For a list of the
errors that do, see Errors
that Shut Down a Context.

3 Pass control to bottom of
gsi_run_loop(), which
continues to iterate over
any contexts that remain
open.

1 Send error information to
stdout.

2 Shut down the context where
the error occurred. Not all
errors shut down the context.
For a list of the errors that do,
see Errors that Shut Down a
Context.

3 Invoke customized error
handler.

4 Pass control to bottom of
gsi_run_loop(), which
continues to iterate over any
contexts that remain open.

One-Cycle
Mode

1 Send error information to
stdout.

2 Shut down context where
error occurred. Not all
errors shut down the
context. For a list of the
errors that do, see Errors
that Shut Down a Context.

3 If the error is detected
within gsi_run_loop(),
return control to code that
called gsi_run_loop().

If the error is detected by
an API function outside
gsi_run_loop(), return
control to the code that
invoked this API function.

1 Send error information to
stdout.

2 Shut down the context where
the error occurred. Not all
errors shut down the context.
For a list of the errors that do,
see Errors that Shut Down a
Context.

3 Invoke customized error
handler.

4 If the error is detected within
gsi_run_loop(), return
control to code that called gsi_
run_loop().

If the error is detected by an
API function outside gsi_run_
loop(), return control to code
that called this API function.
132

Error Handling in Continuous and One-Cycle Modes
Errors that Shut Down a Context

The following table lists errors that always shut down the context in which they
occur:

 Errors that Always Shut Down a Context

Value Error Symbol Text of Error

38 GSI_CONNECTION
_LOST

"Network layer reports
connection was lost or ICP
protocol error occurred:
error-message"

57 GSI_ICP_MESSAGE
_TOO_LONG

"ICP message series too long
-- please call Gensym customer
support"

58 GSI_ICP_MESSAGE
_OUT_OF_SYNCH_CASE_
2

"Protocol out-of-synch
(case 2)"

59 GSI_MAXIMUM_TEXT
_STRING_LENGTH
_ERROR

"Attempting to allocate
number-of-elements element
string, which is beyond the
established maximum of
maximum-elements."

60 GSI_EXTEND_CURRENT_
TEXT_STRING_ERROR

"Trying to write a string
longer than 1MB!"

63 GSI_CIRCULARITY
_NOT_SUPPORTED

"Self referencing items may not
yet be sent to G2 - sorry"

Note: This error occurs only when G2
Gateway 5.0 is communicating with a
G2 4.0.

67 GSI_UNKNOWN_TYPE
_TAG

"GSI structure contains unknown
type tag."

71 GSI_MAXIMUM
_CONTEXTS
_EXCEEDED

"Connection rejected -
GSI bridge context limit
maximum-contexts exceeded."

72 GSI_CONNECTION
_DENIED

"Connection denied - the G2
at protocol-host-port has
disallowed connections from
GSI"
133

The following table lists errors that can shut down a context, depending on the
circumstances that gave rise to the error.

74 GSI_ERROR_IN
_CONNECT

"Error during connection
attempt: error-message"

79 GSI_UNKNOWN
_CALLING
_PROCEDURE_INDEX

"Unknown calling procedure
index."

 Errors that Always Shut Down a Context

Value Error Symbol Text of Error

 Errors that Shut Down a Context in Some Circumstances

Value Error Symbol Text of Error

16 GSI_INCOMPATIBLE
_TYPE

"Type mismatch - value of type
data-type passed to this
function"

30 GSI_INCOMPATIBLE
_STRUCTURE

"Received null pointer
argument, or a structure type
incompatible with requested
operation"

68 GSI_INVALID
_HISTORY_TYPE

"GSI found an invalid value
type for this history."
134

6

Troubleshooting
Guidelines
Describes how to identify problems in your G2 Gateway bridge user code.

Introduction 135

Connectivity 136

Data Collection and Transmission 138

Item Registration 141

Remote Procedure Calls (G2-to-G2 Gateway) 141

Reporting Problems to Gensym 142

Introduction
This chapter provides troubleshooting suggestions for your G2 Gateway
application, and concludes with a procedure for submitting any problems you
may have with your code, the G2 Gateway bridge, or G2 to Gensym’s Customer
Support personnel.

This chapter lists problems for the following general topics:

• Connectivity

• Data collection and transmission

• Initializing

• Object definition

• Remote Procedure Calls (RPCs)
135

Connectivity
This section covers problems with the interface between the G2 and the G2
Gateway processes, the Intelligent Communications Protocol (ICP), or network
connections.

Problem: You have created a GSI interface, started the bridge process, and started
the G2 process, but nothing happens.

Solutions:

• The workspace on which the GSI interface is located may be inactive
(disabled). Make sure that the workspace is enabled.

• The GSI interface is not named. An unnamed GSI interface cannot support a
connection between a G2 Gateway bridge process and a G2 knowledge base.
Specify one or more names for the GSI interface in its names attributes.

• The GSI interface has a different specification for its gsi-connection-
configuration attribute than the one it should have to locate the bridge process
you want to use. For example, you may have specified an incorrect port
number or machine name. Check the value specified for this attribute and
change it if necessary.

• If the bridge process was started after the G2 process, the bridge may not be
able to connect to the G2 process without your disabling, then re-enabling the
GSI interface used to connect to the bridge. The GSI interface only checks
whether the bridge process is running when the GSI interface becomes
enabled, which is usually at the same time that you start the G2 process. By
manually toggling the GSI interface, you allow the GSI interface to determine
whether the bridge process is running, and, if so, connect to it.

Problem: The operator’s logbook displays the error message “Cannot establish ICP
connection.”

Solutions:

• Is there an ICP connection between the machines on which the G2 and the G2
Gateway processes are running? Send out a ping to the machine on which the
bridge process is running. If it does not respond or does not respond before
the interface times out, there may be network problems that are interfering
with communication.

• Make sure that you have specified the correct location of the bridge process
for the gsi-connection-configuration attribute of the GSI interface. If you edit
the attribute while the processes are still running, toggle the GSI interface so
that it will check to see if the bridge process is running and, if so, connect to it.
136

Connectivity
Problem: The bridge process could not establish a listener at the TCP/IP port and
exits, or it establishes a listener but doesn’t connect.

Solutions:

• The port number or object name is unavailable. Try using a different port or
object name.

• The two arguments argv and argc are not passed correctly from main() to
gsi_start(). You must make sure that, however you define the two
arguments in main(), when you pass the arguments on to gsi_start(), the
arguments are exactly what you expect gsi_start() to receive.

• If the bridge process was started after the G2 process, the bridge may not be
able to connect to the G2 process without your disabling, then re-enabling the
GSI interface used to connect to the bridge. The GSI interface only checks
whether the bridge process is running when the GSI interface becomes
enabled, which is usually at the same time that you start the G2 process. By
manually disabling and re-enabling the GSI interface, you allow the GSI
interface to determine whether the bridge process is running, and, if so, to
connect to it.

• On some platforms the operating system takes a while to release a socket that
was retained by a recently killed process. Either try a different port number or
wait a while. The duration is platform-dependent and ranges from a few
seconds to a few minutes.

• Ask your network administrator to check the physical connection between the
machines on which G2 and G2 Gateway are running.

Problem: The GSI interface times out.

Solutions:

• You may be running in an environment with heavy network traffic. Increase
the interface-timeout-period attribute of the GSI interface until the interface no
longer times out.

• G2 Gateway may be attempting to define at one time a large number of objects
for which you have specified default update intervals. You can arrange to
stagger definition requests over time by placing groups of the objects you
want to be defined onto different subworkspaces, then enabling the
subworkspaces one at a time, pausing in between each enable operation until
all objects on that workspace are defined.
137

Problem: The GSI interface’s status code changes to -1 or -2.

Solutions:

• The -1 status code indicates that the ICP connection has timed out and
possibly may be gone. For this case, there may be no need for your code to
take action in response, because the status code will change to a 2 (OK) or -2
(failed) after several seconds or so have elapsed. If it does not, you can toggle
the GSI interface by disabling, then re-enabling it.

• The -2 status code indicates that the ICP connection is gone and cannot be
recovered. You may be able to establish a new connection without restarting
the bridge. Try to restart the bridge process, followed by restarting the G2
process. If the problem persists, report it to Gensym’s Customer Support staff.

Problem: The ICP out of synch error message appears.

Solutions:

• You may be using an outdated gsi_main.h file, or linking against an old gsi_
main object. Gensym recommends that you use the gsi_main.h file that was
included with the G2 Gateway distribution kit.

• Memory may be corrupted due to a user programming error.

• Too many arguments are specified when you are passing arguments in a
remote procedure call (RPC). Check that you are passing the correct number
of RPC arguments.

Data Collection and Transmission
This section covers problems with the collection and transmission of data from
the bridge to the knowledge base, or with G2 setting values in the external
system.

Problem: The GSI interface is okay but the G2 process is very slow (or eventually
exits).

Solution: You may be inundating G2 Gateway with more requests for values than
it can return to G2 in a cycle. G2 may slow down as more and more requests wait
to be processed. Stagger the update intervals for your variables or decrease the
frequency with which G2 sets values in the external system.

Problem: The bridge cannot return attribute values to G2.

Solution: The names of attributes whose values are returned from the external
system through a vector must be specified in your user code as symbols. (Refer to
your G2 Reference Manual for the correct symbol format.) Frequently, this simply
means using upper case letters for attribute names in your bridge code instead of
lower case letters.
138

Data Collection and Transmission
Problem: A GSI variable is not receiving any values.

Solutions:

• The item may not be registered. Call the system procedure g2-get-network-
handle-from-item() to determine if the item is registered. For information
about this procedure, see the G2 System Procedures Reference Manual.

• The gsi-interface-name specified for the GSI variable is incorrect or missing.
Edit the GSI variable’s gsi-interface-name attribute, specifying the unique
name for the GSI interface used by the variable.

• You may be passing back the NULL_TAG data type to the variable. Make sure
that you return the value as NULL_TAG only if you do not want to update the
value of the variable.

• Set a higher priority for the priority-of-data-service attribute in the Data Server
Parameters system table, or reduce the processing load of your G2
application.

If you have specified a low priority for the priority-of-data-service attribute in
the Data Server Parameters system table, and your G2 application has a heavy
processing load, gsi_g2_poll() may never be called. This results in the GSI
variables not receiving values if your G2 Gateway application uses gsi_g2_
poll()to get values from an external system and return them to the GSI
variables in G2.

Problem: The bridge is returning the wrong value to a GSI variable.

Solutions:

• Make sure that the data type corresponds to the one expected for the variable.
Make sure that your code performs any necessary type conversions prior to
transmission of the value.

• Signed integer values that occupy more than 29 bits, or unsigned integer
values that occupy more than 30 bits are not accepted by G2. Limit the size of
your integer values to no more than 29 bits for a signed integer, or 30 bits for
an unsigned integer. Alternatively, you can cast the integer value as a float, or
specify the variable as a quantitative variable. Quantitative variables
automatically convert integers to floating point numbers if they are too large
for G2 to accept as integers.
139

Problem: An error message appears on the Operator’s Logbook stating that a data
type mismatch has occurred.

Solution: The value returned to a GSI variable is of the wrong data type. Make
sure that the data type corresponds to the one expected for the variable. Make
sure that your code performs any necessary type conversions prior to
transmission of the value.

Problem: The variable is not updated in accordance with the default update
interval for a GSI variable.

Solutions:

• You have not placed the proper code in gsi_get_data() to retrieve the
requested value and return it to G2. (This assumes that external-system-has-
a-scheduler is No.) Change gsi_get_data() to include code to return the
value to G2.

• The external-system-has-a-scheduler attribute for the GSI interface used by
the variable is specified as yes, but you have not yet implemented the external
system’s scheduler. Either edit the attribute to turn off this feature, or
implement the scheduler.

Problem: A value set by G2 in the external system is not echoing back to the
corresponding GSI variable in the knowledge base.

Solution: Values set by G2 in the external system are not echoed back to the
corresponding variables automatically. You must include a call to gsi_return_
values() in your user code for each set value that you want returned to update a
variable in your knowledge base.

Problem: Unsolicited data is not returned to GSI variables.

Solution: To make sure that unsolicited data is returned to G2, the value of both
the external-system-has-a-scheduler attribute and the poll-external-system-for-
data attribute of the GSI interface must be yes.

Problem: A rule of the form, “whenever X fails to receive a value”, is not
evaluated when a bridge does not return a value to a variable.

Solution: The reason for this problem is that the timeout-for-inference-
completion of Inference-Engine-Parameters does not apply to variables whose
data server attribute is gsi-data-service. A bridge may use as much time as it
needs to return a value. There is no timeout for data acquisition from a bridge.

To determine if a variable is no longer receiving values, you can use a
combination of the variable's validity-interval, default-update-interval,
and a rule of the form “whenever x loses its value”.
140

Item Registration
Item Registration
This section covers problems that apply to the registration of items for the G2 and
the bridge processes at startup time, or the redefinition of variables when they are
changed.

Problem: The function gsi_receive_registration() is not called to define
objects.

Solutions:

• You have not specified default update intervals for your GSI variables, or
your G2 process is not calling gsi_set_data() or gsi_get_data() by setting
values in the external system or requesting values explicitly. If the update
interval is set to none, you must either change the update interval to a positive
length of time, or make explicit data requests.

• The GSI interface name specified for the variables is wrong or missing.
Change to the unique name of the GSI interface, or supply it if it is missing.

Problem: A GSI variable is registered more than once.

Solution: A GSI variable is registered every time to change the list of its
identifying attributes. If you use a procedure in G2 to fill in the identifying
attributes for a GSI interface, make sure that the GSI interface is disabled,
undefined, or differently named until you have finished listing the identifying
attributes. If the GSI interface is enabled when the procedure fills in the values for
the attributes, the GSI variable is registered each time an identifying attribute is
added to the list, resulting in a call to gsi_receive_registration() each time.

Remote Procedure Calls (G2-to-G2 Gateway)
This section covers problems that apply to RPCs made to the bridge from the
G2 process.

Problem: An RPC is not being invoked or is not being called.

Solutions:

• You may have specified the wrong number of arguments. Check and if
necessary adjust the number of arguments.

• The p_type value for a parameter of the remote function does not match the
type specified in the G2 RPC declaration. Make sure that the p_type
specification matches the type given in the RPC declaration.

• RPC is started instead of being called. Use a call statement in a procedure on a
workspace, or in place of a start action.
141

Reporting Problems to Gensym
Use the procedure explained in this section for reporting any problems you have
with your G2 Gateway bridge or G2.

To report a problem to Gensym:

1 Identify the problem and/or its symptoms.

2 Try to recreate the problem.

3 Assemble and be prepared to provide the following information:

• Your name, your company’s name, and (optionally) your location within
the company.

• Your telephone number and extension, your facsimile number, and the
best times for Gensym personnel to contact you using either number.

• The version numbers of both G2 and G2 Gateway.

• The name and version number of the G2 Gateway bridge product you are
using (if any).

• A problem description that includes its symptoms, a detailed synopsis of
what you were doing when the problem occurred, and the severity of the
problem. Include the exact text of any G2 Gateway internal errors and G2
log book errors associated with the problem.

4 Report your problem to Gensym’s Customer Support staff.

Provide all of the information you gathered in step 3 of this procedure to the
customer support representative. You may want to include a section of the
relevant code.

For contact information, see Customer Support Services.
142

Part II
Reference
Chapter 7: G2 Gateway Data Structures

Describes how G2 Gateway data structures store information that is useful to your
application, and how your G2 Gateway user code can access this information.

Chapter 8: Callback Functions

Describes the callback functions that you complete to implement your G2 Gateway user code.

Chapter 9: API Functions

Describes the capabilities and syntax of the API functions supported by G2 Gateway.

Chapter 10: Preprocessor Flags and Runtime Options

Describes C preprocessor macros and runtime options that you can use to modify the behavior
of your G2 Gateway bridge.

Chapter 11: Building and Running a G2 Gateway Bridge

Describes how to compile, link, and run a G2 Gateway bridge executable image, and how to
start and stop a G2 Gateway bridge process from within a G2 procedure.
143

144

7

G2 Gateway
Data Structures
Describes how G2 Gateway data structures store information that is useful to your
application, and how your G2 Gateway user code can access this information.

Introduction 146

Summary of G2 Gateway Data Structures 146

Using Get and Set Functions for Data Structures 149

Referencing Data Structures in Your User Code 150

Accessing Data Structures through Other Data Structures 150

Type Tags of G2 Gateway Data Structures 152

G2 Gateway Data Structures and Functions for Data Transfer Operations 153

Allocating and Reclaiming G2 Gateway Data Structures 158

gsi_registration Data Structures 159

gsi_registered_item Data Structures 163

gsi_item Structures 167

gsi_attr Structures 177

gsi_symbol Structures 179
145

Introduction
G2 Gateway creates data structures to store information that it receives from G2.
Your G2 Gateway user code can allocate the same kinds of data structures to store
information that the G2 Gateway bridge receives from an external system.

Each structure includes different components to receive different kinds of
information, such as item handles, attribute values, or history information. Some
data structures also have components that contain other data structures.

Your user code can access the components of data structures by calling API
functions provided with G2 Gateway. Each API function is designed to access a
particular component of one or more data structures.

For fewer upgrade problems and less implementation-dependent code,
G2 Gateway does not permit direct access to G2 Gateway data structures. Your
user code can access the data structures only by invoking the API functions
provided for this purpose.

Note The text of messages that G2 Gateway receives from a GSI Message Server is not
maintained in a data structure, nor is it available after the callback gsi_receive_
message() exits.

Summary of G2 Gateway Data Structures
G2 Gateway provides void * pointers to its internal data structures:

• gsi_registration

• gsi_registered_item

• gsi_item

• gsi_attr

• gsi_symbol
146

Summary of G2 Gateway Data Structures
The following table lists the G2 Gateway internal data structures referenced by
these pointers and describes how G2 Gateway uses each structure:

G2 Gateway Data Structures

G2 Gateway
Data Structure Description

gsi_registration Created by G2 Gateway when G2 registers a
data-served GSI variable or an item handle
that it passes through a remote procedure
call. Remains in existence until the variable
or item handle is deregistered.

Stores the handle, data type, and six
identifying attributes of the variable being
registered. Can also store user data that you
choose to associate with this registered item.

gsi_registered
_item

Created by G2 Gateway each time G2 asks G2
Gateway to get a new value for a GSI variable
from an external system, or when G2 asks G2
Gateway to write the value of a GSI variable
to a data point in an external system.
Remains in existence only during the read or
write operation.

Stores the handle, current attribute values,
and other information associated with the
registered item.

You can create this data structure in your
bridge code by using API functions.

gsi_item Created by G2 Gateway each time G2
requests G2 Gateway to read from or write to
a data-served GSI variable, or passes an item
handle or object to G2 Gateway through a
remote procedure call.

Stores information associated with the
variable or object, such as its value.

You can create this data structure in your
bridge code by using API functions.
147

gsi_attr Created by G2 Gateway to represent an
attribute of an object that G2 Gateway
receives from G2.

Stores information associated with the
attribute.

You can create this data structure in your
bridge code by using API functions.

gsi_symbol Created by G2 Gateway to represent a
symbol that G2 Gateway receives from G2.

Stores information associated with the
symbol.

You can create this data structure in your
bridge code by using API functions.

G2 Gateway Data Structures

G2 Gateway
Data Structure Description
148

Using Get and Set Functions for Data Structures
Using Get and Set Functions for Data
Structures

Application-specific information can be stored in GSI data structures. The
information includes the following user data: registrations and items, contexts,
symbols, local and remote procedures, and remote calls.

The following table correlates types of data structures, data types, and set and get
functions:

Data structures are created by G2 Gateway for a callback function and can be
accessed by subsequent callbacks without the use of a lookup table. During a

Type of Structure C Data Type Get Function Set Function

Registrations and
items

gsi_item_user_
data_type

gsi_user_data_
type

gsi_set_user_
data

Contexts gsi_context_
user_data_type

gsi_context_
user_data

gsi_set_
context_user_
data

gsi_initiate_
connection_
with_user_data

Symbols gsi_symbol_
user_data_type

gsi_symbol_
user_data

gsi_set_symbol_
user_data

Local procedures gsi_procedure_
user_data_type

local functions gsi_rpc_
declare_local

Remote procedures gsi_procedure_
user_data_type

receiver
functions

gsi_rpc_
declare_local

gsi_rpc_
declare_remote_
with_error_
handler_and_
user_data

Local calls gsi_call_
identifier_type

local functions none

Remote calls gsi_call_
identifier_type

receiver
function

gsi_rpc_call

gsi_rpc_call_
with_count
149

callback function, G2 Gateway supplies registration so that a function can store
user data in a data structure.

Referencing Data Structures in Your User Code
Your user code can use gsi_registration, gsi_registered_item, gsi_item,
gsi_attr, and gsi_symbol to declare instances of the G2 Gateway internal data
structures.

For example, the callback function

void gsi_receive_registration(item_registration)

receives one argument, an instance of a gsi_registration structure, which
contains information about a registered item. You declare this argument as
follows:

gsi_registration item_registration;

where:

item_registration is declared to be an instance of gsi_registration.

Accessing Data Structures through Other Data
Structures

Some data structures have components that contain other data structures. This
feature enables you to access one data structure through another, using API
functions provided for this purpose.

For example, the API function gsi_item_of_registered_item() takes a gsi_
registered_item structure as an argument and returns the gsi_item structure
associated with the gsi_registered_item.
150

Accessing Data Structures through Other Data Structures
The following figure illustrates the G2 Gateway data structures, their
components, and the API functions you can use to access data structures through
their enclosing structures:

G2 Gateway Data Structures and Their Components

gsi_attr

A gsi_item gsi_item_of_registered_item(gsi_registered_item)
B gsi_attr *gsi_attrs_of(gsi_item)
C gsi_item gsi_item_of_attr(gsi_attr)
D gsi_attr gsi_identifying_attr_of(gsi_registration,attribute_index)

gsi_a

A

B

C

D

gsi_registered_item

item handle

item

default update interval

status

gsi_item

type tag

item handle

name

class name

value

element count

elements

history type

history values

history times

history specification

attribute count

attribute(s)

gsi_registration

type tag

item handle

class name

name

identifying attribute(s)

default update interval

user data

name

item

gsi_item

gsi_attr
151

Type Tags of G2 Gateway Data Structures
In GSI Version 3.1 and later versions, G2 Gateway assigns data type tags to all
gsi_registration and gsi_item data structures to indicate the data type of their
values. The data type tags enable the API functions to perform type-checking and
to handle the structures appropriately to their type.

Setting Type Tags

API functions that set the value component of gsi_item structures also reset the
type tags of these structures. For example, the function gsi_set_int() function
sets the type tag of a gsi_item structure to GSI_INTEGER_TAG before setting the
value component of the structure to an integer value.

Setting the Type to Null

The API function gsi_set_type() can set the type of a gsi_item structure to any
non-list or non-array data type. gsi_set_type() specifies a default value of the
appropriate type for the gsi_item structure.

gsi_set_type() is useful mainly for setting the type of a gsi_registered_item
to null. You may want to do this if you are sending an array of gsi_registered_
item structures back to G2 to update a set of GSI variables, but there are certain
GSI variables that do not need to be updated. You can set the gsi_registered_
item structures that correspond to these GSI variable to null, using gsi_set_
type().

Caution A G2 Gateway error results if your user code attempts return a gsi_registered_
item to G2 with a null type and a status component value of 0 (OK). You can use
the API function gsi_set_status() to set the status component of a gsi_
registered_item structure. For information about the values to which you can
set the status of gsi_registered_item structures, see Using the Gsi-Variable-
Status Attribute.
152

G2 Gateway Data Structures and Functions for Data Transfer Operations
G2 Gateway Data Structures and Functions for
Data Transfer Operations

G2 Gateway uses different combinations of data structures and functions to
perform different kinds of data transfer operations. The following table lists the
data structures that G2 Gateway creates to support different data transfer
operations:

The following sections describe the combinations of data structures and functions
calls that support different kinds of data exchange between a G2 Gateway bridge
and a G2 application.

G2 Operations and G2 Gateway Data Structures

G2 Operation
Data Structures that G2 Gateway
Creates to Support this Operation

Ask G2 Gateway to set
the value of a data
point in an external
system, using the value
of a GSI variable in G2.

gsi_registration
gsi_registered_item
gsi_item

Ask G2 Gateway to
update a GSI variable
in G2.

gsi_registration
gsi_registered_item
gsi_item

Pass a copy of a G2
object to G2 Gateway as
an argument to a
remote procedure in G2
Gateway.

gsi_item (for the object)
gsi_attr (for each attribute of the object)
gsi_item (for each attribute of the object)

Pass a simple value to
G2 Gateway as an
argument to a remote
procedure in G2
Gateway.

gsi_item

Pass the handle of a G2
item as an argument to
a remote procedure in
G2 Gateway.

gsi_registration
gsi_item (the type tag of this structure is

GSI_HANDLE_TAG)
153

Setting the Value of an External Data Point

The following steps summarize the data structures and functions that enable a G2
application to update the value of a data point in an external system using the
value of a GSI variable, and to echo the value back to the GSI variable.

1 The set action in G2 sends the value of a GSI variable to the G2 Gateway
bridge.

2 G2 Gateway creates a gsi_registration structure to store the information
received from G2.

3 G2 Gateway calls the callback gsi_receive_registration(), passing to it the
gsi_registration structure.

4 G2 Gateway creates gsi_registered_item and gsi_item structures. The
value component of the gsi_item structure contains the value of the GSI
variable.

5 G2 Gateway calls the callback gsi_set_data(), passing to it an array of one
or more gsi_registered_item structures, which represent G2’s requests to
set values in the external system.

6 In gsi_set_data(), you can use API functions such as gsi_int_of() or gsi_
sym_of() to access the value of the GSI variable. These functions can take the
gsi_registered_item structure as their argument. They return the value
component of the gsi_item structure, which stores the value of the GSI
variable.

7 Also in gsi_set_data(), you add code that sets the value of the external data
point with the value of the GSI variable, using the value returned from the
gsi_item structure.

8 When the value of the external data point has been set, gsi_set_data() can
call the API function gsi_return_values(), passing to it the gsi_
registered_item structure that represents the GSI variable. gsi_return_
values() echoes the value back to the GSI variable in G2.

Updating the Value of a GSI Variable

The following steps summarize the data structures and functions that enable a G2
application to update the value of a GSI variable using the value of a data point in
an external system.

1 An update action or a collect data procedure statement in G2 requests G2
Gateway to send a value to a GSI variable in G2.

2 G2 Gateway creates a gsi_registration structure to store information
associated with the request from G2.

3 G2 Gateway calls gsi_receive_registration(), passing to it the gsi_
registration structure.
154

G2 Gateway Data Structures and Functions for Data Transfer Operations
4 G2 Gateway creates gsi_registered_item and gsi_item structures.

5 G2 Gateway calls the callback gsi_get_data(), passing to it an array of one
or more gsi_registered_item structures, which represent G2’s requests for
update values.

6 In gsi_get_data(), you add code to get the value of the data point in the
external system.

7 Also in gsi_get_data(), you use API functions such as gsi_set_int() or
gsi_set_sym() to set the value component of the gsi_item structure, using
the value obtained from the external system. These API functions can take the
gsi_registered_item structure as their argument.

8 Also in gsi_get_data(), you add a call to the API function gsi_return_
values(), passing to it the gsi_registered_item structure. gsi_return_
values() returns the value of the external data point to the GSI variable in G2.

Receiving Unsolicited Updates of GSI Variables

The following steps summarize the data structures and functions that enable a G2
application to receive unsolicited updates to the values of GSI variables., when
the bridge obtains this data by polling the external system. The GSI variables are
updated with the values of data points in an external system.

1 When G2 is started, it registers all data-served GSI variables.

In order for the GSI variables to receive unsolicited updates, you must set the
poll-external-system-for-data attribute of your GSI interface object to yes.

2 G2 Gateway creates a gsi_registration structure for each registered GSI
variable when the variable is activated.

3 G2 Gateway calls gsi_receive_registration()and passes to it the gsi_
registration structures.

4 G2 Gateway calls the callback gsi_g2_poll(), to which you add the code that
gets values for GSI variables from the external system.

5 Your gsi_g2_poll() calls gsi_make_registered_items() to allocate an
array of gsi_registered_item structures. These structures represent the
update values to be sent to GSI variables in G2.

6 Your gsi_g2_poll() calls API functions such as gsi_set_int() and gsi_
set_sym() to set the values of the gsi_registered_item structures in the
array, using the values obtained from the external system.

7 Your gsi_g2_poll() calls gsi_return_values(), passing to it the array of
gsi_registered_item structures.

8 gsi_return_values()returns values to the last-recorded-value attribute of
GSI variables.
155

The following steps summarize the data structures and functions that enable a G2
application to receive unsolicited updates to the values of GSI variables, when the
external system sends data values to the bridge without having been polled by the
bridge. The GSI variables are updated with the values of data points in an
external system.

1 When G2 is started, it registers all data-served GSI variables.

2 G2 Gateway creates a gsi_registration structure for each registered GSI
variable.

3 G2 Gateway calls gsi_receive_registration()and passes to it the gsi_
registration structures.

4 The external system sends a new value for a registered GSI variable to the
bridge.

5 The G2 Gateway user code calls gsi_make_registered_items() to allocate
an array of gsi_registered_item structures. These structures represent the
update values to be sent to GSI variables in G2.

6 The G2 Gateway user code calls API functions such as gsi_set_int() and
gsi_set_sym() to set the values of the gsi_registered_item structures in
the array, using the values obtained from the external system.

7 The G2 Gateway user code calls gsi_return_values(), passing to it the array
of gsi_registered_item structures.

8 gsi_return_values()returns values to the last-recorded-value attribute of
GSI variables.

Passing Objects through Remote Procedure Calls

The following steps summarize the data structures and functions that enable a G2
application to pass a copy of an object to G2 Gateway as an argument to a remote
procedure call to a user-defined local function in the bridge.

1 G2 calls a remote procedure in G2 Gateway, passing a G2 object as an
argument to the procedure.

2 G2 Gateway creates a gsi_item structure to represent the G2 object, and an
array of gsi_attr structures that represent any attributes that G2 Gateway
passes with the object.

3 G2 Gateway invokes the local function that G2 called as a remote procedure.
G2 Gateway passes to the local function an array of one or more gsi_item
structures, which includes the G2 object passed to G2 Gateway.

4 The local function can call gsi_attrs_of(), passing to it the gsi_item
structure that represents the G2 object. gsi_attrs_of() returns the array of
gsi_attr structures that represent the attributes of the object.
156

G2 Gateway Data Structures and Functions for Data Transfer Operations
5 The local function can call API functions to get and set components of the
gsi_item and gsi_attr structures.

For example, it can call gsi_int_of() to get the value component of a gsi_
item structure, and gsi_set_int() to set the value component. It can call
gsi_attr_name_of() to get the name component of a gsi_attr structure, and
gsi_set_attr_name() to change the name component. For information about
these API functions, see API Functions.

6 The local function can perform any other operations required by your
application.

7 The local function can call gsi_rpc_return_values(), which returns data
associated with the object to G2. The local function must pass to gsi_rpc_
return_values() an array of one or more gsi_item structures, which can
include the structure representing the G2 object.

8 G2 creates a G2 object based on the gsi_item structure that it receives through
gsi_rpc_return_values().

The class name component of the gsi_item must specify the name of an
existing class definition in G2; otherwise, G2 cannot create an object based on
the gsi_item, and an error occurs.

Passing Items as Handles

The following steps summarize the data structures and functions that enable a G2
application to pass an item handle to G2 Gateway through a remote procedure
call. An item handle is a value that identifies a particular G2 item.

1 G2 calls a local function in G2 Gateway that is declared in G2 as a remote
procedure. The remote procedure declaration in G2 must use the as handle
grammar.

The item handle is passed to G2 Gateway through this remote procedure call.
For information about how to declare a remote procedure to send items
handles to and receive them from G2 Gateway, see the G2 Reference Manual.

2 G2 Gateway creates a gsi_registration structure to store information
associated with the item handle.

3 G2 Gateway calls gsi_receive_registration(), passing to it the gsi_
registration structure.

4 G2 Gateway creates a gsi_item structure to represent the item handle.

5 G2 Gateway invokes the local function that G2 called as a remote procedure,
passing to it an array of one or more gsi_item structures, which can include
the item handle.
157

6 The local function performs any operations required by your application.

7 The local function calls gsi_rpc_return_values(), passing to it an array of
one or more gsi_item structures, which can include your item handle. gsi_
rpc_return_values() returns the item handle to the remote procedure call
in G2.

Note Passing item handles rather than actual items provides a way for G2 to reference
the items rather than making copies of them. This can reduce processing time,
save space in your KB and prevent unnecessary traffic across your network.

Allocating and Reclaiming G2 Gateway
Data Structures

G2 Gateway allocates an appropriate data structure automatically when G2
registers a variable or object, or when G2 Gateway receives an object passed to it
from G2.

Your G2 Gateway user code must allocate a data structure explicitly only when:

• Your G2 Gateway bridge needs to send a variable or object to G2 that it has
not previously received from G2.

• You declare a variable to be a pointer to a data structure in a callback function.

In callback functions, a G2 Gateway data structure is not allocated
automatically when you declare a variable to be a data structure. Instead, you
must first allocate a G2 Gateway data structure explicitly, by calling the API
function that allocates a data structure of the type that you want to use. Then
you can assign the structure that you allocated to the declared variable.

To allocate data structures, use the following API functions: gsi_make_attrs(),
gsi_make_attrs_with_items(), gsi_make_items(), and gsi_make_
registered_items().

These API functions return arrays of one or more structures. For this reason, if
you allocate a gsi_attr structure as follows:

gsi_attr *my_att-array = gsi_make_attrs(1);

you must:

• Declare any variable that points to this gsi_attr data structure.

• Access this variable by specifying the zeroth element of the array, as for
example:

gsi_attr my_att = my_attr_array[0];
158

gsi_registration Data Structures
Caution If you are allocating G2 Gateway data structures dynamically, in a part of your
user code that can be executed more than once in the lifetime of the G2 Gateway
bridge process, be sure to reclaim the data structures as soon as you no longer
need them. You can reclaim data structures using the following API functions:
gsi_reclaim_attrs(), gsi_reclaim_attrs_with_items(), gsi_reclaim_
items(), gsi_reclaim_registered_items().

For information about the API functions, see API Functions.

gsi_registration Data Structures
G2 Gateway creates a gsi_registration structure when G2 registers a GSI
variable. This happens the first time when G2 requests G2 Gateway to read from
or write to the GSI variable. G2 Gateway also creates a gsi_registration
structure when G2 registers an item handle that it passes to G2 Gateway through
a remote procedure call.

The gsi_registration structure stores information associated with the
registered item, such as its handle and a list of its identifying attributes. G2
Gateway uses this information when it responds to all subsequent requests from
G2 to read from or write to the variable.

A gsi_registration structure remains in existence until the item that it
represents is deregistered. For information about how items are deregistered, see
Deregistering Items Automatically.

Registering a GSI Variable or Item Handle

G2 Gateway calls the callback function gsi_receive_registration() when G2
registers a GSI variable or item handle with the G2 Gateway bridge. G2 Gateway
passes the gsi_registration structure for the variable or handle to the callback.

You can use gsi_receive_registration() to perform tasks such as initializing
an external data point, allocating memory, or returning the variable’s network
handle to an attribute of the variable for some future use.

For more information about gsi_receive_registration(), see Callback
Functions.

Getting a gsi_registration Structure

The following API function returns the gsi_registration structure associated
with a given handle and context:

gsi_registration gsi_registration_of(item_handle, context)

For more information about gsi_registration_of(), see API Functions.
159

Note You do not need to use an API function call to create a gsi_registration data
structure.

Accessing Components of a gsi_registration
Structure

The following figure illustrates the components of a gsi_registration structure
that you can access with API functions.

Components of gsi_registration Structures
Accessed through API Functions

gsi_set_type()

 gsi_set_user_data()

Set component values

gsi_registration

type tag

item handle

class name

name

identifying attributes

default update interval

user data

gsi_handle_of()

gsi_class_name_of()

gsi_name_of()

gsi_identifying_attr_of()

gsi_interval_of()

gsi_user_data_of()

Get component values

gsi_type_of()
160

gsi_registration Data Structures
The following table describes the components of a gsi_registration structure
that your user code can access through API functions:

 Components of a gsi_registration Structure

Component Functions for Accessing

type tag

One of:

GSI_FLOAT64_TAG,
GSI_INTEGER_TAG,
GSI_LOGICAL_TAG,
GSI_SYMBOL_TAG,
GSI_STRING_TAG,
GSI_FLOAT64_ARRAY_TAG,
GSI_INTEGER_ARRAY_TAG,
GSI_LOGICAL_ARRAY_TAG,
GSI_STRING_ARRAY_TAG,
GSI_SYMBOL_ARRAY_TAG,
GSI_ITEM_ARRAY_TAG,
GSI_VALUE_ARRAY_TAG,
GSI_INTEGER_LIST_TAG,
GSI_SYMBOL_LIST_TAG,
GSI_STRING_LIST_TAG,
GSI_LOGICAL_LIST_TAG,
GSI_FLOAT64_LIST_TAG,
GSI_ITEM_LIST_TAG,
GSI_VALUE_LIST_TAG

gsi_int gsi_type_of
(registration)

item handle

A gsi_int value, used by G2
Gateway functions to reference
the registered G2 item within a
particular context.

gsi_int gsi_handle_of
(registration)

class name

The class name of the registered
G2 item.

gsi_symbol gsi_class_name_of
(registration)
161

name

The name of the registered G2
item. Can be either a GSI
variable registered for data
service, or an item handle
passed to G2 Gateway as an
argument of a remote procedure
call.

gsi_char *gsi_name_of
(registration)

identifying attributes

A list of the values of the
identifying attributes of the
registered GSI variable. These
values together uniquely
identify each variable that
receives G2 Gateway data
service through this GSI
interface object. Can be from 1 to
6 simple attributes.

The identifying attributes stored
in the identifying attributes
component do not include the
names of the attributes.

gsi_attr gsi_identifying_
attr_of
(registration, attribute_index)

 Components of a gsi_registration Structure

Component Functions for Accessing
162

gsi_registered_item Data Structures
gsi_registered_item Data Structures
gsi_registered_item contains a structure representing a GSI variable that G2
has registered across a G2-to-G2 Gateway connection. A GSI variable is an
instance of a G2 variable class (a logical-, quantitative-, float-, integer-, symbolic-,
or text-variable) or subclass that includes gsi-data-service as one of its direct
superior classes.

G2 Gateway creates a gsi_registered_item structure when G2 asks G2 Gateway
to get a new value for a GSI variable from an external system, or when it asks G2
Gateway to write the value of a GSI variable to a data point in an external system.
A gsi_registered_item structure remains in existence for the duration of the
read or write operation.

default update interval

The default update interval of
the GSI variable that is
registered for data service.

Note: There is no default update
interval for items passed as
handles through remote
procedure calls.

double gsi_interval_of
(registration)

user data

Reserved for use by your G2
Gateway user code. The user
data must be of type gsi_item_
user_data_type.

You can use this component to
associate any application-
specific information with the
gsi_registration, such as data
that the G2 Gateway bridge
process receives from a PLC or
other external device.

G2 Gateway itself never reads
from nor writes to the user
data component.

void gsi_set_user_data
(registration, user_data)

gsi_item_user_data_type gsi_
user_data_of
(registration)

 Components of a gsi_registration Structure

Component Functions for Accessing
163

Returning Values to a GSI Variable

The following API functions take gsi_registered_item structures as arguments
and return values to the corresponding GSI variables in G2:

void gsi_return_timed_values(registered_items, count, context)
void gsi_return_values(registered_items, count, context)

Setting Arguments of GSI Variables

The following API functions return values to registered GSI variables and set one
or more of their attributes:

void gsi_return_attrs(registered_item, attributes, count, context)
void gsi_return_timed_attrs(registered_item, attributes,

count, context)

Callbacks that Access gsi_registered_item
Structures

The following callback functions access gsi_registered_item structures. In each
of the following callbacks, registered_items is an array of one or more gsi_
registered_item structures:

void gsi_get_data(registered_items, count)
void gsi_set_data(registered_items, count)
void gsi_receive_deregistrations(registered_items, count)

For information about these functions, see Callback Functions.

Allocating and Reclaiming gsi_registered_item
Structures

Your G2 Gateway user code must allocate a gsi_registered_item structure in
order to transfer an item to G2 when the item to be transferred did not originate in
G2. In this case, there is no automatically created gsi_registered_item structure
to represent the item.

The following API function allocates an array of gsi_registered_item
structures:

gsi_registered_item *gsi_make_registered_items(count)

You can then pass the array of gsi_registered_item structures to the API
function gsi_return_values(), which sends the structures to G2.

The following API function reclaims gsi_registered_item structures:

void gsi_reclaim_registered_items(registered_items)
164

gsi_registered_item Data Structures
For information about allocating and reclaiming gsi_registered_item
structures, see Passing Items as Handles.

Accessing Components of a gsi_registered_item
Structure

The following figure illustrates the components of a gsi_registered_item
structure that you can access with API functions.

Components of gsi_registered_item Structures
Accessed through API Functions

gsi_set_handle()

gsi_set_interval()

gsi_handle_of()

 gsi_item_of_registered_item()

gsi_interval_of()

gsi_status_of()

Set component values Get component values

status

default update interval

item

item handle

gsi_registered_item

gsi_clear_item()

gsi_set_status()
165

The following table lists the components of the gsi_registered_item structure
that your user code can access through API functions:

Components of gsi_registered_item Structures

Component API Functions for Accessing

item handle

A gsi_int value, which refers to an
object in G2 that has been registered
for G2 Gateway data service through
the G2 Gateway callback function
gsi_receive_registration().

To get the gsi_registration
associated with this registered item,
you can pass the handle value
returned by gsi_handle_of() to the
gsi_registration_of() API
function, which returns the gsi_
registration.

gsi_int gsi_handle_of
(registered_item)

void gsi_set_handle
(registered_item, handle_value)

item

gsi_item contained in this gsi_
registered_item.

Some API functions that access
components of a gsi_item structure
can take as an argument a gsi_
registered_item structure that
points to the gsi_item. Other API
functions can access the gsi_item
only directly, and require the gsi_
item itself as an argument. To find
out whether an API function can
access a component of a gsi_item
structure directly, see the description
of that function in API Functions.

gsi_item gsi_item_of_
registered
_item(registered_item)

void gsi_clear_item
(registered_item)
166

gsi_item Structures
gsi_item Structures
gsi_item points to a G2 Gateway data structure that represents an item or a
value. G2 Gateway creates a gsi_item structure for each data-served variable,
object, item handle, or simple value that G2 passes to G2 Gateway.

Verifying that an Item is an Item

The following API function determines whether item is a member of the G2 class
item:

gsi_int gsi_is_item(item)

default update interval

Current default update interval,
corresponding to the default-update-
interval attribute of a G2 variable.

double gsi_interval_of
(registered_item)

void gsi_set_interval
(registered_item, interval)

status

A status code, which G2 Gateway
sends to the gsi-variable-status
attribute of the GSI variable in G2
that corresponds to this gsi_
registered_item.

G2 Gateway initially sets status to
0, indicating no error. Your user code
can set status to a positive or
negative integer that reflects the
current status of the external data
point to which the GSI variable is
mapped.

When G2 receives the registered
item, it updates the gsi-variable-
status attribute of the corresponding
GSI variable.

gsi_int gsi_status_of
(registered_item)

void gsi_set_status
(registered_item, status)

Components of gsi_registered_item Structures

Component API Functions for Accessing
167

gsi_item Structures as Arguments of Remote
Procedure Calls

The following API functions accept gsi_item structures as arguments:

void gsi_rpc_call(function_handle, gsi_item_arguments, context)

void gsi_rpc_start(function_handle, gsi_item_arguments, context)

void gsi_rpc_return_values
(gsi_item_arguments, count, call_handle, context)

Copying Contents of a gsi_item Structure

void gsi_simple_content_copy(destination_item, source_item)

API Functions that Return gsi_item Structures

The following API functions return gsi_item structures:

gsi_item gsi_item_of_attr(gsi_attr)

gsi_item gsi_item_of_registered_item(registered_item)

API Functions that Allocate and Reclaim gsi_item
Structures

The following API functions allocate or reclaim gsi_item structures:

gsi_item *gsi_make_items(count)

gsi_attr *gsi_make_attrs_with_items(count)

void gsi_reclaim_items(items)

Returning gsi_item Values and Attributes to G2

The API functions that return the values and attribute values of a gsi_item
structure to a GSI variable all take as an argument the gsi_registered_item that
contains the gsi_item, rather than the gsi_item itself. These functions are: gsi_
return_values(), gsi_return_timed_values(), gsi_return_timed_attrs(),
and gsi_return_attrs(). For information about these functions, see API
Functions.
168

gsi_item Structures
Components of a gsi_item Structure

The following figure illustrates the API functions that set values of components of
gsi_item structures:

API Functions that Set Values of gsi_item Components

gsi_set_type()

gsi_set_handle()

gsi_set_name()

gsi_set_class_name()

gsi_set_elements()

gsi_set_history()

type tag

item handle

name

class name (null if item
represents a simple value)

value

element count

elements

history type

history values

history times

history specification

attribute count

attribute(s)

gsi_set_element_count()

gsi_set_history()

gsi_set_attr_count()

gsi_set_attr_by_name()

gsi_set_history()

gsi_set_history()

Various functions. See below.

gsi_item

gsi_set_attrs()

gsi_set_timestamp()

gsi_set_user_data() user data
169

The following figure illustrates the API functions that get the values of
components of a gsi_item structure:

API Functions that Get Values of gsi_item and gsi_attr Components

...

.

.

.

gsi_type_of()

gsi_name_of()

gsi_class_name_of()

gsi_element_count_of()

gsi_elements_of()

gsi_history_count_of()

gsi_item

gsi_handle_of()

gsi_attr_count_of()

gsi_extract_history()

gsi_timestamp_of()

gsi_history_type_of()

gsi_attrs_of()
gsi_attr_by_name()

Array of gsi_attr

gsi_extract_history_spec()

Various functions. See below.

type tag

item handle

name

class name (null if item
represents a simple value)

value

element count

elements

history type

history values

history times

history specification

attribute count

attribute(s)

Array of simple
values or gsi_
item.

value or gsi_item

value or gsi_item

value or gsi_item

value or gsi_item

gsi_user_data_of() user data
170

gsi_item Structures
The following table describes the components of the gsi_item structure that your
user code can access through API functions:

Components of gsi_item Structures

Component API Functions for Accessing

type tag

When representing an item
(class name component has a
value), one of:

GSI_NULL_TAG,
GSI_INTEGER_ARRAY_TAG,
GSI_SYMBOL_ARRAY_TAG,
GSI_STRING_ARRAY_TAG,
GSI_LOGICAL_ARRAY_TAG,
GSI_FLOAT64_ARRAY_TAG,
GSI_ITEM_ARRAY_TAG,
GSI_VALUE_ARRAY_TAG,
GSI_INTEGER_LIST_TAG,
GSI_SYMBOL_LIST_TAG,
GSI_STRING_LIST_TAG,
GSI_LOGICAL_LIST_TAG,
GSI_FLOAT64_LIST_TAG,
GSI_ITEM_LIST_TAG, or
GSI_VALUE_LIST_TAG

When representing a value
(class name component is
null), one of:

GSI_NULL_TAG,
GSI_HANDLE_TAG
(RPC arguments only),
GSI_INTEGER_TAG,
GSI_SYMBOL_TAG,
GSI_STRING_TAG,
GSI_LOGICAL_TAG,
GSI_FLOAT64_TAG

Set the type tag component:

void gsi_set_type(item)

void gsi_clear_item(item)

Get the type tag component:

gsi_int gsi_type_of(item)
171

item handle

A gsi_int value, which refers
to some object in G2 that has
been registered through the
API function gsi_receive
_registration(). G2
generates handles for the
following objects:

• A GSI variable, when it is
registered for data service.

• An object passed to G2
Gateway through a remote
procedure call declared
with the as handle
grammar.

• An object registered by the
G2 system procedure
g2-register-on-network().

gsi_int gsi_handle_of(item)

void gsi_set_handle(item,
handle_value)

name

The name of the GSI variable
registered for data service, or
of an object passed to G2
Gateway through a remote
procedure call.

gsi_char *gsi_name_of(item)

void gsi_set_name(item, name)
(gsi_item)

class name

Name of the G2 class. If the
gsi_item structure represents
a simple value in G2, this
component is null. In this case,
only the type tag, value,
element count, and elements
components of this gsi_item
are meaningful.

gsi_symbol gsi_class_name_of
(item)

gsi_int gsi_is_item(item)

void gsi_set_class_name
(item, class_name)

Components of gsi_item Structures

Component API Functions for Accessing
172

gsi_item Structures
value

One or more values.

Set the value component:

void gsi_set_flt(item,
float_value)
void gsi_set_flt_array(item,

doubles_array, count)
void gsi_set_flt_list(item,

doubles_array, count)
void gsi_set_int(item,

integer_value)
void gsi_set_int_array(item,

integers_array, count)
void gsi_set_int_list(item,

integers_array, count)
void gsi_set_log(item,

truth_value)
void gsi_set_log_array(item,

truth_values_array, count)
void gsi_set_log_list(item,

truth_values_array, count)
void gsi_set_str(item, text_value)
void gsi_set_str_array(item,

text_values_array, count)
void gsi_set_str_list(item,

text_values_array, count)
void gsi_set_sym(item,

symbol_value)
void gsi_set_sym_array(item,

symbol_values_array, count)
void gsi_set_sym_list(item,

symbol_values_array, count)

Clear memory associated with the
value component:

void gsi_clear_item(item)

Components of gsi_item Structures

Component API Functions for Accessing
173

value Get the value component:

double *gsi_flt_array_of(item)
double *gsi_flt_list_of(item)
double gsi_flt_of(item)
gsi_int *gsi_int_array_of(item)
gsi_int *gsi_int_list_of(item)
gsi_int gsi_int_of(item)
gsi_int *gsi_log_array_of(item)
gsi_int *gsi_log_list_of(item)
gsi_int gsi_log_of(item)
gsi_char **gsi_str_array_
of(item)
gsi_char **gsi_str_list_
of(item)
gsi_char *gsi_str_of(item)
gsi_char **gsi_sym_array_
of(item)
gsi_char **gsi_sym_list_
of(item)
gsi_symbol *gsi_sym_of(item)

element count

Number of elements in the
value component.

gsi_int gsi_element_count_of
(item)

void gsi_set_element_count
(item, count)

void gsi_clear_item(item)

elements

The elements in the value
component.

gsi_item *gsi_elements_of
(item)

void gsi_set_elements
(item, elements_array, count, type_
tag)

history type

Type of the item’s associated
history data, if any.

This component is meaningful
only when the class name
component of this gsi_item
has a value that names a
subclass of variable or
parameter in G2.

gsi_int gsi_history_type_of
(item)

void gsi_clear_item(item)

Components of gsi_item Structures

Component API Functions for Accessing
174

gsi_item Structures
history values

C array that contains the item’s
associated history data, if any.

This component is meaningful
only when the class name
component of this gsi_item
has a value that names a
subclass of variable or
parameter in G2.

gsi_int gsi_extract_history
(item,values_address,
timestamps_address,type_address)

gsi_int gsi_history_count_of
(item)

void gsi_set_history
(item, values, timestamps, count,

type,maximum_count,
maximum_age, min_interval)

void gsi_clear_item(item)

history times

Array of floating-point
timestamp values, if any.

This component is meaningful
only when the class name
component of this gsi_item
has a value that names a
subclass of variable or
parameter in G2.

void gsi_set_history
(item, values, timestamps, count,

type, maximum_count,
maximum_age, min_interval)

void gsi_set_timestamp(item,
timestamp_value)

double gsi_timestamp_of(item)

void gsi_clear_item(item)

history specification

Maximum number of history
data values to retain, the
maximum age of history data
values, and the minimum
interval between timestamps,
which correspond to those
specified in the history-
keeping-specification attribute
of a G2 variable or parameter.

This component is meaningful
only when the class name
component of this gsi_item
has a value that names a
subclass of variable or
parameter in G2.

gsi_int gsi_extract_history
(item,values_address,

timestamps_address,type_address)

gsi_int
gsi_extract_history_spec
(item,maximum_count_address,

maximum_age_address,
minimum_interval_address)

void gsi_set_history
(item, values, timestamps, count,

type, maximum_count,
maximum_age, min_interval)

void gsi_clear_item(item)

Components of gsi_item Structures

Component API Functions for Accessing
175

attribute count

Number of attributes in the
attributes component.

This component is meaningful
only when the class name
component of this gsi_item
has a value.

gsi_int gsi_attr_count_of
(item)

void gsi_set_attr_count
(item,count)

void gsi_clear_item
(registered_item)

user data

Reserved for use by your G2
Gateway user code. Can point
to any 32-bit entity, including
memory allocated by a user-
written function.

You can use this component to
associate any application-
specific information with the
gsi_registration, such as
data that the G2 Gateway
bridge process receives from a
PLC or other external device.

G2 Gateway itself never reads
from nor writes to the user
data component.

void gsi_set_user_data
(registration, user_data)

gsi_int gsi_user_data_of
(registration)

Components of gsi_item Structures

Component API Functions for Accessing
176

gsi_attr Structures
gsi_attr Structures
A gsi_attr points to an internal G2 Gateway structure that represents an
attribute of an item. The attribute can contain an attribute value or can contain a
gsi_item structure that represents a G2 object embedded in an attribute of
another G2 object.

API Functions that Return gsi_attr Structures

The following API functions return gsi_attr structures:

gsi_attr gsi_identifying_attr_of(registration,
identifying_attribute_index)

gsi_attr *gsi_attr_by_name(item-or-attribute, search-name)

gsi_attr *gsi_attrs_of(item-or-attribute)

attribute(s)

An array of gsi_attr
structures, representing the
attributes of this class of item.

This component is meaningful
only when the class name
component of this gsi_item
has a value.

gsi_attr *gsi_attrs_of(item)

gsi_attr *gsi_attr_by_name
(item,search_name)

void gsi_set_attrs
(item, new_attributes, count)

void gsi_set_attr_by_name
(destination_item, search_name,

source_item)

void gsi_set_item_of_attr
(attribute, source_item)

void gsi_clear_item(item)

void gsi_return_attrs
(registered_item, attributes, count,

context)

void gsi_return_timed_attrs
(registered_item, attributes, count,

context)

Components of gsi_item Structures

Component API Functions for Accessing
177

API Functions that Allocate and Reclaim gsi_attr
Structures

The following API functions allocate or reclaim gsi_attr structures:

gsi_attr *gsi_make_attrs(count)
gsi_attr *gsi_make_attrs_with_items(count)
void gsi_reclaim_attrs(attributes)
void gsi_reclaim_attrs_with_items(attributes)

For information about allocating and reclaiming gsi_attr and other G2 Gateway
data structures, see the following section.

Components of a gsi_attr Structure

A gsi_attr structure has a user-accessible name component and an item
component that can contain a gsi_item structure. This gsi_item structure
represents an G2 object that is embedded in the G2 object attribute represented by
the gsi_attr structure.

If the item component contains a gsi_item structure, the gsi_attr structure can
be used as an argument of API functions that access components of gsi_item
structures. In this case, the API functions access the components of the gsi_item
structure indirectly, through the gsi_attr structure that points to the gsi_item
structure.

The following figure illustrates the components of a gsi_attr structure that you
can access through API functions.

API Functions that Set and Get Values of gsi_attr Components

gsi_set_class_qualifier()

gsi_set_item_of_attr()

gsi_attr_name_of()

gsi_class_qualifier_of()

gsi_unqualified_attr_name_of()

gsi_item_of_attr()

gsi_attr_name_is_qualified()

gsi_set_attr_name()

Set component values Get component values

Functions for accessing
components of gsi_item

gsi_item
components

item

gsi_attr

name

class-qualifier

unqualifiedgsi_set_unqualified_attr_name()
178

gsi_symbol Structures
The following table describes the components of the gsi_attr structure that your
user code can access through API functions.

gsi_symbol Structures
The gsi_symbol data structure helps improve performance because it is more
efficient to compare symbols than to compare text strings. Symbols are like text
strings, but they are stored differently. The system stores all symbols in a table.
When creating a symbol given a text string, the system checks for an existing
symbol having the same name as the given text string. If the system finds a
symbol with the same name, it always uses the symbol.

When the GSI_NEW _SYMBOL_API runtime option is in effect, a symbol is a (void *)
pointer that does not change through the lifetime of the G2 Gateway process.
Calling gsi_make_symbol with a text string having the same contents as in an
earlier call always returns exactly the same result.

Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Components of gsi_attr Structures

Component API Functions for Accessing

name

The name of this
gsi_attr structure,
which represents the
name of an attribute of
a G2 object.

gsi_char *gsi_attr_name_of(attribute)
gsi_char *gsi_class_qualifier_of
(attribute)

gsi_char
*gsi_unqualified_attr_name_of
(attribute)

gsi_int gsi_attr_name_is_qualified
(attribute)

void gsi_set_attr_name(attribute,
attribute_name)
void gsi_set_class_qualifier
(attribute, attribute_name)

void gsi_set_unqualified_attr_name
(attribute, attribute_name)

item

A gsi_item structure
that represents a G2
item embedded in the
G2 attribute that this
gsi_attr represents.

gsi_item gsi_item_of_attr(attribute)

void gsi_set_item_of_attr(attribute,
source_item)
179

Note If gsi_use_new_symbol_api is not in effect, the gsi_make_symbol and
gsi_symbol_name functions return a result as a gsi_char* type, which is simply a
copy of the argument string.

API Functions that Return gsi_symbol Structures

The following API functions return gsi_symbol structures:

gsi_attr_name_of()

gsi_class_name_of()

gsi_class_qualifier_of()

gsi_make_symbol()

gsi_name_of()

*gsi_sym_array_of()

*gsi_sym_list_of()

gsi_sym_of()

gsi_unqualified_attr_name_of()

gsi_symbol_user_data()

An API Function that Allocates a gsi_symbol
Structure

The API function gsi_set_symbol_user_data() allocates a gsi_symbol
structure.

Accessing Components of a gsi_symbol Structure

The following figure illustrates the components of a gsi_symbol structure that
you can access with API functions:

gsi_name_of()

gsi_symbol_user_data()

Set component values Get component values

user data

name

gsi_symbol

gsi_set_symbol_user_data()
180

gsi_symbol Structures
Note Because you cannot set the name of a symbol, create a new symbol using
gsi_make_symbol.

The following table lists the components of the gsi_symbol structure that your
user code can access through API functions:

Components of gsi_symbol Structures

Component API Functions for Accessing

name

A symbol giving the name of the
specified data structure.

The symbol persists only as long as
the data structure with which it is
associated exists. If your user code
needs to keep the symbol for longer
than the life-span of the data
structure, it must copy the symbol
into memory that it has allocated
itself.

gsi_symbol gsi_name_of
(item_attr_or_reg)

user data

Reserved for use by your G2
Gateway user code. Can point to any
32-bit entity, including memory
allocated by a user-written function.

You can use this component to
associate any application-specific
information with the gsi_symbol.

G2 Gateway itself never reads from
nor writes to the user data
component.

void
gsi_set_symbol_user_data
(symbol, symbol_user_data)

gsi_symbol_user_data_type
gsi_symbol_user_data
(symbol)
181

182

8

Callback Functions
Describes the callback functions that you complete to implement your G2 Gateway
user code.

Introduction 184

Standard Callback Functions 185

Using Standard Callback Functions 185

Calling Other Functions from Callbacks 188

Values Returned by Callback Functions 189

Groups of Functionally Related Callback Functions 189

Standard Callbacks 192
gsi_close_fd 193
gsi_error_handler 194
gsi_g2_poll 195
gsi_get_data 198
gsi_get_tcp_port 201
gsi_initialize_context 203
gsi_missing_procedure_handler 208
gsi_not_writing_fd 209
gsi_open_fd 210
gsi_pause_context 211
gsi_read_callback 213
gsi_receive_deregistrations 214
gsi_receive_message 216
gsi_receive_registration 218
gsi_reset_context 221
gsi_resume_context 222
gsi_run_state_change 223
gsi_set_data 225
gsi_set_up 228
gsi_shutdown_context 230
gsi_start_context 232
183

gsi_write_callback 233
gsi_writing_fd 234

RPC Support Callback Functions 236
local functions 237
receiver functions 239
error receiver functions 241
watchdog functions 243

Using the Select Function in G2 Gateway 244

Introduction
Callback functions form the basis of your G2 Gateway user code. G2 Gateway
invokes callback functions automatically, when network events on a connection to
a G2 KB occur. G2 Gateway invokes each callback to respond to one particular
kind of event, such as the activation of a GSI interface or a request by G2 for a
value for a GSI variable.

You complete the code of stub versions of callback functions provided with G2
Gateway and provide the code for callback functions not provided with G2
Gateway in stub form to make them respond to these network events in the ways
required by your application.

G2 Gateway invokes callback functions only while your G2 Gateway bridge
process is executing under the control of gsi_run_loop(), the API function that
establishes the main event-processing loop of your G2 Gateway bridge process.
For information about gsi_run_loop(), see API Functions.

Caution Do not attempt to invoke callback functions directly from your G2 Gateway user
code. G2 Gateway automatically invokes all callbacks at the appropriate times.
184

Standard Callback Functions
Standard Callback Functions
There are a total of 23 standard callback functions, 12 of which existed in GSI 4.1
and 11 of which were added in G2 Gateway 5.0. For compatibility with GSI 4.1,
there are different rules for using the 4.1 functions than for using the 5.0 functions.

Using Standard Callback Functions
The way in which you use the standard callback functions differs depending
on whether:

• You are using the GSI 4.1 standard callback functions.

• You are using the standard callback functions introduced in G2 Gateway 5.0.

• Your code is linked to G2 statically.

• Your code is linked using dynamic libraries (DLLs).

The following sections provide instructions for each.

Using GSI 4.1 Callbacks with G2 Gateway Linked
Statically

The GSI 4.1 callback functions have required argument signatures and required
names, you cannot rename these functions.

G2 Gateway provides the argument signature for the GSI 4.1 callback functions.
The only requirement for using these callbacks is that a definition for each must
be included in your user code. The definition can be only a stub if you do not
intend to use the callback. See the section, Using Stub Versions of GSI 4.1
Callbacks, for more information.

Callbacks that Existed in GSI 4.1 Callbacks Added in G2 Gateway 5.0

gsi_set_up()
gsi_get_tcp_port()
gsi_initialize_context()
gsi_pause_context()
gsi_resume_context()
gsi_shutdown_context()
gsi_receive_registration()
gsi_receive_deregistrations()
gsi_g2_poll()
gsi_get_data()
gsi_set_data()
gsi_receive_message()

gsi_close_fd()
gsi_error_handler()
gsi_missing_procedure_handler()
gsi_open_fd()
gsi_read_callback()
gsi_run_state_change()
gsi_write_callback()
gsi_start_context()
gsi_reset_context()
gsi_writing_fd()
gsi_not_writing_fd()
185

Using GSI 4.1 Callbacks with G2 Gateway Linked
Dynamically

The GSI 4.1 callback functions have required argument signatures and required
names. You cannot rename these functions.

To use GSI 4.1 callback functions when you link G2 Gateway using DLLs:

1 Include a definition for each callback in your user code.

The definition can be only a stub if you do not intend to use the callback. See
the section, Using Stub Versions of GSI 4.1 Callbacks, for more information.

2 Use the standard gsi_main.h header file.

The gsi_main.h file contains a prototype declaration for each GSI 4.1 callback
function.

3 Set the C preprocessor flag GSI_USE_DLL when you compile your application.

See Defining C Preprocessor Flags for instructions on defining a C
preprocessor flag when you compile your G2 Gateway application.

4 Include a call to the GSI_SET_OPTIONS_FROM_COMPILE() before the call to
gsi_start() in your main() function.

The gsi_main.c file includes a call to GSI_SET_OPTIONS_FROM_COMPILE(). If you
are using the standard gsi_main.c file, you do not need to do anything for this
step.

Setting the compile flag GSI_USE_DLL and including a call to GSI_SET_OPTIONS_
FROM_COMPILE() in your main() function results in G2 Gateway calling the gsi_
initialize_callbacks() API function for each GSI 4.1 callback function.

Using Stub Versions of GSI 4.1 Callbacks

For each callback function that existed in GSI 4.1, you must include a definition.
The definition can be only a stub if you do not intend to use the callback.

G2 Gateway provides an uncompleted stub version of each of the GSI 4.1
standard named callback functions, in a file named skeleton.c. You can copy the
skeleton.c file to make your own source file, in which you can complete the
code of the stub functions.

In order for your G2 Gateway user code to link successfully, it must include all
the callback functions in skeleton.c. If you do not intend to use a particular
callback function in the skeleton.c file, your user code must nevertheless
include the stub version of that callback.
186

Using Standard Callback Functions
Note The skeleton.c file contains two utility functions, gsi_show_callback() and
gsi_show_registered_items(), that are invoked by several of the stub callbacks
in the file. These functions are provided for convenience only; callbacks are not
required to use them. gsi_show_callback() and gsi_show_registered_items()
are not themselves callback functions and are not part of the G2 Gateway library
of API functions.

Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically

The callback functions introduced in G2 Gateway 5.0 have required argument
signatures; however, the names can be user defined. The procedure to use 5.0
callback functions is the same regardless of whether you link with G2 Gateway
statically or using dynamic libraries (DLLs).

To declare and install G2 Gateway Version 5.0 callback functions:

1 Declare each callback function by calling the appropriate macro from your
header file.

G2 Gateway provides you with macros that create the appropriate prototype
for each 5.0 callback function. The format for the macros are:

specifier declare_callback_name(callback_name);

For example:

extern declare_gsi_error_handler(gsi_error_handler);

Note If you are using a C compiler that supports ANSI C, these macros generate
prototype declarations for the callbacks; otherwise, Kernighan and Ritchie
style declarations are generated.

2 Install each callback function by calling the appropriate install-macro before
the call to gsi_start() in your main() function.

G2 Gateway provides you with install-macros that install each 5.0 callback
function. The format for the macros are:

specifier install_callback_name(callback_name);

For example:

static gsi_install_error_handler(gsi_error_handler);

The install-macro expands into a call to gsi_initialize_callbacks(), with
the correct argument list.
187

Note If you do not use the install-macros, you can initialize each 5.0 callback
function individually using the gsi_initialize_callbacks() API function. This
method for initializing the callback functions is not recommended.

3 Write the function.

Note that you can change the name of the callback function to something else. For
example, you can use a function named my_error_handler() using the following
syntax:

extern declare_gsi_error_handler(my_error_handler);
static gsi_install_error_handler(my_error_handler);

Using Stub Versions of G2 Gateway 5.0 Callbacks

Unlike GSI 4.1 callback functions, you do not need a stub for the 5.0 callbacks.
There is no action that you must take for the G2 Gateway callback functions that
you do not intend to use.

Calling Other Functions from Callbacks
Your callback functions can make calls to other functions, including:

• G2 Gateway API functions, which are defined in the G2 Gateway object
libraries provided by Gensym. You make calls to these built-in functions
inside your user code functions to perform various GSI-related tasks, such as
returning data to G2.

Your callback functions can call any API functions except gsi_start(),
gsi_run_loop(), and gsi_pause(). These functions can be called only
outside the extent of any callback function.

For more information about specific G2 Gateway API functions, see API
Functions.

• User-written functions in your G2 Gateway user code.

• API functions for accessing the external system to which your G2 Gateway
bridge is connected or any third-party utility libraries that you need.

• Remote procedure calls (RPCs), which are local functions in your G2
Gateway bridge user code that can be called from G2. You can also set up
your bridge user code to call procedures found in your G2 knowledge base.

For more information about RPCs, see Remote Procedure Calls.
188

Values Returned by Callback Functions
Values Returned by Callback Functions
gsi_get_tcp_port() and gsi_initialize_context() are the only G2 Gateway
callback functions that can return a value. The return value of all other callback
functions is declared void.

Groups of Functionally Related Callback
Functions

Callback functions fall into several functionally related groups, as described in the
following sections.

Application Initialization

The following functions support the initial setup of a G2 Gateway application:

Both of these callbacks are executed by the API function gsi_start(). For a
general discussion about how to use these functions, see Using gsi_start().

Connection Management

G2 Gateway calls the following functions when connections are activated or
deactivated, or when a connected G2 process is paused or resumed:

For information about how to use these functions, see Managing a Connection
between G2 and a G2 Gateway Bridge.

Flow Control

G2 Gateway invokes the following functions when there is change in its ability to
read or write on an open connection, or when a file descriptor is opened or closed:

gsi_get_tcp_port()
gsi_set_up()

gsi_initialize_context()
gsi_resume_context()

gsi_pause_context()
gsi_shutdown_context()

gsi_read_callback()
gsi_open_fd()

gsi_write_callback()
gsi_close_fd()
189

Item Registration and Deregistration

G2 Gateway calls the following functions to register and deregister items with the
G2 Gateway bridge process:

For information about how G2 Gateway registers items, see Registering and
Deregistering Items.

Data Service

The following functions support data-service for GSI variables in G2:

For a general discussion about how to use these functions, see Implementing Data
Service in G2 Gateway.

Error Handling

G2 Gateway calls the following functions to handle errors on active contexts, or to
respond to a remote procedure call to a local function that has not been declared
in the G2 Gateway user code:

For information about how to signal errors for your G2 Gateway code and write
customized error-handling procedures, see Error Handling.

Message Passing

G2 Gateway calls the following function to receive text messages that G2 sends
using the G2 inform action:

For a general discussion of message passing, see Message Passing.

gsi_receive_registration()
gsi_receive_deregistrations()

gsi_get_data()
gsi_g2_poll()

gsi_set_data()

gsi_error_handler() gsi_missing_procedure_handler()

gsi_receive_message()
190

Groups of Functionally Related Callback Functions
Run State Change

G2 Gateway calls the following callback whenever the flow of control enters or
leaves G2 Gateway:

gsi_run_state_change()
191

Standard Callbacks
This section presents basic reference information about each of the standard
named callback functions. The functions are presented in alphabetical order.

gsi_close_fd
gsi_error_handler
gsi_g2_poll
gsi_get_data
gsi_get_tcp_port
gsi_initialize_context
gsi_missing_procedure_handler
gsi_not_writing_fd
gsi_open_fd
gsi_pause_context
gsi_read_callback
gsi_receive_deregistrations
gsi_receive_message
gsi_receive_registration
gsi_reset_context
gsi_resume_context
gsi_run_state_change
gsi_set_data
gsi_set_up
gsi_shutdown_context
gsi_start_context
gsi_write_callback
gsi_writing_fd
192

gsi_close_fd
gsi_close_fd
Called whenever a file descriptor for network I/O is closed.

Synopsis

void gsi_close_fd(gsi_int descriptor)

Description

gsi_close_fd() is called whenever a file descriptor for network I/O is closed.

gsi_open_fd() and gsi_close_fd() enable a bridge to wait until there is
network activity to which it must respond. Use of these callbacks, rather than the
API function gsi_pause(), is recommended if the bridge is handling non-
blocking I/O outside of the control of G2 Gateway. In this case, a mask containing
a 1 bit for each of the currently open file descriptors should be maintained, using
gsi_open_fd() and gsi_close_fd() as well as the non-G2 Gateway file
descriptors through which the bridge is performing the non-blocking I/O. This
mask, and possibly also a timeout, should be passed to the select() system
function, to perform the waiting.

Before you can use the gsi_close_fd() callback, you must declare and install it.
For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or
Dynamically.

Argument Description

descriptor The file descriptor.
193

gsi_error_handler
Called when errors occur in active contexts.

Synopsis

void gsi_error_handler(context, code, message)

Description

The gsi_error_handler() callback is invoked when an error occurs in any active
context. It receives argument values specifying the context in which the error
occurred, and the error code and message associated with that error.

You can complete the code of gsi_error_handler() to handle the errors in the
way that your application requires.

Before you can use the gsi_error_handler() callback, you must declare and
install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically.

Argument Description

gsi_int context The context in which the error occurs.

gsi_int code The error code associated with the error.

gsi_char *message The message associated with the error.
194

gsi_g2_poll
gsi_g2_poll
Seek data or perform other user-specified actions, repeatedly.

Synopsis

void gsi_g2_poll()

Description

Use gsi_g2_poll() to perform any task that must be done repeatedly, such as
polling an external system for data. A typical implementation of gsi_g2_poll()
checks which registered GSI variables need updating, retrieves any data values
available, packages the values into data structures, and sends these data
structures to G2 via one of these API functions:

• gsi_return_values()

• gsi_return_timed_values()

• gsi_return_attrs()

• gsi_return_timed_attrs()

G2 Gateway calls gsi_g2_poll() if the poll-external-system-for-data attribute of
the GSI interface is set to yes.

How often G2 Gateway calls gsi_g2_poll() is determined by the setting of the
scheduler-mode attribute of the Timing Parameters system table in the current KB
of the connected G2 process:

• If scheduler-mode is set to as fast as possible, G2 Gateway calls gsi_g2_
poll() as often as possible.

• If scheduler-mode is set to real time, G2 Gateway calls gsi_g2_poll()
approximately once per second.

The real time interval can vary, depending on the processing load of G2, and
on the value assigned to the priority-of-data-service attribute, which is found
under Data Server Parameters in the system tables of your KB.

Caution If you have specified a low priority in priority-of-data-service and your G2
application has a heavy processing load, gsi_g2_poll() may never be called.

• If scheduler-mode is set to simulated time, G2 calls gsi_g2_poll() at the end
of each scheduler tick.

If any tasks performed through gsi_g2_poll() take longer than 1 second, G2
Gateway queues the accumulated gsi_g2_poll() calls for future execution.
195

gsi_g2_poll() is stopped automatically when the G2 KB to which it is connected
is paused, and it resumes when the G2 KB is resumed.

For more information about the G2 system tables, see the G2 Reference Manual.

Example

The following gsi_g2_poll() callback updates the value of the data-value
attribute of a G2 object if the value for that attribute in the bridge has changed
since the last time when gsi_g2_poll() was executed.

Note This attribute is named “DATA-VALUE” in G2 Gateway.

A gsi_g2_poll() callback has no arguments through which it can receive
existing data structures. For this reason, gsi_g2_poll() must allocate any data
structures that it needs in order to send values back to G2. This gsi_g2_poll()
callback allocates the following data structures:

• A gsi_registered_item, to which gsi_g2_poll() assigns the handle of an
object in G2.

• A gsi_attr with an item.

The item allocated with this gsi_attr is used by this gsi_g2_poll() to carry
a value back to the data-value attribute of the object in G2.

This example assumes that the G2 Gateway user code includes the following
global variables:

• my_stored_object_handle, which contains the handle of the object in G2.
This variable can receive the handle either within the gsi_receive_
registrations() callback, or from a user-defined G2 Gateway function. The
gsi_g2_poll() callback assigns the handle in my_stored_object_handle to
the gsi_registered_item that it allocates.

• new_object_value, in which the user code stores the current value for the
object. The user code obtains values for this variable from the external system.

• old_object_value, in which the user code saves for future use the value with
which it updates the data-value attribute of the object in G2.

gsi_int new_object_value = 0;
gsi_int old_object_value = 0;
gsi_int my_stored_object_handle = 0;

. . .

/* gsi_g2_poll() callback function */

void gsi_g2_poll()
196

gsi_g2_poll
{
gsi_registered_item *object;
gsi_attr *ret_attr;

/* Include code here that gets a new value from external

system and stores it in new_object_value. If the new
value is equal to the old value, this callback returns
without updating the attribute. */

if(new_object_value == old_object_value)
return;

/* If the new attribute value is not equal to the old
value, update the attribute in the G2 object with the
new value. */

/* Allocate memory for the local object and attribute */

object = gsi_make_registered_items(1);
ret_attr = gsi_make_attrs_with_items(1);

/* Set the handle of the local object to the handle of
the G2 object to which the value will be returned. */

gsi_set_handle(object[0], my_stored_object_handle);

/* Set the object_index attribute name and value.
Note: Must enable object status return (if it is
disabled)in order to get the index back to the object */

gsi_set_attr_name(ret_attr[0], "DATA-VALUE");
gsi_set_int(ret_attr[0], new_object_value);

gsi_return_attrs(object[0], ret_attr, 1,
gsi_current_context());

/* Release the allocated memory */

gsi_reclaim_registered_items(object);
gsi_reclaim_attrs_with_items(ret_attr);

return;
} /* End of gsi_g2_poll() */
197

gsi_get_data
Respond to a request from G2 for a value for a data-served GSI variable.

Synopsis

void gsi_get_data(registered_items,count)

Description

G2 Gateway calls gsi_get_data() when it receives a request from G2 for a value
for one or more data-served GSI variables. For information about the events that
cause G2 to request G2 Gateway for a value for a GSI variable, see Returning
Solicited Data to G2.

G2 Gateway may also call gsi_get_data() repeatedly, at regular intervals,
depending on the settings of the retry-interval-after-timeout and timeout-for-
variables attributes of the G2 Inference Engine Parameters system table. If the
retry-interval-after-timeout attribute has a time interval value, G2 requests G2
Gateway for values for GSI variables immediately when the variables exceed the
time interval specified in timeout-for-variables, and repeatedly thereafter at the
interval specified in retry-interval-after-timeout. Setting retry-interval-after-timeout
to do-not-retry prevents G2 from retrying a variable. Note that these attributes
affect all variables in a KB. For more information about system engine
parameters, see the G2 Reference Manual.

Argument Description

gsi_registered _item
*registered_items

An array of one or more registered
items. G2 Gateway creates a
gsi_registered_item structure each
time G2 asks G2 Gateway to get a new
value for a GSI variable from an
external system, or to write the value of
a GSI variable to a data point in an
external system. The structure stores
the handle, current attribute values,
and other information associated with
the registered item.

For information about the components
of gsi_registered_item structures
and the API functions that access these
components, see gsi_registered_item
Data Structures.

gsi_int count Number of registered items.
198

gsi_get_data
To return the data to G2, include a call inside gsi_get_data() to one of the
following G2 Gateway API functions:

gsi_return_values()

gsi_return_timed_values()

gsi_return_attrs()

gsi_return_timed_attrs()

If you use gsi_return_values(), it can be convenient to pass to it the array
pointed to by registered_items, because this array is already allocated, is of the
correct size, and has handles already assigned.

Note If the G2 value of a quantitative variable is none when G2 Gateway makes a call to
gsi_get_data(), G2 sets the data type to gsi_null_tag. This is an indication that
there is no valid value available for the variable.

See also the discussion of G2 Gateway data service in the G2 Reference Manual.

Example

The following gsi_get_data() callback updates the value of the data-value
attribute of a G2 object. This example assumes that:

• The G2 Gateway user code obtains a new value for the data-value attribute
from an external system, and stores this value in a global variable named
new_object_value.

• The item passed to this function represents a G2 object that was passed to the
G2 Gateway bridge through a remote procedure call, using the as handle
grammar. Thus, the object’s handle value was sent to the bridge, but not its
attributes.

• The G2 object has an attribute named data-value. This callback passes the new
value to this attribute.

To return a value to the data-value attribute, this gsi_get_data() callback does
the following:

1 Allocates a gsi_registered_item structure and assigns to it the handle of the
G2 object. The handle value is the only meaningful information that this
structure carries.

2 Allocates a gsi_attr structure and assigns to it the new value for the data-
value attribute of the G2 object.

3 Calls the API function gsi_return_attrs() to return the new attribute value
to the G2 object designated by the handle value of the gsi_registered_item
structure.
199

4 Deallocates the gsi_registered_item and gsi_attr structures.

/* gsi_get_data() callback function */

void gsi_get_data(registered_items, count)
gsi_registered_item *registered_items;
gsi_int count;

{
gsi_registered_item *object;
gsi_attr *ret_attr;
gsi_int n;

/* Allocate memory for the local object and attribute */

object = gsi_make_registered_items(1);
ret_attr = gsi_make_attrs_with_items(1);

/* Loop through registered items sent to this function. */

for(n=0; n<count; n++)
{

/* Set the handle of the local object to the handle of
the G2 object to which the value will be returned */

gsi_set_handle(object[0],
gsi_handle_of(registered_items[n]));

/* Set the object_index attribute name and value.
Note: Must enable object status return (if it is
disabled) to get the index back to the object */

gsi_set_attr_name(ret_attr[0], "DATA-VALUE");
gsi_set_int(ret_attr[0], new_object_value);

gsi_return_attrs(object[0], ret_attr, 1,
gsi_current_context());

} /* End of for loop */

/* Release the allocated memory */
gsi_reclaim_registered_items(object);
gsi_reclaim_attrs_with_items(ret_attr);

return;

} /* End of gsi_get_data() */
200

gsi_get_tcp_port
gsi_get_tcp_port
Specify a default port number that a G2 Gateway process using TCP/IP can listen
on for connections from a G2 process.

Synopsis

gsi_int gsi_get_tcp_port()

Description

G2 Gateway calls gsi_get_tcp_port() at startup if no port number, or a port
number of 0, is specified on the command line that invokes the G2 Gateway
bridge process. gsi_get_tcp_port() specifies a default port number for the G2
Gateway process to listen on.

Use a return statement inside gsi_get_tcp_port() to return the value that
you want to specify as the default port number. If gsi_get_tcp_port()
returns a value of 0, G2 Gateway by default uses port number 22041, if it is
available. If 22041 is not available, G2 Gateway uses the first available port
number within the next 99 addresses.

If you use the -tcpipexact option when you activate a G2 Gateway interface, the
process will exit if the port is not available. For more information, see the
description of tcpipexact.

Note If TCP/IP is not installed, gsi_get_tcp_port() has no effect.

Examples

The following gsi_get_tcp_port()callback returns the value 0, which causes G2
Gateway to use the default port number, 22041, or the port number at the first
available address:

#define TCPIP_PORT_NUMBER 0

...

/* gsi_get_tcp_port() callback function */

Return Value Description

gsi_int The TCP/IP port number that G2 Gateway
will listen on for connections from a G2
process.
201

gsi_int gsi_get_tcp_port()
{

return(TCPIP_PORT_NUMBER);
} /* End of gsi_get_tcp_port() */

The following gsi_get_tcp_port() callback returns the port number 4000 if the
variable my_machine_name contains the string "DEVELOPMENT". Otherwise, it
returns the port number 4001.

/* gsi_get_tcp_port() callback function */

gsi_int gsi_get_tcp_port()
{

gsi_int tcpip_starting_port_number =
TCPIP_PORT_NUMBER;

if(!strcmp(my_machine_name,"DEVELOPMENT"))
tcpip_starting_port_number = 4000;

else
tcpip_starting_port_number = 4001;

return(tcpip_starting_port_number);
} /*End of gsi_get_tcp_port() */
202

gsi_initialize_context
gsi_initialize_context
Initialize a connection between a GSI interface in G2 and G2 Gateway, or reject the
connection.

Synopsis

gsi_int gsi_initialize_context(rpis, length)

Argument Description

gsi_char *rpis Points to the string specified for the remote-
process-initialization-string attribute of the
GSI interface that configures the connection
between this G2 Gateway process and a G2
process.

The string pointed to by the rpis argument
can be any user-specified string that enables
gsi_initialize_context() to perform
tasks such as initializing data structures,
opening a file for reading, starting a device,
turning on debugging, obtaining a database
user login and password, and opening
communication with the external system.

For information about how to specify the
remote-process-initialization-string attribute
of a GSI interface, see Remote-Process-
Initialization-String Attribute.

gsi_int length Number of characters (not including the
null terminator character) in rpis.
203

Description

G2 Gateway calls gsi_initialize_context() per context each time you activate
a GSI interface that specifies the machine name and port number on which this G2
Gateway application is listening.

You can use this callback to perform tasks such as:

• Validating connections from G2, as for a login procedure.

• Allocating and/or initializing global tables on a per-connection basis; that is,
tables which are unique to this connection.

• Declaring G2 procedures as remote procedures, so that your G2 Gateway
bridge process can invoke them. These remote procedure declarations are
valid only for the context through which the G2 process is connected to the G2
Gateway bridge.

An additional feature of this function is that it allows remote procedure calls and
message service after making a connection but before returning a value. This is
true regardless of whether gsi_initialize_context() eventually returns
GSI_ACCEPT or GSI_REJECT.

Return Value Description

gsi_int Must be GSI_ACCEPT or GSI_REJECT. This
value indicates your user code’s acceptance
or rejection, respectively, of the new
connection.

If this function returns GSI_ACCEPT, the
connection from G2 is accepted. G2 sets the
gsi-interface-status attribute of the GSI
interface to 2 (the connection is active).

If this function returns GSI_REJECT, the
connection from G2 is rejected. G2 sets gsi-
interface-status to –2 (the connection failed).
G2 Gateway assumes that the new
connection has been rejected by the user
code, and immediately shuts down the just-
opened context. If you are running in
continuous mode, gsi_run_loop()
processing continues. If you are running in
one-cycle mode, gsi_run_loop() exits.
204

gsi_initialize_context
Note To enable G2 to access local C functions in your bridge user code through remote
function calls, declare these C functions in gsi_set_up(), using the callback
function gsi_rpc_declare_local().

You can use the string pointed to by the rpis argument to perform tasks such as
initializing data structures, opening a file for reading, starting a device, turning
on debugging, passing a database user login and password, or opening
communication with the external system.

Note gsi_initialize_context() and gsi_get_tcp_port() are the only two
G2 Gateway callback functions that return a value.

Examples

The following gsi_initialize_context() callback declares a G2 procedure
named g2-custom-proc() as a remote procedure that can be invoked by your
G2 Gateway user code within any active context:

gsi_int context_procedure_hdl[50];

. . .

/* gsi_initialize_context() callback function */

gsi_int gsi_initialize_context(remote_process_init_string,
length)
gsi_char *remote_process_init_string;
gsi_int length;

{
gsi_int context_number;
context_number = gsi_current_context();

/* Call a user defined function here to perform context
specific initializations, such as allocating memory,
connecting to external systems, checking system
resources, managing logfiles, and so on. */

/* Declare any remote procedure calls here (GSI to g2).
Because remote procedure declarations are per
context, they cannot appear in gsi_set_up(). */

/* Declare G2-CUSTOM-PROC() as a remote procedure
that your G2 Gateway bridge can invoke. */
205

gsi_rpc_declare_remote(&context_procedure_hdl
[context_number],"G2-CUSTOM-PROC",
NULL,3,0,context_number);

/* The declaration above is available on every active
context. Thus, 'G2-CUSTOM-PROC' can be called from
within any active context. */

return(GSI_ACCEPT);
} /* End of gsi_initialize_context() */

The following gsi_initialize_context() callback opens a file whose filename
is specified by the remote-process-initialization-string attribute of the GSI interface
that configures this connection:

#define MAX_CONTEXTS 50
#define MAX_FNAME 25
char file_name[MAX_CONTEXTS][MAX_FNAME];
gsi_int file_status[MAX_CONTEXTS];
FILE *file_id[MAX_CONTEXTS] = {NULL};

. . .

/* gsi_initialize_context() callback function */

gsi_int gsi_initialize_context(rpis, length)
gsi_char *rpis;
gsi_int length;

{
gsi_char *msg_ptr;
gsi_int i;
gsi_int status;
206

gsi_initialize_context
/*
* Open a file for reading specified by G2.
*/

strcpy(file_name[current_context], rpis);
printf("\nInitializing data server, file = %s for

#%hd\n", rpis, current_context);
file_id[current_context] = fopen(rpis, "r");
printf("\nFile open state = %ld\n", (gsi_int)

file_id[current_context]);
if(file_id[current_context] == NULL) {

printf("\nCannot open file %s in gsi_init().\n",
rpis);

file_status[current_context] = CLOSED;
return(GSI_REJECT); }

else
file_status[current_context] = OPEN;

return(GSI_ACCEPT);

} /* End of gsi_initialize_context() */
207

gsi_missing_procedure_handler
Called whenever G2 makes a call to a G2 Gateway local function that has not been
declared in the bridge by a call to gsi_rpc_declare_local().

Synopsis

void gsi_missing_procedure_handler(name)

Description

gsi_missing_procedure_handler() enables your G2 Gateway user code to
designate a handler callback that is called whenever G2 makes a remote
procedure call to a G2 Gateway function that has not been declared by a call to
gsi_rpc_declare_local().

You can include a call to gsi_rpc_declare_local() within gsi_missing_
procedure_handler() to declare the undeclared local function. G2 Gateway
then invokes the local function in response to the call from G2.

Before you can use gsi_missing_procedure_handler(), you must declare
and install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2
Linked Statically or Dynamically.

Argument Description

gsi_char * name The name of your missing procedure
handler function.
208

gsi_not_writing_fd
gsi_not_writing_fd
Called whenever a specified file descriptor stops being in use by G2 Gateway for
writing.

Synopsis

void gsi_not_writing_fd (gsi_int file_descriptor)

Related Functions

Argument Description

gsi_int file_
descriptor

A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.

Function Description

gsi_open_fd() Called whenever a specified file descriptor
is opened for network I/O.

gsi_close_fd() Called whenever a file descriptor for
network I/O is closed.

gsi_writing_fd() Called whenever a specified file descriptor
is in use by G2 Gateway for writing.

gsi_watch_fd() Specifies a file descriptor that G2 Gateway
watches for network read or error activity.

gsi_unwatch_fd() Causes gsi_run_loop() to not wake up
when input or output takes place on a file
descriptor.

gsi_watch_fd_for_
writing()

Starts G2 Gateway watching for write
activity on a file descriptor.

gsi_unwatch_fd_
for_writing

Stops G2 Gateway from watching for write
activity on a file descriptor.

gsi_pause() Causes the bridge process to sleep for 1
second by default, or until a network event
occurs on a network connection to the
bridge process.
209

gsi_open_fd
Called whenever a specified file descriptor is opened for network I/O.

Synopsis

void gsi_open_fd(gsi_int descriptor)

Description

gsi_open_fd() and the callback gsi_close_fd() enable a bridge to wait until
there is network activity to which it must respond. Use of these callbacks, rather
than the API function gsi_pause(), is recommended if the bridge is handling
non-blocking I/O outside of the control of G2 Gateway. In this case, a mask
containing a 1 bit for each of the currently open file descriptors should be
maintained, using gsi_open_fd() and gsi_close_fd() as well as the non-G2
Gateway file descriptors through which the bridge is performing the non-
blocking I/O. This mask, and possibly also a timeout, should be passed to the
select() system function, to perform the waiting.

Before you can use the gsi_open_fd() callback, you must declare and install it.
For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or
Dynamically.

Argument Description

descriptor The file descriptor.
210

gsi_pause_context
gsi_pause_context
Called by G2 Gateway whenever any G2 process that is connected to this G2
Gateway process pauses its current knowledge base (KB).

Synopsis

void gsi_pause_context()

Description

gsi_pause_context() is useful for pausing any functions in your G2 Gateway
bridge process that operate in cooperation with G2. You can use gsi_pause_
context() to suspend these functions until G2 resumes operation.

For example, you can use gsi_pause_context() to halt unsolicited data
collection from a queue in the external system, record an event in a log file, or stop
the G2 Gateway watchdog timer invoked through the API function gsi_
watchdog(). If an external system is sending data to the G2 Gateway bridge
asynchronously to G2, gsi_pause_context() can arrange for the external system
to stop sending the data.

Your code in gsi_pause_context() should perform the reverse of your code in
gsi_resume_context(), which you can use to reenable G2 Gateway operations
that require a running KB.

Unsolicited reporting through gsi_g2_poll() works in cooperation with G2,
which means that calls to gsi_g2_poll() are stopped when the G2 process
pauses its current KB.

Related Procedures

Procedure Description

gsi_current_context() Returns the context number of the
current context.
211

Example

The following gsi_pause_context() callback illustrates where you can place
statements that suspend operations performed asynchronously to G2, tell an
external system that the G2 Gateway bridge process is paused, or perform any
other appropriate operations as required by your application.

/* gsi_pause_context() callback function */

void gsi_pause_context()
{

printf("gsi_pause_context in context %d\n",
gsi_current_context());

/* Suspend operations here. */

} /* End of gsi_pause_context() */
212

gsi_read_callback
gsi_read_callback
Called by G2 Gateway when there is a change in the state of G2 Gateway’s ability
to read data from G2 on an open connection.

Synopsis

void gsi_read_callback(context, state)

Description

gsi_read_callback() is called by G2 Gateway when there is a change in the state
of G2 Gateway’s ability to read data from G2. That is, G2 Gateway invokes this
callback when:

• It becomes impossible for G2 Gateway to read data, after a period when it was
possible; for example, when G2 Gateway tries to read data from G2 but there
is no longer any data to read. In this case, G2 Gateway calls gsi_read_
callback(), passes the number of the current context to context, and sets state
to GSI_IO_BLOCKED.

• It becomes possible for G2 Gateway to read data, after a period when it was
not possible; for example, when there is once again data in G2 that the bridge
can read. In this case, G2 Gateway calls gsi_read_callback(), passes the
number of the current context to context, and sets state to GSI_IO_UNBLOCKED.

You can use gsi_read_callback() for purposes such as accumulating
information about the flow of data, or to set indicators on a control panel.

Note Before you can use the gsi_read_callback() callback, you must declare and
install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically.

Argument Description

gsi_int context The number of the context through which
G2 Gateway is trying to read data from G2.

gsi_int state GSI_IO_BLOCKED (there is no data to read)

or

GSI_IO_UNBLOCKED (there is data to read)

These statuses are defined in gsi_main.h.
213

gsi_receive_deregistrations
Deregister a single registered variable.

Synopsis

void gsi_receive_deregistrations(registered_items, count)

Description

G2 Gateway calls gsi_receive_deregistrations():

• Before a GSI interface is shut down. G2 Gateway calls gsi_shutdown_
context()immediately after it calls gsi_receive_deregistrations().

• When a GSI variable is disabled, or deleted, or before a GSI variable is
redefined by a change to its data type or one of its identifying attributes.

A common use of this function is to free handles and any memory that was
allocated for variables when they were defined, and if the external system has a
scheduler, to notify the external system that the variables are no longer receiving
data.

The items involved in your gsi_receive_deregistrations() code must not
conflict with a subsequent gsi_get_data() call, or the reporting of unsolicited
(but unscheduled) values. gsi_receive_deregistrations() must free any
memory that was dynamically allocated for a particular item by gsi_receive_
registration().

For information about how G2 Gateway registers and deregisters items, see
Registering and Deregistering Items.

Argument Description

gsi_registered_item
*registered_items

An array of one or more registered items,
each of whose handle indicates a G2
variable whose G2 Gateway data service
was cancelled in some way.

For information about the components of
gsi_registered_item structures and the
API functions that access these
components, see gsi_registered_item
Data Structures.

gsi_int count Number of elements in the array pointed
to by registered_items.
214

gsi_receive_deregistrations
Example

The following gsi_receive_deregistrations() callback deregisters G2 objects,
identifying each object by its handle.

void gsi_receive_deregistrations(registered_items, count)
 gsi_registered_item registered_items[];
 gsi_int count;
{
 gsi_int obj_handle;

 /* For the G2 object passed to this function */

 obj_handle = gsi_handle_of(registered_items[0]);

 /* Make sure that the object handle is valid */

 if (gsi_registration_of(obj_handle, gsi_current_context()) ==
NULL) {

printf("Bad handle %d\n", obj_handle);
 }
 else {

 /* For this object perform object-specific deinitializations,
 such as deallocating memory and data structures, managing
 logfiles, disconnecting the object from an external system

or data point, and so on. These deallocations are commonly
the reverse of any allocation performed in the

 gsi_receive_registration() callback. */

 gsi_show_registered_items("gsi_receive_deregistrations",
 registered_items, count);

 }

 /* End of gsi_receive_deregistrations() */
}

215

gsi_receive_message
Receive a message from G2, sent as a result of a G2 inform action on a GSI message
server.

Synopsis

void gsi_receive_message(message, length)

Description

G2 Gateway calls gsi_receive_message() whenever a G2 KB executes an inform
action on an item that is a GSI message server. For information about how to use
GSI message servers to pass messages from G2 to G2 Gateway, see Message
Passing.

gsi_receive_message() can pass the text that it receives from G2 to any external
system with which this G2 Gateway bridge is communicating.

The maximum number of characters that G2 can send in a string to gsi_receive_
message() is 999,9999, including the null terminator.

Your gsi_receive_message() function must be coded to accept a C string of
characters that are encoded in the Gensym character set. The Gensym character
set can encode characters not found in the standard ASCII character set. For
information about the Gensym character set, see the G2 Reference Manual.

Example

The following gsi_receive_message() callback receives a message and returns
the message to G2, through a remote procedure call to a G2 procedure. This
example assumes that your user code does the following:

• Declares a G2 procedure as a remote function, by including the following call
in gsi_initialize_context():

gsi_rpc_declare_remote
 (&context_procedure_hdl[gsi_current_context()],

G2_CUSTOM_PROC,NULL,3,0,context_number);

Argument Description

gsi_char *message A pointer to the text string passed to the G2
Gateway bridge from G2 as a result of an
inform action.

gsi_int length Number of characters (not including the
null terminator) in message.
216

gsi_receive_message
• Allocates the following variable to hold the current context number:

gsi_int context_procedure_hdl[50];

/* gsi_receive_message() callback function */

void gsi_receive_message(message, length)
gsi_char *message;
gsi_int length;

{
gsi_item *return_args;
char temp_buff[128];

/* Receive a message from G2, manipulate it and place into
an item array for return as an RPC argument back to G2. */

/* Modify the original message */

sprintf(temp_buff,"%s %s","The message I received
is:",message);

/* Allocate three items to hold the return values */
return_args = gsi_make_items(3);

/* arg0 = the modified message
arg1 = the new length of the message
arg2 = a symbol identifying the message */

/* Load three values into the return item structure */
gsi_set_str(return_args[0], temp_buff);
gsi_set_int(return_args[1], strlen(temp_buff));
gsi_set_sym(return_args[2], "GENSYM-MESSAGE");

/* Send the values back to the G2 procedure identified by
context_procedure_hdl[gsi_current_context()] */

gsi_rpc_start(context_procedure_hdl
[gsi_current_context()],return_args,
gsi_current_context());

gsi_reclaim_items(return_args);

} /* End of gsi_receive_message() */
217

gsi_receive_registration
Called when G2 registers an item with G2 Gateway.

Synopsis

void gsi_receive_registration(registration)

Description

G2 Gateway calls gsi_receive_registration() when:

• G2 tries to map a GSI variable to a data point in an external system. This
happens the first time when G2 requests G2 Gateway to read from or write to
the GSI variable, or immediately after any GSI variable’s data type or
identifying attributes are modified.

• G2 calls a local function in G2 Gateway and passes a handle for a G2 item that
has not previously been registered. gsi_receive_registration() is called
before the local function is invoked in G2 Gateway.

You can use gsi_receive_registration() to perform tasks such as initializing
the external data point, allocating memory, or returning the variable’s network
handle to an attribute of the variable for some future use.

For more information about how items are registered, see Item Passing.

See also the description of the G2 system procedure g2-register-on-network() in
the G2 System Procedures Reference Manual.

Example

The gsi_receive_registration() callback shown below does the following:

1 Stores the handle of a gsi_registered_item in a variable named obj_handle.

2 Allocates a gsi_registered_item named object, and an attribute named
ret_attr. The callback uses these structures to return a value to the registered
G2 object.

Argument Description

gsi_registration
registration

Specifies the data type of the variable
being registered, the default update
interval, and the six identifying
attributes.
218

gsi_receive_registration
3 Assigns the handle stored in obj_handle to the handle component of the
newly allocated gsi_registered_item structure named object. The object
structure now has the same handle as the registered G2 object.

4 Assigns the name OBJECT-HANDLE to the name component of the structure ret_
attr. This example assumes that the registered G2 object has an attribute
named object-handle.

5 Assigns the value of obj_handle to the ret_attr structure.

6 Calls gsi_return_attrs() to return the value in the ret_attr structure to the
object-handle attribute of the registered G2 object.

/* gsi_receive_registration() callback function */

void gsi_receive_registration(item_registration)
gsi_registration item_registration;

{
gsi_registered_item *object;
gsi_attr *ret_attr;
gsi_int obj_handle;

/* Get the item handle of this item */
obj_handle = gsi_handle_of(item_registration);

/* Store this object handle for later use */
my_stored_object_handle = obj_handle;

/* Allocate memory for the local object and attribute */
object = gsi_make_registered_items(1);
ret_attr = gsi_make_attrs_with_items(1);

/* Set the handle of the local object to the handle of
the item_registration object */
gsi_set_handle(object[0], obj_handle);

/* For this object, identified by the object handle, perform
object-specific initializations, such as allocating memory and
data structures, managing logfiles, connecting the object to an
external system or data point, and so on. These operations
_deregistrations(). */

/* Initialize the object here */

/* Assume that there is an attribute of the
item_registration object called 'OBJECT-HANDLE'. Set
the OBJECT-HANDLE attribute name and value of the
object */
gsi_set_attr_name(ret_attr[0], "OBJECT-HANDLE");
219

gsi_set_int(ret_attr[0], obj_handle);
gsi_return_attrs(object[0], ret_attr, 1,

gsi_current_context());

/* Release the allocated memory */
gsi_reclaim_registered_items(object);
gsi_reclaim_attrs_with_items(ret_attr);

return;

} /* End of gsi_receive_registration() *
220

gsi_reset_context
gsi_reset_context
Called by G2 Gateway whenever any G2 process that is connected to this G2
process through a permanent connection resets its current knowledge base (KB).

Synopsis

void gsi_reset_context()

Description

Use this callback to respond as needed whenever G2 is reset. Clearing a KB first
resets it, calling gsi_reset_context(). Restarting a KB first resets and then starts it,
calling first gsi_reset_context() and then gsi_start_context().

Note This callback is applicable only to permanent connections.
221

gsi_resume_context
Called by G2 Gateway when a connected G2 process resumes its current KB.

Synopsis

void gsi_resume_context()

Description

G2 Gateway calls gsi_resume_context() when a connected G2 process resumes
running its current knowledge base (KB).

If your bridge has any asynchronous operations that you have suspended within
your code for gsi_pause_context(), you can include code in gsi_resume_
context() to resume these operations.

For example, you can use gsi_resume_context() to prepare the external system
to access data, resume unsolicited data collection, record events in a log file, or
inform a G2 operator that the application has resumed.

Note When the connected G2 process is paused, a variable can still be registered and
deregistered.

Example

The following gsi_resume_context() callback prints a message saying that the
context has been resumed, and calls a user-defined procedure, check_for_
queued_messages(), that checks for messages received by the context while it
was paused.

/* gsi_resume_context() callback function */

void gsi_resume_context()
{

printf("gsi_resume_context in context %d\n",
gsi_current_context());

/* No longer idle. Service events that occured
while context was paused. */
check_for_queued_messages();

} /* End of gsi_resume_context() */
222

gsi_run_state_change
gsi_run_state_change
Called whenever the flow of control enters or leaves G2 Gateway.

Synopsis

void gsi_run_state_change(gsi_int direction, gsi_int type,
char *name)

Description

The direction codes GSI_RUN_STATE_DIRECTION_ENTERING_GSI and GSI_RUN_
STATE_DIRECTION_LEAVING_GSI are used with the state change types GSI_RUN_
STATE_TYPE_API, GSI_RUN_STATE_TYPE_CALLBACK, and GSI_RUN_STATE_TYPE_
WAIT.

The direction codes GSI_RUN_STATE_ENTERING_WATCHDOG, GSI_RUN_STATE_
LEAVING_WATCHDOG, and GSI_RUN_STATE_DIRECTION_ENTERING_GSI_BY_SIGNAL
are used with the state change type GSI_RUN_STATE_TYPE_SIGNAL.

Argument Description

direction The direction in which the flow of control changed.
The possible values are:

GSI_RUN_STATE_DIRECTION_ENTERING_GSI
GSI_RUN_STATE_DIRECTION_LEAVING_GSI
GSI_RUN_STATE_ENTERING_WATCHDOG
GSI_RUN_STATE_LEAVING_WATCHDOG
GSI_RUN_STATE_DIRECTION_ENTERING_GSI_
BY_SIGNAL

type The kind of state change that occurred. The possible
values are:

GSI_RUN_STATE_TYPE_API
GSI_RUN_STATE_TYPE_CALLBACK
GSI_RUN_STATE_TYPE_WAIT
GSI_RUN_STATE_TYPE_SIGNAL

name The name of the API function or callback the G2
Gateway entered or left, causing the run state
change.
223

Note Using the gsi_run_state_change callback to manage a lock is prone to hangs.
Use the GSI_PROTECT_INNER_CALLS runtime option to prevent hangs in
applications that use the gsi_run_state_change() callback

Note Before you can use gsi_run_state_change(), you must declare and install it. For
instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or
Dynamically
224

gsi_set_data
gsi_set_data
Called when G2 executes one or more set actions on a data served GSI variable.

Synopsis

void gsi_set_data(registered_items, count)

Description

The G2 set action sends a request to G2 Gateway to set the value of an external
data point that is mapped to a GSI variable in the G2 KB.

The set action does not change the value of the GSI variable in G2.

G2 sends handles to G2 Gateway for all requests for set operations, either through
a rule or a procedure, that have occurred since the last clock tick. G2 Gateway
packages the handles into gsi_registration structures and passes them to gsi_
set_data().

Implementations of gsi_set_data() frequently include one or more calls to G2
Gateway return functions, in order to echo the values being set in the external
system back to the G2 process. In this way, you can arrange for the last-recorded-
value attribute of a GSI variable to change only after its corresponding value in
the external system has changed.

Argument Description

gsi_registered_
item *registered_
items

Array of one or more registered items. Each
item has a handle that indicates a G2
variable with G2 Gateway data service
requesting to set a value to the external data
point to which it is mapped. The type and
value of each registered item can be
referenced to set the external data point.

gsi_int count Number of registered items referenced in
the registered_items argument.
225

Example

The following gsi_set_data() callback:

• Receives an array of registered items from G2.

• Loops through the array, determining the data type of each item.

• Sets global variables to the values of the items whose types correspond to the
types of the global variables.

This example assumes:

• That each registered item has one of the following handles, which indicate the
data type of the item: string_handle, symbol_handle, float64_handle,
integer_handle, or logical_handle.

• The G2 Gateway user code includes the global variables string_dat,
symbol_dat, float64_dat, integer_dat and logical_dat to receive
the values of the registered items.

/* gsi_set_data() callback function */

void gsi_set_data(registered_item_array, count)
gsi_registered_item *registered_item_array;
gsi_int count;

{
gsi_int i;

/* For each object sent by G2, set a global variable in
accordance with its type. */

for(i=0; i<count; ++i) {

if(gsi_handle_of(registered_item_array[i]) ==
string_handle) {
strcpy(string_dat,

gsi_str_of(registered_item_array[i]));
continue; }

if(gsi_handle_of(registered_item_array[i]) ==
symbol_handle) {
strcpy(symbol_dat,

gsi_sym_of(registered_item_array[i]));
continue; }

if(gsi_handle_of(registered_item_array[i]) ==
float64_handle) {
float64_dat = gsi_flt_of(registered_item_array[i]);
continue; }
226

gsi_set_data
if(gsi_handle_of(registered_item_array[i]) ==
integer_handle) {
integer_dat = gsi_int_of(registered_item_array[i]);
continue; }

if(gsi_handle_of(registered_item_array[i]) ==
logical_handle) {
logical_dat = gsi_log_of(registered_item_array[i]);
continue; }

} /* End of for loop */

} /* End of gsi_set_data() */
227

gsi_set_up
Perform G2 Gateway-related operations that need to be performed only once
during the lifetime of the bridge process.

Synopsis

void gsi_set_up()

Description

gsi_set_up() is called by the API function gsi_start() before it calls any other
G2 Gateway callback function.

The following operations can be performed in gsi_set_up():

• Installing a custom error handler.

• Setting or resetting G2 Gateway run-time options.

• Declaring local functions that G2 can call as remote procedures.

• Allocating arrays of G2 Gateway structures.

• Initializing global variable.

• Executing any operation that requires a one-time startup when the bridge is
started.

For an example of how to perform these operations, see Performing Once-Only
Operations through gsi_set_up().

Note that remote declarations for G2 procedures (as opposed to local declarations
for G2 Gateway functions) are placed in gsi_initialize_context(), rather than
gsi_set_up(), because remote procedures are per context. gsi_set_up() is
called once during the life of the G2 Gateway application process. gsi_
initialize_context() is called once for each context created.
228

gsi_set_up
Example

The following gsi_set_up() callback installs an error handler, declares local
functions that can be called by G2, and allocates G2 Gateway structures:

/* gsi_set_up() callback function */

void gsi_set_up()
{

gsi_item error_object;
gsi_attr *error_object_attrs;
gsi_attr *name_attr_ptr;
gsi_attr name_attr;

/* Install custom error handler. */

gsi_install_error_handler(itemtest_error_handler);

/* Declare local functions called by G2. */

gsi_rpc_declare_local(receive_item_or_value,
"RECEIVE-AND-DISPLAY-ITEM");

gsi_rpc_declare_local(receive_and_return_copy,
"RECEIVE-AND-RETURN-ITEM-COPY");

gsi_rpc_declare_local(receive_item_transfer,
"RECEIVE-AND-DISPLAY-TRANSFER");

gsi_rpc_declare_local(receive_request_for_copy,
"RECEIVE-REQUEST-ITEM-COPY");

/*
* Allocate and set up context-independent global
* G2 Gateway structures.
*/

error_object_ptr = gsi_make_items(1);
error_object = *error_object_ptr;
name_attr_ptr = gsi_make_attrs_with_items(1);
name_attr = *name_attr_ptr;
gsi_set_attr_name(name_attr,"NAME");
gsi_set_sym(name_attr,"ERROR-OBJECT");
gsi_set_attrs(error_object,name_attr_ptr,1);
gsi_set_class_name(error_object,"OBJECT");

} /* End of gsi_set_up */
229

gsi_shutdown_context
Shut down a context and perform operations necessary to shut down the external
system and clean up the bridge process.

Synopsis

void gsi_shutdown_context()

Description

G2 Gateway calls gsi_shutdown_context() when:

• The connected G2 process disables, deactivates, or deletes the GSI interface.

• The connected G2 process changes the text of the gsi-connection-configuration
attribute of the GSI interface that configures this context.

• When the connected G2 is reset.

• When a network error or failure causes the connection to the G2 process to be
lost.

G2 Gateway calls gsi_shutdown_context() immediately after it calls gsi_
receive_deregistrations().

By the time G2 Gateway calls gsi_shutdown_context(), G2 has already closed
the network connection that supports the context being shut down, or the
connection has already been lost due to a network error or failure.

Because the network connection is already closed:

Do not try to send data to G2 or invoke any G2 procedures from gsi_shutdown_
context() through the context that is being shut down.

Do not try to call gsi_context_socket() from gsi_shutdown_context(). If you
need to perform actions when a socket is opened or closed, do this through the
callbacks gsi_open_fd() and gsi_close_fd().
230

gsi_shutdown_context
Example

The following gsi_shutdown_context() callback checks to see whether a file
specified by the number of the current context is open, and closes this file if it is
open, before shutting down the current context:

#define CLOSED 1
#define MAX_CONTEXTS 50
gsi_int file_status[MAX_CONTEXTS];
FILE *file_id[MAX_CONTEXTS] = {NULL};

. . .

/* gsi_shutdown_context() callback function */

void gsi_shutdown_context()
{

if(file_status[current_context] != CLOSED) {
fclose(file_id[current_context]);
file_status[current_context] = CLOSED; }

} /* End of gsi_shutdown_context() */
231

gsi_start_context
Called by G2 Gateway whenever any G2 process that is connected to this G2
process through a permanent connection starts its current knowledge base (KB).

Synopsis

void gsi_start_context()

Description

Use this callback to respond as needed whenever G2 is started. Restarting a KB
first resets and then starts it, calling first gsi_reset_context() and then gsi_start_
context().

Note This callback is applicable only to permanent connections.
232

gsi_write_callback
gsi_write_callback
Called by G2 Gateway when there is a change in the state of G2 Gateway’s ability
to write data to G2 on an open connection.

Synopsis

void gsi_write_callback(context, state)

Description

gsi_write_callback() is called by G2 Gateway when there is a change in the
state of G2 Gateway’s ability to write data to G2. That is, G2 Gateway invokes this
callback when:

• It becomes impossible for G2 Gateway to write data to G2, after a period when
it was possible; for example, when the G2 is reading data more slowly than G2
Gateway is writing it and the operating systems buffers have become full. In
this case, G2 Gateway calls gsi_write_callback(), passes the number of the
current context to context, and sets state to GSI_IO_BLOCKED.

• It becomes possible for G2 Gateway to write data, after a period when it was
not possible; for example, when G2 is once again able to read the data that G2
Gateway is writing. In this case, G2 Gateway calls gsi_write_callback(),
passes the number of the current context to context, and sets state to GSI_IO_
UNBLOCKED.

You can use gsi_write_callback() for purposes such as accumulating
information about the flow of data, or to set indicators on a control panel.

Note If you intend to use gsi_write_callback(), you must declare it as described in
Calling Other Functions from Callbacks, even if you are not using G2 Gateway as
a DLL.

Argument Description

gsi_int context The number of context through which G2
Gateway is trying to write data to the G2.

gsi_int state GSI_IO_BLOCKED: The network cannot
deliver the data.

GSI_IO_UNBLOCKED: The network can
deliver the data.

These statuses are defined in gsi_main.h.
233

gsi_writing_fd
Called whenever a specified file descriptor is in use by G2 Gateway for writing.

Synopsis

void gsi_writing_fd (gsi_int file_descriptor)

Description

gsi_writing_fd() and the three callbacks gsi_open_fd(), gsi_close_fd(), and
gsi_not_writing_fd() enable a bridge to wait until there is network activity to
which it must respond. Use of these callbacks, rather than the API function gsi_
pause(), is recommended if the bridge is handling non-blocking I/O outside of
the control of G2 Gateway. In this case, a mask containing a 1 bit for each of the
currently open file descriptors should be maintained, using gsi_open_fd() and
gsi_close_fd() as well as the non-G2 Gateway file descriptors through which
the bridge is performing the non-blocking I/O. This mask, and possibly also a
timeout, should be passed to the select() system function, to perform the
waiting.

Related Functions

Argument Description

gsi_int file_
descriptor

A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.

Function Description

gsi_open_fd() Called whenever a specified file descriptor
is opened for network I/O.

gsi_close_fd() Called whenever a file descriptor for
network I/O is closed.

gsi_not_writing_
fd()

Called whenever a specified file descriptor
stops being in use by G2 Gateway for
writing.

gsi_watch_fd() Specifies a file descriptor that G2 Gateway
watches for network read or error activity.
234

gsi_writing_fd
gsi_unwatch_fd() Causes gsi_run_loop() to not wake up
when input or output takes place on a file
descriptor.

gsi_watch_fd_for_
writing()

Starts G2 Gateway watching for write
activity on a file descriptor.

gsi_unwatch_fd_
for_writing

Stops G2 Gateway from watching for write
activity on a file descriptor.

gsi_pause() Causes the bridge process to sleep for 1
second by default, or until a network event
occurs on a network connection to the
bridge process.

Function Description
235

RPC Support Callback Functions
To support RPCs between G2 and G2 Gateway, you write local functions and
receiver functions in your G2 Gateway user code. G2 can invoke (as remote
procedures) G2 Gateway local functions. When G2 Gateway invokes (as a remote
procedure) a G2 procedure, the G2 procedure can return values by invoking a G2
Gateway receiver function.

The RPC support callback functions include:

• Local functions invoked as remote procedures by G2.

• Receiver functions, which receive values returned by G2 procedures invoked
as remote procedures by G2 Gateway.

• Error receiver functions, which receive error values returned by G2
procedures invoked as remote procedures by G2 Gateway.

See the following sections for a description of these types of callback functions:

• local functions.

• receiver functions.

• error receiver functions.

• watchdog functions.

See these other sections for instruction on using the functions:

• Writing a G2 Gateway Local Function to be Called by G2 for information on
using local functions.

• Defining a Function to Receive Values Returned by G2 for information on
using receiver functions.
236

local functions
local functions
A user-defined G2 Gateway function that G2 can call or start as a remote
procedure.

Synopsis

void local_function(procedure_user_data, rpc_arguments,
count, call_identifier)

Description

A G2 procedure can send values to a G2 Gateway bridge by invoking a local
function in the bridge. The local function can have any name that you specify;
however, it must have the arguments of the types specified in the Synopsis
section above.

Argument Description

gsi_procedure_
user_data_type
procedure_user_data

User data associated with the call to the
local function made by G2. To use this
argument, you must compile your G2
Gateway code with the GSI_USE_USER_
DATA_FOR_CALLBACKS C preprocessor flag
defined or use the corresponding compile
time switch. For more info see Call
Identifiers for Remote Procedure Calls.

This argument is optional.

gsi_item *rpc_
arguments

An array of gsi_item. Items passed from G2
to G2 Gateway are stored as elements of this
array.

gsi_int count An integer that indicates the number of gsi_
item structures in the array.

gsi_call_
identifier_type
call_identifier

An integer that G2 generates to identify a
particular remote procedure call to a G2
Gateway local function, within the current
context. The gsi_rpc_return_values() or
gsi_rpc_return_error_values() function
references call_identifier to indicate the
outstanding remote procedure call within a
specified context to return values to in G2.
237

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare_gsi_rpc_local_fn to create the appropriate
prototype declaration. The syntax is:

specifier declare_gsi_rpc_local_fn(local_function_name);

For example:

static declare_gsi_rpc_local_fn(my_local_function);

Note If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

Each G2 Gateway local function that you want to call from G2 must have the
arguments: arguments, count, and call_identifier.

It can also have a procedure_user_data argument, if you compile your G2 Gateway
application with the GSI_USE_USER_DATA_FOR_CALLBACKS C preprocessor flag
defined or use the corresponding compile time switch. For information about
setting compile time switches, see Call Identifiers for Remote Procedure Calls. For
information about how to use the procedure_user_data argument, see Procedure
User Data for Remote Procedure Calls.

You must declare each local function to be invocable, as a remote procedure, by a
connected G2 process. You do so using the API function gsi_rpc_declare_
local(). If the declaration of the local function is missing, the callback function
gsi_missing_procedure() is called.

To return values to G2, a local function can call the API function gsi_rpc_
return_values(). For information about this function, see API Functions.

To return error values to G2, a local function can call the API function gsi_
return_error_values(). For information about this function, see gsi_rpc_
return_error_values.

If the G2 Gateway local function is invoked by a start action in G2, the call_
identifier argument of the local function is set to GSI_CALL_HANDLE_OF_START. In
this case, the local function should not call gsi_rpc_return_values(), because
G2 is not expecting the local function to return any values to it.

However, a local function invoked by a start action in G2 can call gsi_rpc_
return_error_values() to signal an error to G2.
238

receiver functions
receiver functions
A user-defined G2 Gateway function to which a G2 procedure, invoked remotely
by a G2 Gateway bridge, can return values.

Synopsis

void receiver_function(procedure_user_data, arguments,
count, call_identifier)

Argument Description

gsi_procedure_
user_data_type
procedure_user_data

User data that G2 passes to G2 Gateway.
The receiver function can include this
argument to receive user data only if you
compile your G2 Gateway application with
the GSI_USE_USER_DATA_FOR_CALLBACKS
preprocessor macro defined or use the
corresponding compile time switch. For
more info see Call Identifiers for Remote
Procedure Calls.

This argument is optional.

gsi_item
*arguments

An array of gsi_item, which contains the
data values that G2 is returning to the
bridge process.

gsi_int count An integer specifying the number of values
in the arguments array.

gsi_call_
identifier_type
call_identifier

Data that G2 sends to G2 Gateway to
identify this particular call to the receiver
function. The receiver function can include
this argument to receive a call identifier
value only if you compile your G2 Gateway
application with the GSI_USE_USER_DATA_
FOR_CALLBACKS preprocessor macro
defined.

This argument is optional.
239

Description

A G2 procedure invoked by a G2 Gateway bridge can return values to the bridge
by invoking a receiver function in the bridge. The receiver function can have any
name that you specify; however, it must have the arguments of the types specified
in the Synopsis section above.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare_gsi_rpc_receiver_fn to create the appropriate
prototype declaration. The syntax is:

specifier declare_gsi_rpc_receiver_fn(receiver_function_name);

For example:

static declare_gsi_rpc_receiver_fn(my_receiver_function);

Note If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

You must also specify the receiver function to which a G2 procedure can return
values in the call to gsi_rpc_declare_remote() or gsi_rpc_declare_remote_
with_error_handler_and_user_data() that you use to declare the G2 procedure
as a remote procedure.
240

error receiver functions
error receiver functions
A user-defined G2 Gateway function to which a G2 procedure, invoked remotely
by a G2 Gateway bridge, can return error values.

Synopsis

void error_handler(arguments)

Argument Description

gsi_procedure_
user_data_type
procedure_user_data

User data that G2 passes to G2 Gateway. The
receiver function can include this argument to
receive user data only if you compile your G2
Gateway application with the GSI_USE_USER_
DATA_FOR_CALLBACKS preprocessor macro
defined or use the corresponding compile time
switch. For more info see Call Identifiers for
Remote Procedure Calls.

gsi_item
*arguments

Can be either:

• A gsi_item representing an error object
in G2.

• A symbolic-expression and a text-expression,
similar to the arguments of the signal G2
procedure statement.

These arguments are identical in meaning to the
error_arguments in a call to gsi_rpc_return_
error_values(). For more information about
these arguments, see gsi_rpc_return_error_
values.

gsi_int count An integer specifying the number of values in the
arguments array.

gsi_call_
identifier_type
call_identifier

Data that G2 sends to G2 Gateway to identify this
particular call to the receiver function. The
receiver function can include this argument to
receive a call identifier value only if you compile
your G2 Gateway application with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor macro
defined.
241

Description

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you can specify an error receiver function in the bridge to
which G2 can return error values in the case of an error.

To do this, you must use the API function gsi_rpc_declare_remote_with_
error_handler_and_user_data() to declare the G2 procedure as a remote
procedure. For information about this function, see gsi_rpc_declare_
remote_with_error_handler_and_user_data.

The error receiver function can perform any operations necessary for the
application, including evaluation of the error data returned by G2.
242

watchdog functions
watchdog functions
Called by G2 Gateway when a a time-out interval specified in a call to
gsi_watchdog() expires.

Synopsis

void user_watchdog_function()

Description

You can write a watchdog function to perform any tasks that you want performed
after a specified interval of time.

You specify both a particular watchdog function, and the interval of time after
which the watchdog function is called, in a call to the API function gsi_
watchdog(). When gsi_watchdog() is called, a watchdog timer, internal to GSI,
begins counting down to zero from a number of seconds, which must be greater
than or equal to zero.

If gsi_watchdog() is called again before the time-out period expires, GSI’s own
internal timer is set again to timeout_interval, which puts off the call to the user-
written watchdog function.

At any time, by calling gsi_watchdog() and passing it a timeout_interval of zero
(0), your G2 Gateway application can disable G2 Gateway’s internal watchdog
timer.

Note gsi_watchdog() is not supported on Windows.

You must declare each watchdog function in your header file. As a convenience,
you can use the macro declare_gsi_watchdog_function to create the
appropriate prototype declaration. The syntax is:

specifier declare_gsi_watchdog_function(watchdog_function_name);

For example:

static declare_gsi_watchdog_function(my_watchdog_function);
243

Using the Select Function in G2 Gateway
The C-library select() function lets you wait until activity is present on any one
of a specified set of file descriptors (fds). Use the select() function when writing
a bridge that performs network I/O that is independent of G2 Gateway, and
needs to determine when activity occurs on both the bridge’s fds, and on the fds
of G2 Gateway.

G2 Gateway provides functions for:

• A bridge to inform G2 Gateway of its file descriptors.

• G2 Gateway to inform the bridge of its file descriptors.

While it is not necessary for a bridge to use either kind of function, using at least
one kind helps to achieve optimal performance.

Use the functions as follows:

If a bridge includes a select() statement with only the bridge’s fds, then the
bridge may experience a delay equal to the timeout value you supply to the
select() statement. Specifying a timeout of null causes the bridge to hang.

Similarly, if the bridge calls gsi_pause() without first telling G2 Gateway of the
bridge’s fds, a delay equal to the default timeout, or that specified by gsi_set_
pause_timeout(), may occur when there is activity on the bridge’s fds.

Supplying Arguments to the Select Function

This section shows you how to use G2 Gateway API functions to create values for
readfds, writefds, and exceptfds. For information about the C-library
select() function itself, its other arguments, and its return value, see the
documentation for that function.

These functions... Are called by...

gsi_watch_fd
gsi_unwatch_fd
gsi_watch_fd_for_writing
gsi_unwatch_fd_for_writing

A bridge to inform G2 Gateway of
its fds.

G2 Gateway then uses this
information inside gsi_pause() so
that if there is activity on any
bridge fd, gsi_pause() returns to
the user.

gsi_open_fd
gsi_close_fd
gsi_writing_fd
gsi_not_writing_fd

G2 Gateway to inform the bridge
of its fds, so that a select()
statement in the bridge can wake
up whenever activity occurs on a
G2 Gateway fd.
244

Using the Select Function in G2 Gateway
The syntax of the select() function is:

int select(int maxfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *tvptr)

The following code example shows how to supply arguments to the select()
function:

#include "gsi_main.h"

fd_set all_read_fds, all_write_fds;
fd_set select_read_fds, select_write_fds, select_except_fds;
int max_fd = 0;
declare_gsi_open_fd(gsi_open_fd);
declare_gsi_close_fd(gsi_close_fd);
declare_gsi_writing_fd(gsi_writing_fd);
declare_gsi_not_writing_fd(gsi_not_writing_fd);

Argument Description

fd_set *readfds An fd_set that includes both the bridge’s fds and
those of G2 Gateway. Every time gsi_open_fd()
is called, you should add the fd argument of that
function to the select readfds argument.

Every time gsi_close_fd() is called, remove the
fd argument of that function from the select
readfds argument.

fd_set *writefds An fd_set that includes both the bridge’s fds and
those of G2 Gateway. Every time gsi_writing_
fd() is called, you should add the fd argument of
that function to the select writefds argument.

Every time gsi_not_writing_fd() is called,
remove the fd argument of that function from the
select writefds argument.

fd_set *exceptfds An fd_set that should be the same as the
readfds argument.
245

void initialize_fd_sets() {
FD_ZERO(&all_read_fds);
FD_ZERO(&all_write_fds);
gsi_install_open_fd(gsi_open_fd);
gsi_install_close_fd(gsi_close_fd);
gsi_install_writing_fd(gsi_writing_fd);
gsi_install_not_writing_fd(gsi_not_writing_fd);
}

/* The following four functions will be called as needed by */
/* G2 Gateway. The bridge should also call these functions, */
/* so that all_read_fds and all_write_fds will contain both /*
/* G2 Gateway and bridge fds. */

void gsi_open_fd(fd)
gsi_int fd; {
FD_SET(fd, &all_read_fds);
if (fd > max_fd) max_fd = fd;
}

void gsi_close_fd(fd)
gsi_int fd; {
FD_CLR(fd, &all_read_fds);
}

void gsi_writing_fd(fd)
gsi_int fd; {
FD_SET(fd, &all_write_fds);
}

void gsi_not_writing_fd(fd)
gsi_int fd; {
FD_CLR(fd, &all_write_fds);
}

void copy_fd_set(out_fd_set, in_fd_set)
fd_set *out_fd_set, *in_fd_set; {
int fd;
FD_ZERO(&out_fd_set);
for (fd=0; fd<=max_fd; fd++)
if (FD_ISSET(fd, &in_fd_set))
FD_SET(fd, &out_fd_set);
}

246

Using the Select Function in G2 Gateway
int wait_for_something_to_do(timeout_in_milliseconds)
int timeout_in_milliseconds; {
struct timeval timeout, *select_timeout = NULL;
int select_result;
if (timeout >= 0) {

timeout.tv_sec = timeout_in_milliseconds / 1000;
timeout.tv_usec =

(timeout_in_milliseconds -
(timeout.tv_sec * 1000))
* 1000;

select_timeout = &timeout;
}

/* negative timeout means wait forever */
copy_fd_set(&select_read_fds, &all_read_fds);
copy_fd_set(&select_write_fds, &all_write_fds);
copy_fd_set(&select_except_fds, &all_read_fds);
select_result = select(max_fd+1, &select_read_fds,

&select_write_fds, &select_except_fds, select_timeout);
return select_result;
}

247

248

9

API Functions
Describes the capabilities and syntax of the API functions supported by
G2 Gateway.

Introduction 253

Groups of Functionally Related API Functions 254

Required Header File 259

Specifying Symbolic Values in API Function Calls 259

API Function Descriptions 260
gsi_attr_by_name 261
gsi_attr_count_of 262
gsi_attr_is_transient 263
gsi_attr_name_is_qualified 264
gsi_attr_name_of 266
gsi_attrs_of 268
gsi_class_name_of 270
gsi_class_qualifier_of 272
gsi_class_type_of 274
gsi_clear_item 276
gsi_clear_last_error 277
gsi_close_listeners 278
gsi_context_is_secure 279
gsi_context_received_data 280
gsi_context_remote_host 281
gsi_context_remote_listener_port 282
gsi_context_remote_process_start_time 283
gsi_context_socket 284
gsi_context_user_data 285
gsi_convert_string_to_unicode 286
gsi_convert_unicode_to_string 287
gsi_convert_unicode_to_wide_string 288
gsi_convert_wide_string_to_unicode 289
gsi_current_context 290
249

gsi_current_context_is_secure 291
gsi_decode_timestamp 292
gsi_element_count_of 293
gsi_elements_of 294
gsi_encode_timestamp 296
gsi_error_message 298
gsi_establish_listener 299
gsi_establish_secure_listener 301
gsi_extract_history 303
gsi_extract_history_spec 305
gsi_flt_array_of 307
gsi_flt_list_of 308
gsi_flt_of 310
gsi_flush 311
gsi_handle_of 312
gsi_history_count_of 313
gsi_history_type_of 315
gsi_identifying_attr_of 316
gsi_initialize_callbacks 317
gsi_initialize_error_variable 318
gsi_initialize_for_win32 319
gsi_initiate_connection 320
gsi_initiate_connection_with_user_data 323
gsi_initiate_secure_connection 326
gsi_initiate_secure_connection_with_user_data 328
gsi_install_error_handler 330
gsi_int_array_of 331
gsi_int_list_of 332
gsi_int_of 333
gsi_interval_of 334
gsi_is_item 335
gsi_item_of_attr 336
gsi_item_of_attr_by_name 337
gsi_item_of_identifying_attr_of 339
gsi_item_of_registered_item 340
gsi_kill_context 341
gsi_last_error 342
gsi_last_error_call_handle 343
gsi_last_error_message 344
gsi_listener_socket 345
gsi_log_array_of 346
gsi_log_list_of 347
gsi_log_of 349
gsi_long_of 350
gsi_make_array 351
gsi_make_attrs 352
gsi_make_attrs_with_items 353
250

gsi_make_item 354
gsi_make_items 355
gsi_make_registered_items 356
gsi_make_symbol 357
gsi_name_of 358
gsi_option_is_set 360
gsi_owner_of 362
gsi_pause 364
gsi_print_backtrace 366
gsi_reclaim_array 367
gsi_reclaim_attrs 368
gsi_reclaim_attrs_with_items 369
gsi_reclaim_item 370
gsi_reclaim_items 371
gsi_reclaim_registered_items 372
gsi_registration_of_handle 373
gsi_registration_of_item 374
gsi_reset_option 375
gsi_return_attrs 377
gsi_return_message 378
gsi_return_timed_attrs 379
gsi_return_timed_values 380
gsi_return_values 381
gsi_rpc_call 382
gsi_rpc_call_with_count 384
gsi_rpc_declare_local 386
gsi_rpc_declare_remote 387
gsi_rpc_declare_remote_with_error_handler_and_user_data 390
gsi_rpc_return_error_values 393
gsi_rpc_return_values 395
gsi_rpc_start 397
gsi_rpc_start_with_count 398
gsi_run_loop 399
gsi_set_attr_by_name 401
gsi_set_attr_count 402
gsi_set_attr_is_transient 404
gsi_set_attr_name 405
gsi_set_attrs 407
gsi_set_class_name 409
gsi_set_class_qualifier 410
gsi_set_class_type 412
gsi_set_context_limit 414
gsi_set_context_user_data 415
gsi_set_element_count 416
gsi_set_elements 417
gsi_set_flt 420
gsi_set_flt_array 421
251

gsi_set_flt_list 423
gsi_set_handle 425
gsi_set_history 427
gsi_set_include_file_version 429
gsi_set_int 430
gsi_set_int_array 431
gsi_set_int_list 433
gsi_set_interval 434
gsi_set_item_append_flag 435
gsi_set_item_of_attr 436
gsi_set_item_of_attr_by_name 437
gsi_set_log 439
gsi_set_log_array 440
gsi_set_log_list 442
gsi_set_long 444
gsi_set_name 445
gsi_set_option 446
gsi_set_pause_timeout 448
gsi_set_rpc_remote_return_exclude_user_attrs 449
gsi_set_rpc_remote_return_include_system_attrs 450
gsi_set_rpc_remote_return_include_all_system_attrs_except 451
gsi_set_rpc_remote_return_value_kind 452
gsi_set_run_loop_timeout 454
gsi_set_status 455
gsi_set_str 456
gsi_set_str_array 457
gsi_set_str_list 459
gsi_set_string_converson_style 461
gsi_set_sym 464
gsi_set_sym_array 465
gsi_set_sym_list 467
gsi_set_symbol_user_data 469
gsi_set_timestamp 470
gsi_set_type 471
gsi_set_unqualified_attr_name 474
gsi_set_update_items_in_lists_and_arrays_flag 475
gsi_set_user_data 476
gsi_set_usv 477
gsi_signal_error 478
gsi_signal_handler 479
gsi_simple_content_copy 480
gsi_start 481
gsi_status_of 483
gsi_string_conversion_style 484
gsi_str_array_of 485
gsi_str_list_of 487
gsi_str_of 489
252

Introduction
gsi_sym_array_of 491
gsi_sym_list_of 492
gsi_sym_of 493
gsi_symbol_name 494
gsi_symbol_user_data 495
gsi_timestamp_of 496
gsi_type_of 497
gsi_unqualified_attr_name_of 498
gsi_unwatch_fd 499
gsi_unwatch_fd_for_writing 501
gsi_update_items_in_lists_and_arrays_flag 503
gsi_user_data_of 504
gsi_usv_length_of() 505
gsi_usv_of 506
gsi_version_information 507
gsi_wakeup 508
gsi_watch_fd 509
gsi_watch_fd_for_writing 511
gsi_watchdog 513

Introduction
G2 Gateway provides a large set of Application Programmer Interface (API)
functions.

API functions are commonly called from within G2 Gateway callback functions,
which are invoked by G2 Gateway while your bridge process is executing under
the control of the gsi_run_loop() API function. For detailed information about
callback functions, see Callback Functions.

API functions can also be called from outside gsi_run_loop(), if gsi_start()
has already been called. In order to be able to transfer control from gsi_run_
loop() to other parts of your user code, you must run your G2 Gateway bridge
process in one-cycle mode. For information about how to do this, see The main()
Function in Continuous and One-Cycle Modes.
253

Groups of Functionally Related API Functions
This section lists API functions grouped by the kinds of functions that they
perform.

G2 Gateway Entry Points

Initialization and Run State

Context Management

gsi_start()
gsi_run_loop()
gsi_set_runloop_timeout()

gsi_initialize_for_wind32()
gsi_set_include_file_version()
gsi_initialize_callbacks()
gsi_run_state_change()

gsi_establish_listener
gsi_establish_secure_listener
gsi_initiate_connection()
gsi_initiate_connection_with_user_data()
gsi_initiate_secure_connection()
gsi_initiate_secure_connection_with_user_data()
gsi_context_received_data()
gsi_current_context()
gsi_current_context_is_secure()
gsi_context_is_secure
gsi_flush()
gsi_set_context_limit()
gsi_kill_context()
gsi_context_user_data()
gsi_set_context_user_data()
254

Groups of Functionally Related API Functions
Data Structure Access

Type and Value Access

Attribute Access

gsi_element_count_of()
gsi_elements_of()
gsi_flt_array_of()
gsi_flt_list_of()
gsi_flt_of()
gsi_handle_of()
gsi_int_array_of()
gsi_int_list_of()
gsi_int_of()
gsi_is_item()
gsi_log_array_of()
gsi_log_list_of()
gsi_log_of()
gsi_long_of()
gsi_name_of()
gsi_str_array_of()
gsi_str_list_of()
gsi_str_of()
gsi_sym_array_of()
gsi_sym_list_of()
gsi_sym_of()
gsi_type_of()
gsi_usv_of()
gsi_usv_length_of()

gsi_set_elements()
gsi_set_flt_array()
gsi_set_flt_list()
gsi_set_flt()
gsi_set_handle()
gsi_set_int_array()
gsi_set_int_list()
gsi_set_int()
gsi_set_log_array()
gsi_set_log_list()
gsi_set_log()
gsi_set_long()
gsi_set_name()
gsi_set_str_array()
gsi_set_str_list()
gsi_set_str()
gsi_set_sym_array()
gsi_set_sym_list()
gsi_set_sym()
gsi_set_type()
gsi_set_usv()
gsi_usv_length_of()

gsi_attrs_of()
gsi_attr_by_name()
gsi_attr_count_of()
gsi_attr_is_transient()
gsi_attr_is_array_index()
gsi_attr_array_index_of()
gsi_set_attr_array_index()
gsi_identifying_attr_of()

gsi_set_attrs()
gsi_set_attr_by_name()
gsi_set_attr_is_transient()
gsi_attr_is_list_index()
gsi_attr_list_index_of()
gsi_set_attr_list_index()
255

Attribute Name Access

Timestamp and History Access

Miscellaneous Data Structure Access

Data Service

gsi_attr_name_of()
gsi_set_attr_name()
gsi_unqualified_attr_name_of()
gsi_set_unqualified_attr_name()
gsi_class_qualifier_of()
gsi_set_class_qualifier()
gsi_attr_name_is_qualified()

gsi_decode_timestamp()
gsi_timestamp_of()
gsi_extract_history()
gsi_history_type_of()
gsi_history_count_of()

gsi_encode_timestamp()
gsi_set_timestamp()
gsi_extract_history_spec()
gsi_set_history()

gsi_status_of()
gsi_interval_of()
gsi_item_of_attr()
gsi_item_of_registered_item()
gsi_user_data_of()
gsi_set_element_count()
gsi_class_name_of()
gsi_identifying_attr_of()
gsi_clear_item()

gsi_set_status()
gsi_interval_of()
gsi_set_item_of_attr()
gsi_set_user_data()
gsi_simple_content_copy()
gsi_set_class_name()
gsi_registration_of()
gsi_version_information()

gsi_return_values()
gsi_return_timed_values()
gsi_return_timed_attrs()

gsi_return_attrs()
256

Groups of Functionally Related API Functions
Data Structure Allocation and Deallocation

Error Handling

File Descriptor Management

Interruptible Sleep

Message Passing

Missing Callback Declarations

gsi_make_attrs()
gsi_make_attrs_with_items()
gsi_reclaim_attrs_with_items()
gsi_make_items()
gsi_make_registered_items()
gsi_reclaim_registered_items()

gsi_reclaim_attrs()

gsi_reclaim_items()

gsi_error_handler()
gsi_initialize_error_variable()
gsi_last_error()
gsi_last_error_call_handle()
gsi_clear_last_error()
gsi_signal_error()
gsi_install_error_handler()

gsi_last_error_message()

gsi_error_message()
gsi_signal_handler()

gsi_open_fd() gsi_close_fd()

gsi_context_socket()
gsi_pause()
gsi_unwatch_fd()
gsi_watch_fd()

gsi_listener_socket()
gsi_set_pause_timeout()
gsi_wakeup()

gsi_return_message()

gsi_missing_procedure_handler()
257

Remote Procedure Support

Runtime Options

String Conversion

Symbol Access

gsi_rpc_declare_local()
gsi_rpc_declare_remote()
gsi_rpc_call()
gsi_rpc_start()
gsi_rpc_declare_remote_with_error_handler_and_user_data()
gsi_rpc_return_error_value()
gsi_rpc_return_values()
gsi_set_rpc_remote_return_value_kind()
gsi_set_rpc_remote_return_exclude_user_attrs
gsi_set_rpc_remote_return_include_system_attrs
gsi_set_rpc_remote_return_include_all_system_attrs_except

gsi_option_is_set()
gsi_set_option()

gsi_reset_option()

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()
gsi_string_conversion_style()
gsi_set_string_conversion_style()

gsi_make_symbol()
gsi_symbol_user_data()
gsi_set_symbol_user_data()
gsi_sym_of()
gsi_sym_list_of()
gsi_set_sym_array()
gsi_set_sym_list()

gsi_symbol_name()

gsi_sym_array_of()
gsi_set_sym()
258

Required Header File
User Data

Watchdog Function

Required Header File
To use the G2 Gateway API functions, you must include the header file gsi_
main.h, using the following statement:

#include "gsi_main.h"

Specifying Symbolic Values in API Function
Calls

G2 uses the symbol type for all G2 identifiers, such as names of G2 items, classes,
and attributes. G2 expresses symbol values in uppercase letters by default. To
include a lower case letter in a G2 symbol in a G2 editor, you must precede it with
an escape character.

When G2 Gateway returns a symbol value to G2, all characters in the symbol
value arrive in G2 in uppercase form, except for characters that were preceded by
escape characters. For this reason, you must use only uppercase letters to specify
any API function argument that represents a G2 identifier, unless you know that
the corresponding G2 symbol value uses escape characters to express lower case
characters.

You must also use uppercase letters to specify arguments that you pass to the API
functions gsi_set_sym(), gsi_set_sym_array() and gsi_set_sym_list(),
which set the value of a structure to a symbol value (type GSI_SYMBOL_TAG).

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

gsi_user_data_of() gsi_set_user_data()

gsi_watchdog()
259

API Function Descriptions
The rest of this chapter presents detailed descriptions of the API functions,
presented in alphabetical order.
260

gsi_attr_by_name
gsi_attr_by_name
Invokes gsi_item_of_attr_by_name().

For information about this API function, see gsi_item_of_attr_by_name.
261

gsi_attr_count_of
Returns the number of attributes associated with an item.

Synopsis

gsi_int gsi_attr_count_of(item)

gsi_int gsi_attr_count_of(attribute)

Description

gsi_attr_count_of() returns the number of attributes in an item or embedded
item in an attribute.

Argument Description

gsi_item
item

A gsi_item for which this function returns a
count of attributes.

gsi_attr
attribute

A gsi_attr containing an embedded gsi_
item for which this function returns a count
of attributes.

Return Value Description

gsi_int Represents the number of attributes in item
or attribute.

Note: The return value is 0 if the argument
passed to this function is a gsi_item
extracted from a gsi_registered_item by
gsi_item_of_registered_item(), and this
gsi_registered_item was obtained from a
callback function, such as gsi_set_data().
262

gsi_attr_is_transient
gsi_attr_is_transient
Returns a value indicating whether or not a specified attribute is transient.
Transient attributes are not passed in remote procedure calls.

Synopsis

gsi_int gsi_attr_is_transient(attribute)

Description

G2 Gateway ignores transient attributes in remote procedure calls, and does not
send them to G2.

You can cause remote procedure calls either to pass or not to pass particular
attributes by setting the attributes to be not transient or transient. To do this, use
the API function gsi_set_attr_is_transient().

The API functions gsi_return_attrs() and gsi_return_timed_attrs() return
transient attributes only.

Argument Description

gsi_attr attribute The attribute.

Return Value Description

gsi_int 1 if the attribute is transient

0 if it is not transient.
263

gsi_attr_name_is_qualified
Returns true if the name of an attribute is class-qualified, and false otherwise.

Synopsis

gsi_int gsi_attr_name_is_qualified(attribute)

Description

gsi_attr_name_is_qualified()returns a value that indicates whether the name
component in the gsi_attr structure specified by attribute includes a class
qualifier.

Class qualifiers are required only for items of a class defined using multiple-
inheritance. Multiple inheritance makes it possible for a class definition to include
different attributes of the same name, inherited from different direct superior
classes. The class-qualifiers added to the names of these attributes distinguish the
attributes from each other.

Related Functions

Argument Description

 gsi_attr attribute The attribute whose name is examined by
this function.

Return Value Description

gsi_int 1 if the name is class-qualified, and 0
otherwise.

Function Description

gsi_attr_name_of() Returns the name of an attribute.

gsi_set_attr_name() Changes the name of an attribute.

gsi_unqualified_attr
_name_of()

Returns the unqualified part of an
attribute’s name.
264

gsi_attr_name_is_qualified
gsi_class_qualifier
_of()

Returns the part of an attribute name
that is the class qualifier.

gsi_set_class
_qualifier()

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.

Function Description
265

gsi_attr_name_of
Returns the name of an attribute.

Synopsis

gsi_symbol gsi_attr_name_of(attribute)

Description

Use gsi_attr_name_of() to access the value of the name component of the
gsi_attr specified by the attribute argument.

Related Functions

Argument Description

gsi_attr attribute The attribute whose name is returned by
this function.

Return Value Description

gsi_symbol A read-only symbol giving the name of the
attribute.

The symbol persists only as long as the
gsi_attr data structure with which it is
associated. If your user code needs to keep
the symbol for longer than the life-span of
the gsi_attr structure, it must copy the
symbol either into user allocated memory or
a G2 Gateway data structure.

Function Description

gsi_set_attr_name() Changes the name of an attribute.

gsi_unqualified_attr
_name_of()

Returns the unqualified part of an
attribute’s name.

gsi_set_unqualified
_attr_name()

Sets the unqualified part of an
attribute’s name.
266

gsi_attr_name_of
gsi_attr_name_is
_qualified()

Indicates whether an attribute name
is qualified.

gsi_class_qualifier
_of()

Returns the part of an attribute name
that is the class qualifier.

gsi_set_class
_qualifier()

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.

Function Description
267

gsi_attrs_of
Returns an array of gsi_attr structures, each of which corresponds to an
attribute of an item.

Synopsis

gsi_attr *gsi_attrs_of(item)

gsi_attr *gsi_attrs_of(attribute)

Description

gsi_attrs_of() extracts an array of gsi_attr structures corresponding to the
attributes of a gsi_item or gsi_attr.

This function does not allocate any new memory. Its return value points to the
array stored in item or attribute, and neither the array nor any of its elements are
copied.

Related Functions

Argument Description

gsi_item
item

The gsi_item whose attributes are
returned.

gsi_attr
attribute

The gsi_attr containing an embedded
gsi_item whose attributes are returned.

Return Value Description

gsi_attr * An array of gsi_attr structures, which
correspond to the attributes of a gsi_item.

Function Description

gsi_attr_count
_of()

Determines how many attributes are in a
gsi_item or gsi_attr.

gsi_set_attrs() Changes the attributes in a gsi_item or
gsi_attr.
268

gsi_attrs_of
gsi_attr_by
_name()

Obtains a specific attribute in a gsi_item or
gsi_attr.

gsi_set_attr_by
_name()

Changes a specific attribute in a gsi_item or
gsi_attr.

Function Description
269

gsi_class_name_of
Returns the name of the G2 class of an item.

Synopsis

gsi_symbol gsi_class_name_of(item)

gsi_symbol gsi_class_name_of(attribute)

Description

gsi_class_name_of() returns the name of the G2 class of an item represented by
a gsi_item structure. As an argument, gsi_class_name_of() can take either a
gsi_item or a gsi_attr representing an attribute containing an embedded gsi_
item. In either case, gsi_class_name_of()returns the class name of the G2 item
represented by the gsi_item.

gsi_class_name_of() can return the names of both system-defined and user-
defined G2 classes. There is no restriction on the class of G2 item whose class
name is returned by gsi_class_name_of().

Argument Description

gsi_item item A gsi_item whose class name is returned
by this function.

gsi_attr attribute An attribute containing an embedded gsi_
item whose class name is returned by this
function.

Return Value Description

gsi_symbol A symbol containing the name of the G2
class of the specified item. If the specified
item has no associated class or is not named,
the return value is a null pointer. See
Discussion below.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory that it has allocated itself.
270

gsi_class_name_of
Caution If the specified item has no associated class or is not named, the return value is a
null pointer. On some systems, passing a null pointer to printf() causes a
segmentation violation. For this reason, you may want to verify that the return
value of gsi_class_name_of() is not a null pointer before you pass it to
printf(). For example:

gsi_symbol char_temp;
char_temp = gsi_class_name_of(item);
if (char_temp)

printf("\ class: %s", char_temp);
else

printf("\n class:NULL_PTR");
271

gsi_class_qualifier_of
Returns the part of the name component of an attribute that is the class qualifier.

Synopsis

gsi_symbol gsi_class_qualifier_of(attribute)

Description

Use gsi_class_qualifier_of() to access the class-qualifier portion of the name
component of a gsi_attr.

This function does not allocate any new memory. Its return value points to a C
string stored in attribute, and not to a copy of that string.

Related Functions

Argument Description

gsi_attr attribute The attribute whose name is class-qualified.

Return Value Description

gsi_symbol A read-only symbol that contains the class-
qualifier part of the name component of
attribute.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory that it has allocated itself.

Function Description

gsi_attr_name_of() Returns the name of an attribute.

gsi_set_attr_name() Changes the name of an attribute.

gsi_unqualified_attr
_name_of()

Returns the unqualified part of an
attribute’s name.
272

gsi_class_qualifier_of
gsi_set_unqualified
_attr_name()

Sets the unqualified part of an
attribute’s name.

gsi_attr_name_is
_qualified()

Indicates whether an attribute name
is qualified.

gsi_set_class
_qualifier()

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.

Function Description
273

gsi_class_type_of
Returns the type of the history data values associated with an item, a registered
item, or an item that is embedded in an attribute.

Synopsis

gsi_int gsi_class_type_of(item)

gsi_int gsi_class_type_of(registered_item)

gsi_int gsi_class_type_of(attribute)

Description

gsi_class_type_of() returns the type of the history data values associated with
an item, a registered item, or with an item that is embedded in an attribute. If
there is no history associated with the item, registered item, or embedded item in

Argument Description

gsi_item item An item from which this function returns
the type of the associated history data
values.

gsi_registered_
item registered_
item

A registered item from which this function
returns the type of the associated history
data values.

gsi_attr attribute An attribute containing an embedded item
from which this function returns the type of
the associated history data values.

Return Value Description

gsi_int One of the following G2 Gateway types:

GSI_INTEGER_TAG
GSI_SYMBOL_TAG
GSI_STRING_TAG
GSI_LOGICAL_TAG
GSI_FLOAT64_TAG
GSI_VALUE_TAG
GSI_QUANTITY_TAG
GSI_NULL_TAG
274

gsi_class_type_of
the attribute, gsi_class_type_of() returns the type that most closely
corresponds to the variable’s type in G2.

If a gsi_item that G2 sends to G2 Gateway through a remote procedure call
corresponds to a variable-or-parameter, this field derives from the data type in
G2, and reflects the allowable values for the variable-or-parameter.

If the item is neither a variable nor a parameter, the function returns GSI_NULL_
TAG.

The types of the history values are shown in the following table:

Related Functions

Return Value G2 Gateway Element Type C Element Type

GSI_INTEGER_TAG homogeneous integer
values

gsi_int

GSI_SYMBOL_TAG homogeneous symbol
values

char *

GSI_STRING_TAG homogeneous string
values

char *

GSI_LOGICAL_TAG homogeneous truth-
values

gsi_int

GSI_FLOAT64_TAG homogeneous floating-
point numbers

double

GSI_VALUE_TAG heterogeneous values gsi_item

GSI_QUANTITY_TAG heterogeneous numbers
(gsi_int or double)

gsi_item

Function Description

gsi_history_count_
of()

Returns the number of history data values
associated with an item.

gsi_extract_
history()

Returns history data values associated with
an item.

gsi_extract_
history_spec()

Returns the history-keeping specification for
an item.
275

gsi_clear_item
Clears an item for reuse.

Synopsis

void gsi_clear_item(item)

void gsi_clear_item(regitem)

void gsi_clear_item(attribute)

Description

The gsi_clear_item() function clears the specified gsi_registered_item,
gsi_item, or gsi_attr structure by:

• Reclaiming memory associated with the value and history components of
the structure. This memory is not in the form of G2 Gateway data structures,
but is stored in arrays of simple value types.

• Setting counts to zero.

• Setting the type to GSI_NULL_TAG.

• Setting the class name to NULL_PTR.

• Eliminating references to other structures.

gsi_clear_item() does not reclaim memory explicitly allocated by your user
code. If any of these data structures were explicitly allocated by your
G2 Gateway user code, the user code is responsible for reclaiming the
memory used by those data structures.

Argument Description

gsi_item item The gsi_item structure that this
function clears for reuse.

gsi_registered_item
regitem

The gsi_registered_item structure
that points to the gsi_item cleared for
reuse.

gsi_attr attribute The gsi_attr structure containing an
embedded gsi_item cleared for reuse.
276

gsi_clear_last_error
gsi_clear_last_error
Resets the value of G2 Gateway’s last error number.

Synopsis

void gsi_clear_last_error()

Description

gsi_clear_last_error() sets the value of G2 Gateway’s error number to zero
(0).

For information about the role of G2 Gateway’s last error number, see Error
Handling.
277

gsi_close_listeners
Closes all network listeners.

Synopsis

void gsi_close_listeners()

Description

The function gsi_close_listeners() closes all network listeners. Use this
function if you want to close listeners before the G2 Gateway process has finished.
278

gsi_context_is_secure
gsi_context_is_secure
Returns the security status of the specified context.

Synopsis

gsi_int gsi_context_is_secure(context)

Description

Returns the security status of the specified context, which is a gsi_int.

Return Value Description

gsi_int The security status of the current context: 0
(insecure) or 1 (secure).
279

gsi_context_received_data
Indicates whether there was network activity during the most recent invocation of
gsi_run_loop().

Synopsis

gsi_int gsi_context_received_data(context_number)

Description

gsi_context_received_data() takes a context number as an input argument
and returns 1 if there was network activity of any kind on the specified context
during the most recent pass through gsi_run_loop(). If there was no network
activity on the specified context during the most recent pass through gsi_run_
loop(), this function returns 0.

The function detects any kind of network activity, such as remote procedure calls
from G2 or calls to any of the callback functions associated with data service.

Note This function is designed to be used in one-cycle mode. It is not useful in
continuous mode.

Argument Description

gsi_int context_
number

A context number. You can obtain the
number of the current context using the API
function gsi_current_context().

Return Value Description

gsi_int 1 if there was network activity during the
most recent invocation; otherwise 0.
280

gsi_context_remote_host
gsi_context_remote_host
Returns a string naming the host to which G2 Gateway is connected.

Synopsis

gsi_char *gsi_context_remote_host (context)

Description

gsi_context_remote_host() returns the name of the host to which G2 Gateway
is connected. The returned value is the same string that G2 prints in its title block.

Argument Description

gsi_int context The current G2 Gateway context.

Return value Description

gsi_char * A string of the host name.
281

gsi_context_remote_listener_port
Returns the TCP/IP port on which the remote G2 is listening.

Synopsis

gsi_int gsi_context_remote_listener_port(context)

Description

gsi_context_remote_listener_port() returns the G2 TCP/IP port.

Argument Description

gsi_int context The current G2 Gateway context.

Return value Description

gsi_int The TCP/IP port number.
282

gsi_context_remote_process_start_time
gsi_context_remote_process_start_time
Returns a floating-point value representing the G2 process launch time.

Synopsis

double gsi_context_remote_process_start_time (context)

Description

gsi_context_remote_process_start_time() returns a floating-point value,
which you can pass to gsi_decode_timestamp() to obtain a timestamp.

Related Functions

Argument Description

gsi_int context The current G2 Gateway context.

Return value Description

double A floating-point value timestamp.

Function Description

gsi_decode_timestamp() Converts a floating-point timestamp
value into its component parts.
283

gsi_context_socket
Returns the file descriptor associated with a specified connection (context).

Synopsis

gsi_int gsi_context_socket(context_number)

Argument Description

gsi_int context_
number

A context number. You can obtain this
number using the API function gsi_
current_context().

Return Value Description

gsi_int The file descriptor associated with the
context specified by context_number.
284

gsi_context_user_data
gsi_context_user_data
Returns the user data associated with a context that was initiated by a call to gsi_
initiate_connection_with_user_data() and set by a call to gsi_set_context_
user_data().

Synopsis

gsi_context_user_data_type gsi_context_user_data(context)

Argument Description

gsi_int context The context from which user data is
returned.

Return Value Description

gsi_context_user
_data_type

The user data associated with context.
285

gsi_convert_string_to_unicode
Converts a string in a specified style to Unicode.

Synopsis

short *gsi_convert_string_to_unicode(string, style)

Description

Use gsi_convert_string_to_unicode() to convert a particular string to
Unicode. Because this function returns an array of short each time, reclaiming the
array it returned last time, you need to copy the array of short before the next call
to gsi_convert_string_to_unicode().

For information about how to specify automatic string conversions for all strings,
see gsi_set_string_converson_style.

Note The result of gsi_convert_string_to_unicode() remains valid until the
next call of any of the unicode convert functions:

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()

Argument Description

char *string The string to be converted to Unicode.

gsi_int style The string conversion style from which
string is converted.

For a list of the supported string conversion
styles, see the description of gsi_set_
string_converson_style.

Return Value Description

short * An array each element of which contains a
character code.
286

gsi_convert_unicode_to_string
gsi_convert_unicode_to_string
Converts a string of characters in Unicode to a specified string conversion style.

Synopsis

char *gsi_convert_unicode_to_string(string, style)

Description

Use gsi_convert_unicode_to_string() to convert a particular string in
Unicode characters to a specified string conversion style.

Since this function returns an array of short each time, reclaiming the array it
returned last time, you need to copy the array of short before the next call to
gsi_convert_unicode_to_string().

For information about how to specify automatic string conversions for all strings,
see gsi_set_string_converson_style.

Note The result of gsi_convert_unicode_to_string() remains valid until the
next call of any of the unicode convert functions:

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()

Argument Description

short *string The string to be converted to Unicode.

gsi_int style The string conversion style to which string
is converted. For a list of the supported
string conversion styles, see the description
of gsi_set_string_converson_style.

Return Value Description

char * The converted string of characters.
287

gsi_convert_unicode_to_wide_string
Converts a string of characters in Unicode to a wide string conversion style.

Synopsis

short *gsi_convert_unicode_to_wide_string(string, style)

Description

Since this function returns an array of short each time, reclaiming the array it
returned last time, you need to copy the array of short before the next call to
gsi_convert_unicode_to_wide_string().

Note The result of gsi_convert_unicode_to_wide_string() remains valid until
the next call of any of the unicode convert functions:

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()

Argument Description

short *string The Unicode string of characters to convert
to style.

gsi_int style The string conversion style to which string
is converted.

Return Value Description

short * An array each element of which contains a
character code.
288

gsi_convert_wide_string_to_unicode
gsi_convert_wide_string_to_unicode
Converts a string of short characters to Unicode.

Synopsis

short *gsi_convert_wide_string_to_unicode(string, style)

Description

Since this function returns an array of short each time, reclaiming the array it
returned last time, you need to copy the array of short before the next call to
gsi_convert_wide_string_to_unicode().

Note The result of gsi_convert_wide_string_to_unicode() remains valid until
the next call of any of the unicode convert functions:

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()

Argument Description

short *string The string to be converted to Unicode
characters.

gsi_int style The string conversion style from which
string is converted. For a list of the
supported string conversion styles, see
gsi_set_string_converson_style.

Return Value Description

short * An array each element of which contains a
character code.
289

gsi_current_context
Returns the number of the current context.

Synopsis

gsi_int gsi_current_context()

Description

gsi_current_context() returns the number of the current context. A context
number is an integer value that identifies a connection between the G2 Gateway
bridge process and a GSI interface object in some G2 process. If more than one G2
process is connected to the same bridge process, each connection has a unique
context number.

The possible value of an active context is between 0 and 49.

gsi_current_context() returns -1 if the current context is undefined. The
current context is undefined when:

• The bridge process is executing outside the extent of gsi_run_loop().

• When the current context has been shut down and the bridge process is
executing within a customized error handler.

Return Value Description

gsi_int An integer from 0 to 49 that represents the
current context number, or -1, indicating
that the context is undefined.
290

gsi_current_context_is_secure
gsi_current_context_is_secure
Returns the security status of the current context.

Synopsis

gsi_int gsi_current_context_is_secure()

Description

Returns the security status of the current context.

Return Value Description

gsi_int The security status of the current context: 0
(insecure) or 1 (secure).
291

gsi_decode_timestamp
Converts a floating-point timestamp value into its component parts.

Synopsis

void gsi_decode_timestamp(timestamp, year_address, month_address,
day_address, hour_address, minute_address, second_address)

Description

The function gsi_decode_timestamp() converts a floating-point timestamp
value into its component parts by modifying its xxx_address arguments. UNIX
format places 0.0 at 12 AM January 1, 1970 GMT.

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

Argument Description

double
timestamp

The timestamp converted by this function.

gsi_int *year_
address

A pointer to the 4-digit year component of
the timestamp.

gsi_int *month_
address

A pointer to the month component of the
timestamp.

gsi_int
*day_address

A pointer to the day component of the
timestamp.

gsi_int *hour_
address

A pointer to the hour component of the
timestamp.

gsi_int *minute_
address

A pointer to the minute component of the
timestamp.

gsi_int *second_
address

A pointer to the second component of the
timestamp.
292

gsi_element_count_of
gsi_element_count_of
Returns the number of elements in the value component of an item.

Synopsis

gsi_int gsi_element_count_of(item)

gsi_int gsi_element_count_of(reg-item)

gsi_int gsi_element_count_of(attribute)

Description

Use gsi_element_count_of() to determine the number of elements in the value
component of an item, item referenced by a registered item, or embedded item in
an attribute that is a list or array.

The element count returned by this function is non-zero if the type of the
argument passed to the function is any of the following:

• A list type containing one or more elements.

• An array type containing one or more elements.

• A sequence containing one or more elements.

• A string the element count is the length of the string.

• An unsigned short vector the element count is the length of the vector.

Argument Description

gsi_item item The gsi_item for which this function
returns the count of elements in the value
component.

gsi_registered_item
reg-item

The gsi_registered_item pointing to a
gsi_item for which the count is returned.

gsi_attr attribute The gsi_attr containing an embedded
gsi_item for which a count is returned.

Return Value Description

gsi_int The number of elements in the value
components of an item, registered item, or
embedded item in an attribute.
293

gsi_elements_of
Returns an array of gsi_item, representing the value(s) component of an item
when the value is of type GSI_ITEM_ARRAY_TAG, GSI_ITEM_LIST_TAG, GSI_VALUE_
ARRAY_TAG, or GSI_VALUE_LIST_TAG.

Synopsis

gsi_item *gsi_elements_of(item)

gsi_item *gsi_elements_of(attribute)

Description

The function gsi_elements_of() extracts an array of gsi_item instances from
item or attribute. This array is a one-dimensional C array, suitable for
manipulation by address arithmetic.

If the value component of item or attribute is neither an item array, item list,
value array, nor value list, G2 Gateway signals an error.

To see a complete description of type tags for item arrays and lists refer to G2
Data Types and G2 Gateway Type Tags.

Argument Description

gsi_item item The item from which this function returns
the value component as an array of
gsi_item.

gsi_attr attribute The attribute containing an embedded
gsi_item whose value component is
returned by this function returns as an array
of gsi_item.

Return Value Description

gsi_item * An array of gsi_item instances.
294

gsi_elements_of
For value arrays and value lists, the type of each element will be one of:

GSI_FLOAT64_TAG
GSI_STRING_TAG
GSI_LOGICAL_TAG
GSI_SEQUENCE_TAG
GSI_SYMBOL_TAG
GSI_STRUCTURE_TAG
GSI_INTEGER_TAG

For quantity arrays and lists, the type of each element will be one of:

GSI_FLOAT64_TAG
GSI_INTEGER_TAG

This function does not allocate any new memory. It returns the array or list stored
in item or attribute, and neither it nor any of its elements are copied.

Related Functions

Function Description

gsi_type_of() You can use this function to determine
the type of the element returned by
gsi_elements_of().

gsi_set_elements() Modifies a gsi_item or gsi_attr so
that its value component stores an item
array, item list, value array, or value
list.
295

gsi_encode_timestamp
Converts a year, month, day, hour, minute, and second into a floating-point
timestamp value.

Synopsis

double gsi_encode_timestamp (year, month, day, hour, minute, second)

Description

gsi_encode_timestamp() converts a year, month, day, hour, minute, and second
into a floating-point timestamp value.

You can pass the double value returned from this function to the API function
gsi_set_timestamp(), to set a timestamp on a gsi_item structure.

Argument Description

gsi_int year A value that is converted into the 4-digit
year component of the timestamp.

gsi_int month A value that is converted into the month
component of the timestamp.

gsi_int day A value that is converted into the day
component of the timestamp.

gsi_int hour A value that is converted into the hour
component of the timestamp.

gsi_int minute A value that is converted into the minute
component of the timestamp.

gsi_int second A value that is converted into the second
component of the timestamp.

Return Value Description

double Represents a floating-point timestamp
value.
296

gsi_encode_timestamp
Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.
297

gsi_error_message
Returns the G2 Gateway error message text associated with an error number.

Synopsis

gsi_char *gsi_error_message(error_code)

Description

gsi_error_message() gets the text of the G2 Gateway error message for a
particular error number.

The error message text returned by gsi_error_message() may contain place-
holding character sequences such as ~S, which are similar to the sequences like %s
used by printf(). To obtain the full text of an error message, with current values
rather than place-holding codes, use gsi_last_error_message.

Argument Description

gsi_int error_code The error code for which this function
returns the associated text message.

Return Value Description

gsi_char * Points to the text of the G2 Gateway error
message for error_code.
298

gsi_establish_listener
gsi_establish_listener
Establishes a network listener that G2 can connect to when ready.

Synopsis

gsi_int gsi_establish_listener(network, port, exact)

Description

Establishes a network listener that G2 can connect to when ready. G2 Gateway
does the equivalent of calling this function during the call to gsi_start, after the
user-written callback gsi_set_up returns, unless the command line switch
-nolistener was specified.

You might like to use gsi_establish_listener() if you want to establish a
network listener sometime after the G2 Gateway process is launched. In that case,

Argument Description

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *port Specify the number of the port on which the
G2 process is listening for a connection to
this bridge process.

gsi_int exact A value of 1 directs gsi_establish_
listener() to try to open a network
connection at the specified port only.

A value of 0 directs the new gsi_
establish_listener() to try successive
ports until it is able to establish a network
connection.

Return Value Description

gsi_int Returns a value of 1 if the listener is
successfully launched and 0 if the launch
fails.
299

the command line that establishes G2 Gateway should use the -nolistener
switch so that no listeners are established at start up.
300

gsi_establish_secure_listener
gsi_establish_secure_listener
Attempts to establish a listener, using the SSL protocol.

Synopsis

gsi_int gsi_establish_secure_listener
(network, port, exact, certificate)

Description

Behaves exactly like gsi_establish_listerer except establishes a secure
connection.

Argument Description

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *port Specify the number of the port on which the
G2 process is listening for a connection to
this bridge process.

gsi_int exact A value of 1 directs gsi_establish_
listener() to try to open a network
connection at the specified port only.

A value of 0 directs the new gsi_
establish_listener() to try successive
ports until it is able to establish a network
connection.

gsi_char* certificate The name of the certificate, which is a name
in the certificate store on Windows or a
filename on UNIX. The certificate can be
NULL.

Return Value Description

gsi_int Returns a value of 1 if the listener is
successfully launched and 0 if the launch
fails.
301

Note that if a request is received from a clear text (insecure) connection, it is
accepted as clear text.
302

gsi_extract_history
gsi_extract_history
Extracts the history data associated with an item or registered item embedded
item in an attribute.

Synopsis

void gsi_extract_history(item, values_address, timestamps_address,
type_address)

void gsi_extract_history(attribute, values_address, timestamps_address,
type_address)

Description

The function gsi_extract_history() extracts the history data associated with
an item or registered item embedded item in an attribute.

The G2 Gateway type of item can be: GSI_INTEGER_TAG, GSI_SYMBOL_TAG, GSI_
FLOAT64_TAG, GSI_LOGICAL_TAG, GSI_STRING_TAG, GSI_QUANTITY_TAG, or GSI_
VALUE_TAG. The value array can be of type gsi_int, gsi_char*, double, or gsi_
item, in accordance with the type of the history values. You can use gsi_
history_type_of() to return the data type of the history data associated with an
item.

On UNIX and Windows, a timestamp value representing the number of seconds
since midnight, January 1, 1970, GMT. Use the API function gsi_decode_
timestamp() to decode a floating-point timestamp value into its component parts
(month, day, year, and so on).

Argument Description

gsi_item item The item of which this function extracts the
history data.

gsi_attr attribute The attribute containing an embedded item
from which this function extracts the history
data.

void **values_
address

Address of an array of undetermined type,
whose values represent the history.

double **timestamps
_address

Address of an array of double whose values
are floating-point timestamp values.

gsi_int *type_
address

This function sets the value of this gsi_int
to the type of the history.
303

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not through data service on GSI variables. For
information about remote procedure calls, see Remote Procedure Calls.

Related Functions

Information from the related functions helps you create the arrays, values_
address and timestamps into which gsi_extract_history() stores its data.

Function Description

gsi_history
_count_of()

Returns the size of the two arrays.

gsi_extract
_history_spec()

Returns the history-keeping specification for
this variable or parameter within G2.
304

gsi_extract_history_spec
gsi_extract_history_spec
Extracts the history-keeping specification from an item or registered item
embedded item in an attribute.

Synopsis

gsi_int gsi_extract_history_spec(item, maximum_count_address,
maximum_age_address, minimum_interval_address)

Description

gsi_extract_history_spec() extracts history-keeping specification that G2
associates with an item or registered item embedded item in an attribute.

Argument Description

gsi_item item The item from which this function extracts
the history-keeping specification.

gsi_int *maximum_
count_address

Address of a gsi_int whose value is set to
the maximum count specified within the
history-keeping-specification of the
variable.

gsi_int *maximum_
age_address

Address of a gsi_int whose value is set to
the maximum age, in seconds, specified in
the history-keeping-specification of the
variable.

gsi_int *minimum_
interval_address

Address of a gsi_int whose value is set to
the minimum interval, in milliseconds,
specified within the history-keeping-
specification of the variable.

Return Value Description

gsi_int Not meaningful. Do not use.
305

Related Functions

Function Description

gsi_history
_count_of()

Returns the number of history data values
associated with an item.

gsi_extract
_history()

Returns the history data values associated
with an item.
306

gsi_flt_array_of
gsi_flt_array_of
Returns the array of floating-point numbers stored in an item or registered item
embedded item in an attribute.

Synopsis

double *gsi_flt_array_of(item)

double *gsi_flt_array_of(reg-item)

double *gsi_flt_array_of(attribute)

Description

gsi_flt_array_of() returns the array of floating-point values stored in a gsi_
item or gsi_attr. This function does not allocate any new memory.

If the argument to this function is neither a gsi_item, a gsi_attr, nor a gsi_
registered_item, G2 Gateway signals an error.

To determine whether a gsi_item or gsi_attr represents an array of floating-
point values, verify that the value returned by the API function gsi_type_of() is
GSI_FLOAT64_ARRAY_TAG.

Argument Description

gsi_item item The gsi_item from which this function
returns an array of floating-point
numbers.

gsi_registered_item
reg-item

The gsi_registered_item from which
this function returns an array of floating-
point numbers.

gsi_attr
attribute

The gsi_attr containing an embedded
gsi_item from which this function
returns an array of floating-point
numbers.

Return Value Description

double * A one-dimensional C array of floating-point
values.
307

gsi_flt_list_of
Returns a one-dimensional C array that represents the list of floating-point values
stored in an item or registered item embedded item in an attribute.

Synopsis

double *gsi_flt_list_of(item)

double *gsi_flt_list_of(regitem)

double *gsi_flt_list_of(attribute)

Description

gsi_flt_list_of() returns a pointer to the list of floating-point values stored in
a gsi_item or gsi_attr.

If the argument to this function is neither a gsi_item nor points to a gsi_item, G2
Gateway signals an error.

To determine whether a gsi_item or gsi_attr represents a floating-point list,
verify that the value returned by the API function gsi_type_of() is GSI_
FLOAT64_LIST_TAG.

Argument Description

gsi_item item The gsi_item from which this function
returns a C-array of floating-point
numbers.

gsi_registered_item
reg-item

The gsi_registered_item from which
this function returns a C-array of floating-
point numbers.

gsi_attr attribute The gsi_attr containing an embedded
gsi_item from which this function
returns a C-array of floating-point
numbers.

Return Value Description

double * A one-dimensional C array of floating-point
values.
308

gsi_flt_list_of
To modify a gsi_item or gsi_attr so that it stores a floating-point list
(represented as a C array), use the API function gsi_set_flt_list().

This function does not allocate any new memory.
309

gsi_flt_of
Returns a C double that represents the floating-point value of an item, registered
item, or embedded item in an attribute.

Synopsis

double gsi_flt_of(item)

double gsi_flt_of(reg-item)

double gsi_flt_of(attribute)

Description

The function gsi_flt_of() returns the floating-point value of a gsi_item, gsi_
registered_item, or gsi_attr.

The G2 Gateway type of the argument must be GSI_FLOAT64_TAG. Otherwise, G2
Gateway signals an error.

Argument Description

gsi_item item The gsi_item whose value is returned by
this function.

gsi_registered_item
reg-item

The gsi_registered_item of the item
whose value is returned.

gsi_attr attribute The gsi_attr containing the item whose
value is returned.

Return Value Description

double Represents the value of the item, registered
item, or the embedded item in an attribute.
310

gsi_flush
gsi_flush
Immediately flushes the G2 Gateway write buffer for the specified context.

Synopsis

void gsi_flush(context_number)

Description

Both G2 Gateway and the host operating system buffer network input and
output. This is done to achieve better performance, by minimizing the overhead
spent calling the host operating system and by reducing the overhead associated
with transmitting information on the network. However, this technique can result
in a delay in the delivery of data to G2.

Calling gsi_flush() enables your G2 Gateway application to ensure that all of
GSI’s output buffers have been written out over the network.

For example, the application can call gsi_flush() after calling the API function
gsi_rpc_start(), to ensure that the specified remote procedure is started in the
connected G2 process as soon as possible.

Argument Description

gsi_int context_
number

Context that identifies a connection to a GSI
interface object in a connected G2 process.
311

gsi_handle_of
Given a gsi_item structure, returns a value of type GSI_HANDLE_TAG that
represents a registered item. Given a G2 Gateway structure of type gsi_
registered_item or gsi_registration, returns the handle for that structure.

Synopsis

gsi_int gsi_handle_of(item)

gsi_int gsi_handle_of(registered_item)

gsi_int gsi_handle_of(registration)

Description

gsi_handle_of() returns the handle for a given G2 Gateway item, either a gsi_
item, gsi_registered_item, or gsi_registration. The behavior of gsi_
handle_of() depends upon the type of the argument.

If passed a gsi_item, gsi_handle_of() returns the value of the item, which must
be of G2 Gateway type GSI_HANDLE_TAG.

If passed a gsi_registration or gsi_registered_item, gsi_handle_of()
returns the handle of the registration or the handle of the registered item.

Argument Description

gsi_item
item

A G2 Gateway item, from which this
function returns a value of the type
GSI_HANDLE_TAG.

gsi_registered
_item registered_item

A registered item of which this function
returns the handle.

gsi_registration
registration

A registration of which this function
returns the handle.

Return Value Description

gsi_int An integer that stands for a particular G2
item registered in a given context.
312

gsi_history_count_of
gsi_history_count_of
Returns the number of history data values that are associated with an item or
embedded item in an attribute.

Synopsis

gsi_int gsi_history_count_of(item)

gsi_int gsi_history_count_of(attribute)

Description

gsi_history_count_of() returns the number of history data values associated
with an item.

If G2 does not pass the history values associated with an item to G2 Gateway,
gsi_history_count_of() returns a history count of 0 for that item, even though
the item in G2 may have 1 or more history values. G2 can pass to G2 Gateway the
history values associated with an item only through remote procedure calls, and
not through data service operations such as those performed by gsi_receive_
registration() and gsi_get_data().

G2, by default, does not pass an object’s system-defined attributes through
remote procedure calls. You can override this default and specify in the remote
procedure declaration in G2 that system-defined attributes such as the history
values be passed. For information about how to pass the system-defined
attributes, see G2 Reference Manual.

Argument Description

gsi_item item An item from which this function returns
the number of history data values.

gsi_attr attribute An attribute containing an embedded item
from which this function returns the
number of history data values.

Return Value Description

gsi_int Represents the number of history data
values associated with item or attribute.
313

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not through data service on GSI variables. For
information about remote procedure calls, see Remote Procedure Calls.

314

gsi_history_type_of
gsi_history_type_of
An alias for gsi_class_type_of().

For information about this function, see gsi_class_type_of.
315

gsi_identifying_attr_of
An alias for gsi_item_of_identifying_attr_of().

For information about this function, see gsi_item_of_identifying_attr_
of.
316

gsi_initialize_callbacks
gsi_initialize_callbacks
Sends the addresses of the user’s callback functions to G2 Gateway.

Synopsis

void gsi_initialize_callbacks(name1, funct1, ... (char *)0)

Description

G2 Gateway provides a way to automatically initialize GSI 4.1 and
G2 Gateway 5.0 callback functions when you compile your application. See
Defining C Preprocessor Flags for instructions on doing so.

G2 Gateway does not provide a way to automatically initialize user-written, local,
receiver, error receiver, and watchdog functions. You must use the gsi_
initialize_callbacks() function to do so. See the following parts of the
documentation for instructions:

• User-written functions specified in a call to the API function gsi_watchdog().
For information about this function, see gsi_watchdog.

• G2 Gateway local functions. For information about these functions, see
Writing a G2 Gateway Local Function to be Called by G2.

• G2 Gateway receiver functions. For information about these functions, see
Defining a Function to Receive Values Returned by G2.

• G2 Gateway error receiver functions. For information about these functions,
see Defining a Function to Receive Error Values Returned by G2.

gsi_initialize_callbacks() takes a variable number of arguments. Each pair
of arguments names a G2 Gateway callback and provides the address of the user-
written version of that callback. If you omit a callback, G2 Gateway still links
dynamically. However, G2 Gateway returns warning messages rather than
invoke the omitted callbacks.

Argument Description

char *name1 The name of the callback as it appears in
gsi_main.h.

function_pointer
_type1 funct1

A pointer to the callback.

Each callback initialized must be specified
by both a *name1 and an funct1 argument.

(char *)0 Required to end the argument list.
317

gsi_initialize_error_variable
Sets an error variable to the error code if an error occurs.

Synopsis

void gsi_initialize_error_variable(variable_address)

Description

G2 Gateway recognizes a set of minor errors that do not invoke the G2 Gateway
error handling mechanism.

You can call gsi_initialize_error_variable() to set an error variable to the
error code values of these minor errors, as they occur. When this function is used,
the default and user-defined error handlers are not invoked. It is the
responsibility of your user code to check the value of the error variable after every
call to an API function.

It is recommended that your user code reset the error variable to 0 whenever it
detects that the error variable has been set to a non-zero value.

Argument Description

gsi_int * variable_
address

The address of the error variable whose
value is set to the error code.
318

gsi_initialize_for_win32
gsi_initialize_for_win32
On a Windows platform, must be called prior to any other GSI API functions.

Synopsis

void gsi_initialize_for_win32(hInstance, lpCmdLine);

Description

If you use the supplied gsimmain.c or gsi_main.c, you do not need to add a call
to this function. gsi_initialize_for_win32 performs Windows-specific
initialization. In a Windows application, it will also look for a -log command-line
option. If the -log option is present, it redirects console output to a file whose
name is specified by the argument following -log. For logging to work, in the call
to gsi_initialize_for_win32, the first argument must correspond to the first
parameter of WinMain(), and the second argument must correspond to the third
parameter of WinMain(). Windows bridges must call this function prior to calling
any other GSI API functions.

For more information about how to use this function, see Compiling and Linking
G2 Gateway on Windows.

Argument Description

HANDLE hInstance Must correspond to the first parameter of
WinMain().

char *lpCmdLine Must correspond to the third argument of
WinMain().
319

gsi_initiate_connection
Initiates a connection to a G2 process and causes G2 to create a GSI interface for
that connection.

Synopsis

gsi_int gsi_initiate_connection(interface_name, class_name,
 keep_connection, network, host, port, rpis)

Argument Description

gsi_char *interface_
name

The name of the GSI interface created. G2
uses this GSI interface to communicate with
the bridge process that calls gsi_initiate_
connection().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_
connection

TRUE causes the connection not to close
when G2 is reset. The GSI interface is not
deleted.

FALSE causes the connection to close when
G2 is reset. The GSI interface generated for
this connection is deleted from the KB.

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *host Specify the host on which the G2 process is
running.
320

gsi_initiate_connection
Description

gsi_initiate_connection() initiates a connection to a G2 process running on a
specified host. It causes G2 to create a GSI interface, which the G2 uses to
communicate with the G2 Gateway process that calls gsi_initiate_
connection().

You can call gsi_initiate_connection() from within the callback gsi_set_
up(), or from any subsequent function in your G2 Gateway user code. A bridge
process can call gsi_initiate_connection() any number of times to initiate
connections to G2 processes.

When gsi_initiate_connection() establishes a connection to a G2 process, G2
Gateway calls the callback function gsi_initialize_context(). If the
connection cannot be established, G2 Gateway signals an error.

When you call gsi_initiate_connection() with keep_connection set to FALSE,
G2 makes the GSI interface object transient and automatically deletes it when the
connection is closed or G2 is reset. For this reason, G2 does not need the
information provided by the GSI-connection-configuration attribute and
therefore sets it to none.

gsi_char *port Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize_
context().

Return Value Description

0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Argument Description
321

You should be aware that if keep_connection is set to FALSE, but you made the
GSI interface permanent [for example, by a rule that fires when the gsi-interface-
status becomes 2 (the connection is active)] G2 does not automatically delete the
GSI interface when the connection is closed or G2 is reset. You must first make the
permanent GSI interface transient and then delete it.

You can configure a G2 KB to prohibit G2 Gateway processes from initiating
connections to the KB. To do this, add a configuration statement to your KB
Configuration system table that prohibits connect access to G2 Gateway. For
information about how to specify network security for a G2 process, see
G2 Reference Manual.

Related Functions

Function Description

gsi_initialize
_context()

Initialize a connection between a GSI
interface in G2 and G2 Gateway, or reject the
connection.

gsi_set_up() Perform G2 Gateway-related operations that
need to be performed only once during the
lifetime of the bridge process.
322

gsi_initiate_connection_with_user_data
gsi_initiate_connection_with_user_data
Initiates a connection to a G2 process, causes G2 to create a GSI interface for the
connection, and associates user data with the connection.

Synopsis

gsi_int gsi_initiate_connection_with_user_data
(interface_name, class_name, keep_connection, network, host,
port, rpis, context_user_data)

Argument Description

gsi_char *interface_
name

The name of the GSI interface created. G2
uses this GSI interface to communicate with
the bridge process that calls gsi_initiate_
connection_with
_user_data().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_
connection

Specify FALSE. This argument is not
supported in this release.

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *host Specify the host on which the G2 process is
running.

gsi_char *port Specify the number of the port on which G2
process is listening for a connection to this
bridge process.
323

Description

The function gsi_initiate_connection_with_user_data() enables a G2
Gateway bridge to initiate a connection and to associate context user data with the
connection to identify its origin, purpose, or other characteristics.

You can call gsi_initiate_connection_with_user_data() from within the
callback gsi_set_up(), or from any subsequent function in your G2 Gateway
user code. A bridge process can call gsi_initiate_connection_with_user_
data() any number of times to initiate connections to G2 processes.

When gsi_initiate_connection_with_user_data() establishes a connection to
a G2 process, G2 Gateway calls the callback function gsi_initialize_
context(). If the connection cannot be established, G2 Gateway signals an error.

You can configure a G2 KB to prohibit G2 Gateway processes from initiating
connections to the KB. To do this, add a configuration statement to your KB
Configuration system table that prohibits connect access to G2 Gateway. For
information about how to specify network security for a G2 process, see
G2 Reference Manual.

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize_
context().

gsi_context_user_
data_type context_
user_data

The user data associated with the context
initiated by this call to gsi_initiate_
connection_with
_user_data().

Return Value Description

0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Argument Description
324

gsi_initiate_connection_with_user_data
Use the API function gsi_context_user_data() to return the context user data
associated with a specified context. You can associate user data with an existing
context using the API function gsi_set_context_user_data().
325

gsi_initiate_secure_connection
Initiates a secure connection to a G2 process and causes G2 to create a GSI
interface for that connection.

Synopsis

gsi_int gsi_initiate_connection(interface_name, class_name,
 keep_connection, network, host, port, rpis)

Argument Description

gsi_char *interface_
name

The name of the GSI interface created. G2
uses this GSI interface to communicate with
the bridge process that calls gsi_initiate_
connection().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_
connection

TRUE causes the connection not to close
when G2 is reset. The GSI interface is not
deleted.

FALSE causes the connection to close when
G2 is reset. The GSI interface generated for
this connection is deleted from the KB.

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *host Specify the host on which the G2 process is
running.
326

gsi_initiate_secure_connection
Description

Behaves exactly like gsi_initiate_connection, but tries to make a secure
connection to G2 with SSL.

gsi_char *port Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize_
context().

Return Value Description

0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Argument Description
327

gsi_initiate_secure_connection_with_user_
data

Initiates a secure connection to a G2 process, causes G2 to create a GSI interface
for the connection, and associates user data with the connection.

Synopsis

gsi_int gsi_initiate_connection_with_user_data
(interface_name, class_name, keep_connection, network, host,
port, rpis, context_user_data)

Argument Description

gsi_char *interface_
name

The name of the GSI interface created. G2
uses this GSI interface to communicate with
the bridge process that calls gsi_initiate_
connection_with
_user_data().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_
connection

Specify FALSE. This argument is not
supported in this release.

gsi_char *network Specify “TCP-IP”.

You can specify only the first letter of the
protocol name, in upper or lower case: “T”
or “t”.

gsi_char *host Specify the host on which the G2 process is
running.
328

gsi_initiate_secure_connection_with_user_data
Description

Behaves exactly like gsi_initiate_connection_with_user_data, but tries to
make a secure connection to G2 with SSL.

gsi_char *port Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize_
context().

gsi_context_user_
data_type context_
user_data

The user data associated with the context
initiated by this call to gsi_initiate_
connection_with
_user_data().

Return Value Description

0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Argument Description
329

gsi_install_error_handler
Invokes gsi_initialize_callbacks() to initialize the gsi_error_handler()
callback function.

Synopsis

void gsi_install_error_handler(gsi_error_handler)

Description

gsi_install_error_handler() calls gsi_initialize_callbacks() to install the
callback gsi_error_handler().

You can complete the code of gsi_error_handler() to perform any customized
error handling required by your application. For information about this callback,
see gsi_error_handler.

Argument Description

gsi_error_handler The callback function to install.
330

gsi_int_array_of
gsi_int_array_of
Returns a pointer to a C array of gsi_int values, which corresponds to the values
in an item, registered item, or embedded item in an attribute, whose value must
be of G2 Gateway type GSI_INTEGER_ARRAY_TAG.

Synopsis

gsi_int *gsi_int_array_of(item)

gsi_int *gsi_int_array_of(registered_item)

gsi_int *gsi_int_array_of(attribute)

Description

gsi_int_array_of() returns a C array of gsi_int values, representing the
elements of the GSI_INTEGER_ARRAY_TAG value specified by the argument to this
function.

The values in this array correspond to the elements of the GSI_INTEGER_ARRAY_
TAG value of a gsi_item, gsi_registered_item, or gsi_attr.

The argument item, registered_item, or attribute must be of G2 Gateway type GSI_
INTEGER_ARRAY_TAG; otherwise, G2 Gateway signals an error.

This function does not allocate any memory.

Argument Description

gsi_item item An item to whose values this function
returns a pointer.

gsi_registered
item registered
item

A registered item to whose values this
function returns a pointer.

gsi_attr attribute An attribute containing an embedded item
to whose values this function returns a
pointer.

Return Value Description

gsi_int * Points to a C array of integer values that
correspond to the elements of the G2
Gateway type GSI_INTEGER_ARRAY_TAG.
331

gsi_int_list_of
Returns a C array of gsi_int values, which corresponds to the values in an item,
registered item, or embedded item in an attribute, whose value must be of G2
Gateway type GSI_INTEGER_LIST_TAG.

Synopsis

gsi_int *gsi_int_list_of(item)

gsi_int *gsi_int_list_of(registered_item)

gsi_int *gsi_int_list_of(attribute)

Description

gsi_int_list_of() returns an array of gsi_int values. The values in this array
correspond, in order, to elements of the GSI_INTEGER_LIST_TAG value of a gsi_
item, gsi_registered_item, or gsi_attr.

The argument item, registered_item or attribute must be of G2 Gateway type GSI_
INTEGER_LIST_TAG; otherwise, G2 Gateway signals an error.

This function does not allocate any memory.

Argument Description

gsi_item item An item to whose values this function
returns a pointer.

gsi_registered
item registered
item

A registered item to whose values this
function returns a pointer.

gsi_attr attribute An attribute containing an embedded item
to whose values this function returns a
pointer.

Return Value Description

gsi_int * A C array of integer values that correspond
to the elements of the G2 Gateway type GSI_
INTEGER_LIST_TAG.
332

gsi_int_of
gsi_int_of
Returns the integer value of an item, registered item, or embedded item in an
attribute.

Synopsis

gsi_int gsi_int_of(item)

gsi_int gsi_int_of(registered_item)

gsi_int gsi_int_of(attribute)

Description

gsi_int_of() returns the value of an item, registered item, or embedded item in
an attribute that is of G2 Gateway type GSI_INTEGER_TAG. The value is returned
as a gsi_int.

If the argument is not of G2 Gateway type GSI_INTEGER_TAG, G2 Gateway signals
an error.

Argument Description

gsi_item item An item whose integer value is returned
by this function.

gsi_registered
item registered
item

A registered item whose integer value is
returned by this function.

gsi_attr attribute An attribute containing an embedded item
whose integer value is returned by this
function.

Return Value Description

gsi_int Represents the value of G2 Gateway type
GSI_INTEGER_TAG stored in item, registered_
item, or attribute.
333

gsi_interval_of
Returns the current default update interval associated with a registered item or an
item registration.

Synopsis

double gsi_interval_of(registered_item)

double gsi_interval_of(registration)

Description

gsi_interval_of() returns the default update interval of a registered item.

To change the default update interval in a registered item, use the API function
gsi_set_interval().

Argument Description

gsi_registered_
itemrregistered_item

The registered item whose default
update interval is returned by this
function.

gsi_registration
registration

The registration whose default update
interval is returned by this function.

Return Value Description

double Represents the default update interval in
registered_item, given in seconds.
334

gsi_is_item
gsi_is_item
Determines whether a specified gsi_item represents an item or a value in G2.

Synopsis

gsi_int gsi_is_item(item)

Description

gsi_is_item() is useful for determining whether an argument received from G2
by a G2 Gateway local function represents an object that inherits from the G2 class
item, or a value of one of the G2 value types.

If gsi_is_item() indicates that an argument represents an object, your user code
can traverse the object to access its attributes individually.

For more information about this use of gsi_is_item(), see How a Local Function
Can Process Argument Arrays Received from G2.

Argument Description

gsi_item item The item examined by this function.

Return Value Description

gsi_int A non-zero value if item is an object that
inherits from the G2 class item, or 0 if it
represents a value.

The gsi_item represents an object that
inherits from item if the class name
component of the gsi_item contains the
name of a G2 class.

The gsi_item represents a value in G2 if the
class name component is set to NULL.
335

gsi_item_of_attr
Returns the gsi_item structure embedded in a gsi_attr structure.

Synopsis

gsi_item gsi_item_of_attr(attribute)

Description

gsi_item_of_attr() returns the gsi_item contained in the specified gsi_attr
structure.

Argument Description

gsi_attr attribute An attribute containing an embedded item.

Return Value Description

gsi_item Represents the embedded item in attribute.
336

gsi_item_of_attr_by_name
gsi_item_of_attr_by_name
Returns the gsi_item structure contained in a specified gsi_attr structure.

Synopsis

gsi_item gsi_item_of_attr_by_name(item, search_name)

gsi_item gsi_item_of_attr_by_name(attr, search_name)

Description

The function gsi_item_of_attr_by_name() returns the gsi_item embedded in
the gsi_attr structure whose name is specified by search_name. If no such
attribute exists, G2 Gateway signals an error.

Argument Description

gsi_item item If you specify a gsi_item, this argument
represents an item one of whose attributes,
specified by search_name, contains the item
that this function returns.

gsi_attr attr If you specify a gsi_attr, this argument
represents an attribute that contains an
embedded item. In this case, it is the
embedded item that has the attribute,
specified by search_name, that contains the
item returned by this function.

gsi_symbol search_
name

The name of the attribute that contains the
embedded gsi_item returned by this
function.

Specify this name in uppercase letters, to
correspond to the uppercase letters
ordinarily used in G2 identifiers, which are
of the G2 type symbol.

Return Value Description

gsi_item The gsi_item structure embedded in the
gsi_attr structure whose name is search_
name.
337

Related Functions

Function Description

gsi_attr_count
_of()

Returns the number of attributes in a gsi_
item or gsi_attr.

gsi_attrs_of() Obtains the attributes in a gsi_item or gsi_
attr.

gsi_set_attrs() Changes the attributes in a gsi_item or
gsi_attr

gsi_set_attr
_by_name()

Changes a specific attribute in a gsi_item or
gsi_attr.
338

gsi_item_of_identifying_attr_of
gsi_item_of_identifying_attr_of
Returns a gsi_item from an identifying attribute stored in a gsi_registration
structure.

Synopsis

gsi_item gsi_item_of_identifying_attr_of(registration, attribute_index)

Description

gsi_item_of_identifying_attr_of() returns one of the identifying attributes
stored in the identifying attributes component of a gsi_registration
structure.

When you configure a GSI interface, you designate the attributes to be used as the
identifying attributes for instances of each class of GSI variable that uses the GSI
interface. For information about how to specify the identifying attribute of a class
of GSI variable, see Identifying-Attributes Attribute.

The identifying attributes stored in a gsi_registration structure do not
include the names of the attributes.

Argument Description

gsi_registration
registration

The item registration.

gsi_int attribute_
index

An integer, between 1 and 6 inclusive, that
specifies one of the six identifying attributes.

If you specify a value greater than 6, or
greater than the number of identifying
attributes, G2 Gateway returns an error.

Return Value Description

gsi_item The identifying attribute specified by
attribute_ index.
339

gsi_item_of_registered_item
Returns the gsi_item structure that is pointed to by a specified gsi_
registered_item structure.

Synopsis

gsi_item gsi_item_of_registered_item(registered_item)

Description

gsi_item_of_registered_item() returns the gsi_item that is contained in
registered_item.

Argument Description

gsi_registered
item registered
item

The item structure.

Return Value Description

gsi_item The item structure contained in registered_
item.
340

gsi_kill_context
gsi_kill_context
Shuts down a G2 Gateway context immediately.

Synopsis

void gsi_kill_context(context_number)

Description

gsi_kill_context() shuts down a specified context and performs operations
necessary to shut down the external system and clean up the bridge process.
When the context is shut down, G2 Gateway calls the callback function gsi_
shutdown_context() to perform any customized operations associated with the
shutdown that your application requires.

G2 Gateway calls gsi_shutdown_context()when any event closes a context —
such as a G2 shutting down or being reset, or a connection being broken. For
information about this callback function, see gsi_shutdown_context.

Argument Description

gsi_int context_
number

The context that this function shuts down.
341

gsi_last_error
Returns the error number of the last error condition to which the global error flag
was set by an API function in your G2 Gateway application.

Synopsis

gsi_int gsi_last_error()

Description

gsi_last_error() returns the error number of the error condition most recently
encountered in the G2 Gateway application.

For information about how to use the global error flag, see Checking the Global
Error Flag.

Return Value Description

gsi_int Represents the number of the error
condition most recently encountered in the
G2 Gateway application.
342

gsi_last_error_call_handle
gsi_last_error_call_handle
Returns the call identifier that G2 generated and passed to the G2 Gateway local
function that invokes an error handler function.

Synopsis

gsi_call_identifier_type gsi_last_error_call_handle()

Description

Use gsi_last_error_call_handle() inside a user-defined error-handler
function that is invoked during an API call made by a G2 Gateway local function.

This function returns the call-identifier of the local function that invoked the error
handler. You can pass the call-identifier to the API function gsi_rpc_return_
error_values(), which enables you to control the error message that is sent back
to G2.

Return Value Description

gsi_call_
identifier_type

The call-identifier received from G2 by the
local function that invoked the error handler
function.
343

gsi_last_error_message
Returns the message text of the last reported error.

Synopsis

gsi_char *gsi_last_error_message()

Description

Use gsi_last_error_message() rather than gsi_error_message(), which can
return formatting templates rather than the simple text of the error message.

Return Value Description

gsi_char* The text of the last error message.
344

gsi_listener_socket
gsi_listener_socket
Returns the UNIX file descriptor associated with the G2 Gateway bridge’s TCP
listener.

Synopsis

gsi_int gsi_listener_socket()

Description

gsi_listener_socket() returns the UNIX file descriptor associated with the G2
Gateway bridge’s TCP listener. If the bridge has no listener, for example, if the
bridge has been started without a TCP listener, this function returns -1.

Return Value Description

gsi_int The file descriptor associated with the
bridge’s TCP listener, or -1, if not such
listener exists.
345

gsi_log_array_of
Returns the array of truth-values stored in an item or registered item embedded
item in an attribute.

Synopsis

gsi_int *gsi_log_array_of(item)

gsi_int *gsi_log_array_of(registered_item)

gsi_int *gsi_log_array_of(attribute)

Description

gsi_log_array_of() returns a pointer to the array of truth-values stored in a
gsi_item or gsi_attr.

If the argument to this function is neither a gsi_item nor a data structure that
points to a gsi_item, G2 Gateway signals an error.

To determine whether a gsi_item, gsi_registered_item, or gsi_attr
represents a truth-value array, verify that the value returned by the API function
gsi_type_of() is GSI_LOGICAL_ARRAY_TAG.

To modify a gsi_item or gsi_attr so that it stores a truth-value array, use the
API function gsi_set_log_array().

Argument Description

gsi_item item An item from which this function returns
the array of truth-values.

gsi_registered
_item registered_item

A registered item from which this function
returns the array of truth-values.

gsi_attr attribute An attribute containing an item from which
this function returns the array of truth-
values.

Return Value Description

gsi_int * A C array of type gsi_int. Each element
represents a truth-value, ranging from
GSI_FALSE (-1000) for completely false to
GSI_TRUE (+1000) for completely true.
346

gsi_log_list_of
gsi_log_list_of
Returns a one-dimensional C array that represents the list of truth-values stored
in an item or registered item embedded item in an attribute.

Synopsis

gsi_int *gsi_log_list_of(item)

gsi_int *gsi_log_list_of(registered_item)

gsi_int *gsi_log_list_of(attribute)

Description

gsi_log_list_of() returns the list of truth-values stored in a gsi_item or
gsi_attr.

If the argument to this function is neither a gsi_item nor a data structure that
points to a gsi_item, G2 Gateway signals an error.

This function does not allocate any new memory — that is, it returns the actual
array stored in a gsi_item, gsi_registered_item, or gsi_attr, not to a copy.

To determine whether a gsi_item, gsi_registered_item, or gsi_attr
represents a truth-value list, verify that the value returned by the API function
gsi_type_of() is GSI_LOGICAL_LIST_TAG.

Argument Description

gsi_item item An item from which this function returns a
C array representing a list of truth values.

gsi_registered
_item registered_item

A registered item from which this function
returns a C array representing a list of truth
values.

gsi_attr attribute An attribute containing an embedded item.

Return Value Description

gsi_int * A one-dimensional C array of type gsi_int.
Each element represents a truth-value,
ranging from GSI_FALSE
(-1000) for completely false to GSI_TRUE
(+1000) for completely true.
347

To modify a gsi_item, gsi_registered_item, or gsi_attr so that it stores a
truth-value list, use the API function gsi_set_log_list().
348

gsi_log_of
gsi_log_of
Returns a gsi_int that represents the value of an item, registered item, or
embedded item in an attribute whose value is of G2 Gateway type GSI_LOGICAL_
TAG.

Synopsis

gsi_int gsi_log_of(item)

gsi_int gsi_log_of(registered_item)

gsi_int gsi_log_of(attribute)

Description

gsi_log_of() returns the value of a gsi_item, gsi_registered_item, or gsi_
attr.

The G2 Gateway type of the argument must be GSI_LOGICAL_TAG; otherwise, G2
Gateway signals an error.

Argument Description

gsi_item item An item whose value is returned by this
function.

gsi_registered
item registered
item

A registered item whose value is returned
by this function.

gsi_attr attribute An attribute containing an embedded item
whose value is returned by this function.

Return Value Description

gsi_int A truth-value, ranging from GSI_FALSE
(-1000) for completely false to GSI_TRUE
(+1000) for completely true.
349

gsi_long_of
Returns the long value of an item, registered item, or embedded item in an
attribute.

Synopsis

gsi_long gsi_long_of(item)

gsi_long gsi_long_of(registered_item)

gsi_long gsi_long_of(attribute)

Description

gsi_long_of() returns the value of an item, registered item, or embedded item in
an attribute that is of G2 Gateway type GSI_LONG_TAG. The value is returned as a
gsi_long.

If the argument is not of G2 Gateway type GSI_LONG_TAG, G2 Gateway signals an
error.

Argument Description

gsi_item item An item whose integer value is returned
by this function.

gsi_registered
item registered
item

A registered item whose integer value is
returned by this function.

gsi_attr attribute An attribute containing an embedded item
whose integer value is returned by this
function.

Return Value Description

gsi_long Represents the value of G2 Gateway type
GSI_LONG_TAG stored in item, registered_
item, or attribute.
350

gsi_make_array
gsi_make_array
Allocates an array containing space for a specified number of gsi_items.

Synopsis

gsi_item *gsi_make_array(count)

Description

Note, gsi_make_array() doesn’t create the gsi_items, only the array itself. You
populate the array using gsi_make_item() or a related API function.

You are responsible for deallocating any arrays that you allocate using gsi_make_
array(). G2 Gateway does not deallocate it automatically. You can deallocate an
array using gsi_reclaim_array().

G2 Gateway automatically deallocates any arrays that it allocates itself. Do not
attempt to deallocate arrays automatically allocated by G2 Gateway.

Argument Description

gsi_int count The number of elements in the array
allocated by this function call.

Return Value Description

gsi_item * The array of gsi_item allocated by this
function call.
351

gsi_make_attrs
Allocates one or more instances of the gsi_attr structure.

Synopsis

gsi_attr *gsi_make_attrs(count)

Description

gsi_make_attrs() allocates gsi_attr instances for the use of your G2 Gateway
bridge process. Use array-index pointer arithmetic to access each element of the
allocated array.

You can set the item component of any gsi_attr structure to reference any gsi_
item created by G2 Gateway itself or by the API function gsi_make_items(),
using the API function gsi_set_item_of_attr().

It is good practice to deallocate the gsi_attr structures that you allocate using
gsi_make_attrs() as soon as these structures are no longer needed by your G2
Gateway bridge process.

Use the API function gsi_reclaim_attrs() to deallocate gsi_attr structures.
You need to deallocate only those gsi_attr structures that you have allocated by
making calls to gsi_make_attrs()or gsi_make_attrs_with_items(). You do
not need to deallocate the gsi_attr structures that G2 Gateway has allocated
automatically, and should not attempt to do this.

Argument Description

gsi_int count Number of instances of gsi_attr to
allocate.

Return Value Description

gsi_attr * The allocated C array of gsi_attr
structures.
352

gsi_make_attrs_with_items
gsi_make_attrs_with_items
Allocates one or more instances of the gsi_attr structure, each with its own gsi_
item structure.

Synopsis

gsi_attr *gsi_make_attrs_with_items(count)

Description

gsi_make_attrs_with_items() allocates one or more instances of gsi_attr.
Each gsi_attr contains its own gsi_item structure.

It is good practice to deallocate the gsi_attr structures that you allocate using
gsi_make_attrs_with_items() as soon as these structures are no longer needed
by your G2 Gateway bridge process.

Use the API function gsi_reclaim_attrs_with_items() to deallocate this array
(or any array of gsi_attr instances that your G2 Gateway application has
populated with gsi_item instances). You need to deallocate only those gsi_attr
structures that you have allocated by making calls to gsi_make_attrs() or gsi_
make_attrs_with_items(). You do not need to deallocate the gsi_attr
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

Argument Description

gsi_int count Number of instances of gsi_attr to
allocate.

Return Value Description

gsi_attr * A newly allocated C array of gsi_attr
structures.
353

gsi_make_item
Allocates a single gsi_item structure.

Synopsis

gsi_item gsi_make_item()

Description

You are responsible for deallocating any items that you allocate using gsi_make_
item(). G2 Gateway does not deallocate it automatically. You can deallocate an
array using gsi_reclaim_item().

G2 Gateway automatically deallocates any items that it allocates itself. Do not
attempt to deallocate items automatically allocated by G2 Gateway.

Return Value Description

gsi_item The gsi_item allocated by this function call.
354

gsi_make_items
gsi_make_items
Allocates an array of one or more instances of gsi_item.

Synopsis

gsi_item *gsi_make_items(count)

Description

gsi_make_items() allocates gsi_item instances for use in the user code of your
G2 Gateway application. Use array-index pointer arithmetic to access each
element of the allocated array.

It is good practice to deallocate the gsi_item structures that you allocate using
gsi_make_items() as soon as these structures are no longer needed by your G2
Gateway bridge process.

Use the API function gsi_reclaim_items() to deallocate gsi_item structures.
You need to deallocate only those gsi_item structures that you have allocated by
making calls to gsi_make_items(). You do not need to deallocate the gsi_item
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

Argument Description

gsi_int count Number of instances of gsi_item to
allocate.

Return Value Description

gsi_item * A newly allocated C array of gsi_item
structures.
355

gsi_make_registered_items
Allocates one or more instances of the gsi_registered_item structure.

Synopsis

gsi_registered_item *gsi_make_registered_items(count)

Description

gsi_make_registered_items() allocates an array of one or more gsi_
registered_item structures. You can pass arrays allocated by this function to the
API functions gsi_return_values(), gsi_return_timed_values(), gsi_
return_attrs(), and gsi_return_timed_attrs().

You can deallocate the gsi_registered_item structures that you allocate using
gsi_make_registered_items() as soon as these structures are no longer needed
by your G2 Gateway bridge process. However, do not deallocate the gsi_
registered_item structures until any API function to which the structures have
been passed completes and returns. For example, if you pass an array of gsi_
registered_item to gsi_return_values(), do not deallocate this array until
gsi_return_values() returns.

Use the API function gsi_reclaim_registered_items() to deallocate gsi_
registered_item structures. You need to deallocate only those gsi_registered_
item structures that you have allocated by making calls to gsi_make_
registered_items(). You do not need to deallocate the gsi_registered_item
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

Argument Description

gsi_int count Number of instances of gsi_registered_
item to allocate.

Return Value Description

gsi_registered
_item *

A newly allocated C array of gsi_
registered_item structures.
356

gsi_make_symbol
gsi_make_symbol
Returns a symbol, given the name of that symbol.

Synopsis

gsi_symbol gsi_make_symbol(symbol-name)

Description

When the GSI_NEW_SYMBOL_API runtime option is set, gsi_make_symbol(),
results in a (void *) pointer whose contents does not change throughout the
lifetime of the GSI process. Calling gsi_make_symbol() at a later time with a
string having the same contents produces exactly the same result.

When the GSI_NEW_SYMBOL_API runtime option is not set, gsi_make_symbol()
returns a string that is a copy of its argument.

Argument Description

gsi_char
*symbol-name

The name of the symbol.

Return Value Description

gsi_symbol The symbol that corresponds to the
specified symbol name.
357

gsi_name_of
Returns a symbol representing the name of a specified GSI item.

Synopsis

gsi_symbol gsi_name_of(item)

gsi_symbol gsi_name_of(attr)

gsi_symbol gsi_name_of(reg)

Argument Description

gsi_item item If you specify gsi_item, the name of that
item is returned.

gsi_attr attr If you specify a gsi_attr, the name of the
embedded gsi_item in that attribute is
returned.

gsi_registration
reg

If you specify a gsi_registration, the
name of the gsi_item for which this is the
registration is returned.
358

gsi_name_of
Description

gsi_name_of() returns the value of the name attribute of a gsi_item. A call to this
API function can reference the gsi_item structure directly, or through a gsi_
registration or gsi_attr structure.

Caution If the specified item has no associated class or is not named, the return value is a
null pointer. On some systems, passing a null pointer to printf() causes a
segmentation violation. For this reason, you may want to verify that the return
value of gsi_name_of() is not a null pointer before you pass it to printf(). For
example:

gsi_symbol char_temp;
char_temp = gsi_name_of(item);
if (char_temp)
printf("\n name: %s", char_temp);
else
printf("\n name: NULL_PTR");

Return Value Description

gsi_symbol A symbol giving the name of the specified
data structure.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory it allocates either using malloc()
or via one of the make_xxx G2 Gateway API
functions.

Note: The return value is NULL if the
argument passed to this function is a gsi_
item extracted from a gsi_registered_
item by gsi_item_of_registered_item(),
and this gsi_registered_item was
obtained from a callback function, such as
gsi_set_data().
359

gsi_option_is_set
Returns whether a particular G2 Gateway global run-time option is set.

Synopsis

gsi_int gsi_option_is_set(option)

Description

gsi_option_is_set() returns a value that indicates whether a particular G2
Gateway global run-time option is set.

For option, specify the symbolic constant that represents a G2 Gateway runtime
option, as shown in the table below.

Argument Description

gsi_int option Symbolic constant that represents a G2
Gateway global run-time option.

Return Value Description

gsi_int Either 1 (TRUE) or 0 (FALSE), depending on
whether the specified option is currently set
or reset, respectively.

Global
Run-time Option Purpose

GSI_NEW_SYMBOL_API Enables API functions to access symbols
efficiently. Use of this option is
recommended if you user code includes
calls to functions that access symbols.

GSI_NO_SIGNAL
_HANDLERS

Prevents G2 Gateway from registering its
own signal handlers with the operating
system.

GSI_NON_C When set, directs G2 Gateway to use pass-
by-reference when calling the G2 Gateway
callback functions. When reset (the default),
directs G2 Gateway to use pass-by-value.
360

gsi_option_is_set
GSI_ONE_CYCLE When set, directs G2 Gateway to run in
One-Cycle mode. When reset, directs G2
Gateway to run in Continuous mode

GSI_STRING_CHECK Determines whether G2 Gateway
automatically filters all strings passed
between G2 Gateway and G2 (that is,
automatically converts all carriage-returns,
at-signs, tildes, and backslashes, as
described in the G2 Reference Manual.)

GSI_SUPPRESS_OUTPUT When set, directs GSI not to send
information and error messages to standard
output. When reset, (the default) GSI sends
information and error messages to standard
output.

GSI_TRACE_RUN_STATE Prints a message whenever the flow of
control enters or leaves G2 Gateway. If the
gsi_run_state_change() callback is
initialized, it prints the message before this
callback is called.

GSI_USER_DATA_
FOR_CALLBACKS

Enables the user of user_data arguments in
remote procedure calls made from the
bridge to G2. For information about this
option, see Procedure User Data for Remote
Procedure Calls.

GSI_WIDE_STRING_API Enables the use of the wide string character
type. For information about this type, see
Wide String Type.

Global
Run-time Option Purpose
361

gsi_owner_of
Indicates whether user code or G2 Gateway allocated a specified item.

Synopsis

gsi_int gsi_owner_of(item)

gsi_int gsi_owner_of(regitem)

gsi_int gsi_owner_of(attr)

gsi_int gsi_owner_of(reg)

Argument Description

gsi_item item A gsi_item.

gsi_registered_item
regitem

A gsi_registered_item.

gsi_attr attr A gsi_attr.

gsi_registration reg A gsi_registration.

Return Value Description

gsi_int Indicates whether the specified item was
allocated by user code or by G2 Gateway.
Can be any of the following values:

0 (GSI_OWNER_IS_USER):: The item was
allocated by user code, and the user code is
responsible for deallocating it.

1 (GSI_OWNER_IS_GSI):: The item was
allocated automatically by G2 Gateway,
which will deallocate it automatically
when it is no longer needed.

2 (GSI_OWNER_IS_CONTEXT):: The item was
allocated automatically on behalf of the
context by G2 Gateway, which will
deallocate the item automatically when it
is no longer needed.
362

gsi_owner_of
Description

The function gsi_owner_of() enables your user code to determine whether it
has memory management responsibility for a specified item. If gsi_owner_of()
indicates that the user code allocated the item, the user code is responsible for
deallocating that item when it no longer needs the item. If gsi_owner_of()
indicates that the item was generated automatically by G2 Gateway, the item will
be deallocated automatically by G2 Gateway when it is no longer needed, and the
user code has no memory management responsibility for that item. For more
information about the memory management responsibilities of G2 Gateway user
code, see Memory Management Responsibilities of G2 Gateway User Code.
363

gsi_pause
Causes the G2 Gateway bridge process to sleep for 1 second, or until a network
event occurs on a network connection to the G2 Gateway bridge process.

Synopsis

void gsi_pause()

Description

By default, gsi_pause() causes the G2 Gateway bridge process to enter an
interruptible sleep for 1 second. You can override this default one-second interval
and set the maximum amount of time that the bridge process sleeps using the API
function gsi_set_pause_timeout().

Three events can awaken a bridge that has been paused:

• A timeout occurs on the specified pause interval.

• Network activity occurs on particular connections to external systems that
you instruct the bridge process to monitor using the gsi_watch_fd() or gsi_
watch_fd_for_writing() API functions.

• Network activity occurs over active connections to G2 processes. G2 Gateway
automatically watches these connections; you do not have to instruct it to
watch for them specifically.

In continuous mode, gsi_run_loop() calls gsi_pause() automatically at the end
of each loop.

In one-cycle mode, the G2 Gateway bridge process enters an interruptible sleep
only when your user code calls the gsi_pause() function. The bridge process
does not enter an interruptible sleep automatically.

If you call gsi_pause() more than once, without calling gsi_run_loop()
between the calls to gsi_pause(), only the first call to gsi_pause() causes the
bridge to enter an interruptible sleep. Thus, if you call gsi_pause() ten times in
succession, without intervening calls to gsi_run_loop(), the bridge sleeps for a
maximum of only 1 second.

Note You can use the API function gsi_wakeup() in a multi-threaded application to
cause a gsi_pause() in another thread to exit, allowing that thread to wake up.
364

gsi_pause
Related Functions

Function Description

gsi_set_pause_
timeout()

Specifies the maximum amount of
time that gsi_pause() can pause the
bridge.

gsi_wakeup() In a multi-threaded application,
causes a gsi_pause() running in
another thread to exit.

gsi_watch_fd() Specifies a file descriptor that G2
Gateway watches for network read
or error activity.

gsi_watch_fd_for_
writing()

Specifies a file descriptor that G2
Gateway watches for network write
activity.
365

gsi_print_backtrace
Prints a backtrace to the console on Sun4 and Solaris platforms.

Synopsis

void gsi_print_backtrace()

Description

gsi_print_backtrace() prints a backtrace to the console. If the G2 Gateway
executable is stripped, G2 Gateway prints a numeric bracktrace; if it is not, G2
Gateway prints a symbolic backtrace. This funtion is useful for debugging.
366

gsi_reclaim_array
gsi_reclaim_array
Deallocates an array of gsi_item structures.

Synopsis

void gsi_reclaim_array(array)

Description

gsi_reclaim_array() deallocates an array of gsi_item structures.

You can allocate an array of gsi_item using the API function gsi_make_array().

G2 Gateway automatically deallocates arrays that it allocates automatically. Do
not attempt to deallocate automatically allocated arrays.

Argument Description

gsi_item *array The array of gsi_item deallocated by this
function call.
367

gsi_reclaim_attrs
Reclaims one or more instances of the gsi_attr structure.

Synopsis

void gsi_reclaim_attrs(attributes)

Description

gsi_reclaim_attrs() frees storage that was previously allocated by the API
function gsi_make_attrs() for one or more instances of the gsi_attr structure.

Argument Description

gsi_attr *attributes An array of gsi_attr structures that was
previously allocated using the API function
gsi_make_attrs().
368

gsi_reclaim_attrs_with_items
gsi_reclaim_attrs_with_items
Reclaims one or more instances of the gsi_attr structure.

Synopsis

void gsi_reclaim_attrs_with_items(attributes)

Description

gsi_reclaim_attrs_with_items() frees storage that was previously allocated
by the API function gsi_make_attrs_with_items() for one or more instances of
the gsi_attr structure.

Argument Description

gsi_attr *attributes An array of gsi_attr structures that was
previously allocated using the API function
gsi_make_attrs_with_items().
369

gsi_reclaim_item
Deallocates a specified gsi_item structure.

Synopsis

void gsi_reclaim_item(item)

Description

gsi_reclaim_item() deallocates a gsi_item structure. You are responsible for
deallocating any items that you allocate using the API function gsi_make_item().

G2 Gateway automatically deallocates any gsi_item structures that it allocates
automatically. Do not attempt to deallocate automatically allocated gsi_item
structures.

You should not attempt to reclaim the same items more than once.

Argument Description

gsi_item item The gsi_item deallocated by this function
call.
370

gsi_reclaim_items
gsi_reclaim_items
Reclaims an array of instances of gsi_item that were allocated using gsi_make_
items().

Synopsis

void gsi_reclaim_items(items)

Description

gsi_reclaim_items() frees storage that was previously allocated by the API
function gsi_make_items() for one or more instances of the gsi_item structure.

You cannot partially reclaim arrays that were allocated using the API function
gsi_make_items().

You should not attempt to reclaim the same items more than once.

Argument Description

gsi_item *items An array of instances of the gsi_item
structure that was previously allocated
using the API function gsi_make_items().
371

gsi_reclaim_registered_items
Reclaims an array of gsi_registered_item structures.

Synopsis

void gsi_reclaim_registered_items(registered_items)

Description

gsi_reclaim_registered_items() frees storage that was previously allocated
using the API function gsi_make_registered_items(), for one or more instances
of the gsi_registered_item structure.

Argument Description

gsi_registered
item *registered
items

An array of gsi_registered_item
structures that was allocated using the API
function gsi_make_registered_items().
372

gsi_registration_of_handle
gsi_registration_of_handle
Returns the gsi_registration for the given item_handle and context.

Synopsis

gsi_registration gsi_registration_of_handle
(item_handle, context_number)

Description

gsi_registration_of_handle() returns a gsi_registration corresponding to
a registered item. As input arguments, this function takes only the handle and
context of the registered item.

Because gsi_registration_of_handle() returns a NULL pointer if the item
handle specified by the item_handle argument is not valid, you can use this
function to test the validity of handles.

Argument Description

gsi_int item_handle The item handle.

gsi_int context_number The context.

Return Value Description

gsi_registration The gsi_registration structure that
corresponds to item_handle and context,
or a NULL pointer if item_handle is not a
valid handle.
373

gsi_registration_of_item
Returns the gsi_registration associated with a gsi_registered_item, gsi_
item, or gsi_registration.

Synopsis

gsi_registration gsi_registration_of_item(item)

gsi_registration gsi_registration_of_item(regitem)

gsi_registration gsi_registration_of_item(registration)

Description

gsi_registration_of_item() returns the registration of a registered item or
gsi_item. If you specify a gsi_registration for regitem_or_registration, this
function returns that gsi_registration.

Argument Description

gsi_item item The gsi_item for which this function
returns the gsi_registration.

gsi_registered_item
regitem

The gsi_registered_item for which this
function returns the gsi_registration.

gsi_registration
registration

If you specify a gsi_registration for this
argument, the function returns that same
gsi_registration.

Return Value Description

gsi_registration The registration returned by this function.
374

gsi_reset_option
gsi_reset_option
Turns off a G2 Gateway global run-time option.

Synopsis

void gsi_reset_option(option)

Description

gsi_reset_option() turns off the G2 Gateway global run-time option specified
by option.

G2 Gateway run-time options are global settings that control G2 Gateway
operations and communications. For most purposes, it is best to set and reset
these options in the callback function gsi_set_up(). However, you can set and
reset the options from any place in your user code after gsi_start() has been
called.

For option, specify a symbolic constant that represents a G2 Gateway runtime
option, as listed in the following table.

Argument Description

gsi_int option Symbolic constant that represents a G2
Gateway global run-time option.

G2 Gateway Runtime Options

Global
Run-time Option Purpose

GSI_NO_SIGNAL_HANDLERS When set, directs G2 Gateway not to register
its own signal handlers with the operating
system. This can in some cases make
debugging easier.

When reset, directs G2 Gateway to register
its own signal handlers. This is the default.

GSI_ONE_CYCLE When set, allows control to be returned to
your main function once per cycle. Refer to
Processing Events through gsi_run_loop()
for more information.

GSI_PROTECT_INNER_
CALLS

When set, after encountering an error, G2
Gateway returns control to the caller rather
than returning control to gsi_run_loop().
375

GSI_STRING
_CHECK

When set, filters out all non-ASCII
characters sent to (but not from) G2.

GSI_SUPPRESS
_OUTPUT

When set, prevents all output generated by
G2 Gateway or the communications link
from appearing as standard output to your
screen.

GSI_TRACE_RUN_LOOP When set, prints a message whenever gsi_
start() or gsi_run_loop() are entered or
exited.

GSI_TRACE_RUN
_STATE

When set, prints a message whenever the
flow of control enters or leaves G2 Gateway.
If the gsi_run_state_change() callback is
initialized, it prints the message before this
callback is called.

G2 Gateway Runtime Options

Global
Run-time Option Purpose
376

gsi_return_attrs
gsi_return_attrs
Returns a value to a registered GSI variable and sets one or more of its attributes.

Synopsis

void gsi_return_attrs(registered_item, attributes, count, context_number)

Description

gsi_return_attrs() returns a value (optionally null-typed, in which case no
value is sent) to a GSI variable and returns values to one or more of the variable’s
attributes.

The values returned by this function (that is, both the value of the variable and the
values of the variable’s attributes) can be timestamped.

To update a variable’s attributes without modifying its value, set the type of
registered_item to NULL_TAG.

Argument Description

gsi_registered_
itemregistered_item

The registered item that contains attribute
values.

gsi_attr *attributes Array of attributes whose names, types,
and values are set.

gsi_int count Number of items represented in attributes.

gsi_int context_
number

Context number specifying the GSI
interface object through which registered_
item was registered.
377

gsi_return_message
Returns a text string to the message-board item in the current KB of the
connected G2 process.

Synopsis

void gsi_return_message(message,context_number)

Description

gsi_return_message() passes the text of a message to the message-board item
in the current KB of a connected G2 process.

For example, the following gsi_initialize_context() callback function
invokes gsi_return_message() to send the remote process initialization string of
the GSI interface to the message-board:

gsi_int gsi_initialize_context(remote_process_init_string,
length)

gsi_char *remote_process_init_string;
gsi_int length;

{
char ret_msg[100];

sprintf(ret_msg, "Initialization string %s",
remote_process_init_string);

gsi_return_message(ret_msg, gsi_current_context());
return(GSI_ACCEPT);

}

Argument Description

gsi_char *message Text string passed to the connected G2
process.

gsi_return_message() does not retain the
message argument. If your G2 Gateway user
code allocated the memory for the message
string, it can deallocate this memory after
gsi_return_message() completes, if it has
no further use for the string.

gsi_int context_
number

Context number that identifies a connection
to a GSI interface.
378

gsi_return_timed_attrs
gsi_return_timed_attrs
Returns a timestamped value and one or more optionally timestamped attribute
values to a registered G2 variable.

Synopsis

void gsi_return_timed_attrs(registered_item, attributes, count,
context_number)

Description

gsi_return_timed_attrs() returns a timestamped value (optionally, null-typed,
in which case, no value is sent) to a G2 variable and returns timestamped values
to one or more of the variable’s attributes.

The values returned by this function (that is, both the value of the variable and of
the variable’s attributes) can be timestamped. No special structure is required to
send timestamped values.

To update a variable’s attributes without modifying its value, set the type of
registered_item to NULL_TAG.

Argument Description

gsi_registered_item
registered_item

The registered item that contains the
timestamped value.

gsi_attr *attributes Array of attributes whose names, types,
and values have been set. Each attribute
can be timestamped.

gsi_int count Number of items represented in
attributes.

gsi_int context_number Context number specifying the GSI
interface object through which
registered_item was registered.
379

gsi_return_timed_values
Returns one or more timestamped values to the last-recorded-value attribute of
one or more GSI variables.

Synopsis

void gsi_return_timed_values(registered_items, count, context_number)

Description

gsi_return_timed_values() passes new values to GSI variables in the
connected G2 process.

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

Argument Description

gsi_registered_item
*registered_items

An array of registered items that are set
with new values for the last-recorded-
value attribute. This value must be
timestamped.

gsi_int count Number of items represented in
registered_items.

gsi_int context_number Context number specifying the GSI
interface object through which
registered_items was registered.
380

gsi_return_values
gsi_return_values
Returns one or more values to the last-recorded-value attribute of one or more
GSI variables, or to one or more G2 items.

Synopsis

void gsi_return_values(registered-items, count, context_number)

Description

gsi_return_values() passes new values to GSI variables.

If your G2 application sets data points in the external system, the G2 Gateway
bridge should call gsi_return_values() to echo these values back to G2.

Argument Description

gsi_registered_item
*registered-items

An array of registered items. The values of
these registered items are used to set the
last-recorded-value attributes of GSI
variables in G2.

Each gsi_registered_item has a handle
that refers to a gsi_registration or gsi_
item that contains a value. You can make
any desired changed to the attributes of
the gsi_item structures. When gsi_
return_values() is called, these changes
are reflected in the original GSI variables
for which G2 requested data service from
the G2 Gateway bridge. For information
about data service for GSI variables, see
Implementing Data Service in G2
Gateway.

gsi_int count Number of items represented in
registered_items.

gsi_int context_
number

Context number specifying the GSI
interface object through which registered_
items was registered.
381

gsi_rpc_call
Calls a G2 procedure that can return values to the G2 Gateway bridge.

Synopsis

void gsi_rpc_call(function_handle, arguments, call_identifier, context)

Description

Use gsi_rpc_call() to call a G2 procedure that can return values to the G2
Gateway bridge. The remote G2 procedure is executed as soon as G2 receives the
remote procedure call from G2 Gateway.

Before your G2 Gateway user code calls a G2 procedure, it must declare the G2
procedure using the API function gsi_rpc_declare_remote() or gsi_rpc_
declare_remote_with_error_handler_and_user_data().

Argument Description

gsi_function_
handle_type
function_handle

The G2 procedure. You must specify the
same function_handle that is specified in the
call to gsi_rpc_declare_remote() or gsi_
rpc_declare_remote_with
_error_handler_and_user_data()
that declares the G2 procedure as a remote
procedure.

gsi_item
*arguments

The arguments passed to the G2 procedure
through this remote procedure call.

gsi_call_
identifier_type
call_identifier

User data associated with this call to the G2
procedure and with any corresponding
return call that G2 makes to the G2 Gateway
receiver function.

To use this argument, you must compile
your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS
preprocessor macro defined or use the
corresponding compile time switch. For
more info see Call Identifiers for Remote
Procedure Calls.

gsi_int context The context through which this remote
procedure call is made.
382

gsi_rpc_call
Your G2 Gateway user code must declare the function_handle argument as a
gsi_function_handle_type, and assign a value to it by calling the API
function gsi_rpc_declare_remote() or gsi_rpc_declare_remote_with_
error_handler_and_user_data().

When the G2 procedure called by this function returns, the receiver function
previously specified by gsi_rpc_declare_remote() or gsi_rpc_declare_
remote_with_error_handler_and_user_data() is called with the return
arguments.

Note If the G2 procedure does not return values to the G2 Gateway bridge, invoke the
procedure using gsi_rpc_start() rather than gsi_rpc_call().
383

gsi_rpc_call_with_count
Calls a G2 procedure that can return values to the G2 Gateway bridge, specifying
the number of return arguments that G2 can pass back to G2 Gateway.

Synopsis

void gsi_rpc_call_with_count(function_handle, arguments, count,
call_identifier, context)

Argument Description

gsi_function_handle
_type function_handle

The G2 procedure. You must specify the
same function_handle that is specified in
the call to gsi_rpc_declare_remote()
that declares the G2 procedure as a remote
procedure.

gsi_item *arguments Arguments to be passed to the G2
procedure.

gsi_int count Specifies the number of arguments passed
to the G2 procedure in the remote
procedure call.

You need to include the count argument in
this call only if the call to gsi_rpc_
declare_remote() specified
-1 (negative one) for argument_count,
which means an indeterminate number of
arguments. The number of arguments that
are in fact used in a call to the G2
procedure is specified in this count
argument of gsi_rpc_call_with_
count().
384

gsi_rpc_call_with_count
Description

gsi_rpc_call_with_count() enables you to call a G2 procedure that was
declared as a remote procedure with an indeterminate number of arguments. To
declare a remote procedure with an indeterminate number of arguments, you
specify a value of -1 for argument_count in the call to gsi_rpc_declare_
remote().

If you declare a G2 procedure with an indeterminate number of arguments, you
can call that procedure only with gsi_rpc_call_with_count(), and not with
gsi_rpc_call(). You must specify the number of arguments that you pass to the
G2 procedure in the count argument of gsi_rpc_call_with_count().

You can pass user data to the G2 procedure through a call to gsi_rpc_call_
with_count() if you compile your G2 Gateway application with the C
preprocessor macro GSI_USE_USER_DATA_FOR_CALLBACKS defined.

gsi_call_identifier
_type call_identifier

The user data associated with this call to
the G2 procedure and with any
corresponding return call that G2 makes
to the G2 Gateway receiver function.

To use this argument, you must compile
your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor
macro defined or use the corresponding
compile time switch. For more info see
Call Identifiers for Remote Procedure
Calls.

gsi_int context The number of the context in which this
remote procedure call is made.

Argument Description
385

gsi_rpc_declare_local
Declares a C function in your G2 Gateway application to be invocable, as a remote
procedure, by a connected G2 process.

Synopsis

void gsi_rpc_declare_local(function, procedure_user_data,
g2_function_name)

Description

A G2 process can invoke any user-defined functions in your G2 Gateway user
code that have been declared using gsi_rpc_declare_local(). Functions so
declared as known as local functions. In your G2 Gateway user code, invoke gsi_
rpc_declare_local() from within the callback function gsi_set_up().

G2 can invoke local functions that return values to G2 using the call action, and
invoke local functions that do not return values using the start action. To return
values to G2, a local function can call the API functions gsi_rpc_return_
values(), gsi_return_timed_values(), gsi_return_attrs(), or gsi_return_
timed_attrs(). A local function that is invoked by either call or start can signal
an error to G2 by calling gsi_rpc_return_error_values().

Argument Description

gsi_rpc_local_fn_
type *function

A pointer to the local function in your G2
Gateway user code.

For information about the syntax and
required arguments of local functions, see
Writing a G2 Gateway Local Function to be
Called by G2.

gsi_procedure_
user_data_type
procedure_user_data

To use this argument, you must compile
your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor
macro defined or use the corresponding
compile time switch. For more info see Call
Identifiers for Remote Procedure Calls

gsi_char *g2_
function_name

The text string specified in the name-in-
remote-system attribute of the remote
procedure declaration, in G2, for the local
function function.
386

gsi_rpc_declare_remote
gsi_rpc_declare_remote
Declares a G2 procedure in a G2 process to be invocable, as a remote process, by a
connected G2 Gateway bridge process.

Synopsis

void gsi_rpc_declare_remote(function_handle, g2_function_name,
receiver_function, procedure_user_data, argument_count, return_count,
context_number)

Argument Description

gsi_function_
handle_type
*function_handle

A pointer to the global variable used to
identify the remote function. See Creating a
Handle for the Remote Procedure for more
information.

gsi_char
*g2_function_name

Specifies the name of the remote function as
it is known in G2. This remote function is a
G2 procedure.

This string must match the name of the G2
procedure as it appears in G2.

Specify g2_function_name in uppercase
letters, the usual format for G2 procedure
names, which are of the type symbol.
However, if the KB developer included lower
case letters in the G2 procedure name
through the use of escape sequences, specify
the corresponding characters in g2_function_
name in lower case. For information about
how to specify symbols in G2, see the
G2 Reference Manual.

gsi_rpc_receiver_
fn_type *receiver_
function

A pointer to the receiver function in the G2
Gateway bridge that will receive the values
returned by the G2 procedure, or NULL_PTR if
no values are returned.

For information about the required argument
syntax of receiver functions, see Defining a
Function to Receive Values Returned by G2.
387

Description

Calls to gsi_rpc_declare_remote() should be made from your G2 Gateway
application’s callback function gsi_initialize_context(), because remote
procedure declarations are specific to a context. G2 Gateway must know the
context for which a remote procedure call is declared in order to identify the G2
that contains the remote procedure.

gsi_procedure_
user_data_type
procedure_user_data

The user data associated with this call to the
G2 procedure. G2 associates this procedure
user data with any return call that it makes to
receiver_function. It does not read or process
the procedure user data itself.

To use this argument, you must compile your
G2 Gateway code with the GSI_USE_USER_
DATA_FOR_CALLBACKS preprocessor macro
defined or use the corresponding compile
time switch. For more info see Call Identifiers
for Remote Procedure Calls.

gsi_int argument_
count

Specifies the number of arguments passed to
the remote function (G2 procedure).

A value of -1 (negative one) for argument_
count means an indeterminate number of
arguments. If you declare a G2 procedure
with an indeterminate number of arguments,
you can call it only with gsi_rpc_call_
with_count(); in the call to this procedure,
you specify the number of arguments that
you are passing to the G2 procedure.

gsi_int return_
count

Specifies the number of values returned by
the remote function (G2 procedure) to the
bridge.

A value of -1 (negative one) means that the
G2 procedure can return an indeterminate
number of values.

gsi_int context_
number

The context used by this function. The
context identifies one particular G2.

Argument Description
388

gsi_rpc_declare_remote
The function_handle argument points to a function of the type gsi_function_
handle_type. It is used in calls to the API functions gsi_rpc_start(),
gsi_rpc_call(), and gsi_rpc_call_with_count().
389

gsi_rpc_declare_remote_with_error_handler_
and_user_data

Declares a G2 procedure in a G2 process to be invocable, as a remote process, by a
connected G2 Gateway bridge process. Specifies the G2 Gateway error receiver
function that receives error values returned by the G2 procedure, and associates
user data with the call to the G2 procedure.

Synopsis

void gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
 error_handler_function, procedure_user_data, argument_count,
 return_count, context_number)

Argument Description

gsi_function_
handle_type
*function_handle

A pointer to the global variable used to
identify the remote function. See Creating a
Handle for the Remote Procedure for more
information.

gsi_char
*g2_function_name

Specifies the name of the remote function as
it is known in G2. This remote function is a
G2 procedure.

This string must match the name of the G2
procedure as it appears in G2.

Specify g2_function_name in uppercase
letters, the usual format for G2 procedure
names, which are of the type symbol.
However, if the KB developer included
lower case letters in the G2 procedure name
through the use of escape sequences, specify
the corresponding characters in
g2_function_name in lower case. For
information about how to specify symbols
in G2, see the G2 Reference Manual.
390

gsi_rpc_declare_remote_with_error_handler_and_user_data
gsi_rpc_receiver_
fn_type *receiver_
function

A pointer to the receiver function in the G2
Gateway bridge that will receive the values
returned by the G2 procedure, or NULL_PTR
if no values are returned. For information
about the required argument syntax of
receiver functions, see Defining a Function
to Receive Values Returned by G2.

gsi_rpc_
receiver_fn_type
*error_handler_
function

The G2 Gateway receiver function that
receives error return values from the G2
procedure if an error occurs during this
remote procedure call.

The format of the arguments received by
error_handler_function is the same as the
format of the error arguments for gsi_rpc_
return_error_values().

For information about how to write an error
handler function, see Defining a Function to
Receive Error Values Returned by G2.

gsi_procedure_
user_data_type
procedure_user_data

The user data associated with this call to the
G2 procedure. G2 associates this procedure
user data with any return call that it makes
to receiver_function. It does not read or
process the procedure user data itself.

To use this argument, you must compile
your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor
macro defined or use the corresponding
compile time switch. For more info see Call
Identifiers for Remote Procedure Calls.

gsi_int argument_
count

Specifies the number of arguments passed
to the remote function (G2 procedure).

A value of -1 (negative one) for argument_
count means an indeterminate number of
arguments. If you declare a G2 procedure
with an indeterminate number of
arguments, you can call it only with gsi_
rpc_call_with_count(); in the call to this
procedure, you specify the number of
arguments that you are passing to the G2
procedure.

Argument Description
391

Description

Calls to gsi_rpc_declare_remote_with_error_handler_and_user_data()
should be made from your G2 Gateway application’s callback function gsi_
initialize_context(), because remote procedure declarations are specific to a
context. G2 Gateway must know the context for which a remote procedure call is
declared in order to identify the G2 that contains the remote procedure.

The function_handle argument is the address of a gsi_function_handle_
type declared by the user. It is used in calls to the API functions gsi_rpc_
start(), gsi_rpc_call(), and gsi_rpc_call_with_count().

gsi_int return_
count

Specifies the number of values returned by
the remote function (G2 procedure) to the
bridge.

A value of -1 (negative one) means that the
G2 procedure can return an indeterminate
number of values.

gsi_int context_
number

The context used by this function. The
context identifies one particular G2.

Argument Description
392

gsi_rpc_return_error_values
gsi_rpc_return_error_values
Signals an error to G2 from within a G2 Gateway local function.

Synopsis

void gsi_rpc_return_error_values(error_arguments, count,
call_identifier, context)

Description

If an error occurs when G2 makes a remote procedure call to a G2 Gateway local
function, you may want to return error values to G2, rather than data. You can use
gsi_rpc_return_error_values() to do this.

Argument Description

gsi_item *error_
arguments

The error arguments returned to G2. Specify
either:

• An array of a single gsi_item
representing an error object in G2.

• An array of two gsi items, a symbolic-
expression and a text-expression, similar
to the arguments of the signal G2
procedure statement.

See Description below for more information
about how to specify the error_arguments
argument.

gsi_int count The count of arguments specified for error_
arguments in this call to gsi_rpc_
return_error_values().

Must be 1 or 2.

gsi_call_
identifier_type
call_identifier

Specify the call_identifier value that G2 used
in its call to the local function that is
invoking gsi_rpc_return_error_
values(). G2 generates a unique call
identifier for each call that it makes to a G2
Gateway local function.

gsi_int context The context in which G2 made the remote
procedure call and the error occurred.
393

gsi_rpc_return_error_values() signals an error to G2 from within G2
Gateway. How it does this depends on whether you specify one or two values for
error_arguments in your call to this function.

• A single value for error_arguments must be a gsi_item representing an error
object in G2. This item must:

– Have the null type tag.

– Should represent a valid error class in G2, such as default-error.

– Have an attribute named error-description, containing a string
representing the text of the error message.

– Have an attribute named foundation-class, containing the symbol ERROR.
The attribute enables G2 to create an error object for the returned error if
the specified error class does not exist in G2.

• Two values for error_arguments must represent:

– a gsi_item whose value is a symbolic-expression, which must name an
error class or be the symbol rpc-error.

– a gsi_item whose value is a text-expression, representing the error
message.

The error argument or arguments are returned to the error handler of the G2
procedure that invoked the local function, to a procedure that invoked this
procedure, or to the default error handler. For more information about G2 error
handling, see the G2 Reference Manual.
394

gsi_rpc_return_values
gsi_rpc_return_values
Returns values to a G2 procedure, for a particular call over a particular context.

Synopsis

void gsi_rpc_return_values(arguments, count, call_identifier,
context_number)

Description

gsi_rpc_return_values() returns zero or more values to a G2 procedure that
uses the G2 call action to invoke a C function as a remote procedure. Do not
attempt to use this function in a local function that G2 invokes using the start
action.

When G2 invokes a G2 Gateway local function that the G2 Gateway bridge has
declared using the API function gsi_rpc_declare_local(), G2 generates a call
identifier value and passes this value to the call_identifier argument of the G2
Gateway local function. When gsi_rpc_return_values() returns a value to G2,
it must specify the call_identifier value received by the local function, to ensure
that it returns the value to the outstanding G2 remote procedure call that invoked
the local function, in the context in which the call was made.

Note An error occurs if you attempt to call gsi_rpc_return_values() more than once
with the same call_identifier within the same context.

Argument Description

gsi_item
*arguments

An array of gsi_item that this procedure
returns to G2.

gsi_int count The number of elements in arguments.

gsi_call_
identifier_type
call_identifier

Specify the call_identifier value that G2 used
in its call to the local function that is
invoking gsi_rpc_return_values(). G2
generates a unique call identifier for each
call that it makes to a G2 Gateway local
function.

gsi_int context_
number

Specify the integer ID of the context, or the
macro current_context. This macro
invokes the function gsi_current_
context().
395

Multiple outstanding calls are supported, and can be returned in an order
different from which they were made, and from outside the context in which they
were called.

The arguments that this function returns must match those expected by the
remote G2 procedure. If the remote G2 procedure expects zero return arguments,
you must still call gsi_rpc_return_values() (with count of 0) to return from the
call.

If a G2 Gateway local function is invoked by a start action in G2, the call_identifier
argument of the local function is set to GSI_CALL_HANDLE_OF_START. In this case,
the local function should not call gsi_rpc_return_values(), because G2 is not
expecting the local function to return any values to it.

Caution G2 Gateway aborts when a wrong call_identifier is passed to gsi_rpc_return_
values. To avoid this error, ensure that you pass the correct call index.
396

gsi_rpc_start
gsi_rpc_start
Starts a G2 procedure that does not return values to the G2 Gateway bridge.

Synopsis

void gsi_rpc_start(function_handle, arguments, context_number)

Description

gsi_rpc_start() starts a G2 procedure in a connected G2 process. The G2
procedure that is started cannot return values to the G2 Gateway bridge.

Before your G2 Gateway user code can invoke a G2 procedure, it must declare the
G2 procedure using the API function gsi_rpc_declare_remote().

Your G2 Gateway user code must declare the function_handle argument as a
gsi_function_handle_type, and assign a value to it by calling the API
function gsi_rpc_declare_remote().

Note To call a remote G2 procedure that returns a value to the bridge, use gsi_rpc_
call() rather than gsi_rpc_start().

Argument Description

gsi_function_
handle_type
function_handle

Specify the same function_handle value that
is used in the call to gsi_rpc_declare_
remote() that declares the G2 procedure as
a remote procedure.

gsi_item
*arguments

A pointer to the arguments passed to the G2
procedure.

gsi_int context_
number

Specify the integer ID of the context, or
current_context.
397

gsi_rpc_start_with_count
Starts a G2 procedure that does not return values to the G2 Gateway bridge.

Synopsis

void gsi_rpc_start_with_count(function_handle, arguments,
count, context)

Description

gsi_rpc_start_with_count() is identical to gsi_rpc_start(), except that it
specifies the number of arguments that it is passing to the G2 procedure specified
in function_handle.

Argument Description

gsi_function_
handle
type function
handle

Specify the same function_handle value that
is used in the call to gsi_rpc_declare_
remote() that declares the G2 procedure as
a remote procedure.

gsi_item
*arguments

The arguments passed to the G2 procedure.

gsi_int count Specifies the number of arguments passed
to the G2 procedure in the remote procedure
call.

You need to include the count argument in
this call only if the call to gsi_rpc_declare_
remote() specified
-1 (negative one) for argument_count, which
means an indeterminate number of
arguments. The number of arguments that
gsi_rpc_start_with_count() passes to the
G2 procedure by is specified in this count
argument.

gsi_int context_
number

Specify the integer ID of the context, or
current_context.
398

gsi_run_loop
gsi_run_loop
Provides the main event-handling loop of a G2 Gateway process.

Synopsis

void gsi_run_loop()

Description

Each time gsi_run_loop() is executed, it does the following:

1 It makes any new connections requested by G2.

2 In each currently active context on which there is network activity, it responds
to all outstanding messages received from G2.

gsi_run_loop() processes all messages that are outstanding at the time when
it is called. Because G2 Gateway is single-threaded, gsi_run_loop()
processes only those messages that are already completed at the time when
gsi_run_loop() is called. It does not process messages that arrive or are
completed during the current call to gsi_run_loop(); these messages are
processed by the next call to gsi_run_loop().

For each message, the bridge executes a corresponding callback function or
remote procedure call. The order in which gsi_run_loop() visits contexts
cannot be predicted or controlled by the user.

The callback functions that gsi_run_loop() calls can in turn call other, nested
statements and functions. The functions that gsi_run_loop() calls, both directly
and through nested calls, are known as the gsi_run_loop() call tree.

gsi_run_loop() behaves differently in continuous and one-cycle modes of bridge
operation:

• In continuous mode, gsi_run_loop() loops repeatedly after being called by
gsi_start() as long as no fatal error occurs. If your bridge is running in
continuous mode, your user code does not call gsi_run_loop() explicitly.

At the end of each loop, gsi_run_loop() calls gsi_pause(), which causes the
bridge process to enter an interruptible sleep. The bridge automatically wakes
up when it detects network activity on any socket connected to any G2
process. If no network activity occurs within 1 second, the bridge wakes up
automatically; if it finds no network activity to respond to, it goes back to
sleep.

Continuous mode is the better mode for polling an external system for data.
The bridge can poll the external system using the callback function gsi_g2_
poll(), which is invoked by G2 Gateway approximately once per second.
399

• In one-cycle mode, gsi_start() exits after the first completed execution of
gsi_run_loop(). Control then passes from gsi_start() to main(). gsi_run_
loop() does not loop automatically. To reenter gsi_run_loop(), your user
code must call gsi_run_loop() explicitly.

Running the bridge in one-cycle mode enables you to pass control from gsi_
run_loop() to other functions within your G2 Gateway bridge process, as
required by your application.

One-cycle mode is the better mode for bridges designed to respond to
network activity on connections to external systems, rather than to poll the
external systems actively.

Caution An error results if you attempt to invoke gsi_run_loop() from within the gsi_
run_loop() call tree. Do not attempt to make nested calls to gsi_run_loop().

For more information about continuous and one-cycle modes, see Processing
Events through gsi_run_loop().
400

gsi_set_attr_by_name
gsi_set_attr_by_name
Invokes gsi_set_item_of_attr_by_name().

For information about this function, see gsi_set_item_of_attr_by_name.
401

gsi_set_attr_count
Sets the count of attributes of a G2 Gateway item that are available to your G2
Gateway user code.

Synopsis

void gsi_set_attr_count(item, count)

void gsi_set_attr_count(registered_item, count)

void gsi_set_attr_count(attribute, count)

void gsi_set_attr_count(registration, count)

Description

gsi_set_attr_count() specifies the number of attributes in a gsi_item structure
that can be accessed by your G2 Gateway user code.

gsi_set_attr_count() is useful for specifying a subset of the attributes of a gsi_
item structure that you want your G2 Gateway user code to be able to access or
return to G2. For example, if you want only the first five attributes of a gsi_item
to be available to your user code, you can use this function to set the attribute
count to five.

Argument Description

gsi_item item A gsi_item structure whose count
of accessible attributes is set by this
function.

gsi_registered_item
registered_item

A gsi_registered_item structure
that points to the gsi_item
structure whose count of accessible
attributes is set.

gsi_attr attribute A gsi_attr structure containing
an embedded gsi_item structure
whose count of accessible
attributes is set.

gsi_registration
registration

A gsi_registration pointing to
the gsi_item whose count of
accessible attributes is set by this
function.

gsi_int count The count of attributes.
402

gsi_set_attr_count
To increase the number of attributes of a G2 Gateway data structure, use the API
function gsi_set_attrs(). For information about this function, see gsi_set_
attrs.
403

gsi_set_attr_is_transient
Sets a specified attribute to be transient or not transient.

Synopsis

void gsi_set_attr_is_transient(attribute, new_value)

Description

G2 Gateway ignores transient attributes during remote procedure calls and does
not send them to G2.

To determine whether an attribute is or is not transient, use the function gsi_
attr_is_transient().

Argument Description

gsi_attr attribute The attribute

gsi_int new_value Specify 1 to make attribute transient, or 0 to
make it not transient.
404

gsi_set_attr_name
gsi_set_attr_name
Changes the name of an attribute.

Synopsis

void gsi_set_attr_name(attribute, attribute_name)

Description

gsi_set_attr_name() changes the name stored in the name component of a gsi_
attr structure.

This function changes both the class-qualified and the unqualified part of the
attribute name.

gsi_set_attr_name() does not retain the attribute_name string. If your user
code allocated memory for the attribute_name string, it can deallocate this
memory after gsi_set_attr_name() completes, if it has no further use for the
name.

Argument Description

gsi_attr attribute The attribute whose name is changed by this
function.

gsi_symbol
attribute_name

The new name of attribute. Specify
attribute_name in uppercase letters only.

If you are setting a class-qualified attribute
name, use the following syntax:

CLASS_NAME::ATTRIBUTE_NAME

For example:

EQUIPMENT::APPLICATION

If you are setting an attribute name that is
not class-qualified, use the following syntax:

ATTRIBUTE_NAME

For example:

APPLICATION
405

Related Functions

Function Description

gsi_attr_name_of() Returns the name of an attribute.

gsi_unqualified_attr
_name_of()

Returns the unqualified part of an
attribute’s name.

gsi_set_unqualified
_attr_name()

Sets the unqualified part of an
attribute’s name.

gsi_attr_name_is
_qualified()

Indicates whether an attribute name
is qualified.

gsi_class_qualifier
_of()

Returns the part of an attribute name
that is the class qualifier.

gsi_set_class
_qualifier()

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.
406

gsi_set_attrs
gsi_set_attrs
Initializes or replaces the set of gsi_attr instances associated with an item or an
embedded item in an attribute.

Synopsis

void gsi_set_attrs(item, new_attributes, count)

void gsi_set_attrs(attribute, new_attributes, count)

Description

gsi_set_attrs() initializes or replaces the array of gsi_attr instances stored in
a gsi_item or in a gsi_item embedded in a gsi_attr. In the attribute(s)
component of the gsi_item structure, gsi_set_attrs() sets a pointer to the first
element of the new_attributes array. gsi_set_attrs() does not copy the elements
of the new_attributes array into the gsi_item.

You can allocate memory for the new_attributes array using the API functions
gsi_make_attrs() or gsi_make_attrs_with_items().

Do not deallocate the memory for the gsi_attr elements of new_attributes before
or while you are sending the gsi_item to G2. Because the gsi_item contains only
a pointer to the new_attributes array, the gsi_item loses its attributes if the array
elements are deallocated before the gsi_item is received by G2.

The new_attributes argument must be a pointer to the first element of an array.
An error results if the new_attributes argument points to any element of the array
other than the first.

For example, given the following declaration:

gsi_attr *my_attrs = gsi_make_attrs_with_items(2);

Argument Description

gsi_item item An item whose attributes are set by this
function.

gsi_attr attribute An attribute containing an embedded item
whose attributes are set by this function.

gsi_attr *new_
attributes

An array of gsi_attr structures that this
function uses to replace or initialize the
attributes of the item or embedded item.

gsi_int count The number of attributes pointed to by
*new_attributes.
407

the following call correctly sets a pointer to the first gsi_attr element of the my_
attrs array:

gsi_set_attrs(my_item, my_attrs[0], attr_count);

However, the following call results in an error, because it attempts to pass the
second element of the my_attrs array to gsi_set_attrs():

gsi_set_attrs(my_item, my_attrs[1], attr_count);

If the array of attributes associated with the item or embedded item was allocated
by your G2 Gateway user code — using the API functions gsi_make_attrs()or
gsi_make_attrs_with_items() — this function does not deallocate the array of
attributes. In this case, your user code is responsible for deallocating the attributes
by calling the API functions gsi_reclaim_attrs() or gsi_reclaim_attrs_with_
items().

Related Functions

Function Description

gsi_attr_count_of() Determines how many attributes are
in a gsi_item or gsi_attr.

gsi_attrs_of() Obtains the attributes in a gsi_item
or gsi_attr.

gsi_attr_by_name() Obtains a specific attribute in a gsi_
item or gsi_attr.

gsi_set_attr_by_name() Changes a specific attribute in a
gsi_item or gsi_attr.
408

gsi_set_class_name
gsi_set_class_name
Sets the value of the class name component of a gsi_item or an embedded
gsi_item in an attribute.

Synopsis

void gsi_set_class_name(item, class_name)

void gsi_set_class_name(attribute, class_name)

Description

Use gsi_set_class_name() to set the class name of any gsi_item that your G2
Gateway bridge will pass to G2 through a remote procedure call. When G2
receives the gsi_item, in creates an instance of the specified class based on the
gsi_item.

Setting the class name is optional for a null or simple G2 type. If you specify a
class name for a simple type, it must be to a variable or parameter type.
Specifying a class name is also optional for list or array types. If you specify a
class name for a list or array type, it must refer to the correct G2 list or array class,
or to a subclass of one of these classes. You cannot set the class name to a
sequence or structure type.

For information about the relationship between G2 data types and G2 Gateway
type tags, see G2 Data Types and G2 Gateway Type Tags.

Argument Description

gsi_item item An item whose G2 class is specified by this
function.

gsi_attr attribute An attribute containing an embedded item
whose G2 class is specified by this function.

gsi_symbol class_
name

Points to the name to which this function
sets the G2 class name of item or attribute.
Specify the class name in uppercase letters
only.

gsi_set_class_name() does not retain
the class_name symbol. If your user code
allocated memory for the class_name
symbol, it can deallocate this memory after
gsi_set_class_name() completes, if it has
no further use for the name.
409

gsi_set_class_qualifier
Changes the part of the name of an attribute that specifies the G2 class that
defines the attribute.

Synopsis

void gsi_set_class_qualifier(attribute, attribute_name)

Description

gsi_set_class_qualifier() changes the class-qualified part of the name of a
gsi_attr.

In cases where an object inherits attributes with the same name from more than
one superior class, G2 Gateway assigns a class-qualifier to the name of each of
these attributes. The class qualifier specifies the name of the class from which the
object inherits each attribute, and thus distinguishes the attributes from each
other.

When gsi_set_class_qualifier() is executed, G2 Gateway copies the string
specified by the attribute_name argument into its own memory. If your G2
Gateway user code allocated the memory for this string, it should deallocate this
memory as soon as it has no further use for the string. The gsi_set_class_
qualifier() function does not itself deallocate the attribute_name argument.

Related Functions

Argument Description

gsi_attr attribute The name of the attribute.

gsi_symbol
attribute_name

The new value to which the class-qualified
part of the name is changed.

Specify the class-qualified part of the
attribute name in uppercase letters only.

Function Description

gsi_attr_name_of() Returns the name of an attribute.

gsi_set_attr_name() Changes the name of an attribute.

gsi_unqualified_attr
_name_of()

Returns the unqualified part of
an attribute’s name.
410

gsi_set_class_qualifier
gsi_set_unqualified
_attr_name()

Sets the unqualified part of an
attribute’s name.

gsi_attr_name_is
_qualified()

Indicates whether an attribute
name is qualified.

gsi_class_qualifier_of() Returns the part of an attribute
name that is the class qualifier.

gsi_set_class_qualifier() Changes the part of an attribute
name that specifies the G2 class
that defines the attribute.

Function Description
411

gsi_set_class_type
Sets the type of the history data values associated with an item, a registered item,
or an item that is embedded in an attribute.

Synopsis

void gsi_set_class_type (item, gsi_type)

void gsi_set_class_type (registered_item, gsi_type)

void gsi_set_class_type (attribute, gsi_type)

Description

gsi_set_class_type() sets the type of the history data values associated with an
item, a registered item, or an item that is embedded in an attribute.

If a gsi_item that G2 Gateway sends to G2 through a remote procedure call
corresponds to a variable-or-parameter, this field reflects the data type in G2, and
indicates the allowable types for values for the variable-or-parameter.

Argument Description

gsi_item item An item for which this function sets the type
of the associated history data values.

gsi_registered_
item registered_
item

A registered item for which this function
sets the type of the associated history data
values.

gsi_attr attribute An attribute containing an embedded item
for which this function sets the type of the
associated history data values.

gsi_int gsi_type One of the following G2 Gateway types:
GSI_INTEGER_TAG
GSI_SYMBOL_TAG
GSI_STRING_TAG
GSI_LOGICAL_TAG
GSI_FLOAT64_TAG
GSI_VALUE_TAG
GSI_QUANTITY_TAG
412

gsi_set_class_type
The types of the history values are as follows:

Related Functions

Type G2 Gateway Element Type C Element Type

GSI_INTEGER_TAG homogeneous integer
values

gsi_int

GSI_SYMBOL_TAG homogeneous symbol
values

char *

GSI_STRING_TAG homogeneous string
values

char *

GSI_LOGICAL_TAG homogeneous truth-
values

gsi_int

GSI_FLOAT64_TAG homogeneous floating-
point numbers

double

GSI_VALUE_TAG heterogeneous values gsi_item

GSI_QUANTITY_TAG heterogeneous numbers
(gsi_int or double)

gsi_item

Function Description

gsi_history_count_
of()

Returns the number of history data values
associated with an item.

gsi_extract_
history()

Returns history data values associated with
an item.

gsi_extract_
history_spec()

Returns the history-keeping specification for
an item.
413

gsi_set_context_limit
Overrides the G2 Gateway default limit on the number of active contexts.

Synopsis

void gsi_set_context_limit(limit)

Description

By default, G2 Gateway limits the number of active contexts to a maximum of 50,
even if the platform on which G2 Gateway is running supports more than this.

You can call gsi_set_context_limit() to override this default.

Note This function cannot override any limits imposed by your operating system.

Argument Description

gsi_int limit Any positive integer, or -1 (no limit)
414

gsi_set_context_user_data
gsi_set_context_user_data
Associates user data with a connection that was initiated by a call to
gsi_initiate_connection_with_user_data().

Synopsis

void gsi_set_context_user_data(context, context_user_data)

Description

gsi_set_context_user_data() associates user data that you specify for
context_user_data with the context specified by context.

The API function gsi_context_user_data() returns the user data associated
with a specified context.

Argument Description

gsi_int context The connection with which user data is
associated.

gsi_context_user_
data_type context_
user_data

The user data associated with context.
415

gsi_set_element_count
Sets the count of elements in an array or list contained in a gsi_item structure.

Synopsis

void gsi_set_element_count(item, count)

void gsi_set_element_count(attr, count)

Description

gsi_set_element_count() specifies the number of elements in the value(s)
component of a gsi_item or gsi_attr structure that can be accessed by your G2
Gateway user code.

gsi_set_element_count() is useful for specifying a subset of the elements in the
value(s) component that you want your G2 Gateway user code to be able to
access or return to G2. For example, if you want only the first five elements to be
available to your user code, you can use this function to set the element count to
five.

Argument Description

gsi_item item A gsi_item containing the array or list.

gsi_attr attr A gsi_attr whose embedded gsi_item
contains the array or list.

gsi_int count The number of elements in the value(s)
component of item that is available to your
G2 Gateway user code.
416

gsi_set_elements
gsi_set_elements
Changes the contents of an item array, item list, value array, or value list to new
contents.

Synopsis

void gsi_set_elements(item, elements_array, count, type_tag)

void gsi_set_elements(attribute, elements_array, count, type_tag)

Argument Description

gsi_item item An item to which this function writes a new
array.

gsi_attr attribute An attribute containing an embedded gsi_
item to which this function writes a new
array.

gsi_item *elements_
array

The new contents of the array stored in the
value(s) component of the item or
embedded item.

You can obtain an array to use as elements_
array by allocating the array, using the API
function gsi_make_items(). You can also
obtain an item array by calling the API
function gsi_elements_of().

This function does not make copies of the
elements_array array or its elements.
417

Description

gsi_set_elements() changes the contents of the value(s) component of a gsi_
item to a new item array, item list, value array, or value list. It also sets the
element count and type tag of the item array, item list, value array, or value list.

A value list or value array contains gsi_item structures that represent values. The
class name component of a gsi_item structure that represent a value is null.

An item list or item array contains gsi_item structures that represent G2 items.
The class name component of a gsi_item structure that represent an item
contains the name of a G2 class.

Every element of a value list, value array, item list, or item array has a G2
Gateway type tag that specifies its data type. The elements of a GSI_QUANTITY_
ARRAY_TAG or GSI_QUANTITY_LIST_TAG item must be integer or float.

The elements of a GSI_VALUE_ARRAY_TAG or GSI_VALUE_LIST_TAG item can be any
value data type (float, integer, truth-value, symbol, text, sequence, or structure).
For more information about G2 data types and the corresponding G2 Gateway
data type tags, see G2 Data Types and G2 Gateway Type Tags.

If the item elements of item or attribute were automatically allocated by G2
Gateway (for example, as a result of the registration of an object passed through a
remote procedure call or a GSI variable on which data service is performed) the
gsi_set_elements() function deallocates the item elements as soon as it replaces
them with the new ones in elements_array. However, gsi_set_elements() does
not deallocate any existing elements of item or attribute if these elements were
allocated by your G2 Gateway user code, using the API function gsi_make_

gsi_int count The number of items in elements_array.

gsi_int type_tag The type to which this function sets the gsi_
item or gsi_attr specified as the first
argument to this function. You can specify
any of the following type tags:

GSI_VALUE_ARRAY_TAG
GSI_VALUE_LIST_TAG
GSI_ITEM_ARRAY_TAG
GSI_ITEM_LIST_TAG
GSI_QUANTITY_ARRAY_TAG
GSI_QUANTITY_LIST_TAG
GSI_ITEM_OR_VALUE_ARRAY_TAG
GSI_ITEM_OR_VALUE_LIST_TAG
GSI_SEQUENCE_TAG

Argument Description
418

gsi_set_elements
items(). In this case, your use code can call gsi_reclaim_items() to deallocate
the items as soon as it has no further use for them.

Note G2 Gateway signals an error if the first argument to this function is neither a gsi_
item nor a gsi_attr, or if the third argument is not of type gsi_int or is out-of-
bounds relative to the given array.

To access the elements of a gsi_item or gsi_attr, use the API function gsi_
elements_of().
419

gsi_set_flt
Sets the value of an item, registered item, or embedded item in an attribute to a
floating-point value

Synopsis

void gsi_set_flt(item, float_value)

void gsi_set_flt(registered_item, float_value)

void gsi_set_flt(attribute, float_value)

Description

gsi_set_flt() sets the value of the first argument, which can be an item,
registered item, or embedded item in an attribute, to the specified C double
floating-point value.

This function sets the G2 Gateway type of the first argument to GSI_FLOAT64_TAG.

Argument Description

gsi_item item An item whose value is set by this
function.

gsi_registered_item
registered_item

A registered item whose value is set by
this function.

gsi_attr attribute An attribute containing an embedded
item whose value is set by this
function.

double float_value The value to which this function sets
item, registered_item, or attribute.
420

gsi_set_flt_array
gsi_set_flt_array
Initializes or replaces the array of floating-point values stored in an item with a
new array.

Synopsis

void gsi_set_flt_array(item, doubles_array, count)

void gsi_set_flt_array(attribute, doubles_array, count)

Description

gsi_set_flt_array() copies the contents of an array of floating-point values
into the value(s) component of an item or embedded item. The original and
copied arrays are represented by C arrays of type double.

If the first argument to this function is neither a gsi_item nor a gsi_attr, or if the
count argument is out-of-bounds relative to the array in item or attribute, G2
Gateway signals an error.

The G2 Gateway type of the gsi_item or gsi_attr must be GSI_FLOAT64_ARRAY_
TAG; otherwise, G2 Gateway signals an error. To determine whether a gsi_item or
gsi_attr represents an array of floating-point values, verify that the value
returned by the API function gsi_type_of() is GSI_FLOAT64_ARRAY_TAG.

Argument Description

gsi_item item An item to which this function writes the
elements of a floating-point array.

gsi_attr attribute An attribute containing an embedded item
(gsi_item) to which this function writes
the elements of a floating-point array.

double *doubles_
array

An array whose contents are copied into the
value(s) component of the item or
embedded item.

If doubles_array is located in a block of
memory previously allocated with
malloc(), you can deallocate this memory
after gsi_set_flt_array() completes if
your user code no longer needs it.

gsi_int count The number of elements in doubles_array.
421

To access the contents of a gsi_item or gsi_attr that stores an array of floating-
point values, use the API function gsi_flt_array_of().

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
422

gsi_set_flt_list
gsi_set_flt_list
Initializes or replaces the list of floating-point values stored in an item or
registered item embedded item in an attribute with a new list

Synopsis

void gsi_set_flt_list(item, doubles_array, count)

void gsi_set_flt_list(attribute, doubles_array, count)

Description

gsi_set_flt_list() replaces the list of floating-point values stored in the
value(s) component of a gsi_item or gsi_attr with a new list of values. The
gsi_item or gsi_attr uses a C array of type double to represent the old and new
lists of floating-point values.

G2 Gateway signals an error if the first argument to this function is neither a gsi_
item nor a gsi_attr, or if the third argument is out-of-bounds relative to the list
in item or attribute.

The G2 Gateway type of the gsi_item or gsi_attr must be of G2 Gateway type
GSI_FLOAT64_LIST_TAG; otherwise, G2 Gateway signals an error. To determine
whether a gsi_item or gsi_attr represents a floating-point list, verify that the
value returned by the API function gsi_type_of() is GSI_FLOAT64_LIST_TAG.

Argument Description

gsi_item item An item whose contents are initialized or
replaced by this function.

gsi_attr attribute An attribute containing an embedded item
whose contents are initialized or replaced by
this function.

double *doubles_
array

An array of C type double that represents
the list values in a G2 float-list item.

If doubles_array is located in a block of
memory previously allocated with
malloc(), you can deallocate this memory
after gsi_set_flt_list() completes if
your user code no longer needs it.

gsi_int count Number of elements in doubles_array.
423

To access the contents of a gsi_item or gsi_attr that stores a floating-point list,
use the API function gsi_flt_list_of().

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
424

gsi_set_handle
gsi_set_handle
Sets the handle component in a gsi_item or gsi_registered_item

Synopsis

void gsi_set_handle(item, handle_value)

void gsi_set_handle(registered_item, handle_value)

Description

gsi_set_handle() sets the handle appropriately for a gsi_item or for a gsi_
registered_item. Note that the behaviors described next for a gsi_item and
gsi_registered_item never conflict, because G2 has no handle data type.
Instead, G2 can pass a registered item’s handle as an argument in a remote
procedure call.

For gsi_item:

A gsi_item can have type tag GSI_HANDLE_TAG. This indicates that the gsi_item
contains a reference to an object in G2. This function sets the type of the gsi_item
to GSI_HANDLE_TAG and the value to handle_value.

Note A gsi_item of type GSI_HANDLE_TAG can be used only as an argument to a remote
procedure call. It cannot be passed back as an attribute of a data-served GSI
variable.

For gsi_registered_item:

A gsi_registered_item contains a handle, which refers to some object in G2 that
has been registered for G2 Gateway data service through the API function gsi_
receive_registrations() function.

Argument Description

gsi_item item An item whose handle component is set
by this function.

gsi_registered_item
registered_item

A registered item whose handle
component is set by this function.

gsi_int handle_value The value to which this function sets the
handle component of item or registered_
item.
425

Setting the handle of such a structure means changing the object in G2 to which
the gsi_registered_item corresponds. Therefore, the only handle values that
can sensibly be set into the handle slot of a gsi_registered_item are those that
represent G2 items which have been registered for G2 Gateway data service. This
is the same set of handle values obtained during calls to the G2 Gateway callback
function gsi_receive_registrations().
426

gsi_set_history
gsi_set_history
Sets the history data and history-keeping specification of an item or of an item
embedded in an attribute.

Synopsis

void gsi_set_history(item, values, timestamps, count, type, maximum_count,
maximum_age, min_interval)

void gsi_set_history(attribute, values, timestamps, count, type,
maximum_count, maximum_age, min_interval)

Argument Description

gsi_item item An item whose history data and history-
keeping specification are set by this
function.

gsi_attr attribute An attribute containing an item whose
history data and history-keeping
specification are set by this function.

void *values An array of values to which the history data
of the item is set.

double *timestamps An array of timestamp values. Each
timestamp is associated with one of the
values in the values array.

gsi_int count Number of elements in values and
timestamps.

gsi_int type Type of the elements in values.

gsi_int maximum_
count

Maximum count desired in the item’s
history-keeping specification in G2.

gsi_int maximum_
age

An interval in seconds, expressed in G2 as a
positive integer. Used in the item’s history-
keeping specification in G2.

gsi_int min_
interval

An interval in seconds, expressed in G2 as a
float. Used in the item’s history-keeping
specification in G2.
427

Description

gsi_set_history() specifies the history data values and history-keeping
specification for a gsi_item or gsi_attr. The maximum number of data points in
the history is specified by maximum_count, and the maximum age of the data
points, in seconds, is specified by maximum_age. The minimum interval between
data points, in seconds, is specified by min_interval.

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not through data service on GSI variables. For
information about remote procedure calls, see Remote Procedure Calls.
428

gsi_set_include_file_version
gsi_set_include_file_version
Specifies the major and minor version of the G2 Gateway software release and its
revision number so that G2 Gateway can make sure that the version of gsi_main.
h corresponds with the version of the G2 Gateway software release.

Synopsis

void gsi_set_include_file_version(major,minor, rev)

Description

Previous versions of G2 Gateway defined the variables gsi_include_file_
major_version and gsi_include_file_minor_version, which G2 Gateway used
to verify that user code was compiled with the version of gsi_main.h that
corresponds with the version of the G2 Gateway library being used.

You cannot use these variables with a G2 Gateway that is delivered as a DLL.
Thus, if you are using G2 Gateway on WIN32 platforms (in addition to being
delivered as three libraries, as before), use the gsi_set_include_file_
version() function in place of the gsi_include_file_major_version and gsi_
include_file_minor_version variables.

If your G2 Gateway is not delivered as a DLL, you can specify the major and
minor versions and the revision of the G2 Gateway software release using the
variables gsi_include_file_major_version, gsi_include_file_minor_
version, and gsi_include_file_revision_version or the function gsi_set_
include_file_version().

Note The version of gsi_main.c provided with G2 Gateway includes a call to gsi_set_
include_file_version().

Argument Description

gsi_int major The major version of the G2 Gateway
software release.

gsi_int minor The minor version of the G2 Gateway
software release.

gsi_int rev The revision number of the G2 Gateway
software release.
429

gsi_set_int
Sets the value of an item, registered item, or embedded item in an attribute to an
integer value.

Synopsis

void gsi_set_int(item, integer_value)

void gsi_set_int(registered_item, integer_value)

void gsi_set_int(attribute, integer_value)

Description

gsi_set_int() sets the value of an item, registered item, or embedded item in an
attribute to the specified gsi_int integer value.

This function also sets the G2 Gateway type of the gsi_item, gsi_registered_
item, or item embedded in the gsi_attr to GSI_INTEGER_TAG.

Argument Description

gsi_item item An item whose value is set by this
function.

gsi_registered_item
registered_item

A registered item whose value is set by
this function.

gsi_attr attribute An attribute containing an embedded
item whose value is set by this function.

gsi_int integer_value The integer value to which this function
sets the value of item, registered_item, or
the item embedded in attribute.
430

gsi_set_int_array
gsi_set_int_array
Sets the array of integers stored in an item or embedded item to a new array of
integers.

Synopsis

void gsi_set_int_array(item, integer_array, count)

void gsi_set_int_array(attribute, integer_array, count)

Description

gsi_set_int_array() copies the contents of an integer array into the value(s)
component of a gsi_item or embedded gsi_item. The original and copied arrays
are represented by C arrays of type gsi_int. This function also sets the G2
Gateway type of the gsi_item or gsi_item embedded in the gsi_attr to
GSI_INTEGER_ARRAY_TAG.

Argument Description

gsi_item item An item to which this function writes the
contents of an integer array.

gsi_attr attribute An attribute containing an embedded item
(gsi_item) to which this function writes
the contents of an integer array.

gsi_int *integer_
array

An array of integers, whose contents are
copied into the value(s) component of the
item or embedded item.

If integer_array is located in a block of
memory previously allocated with
malloc(), you can deallocate this memory
after gsi_set_int_array() completes if
your user code no longer needs it.

gsi_int count The number of elements in integer_array.
431

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the
gsi_item. The class name of the gsi_item must be the name of an existing G2
class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
432

gsi_set_int_list
gsi_set_int_list
Sets the value of an item or embedded item in an attribute to a value of G2
Gateway type GSI_INTEGER_LIST_TAG

Synopsis

void gsi_set_int_list(item, integer_array, count)

void gsi_set_int_list(attribute, integer_array, count)

Description

Use gsi_set_int_list() to set the value of a gsi_item or gsi_attr so that it
contains a C array of type gsi_int, as represented by integer_array.

This function also sets the G2 Gateway type of the gsi_int or gsi_attr to
GSI_INTEGER_LIST_TAG.

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.

Argument Description

gsi_item item An item that this function sets to a
GSI_INTEGER_LIST_TAG value.

gsi_attr attribute An attribute containing an embedded item
that this function sets to a GSI_INTEGER_
LIST_TAG value.

gsi_int *integer_
array

A list of integers, to which the value of item
or attribute is set.

gsi_int count The number of elements in integer_array.
433

gsi_set_interval
Changes the default update interval associated with a registered item

Synopsis

void gsi_set_interval(registered_item, interval)

Description

gsi_set_interval()modifies the default update interval of a registered item.
The interval argument represents the default update interval as a number of
seconds.

To access the default update interval of a registered item, use the API function
gsi_interval_of().

Note Although gsi_set_interval() is supported, it is not useful because the field to
which it writes is not read by G2 Gateway. For this reason, use of this function is
not recommended.

Argument Description

gsi_registered_item
registered_item

A registered item whose default update
interval is changed by this function.

gsi_int interval The number of seconds in the new
default update interval. Must be 0 or a
positive integer.
434

gsi_set_item_append_flag
gsi_set_item_append_flag
Causes contents of a gsi_item with a list or array type to be appended to values
in an existing G2 array or list when returned to G2 through a call to gsi_return_
values().

Synopsis

void gsi_set_item_append_flag(item, flag)

Argument Description

gsi_item item The item that you intend to return to G2
through a call to gsi_return_values().

gsi_int flag Specify 1 to turn the flag on, causing the
values in gsi_item to be appended to the
array or list in G2.

Specify 0 to turn the flag off, causing the
values not to be appended.
435

gsi_set_item_of_attr
Replaces an existing embedded item in a gsi_attr with a different gsi_item.

Synopsis

void gsi_set_item_of_attr(attribute, source_item)

Description

gsi_set_item_of_attr() sets the gsi_item contained in a gsi_attr structure.

Argument Description

gsi_attr attribute An attribute into which this function sets a
new item.

gsi_item source_
item

The item that this function sets into
attribute.
436

gsi_set_item_of_attr_by_name
gsi_set_item_of_attr_by_name
Embeds a specified gsi_item in a specified attribute.

Synopsis

void gsi_set_item_of_attr_by_name(destination_item,
search_name, source-item)

void gsi_set_item_of_attr_by_name(destination_attribute,
search_name, source-item)

Description

gsi_set_item_of_attr_by_name() sets the contents of the gsi_item
embedded in a specified attribute to the item specified by the source-item
argument. The name of the attribute is specified by search-name.

The new contents, as specified by the source-item argument, must be a gsi_item;
otherwise, G2 Gateway signals an error. The destination must be a gsi_item or

Argument Description

gsi_item
destination_item

An item that has the attribute specified by
search-name.

gsi_attr
destination_attribute

An attribute containing an embedded gsi_
item that has the attribute specified by
search-name.

gsi_symbol
search-name

The name of the attribute whose embedded
gsi_item is set by this function. Specify this
name in uppercase letters, to correspond to
the uppercase letters ordinarily used in G2
identifiers, which are of the G2 type symbol.

gsi_set_item_of_attr_by_name()
does not retain the search-name string. If
your user code allocated memory for the
search-name string, it can deallocate this
memory after gsi_set_item_of_attr_
by_name() completes, if it no longer needs
the string.

gsi_item
source-item

An item that this function embeds in the
attribute specified by search-name.
437

gsi_attr; otherwise, G2 Gateway signals an error. If no matching attribute is
found, G2 Gateway signals a warning.

The gsi_set_item_of_attr_by_name()function deallocates memory for any
existing gsi_item embedded in the specified gsi_attr structure, if this gsi_item
was allocated automatically by G2 Gateway itself.

However, the gsi_set_item_of_attr_by_name()function does not
deallocate the old gsi_item structure if your user code itself allocated the
gsi_item structure by calling gsi_make_attr() or gsi_make_attr_with_item().
In this case, your user code should deallocate the old gsi_item structure after
gsi_set_item_of_attr_by_name() is executed, if it has no further use for the
gsi_item.

Related Functions

Function Description

gsi_attr_count_of() Determines how many attributes are in a
gsi_item or gsi_attr.

gsi_attrs_of() Obtains the attributes in a gsi_item or
gsi_attr.

gsi_set_attrs() Changes the attributes in a gsi_item or
gsi_attr to a new group of attributes.

gsi_attr_by_name() Obtains a specific attribute in a gsi_item
or gsi_attr.
438

gsi_set_log
gsi_set_log
Sets the value of an item, registered item, or embedded item in an attribute to a
logical value (truth-value).

Synopsis

void gsi_set_log(item, truth_value)

void gsi_set_log(registered_item, truth_value)

void gsi_set_log(attribute, truth_value)

Description

gsi_set_log() sets the value of a gsi_item, gsi_registered_item, or gsi_attr
to a truth-value.

This function sets the G2 Gateway type of the first argument to

GSI_LOGICAL_TAG..

Argument Description

gsi_item item An item whose value is set by this
function.

gsi_registered_item
registered_item

A registered item whose value is set by
this function.

gsi_attr attribute An attribute containing an embedded
item whose value is set by this function.

gsi_int truth_value A truth-value, ranging from GSI_FALSE
(-1000) for completely false to GSI_TRUE
(+1000) for completely true.
439

gsi_set_log_array
Sets the array of truth-values stored in an item or registered item embedded item
in an attribute to a new array.

Synopsis

void gsi_set_log_array(item, truth_values_array, count)

void gsi_set_log_array(attribute, truth_values_array, count)

Description

gsi_set_log_array() copies the contents of an array of truth-values into the
value(s) component of an item or embedded item.

If the first argument to this function is neither a gsi_item nor a gsi_attr, or if the
third argument is out-of-bounds relative to truth_values_array, G2 Gateway
signals an error.

To determine whether a gsi_item or gsi_attr represents a truth-value array,
verify that the value returned by the API function gsi_type_of() is
GSI_LOGICAL_ARRAY_TAG.

Argument Description

gsi_item item An item to which this function writes the
elements of a truth-value array.

gsi_attr attribute An attribute containing an embedded item
(gsi_item) to which this function writes
the elements of a truth-value array.

gsi_int *truth_
values_array

An array of truth-values, each of whose
values is a truth-value, ranging from
GSI_FALSE (-1000) for completely false to
GSI_TRUE (+1000) for completely true. The
contents of this array are copied into the
value(s) component of the item or
embedded item.

If truth_values_array is located in a block of
memory previously allocated with
malloc(), you can deallocate this memory
after gsi_set_log_array() completes if
your user code no longer needs it.

gsi_int count Number of elements in truth_values_array.
440

gsi_set_log_array
To access the contents of a gsi_item or gsi_attr that stores a truth-value array,
use the API function gsi_log_array_of().

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
441

gsi_set_log_list
Sets the list of truth-values stored in an item or registered item embedded item in
an attribute to a new list.

Synopsis

void gsi_set_log_list(item, truth_values_array, count)

void gsi_set_log_list(attribute, truth_values_array, count)

Description

gsi_set_log_list() changes the array of truth-values stored in a gsi_item or
gsi_attr to a new list.

If the first argument to this function is neither a gsi_item nor a gsi_attr, or if the
third argument is out-of-bounds relative to truth_values_array, G2 Gateway
signals an error.

To determine whether a gsi_item or gsi_attr represents a truth-value list, verify
that the value returned by the API function gsi_type_of() is GSI_LOGICAL_
LIST_TAG.

To access the contents of a gsi_item or gsi_attr that stores a truth-value list, use
the API function gsi_log_list_of().

Argument Description

gsi_item item An item whose list of truth-values is set by
this function.

gsi_attr attribute An attribute containing an embedded item
whose list of truth-values is set by this
function.

gsi_int *truth_
values_array

An array of truth-values, each of which can
range from GSI_FALSE (-1000) for
completely false to GSI_TRUE (+1000) for
completely true.

gsi_int count The number of truth values in the truth_
values_array array.
442

gsi_set_log_list
Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the
gsi_item. The class name of the gsi_item must be the name of an existing G2
class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
443

gsi_set_long
Sets the value of an item, registered item, or embedded item in an attribute to an
integer value.

Synopsis

void gsi_set_long(item, long_value)

void gsi_set_long(registered_item, long_value)

void gsi_set_long(attribute, long_value)

Description

gsi_set_long() sets the value of an item, registered item, or embedded item in
an attribute to the specified gsi_long long value.

This function also sets the G2 Gateway type of the gsi_item, gsi_registered_
item, or item embedded in the gsi_attr to GSI_LONG_TAG.

Argument Description

gsi_item item An item whose value is set by this
function.

gsi_registered_item
registered_item

A registered item whose value is set by
this function.

gsi_attr attribute An attribute containing an embedded
item whose value is set by this function.

gsi_long long_value The long value to which this function
sets the value of item, registered_item, or
the item embedded in attribute.
444

gsi_set_name
gsi_set_name
Sets the name component of a specified gsi_item structure.

Synopsis

void gsi_set_name(item, name)

Description

gsi_set_name() sets the name component of a specified gsi_item structure.

gsi_set_name() does not deallocate the name string. If your user code allocated
memory for the name string, it can deallocate this memory after gsi_set_name()
completes, if it has no further use for the name.

Argument Description

gsi_item item An item whose name is set by this function.

gsi_symbol name The text of the new name of item.

Specify the text of name in uppercase letters
only.
445

gsi_set_option
Sets a G2 Gateway global run-time option.

Synopsis

void gsi_set_option(option)

Description

gsi_set_option() sets the G2 Gateway global run-time option specified by
option.

GSI’s run-time options are global settings that control G2 Gateway’s own
operations and communications within your G2 Gateway application. You
generally manipulate these options in your application’s callback function
gsi_set_up(), though your application can set them at any time and from any
part of the application after it calls the callback function gsi_start().

Pass option as the symbolic constant that represent a G2 Gateway global run-time
option, as listed in the following table:

Argument Description

gsi_int option Symbolic constant that represents a G2
Gateway global runtime option.

G2 Gateway Runtime Options

Global Run-time Option Purpose

GSI_NO_SIGNAL_HANDLERS When set, directs G2 Gateway not to register
its own signal handlers with the operating
system. This can in some cases make
debugging easier.

When reset, directs G2 Gateway to register
its own signal handlers. This is the default.

GSI_ONE_CYCLE When set, allows control to be returned to
your main function once per cycle. Refer to
Processing Events through gsi_run_loop()
for more information.

GSI_PROTECT_INNER_
CALLS

When set, after encountering an error, G2
Gateway returns control to the caller rather
than returning control to gsi_run_loop().
446

gsi_set_option
GSI_STRING
_CHECK

When set, filters out all non-ASCII
characters sent to (but not from) G2.

GSI_SUPPRESS
_OUTPUT

When set, prevents all output generated by
G2 Gateway or the communications link
from appearing as standard output to your
screen.

GSI_TRACE_RUN_LOOP When set, prints a message whenever gsi_
start() or gsi_run_loop() are entered or
exited.

GSI_TRACE_RUN
_STATE

When set, prints a message whenever the
flow of control enters or leaves G2 Gateway.
If the gsi_run_state_change() callback is
initialized, it prints the message before this
callback is called.

G2 Gateway Runtime Options

Global Run-time Option Purpose
447

gsi_set_pause_timeout
Specifies the maximum amount of time that gsi_pause() can pause the bridge.

Synopsis

void gsi_set_pause_timeout(max_idle_time)

Description

gsi_pause() executes while G2 Gateway has nothing to do or until the timeout is
reached, whichever happens first. By default, the timeout period is 1000 ms. You
can change this default using gsi_set_pause_timeout().

Argument Description

gsi_int max_idle_
time

The timeout period, in milliseconds.
448

gsi_set_rpc_remote_return_exclude_user_attrs
gsi_set_rpc_remote_return_exclude_user_
attrs

Declares user-defined attributes to exclude from the returned item of the specified
function handle.

Synopsis

void gsi_set_rpc_remote_return_exclude_user_attrs
(function_handle, attributes)

Description

All user-defined attributes except the declared attributes are included in the
returned item.

Argument Description

gsi_function_handle_type
*function_handle

A pointer to the global variable used to
identify the remote function.

gsi_item *attributes A newly allocated C array of gsi_item
structures that determine the attributes to
include or exclude.
449

gsi_set_rpc_remote_return_include_system_
attrs

Declares system-defined attributes to include in the returned item of the specified
function handle.

Synopsis

void gsi_set_rpc_remote_return_include_system_attrs
(function_handle, attributes)

Description

Only the declared system-defined attributes are included in the returned item.

Argument Description

gsi_function_handle_type
*function_handle

A pointer to the global variable used to
identify the remote function.

gsi_item *attributes A newly allocated C array of gsi_item
structures that determine the attributes to
include or exclude.
450

gsi_set_rpc_remote_return_include_all_system_attrs_except
gsi_set_rpc_remote_return_include_all_
system_attrs_except

Declares system-defined attributes to exclude in the returned item of the specified
function handle.

Synopsis

void gsi_set_rpc_remote_return_include_all_system_attrs_except
(function_handle, attributes)

Description

All system-defined attributes except the declared attributes are included in the
returned item.

For example, this code configures a remote procedure handle in G2 Gateway to
include only the system-defined attributes uuid, item-width, and item-notes:

gsi_item * items;
gsi_char *uuidName = gsirtl_strdup("UUID");
gsi_char *itemWidthName = gsirtl_strdup("ITEM-WIDTH");
gsi_char *itemNotesName = gsirtl_strdup("ITEM-NOTES");
items = gsi_make_items(3);
gsi_set_sym(items[0],gsi_make_symbol(uuidName));
gsi_set_sym(items[1],gsi_make_symbol(itemWidthName));
gsi_set_sym(items[2],gsi_make_symbol(itemNotesName));
gsi_rpc_declare_remote(&getitem, "GETITEM", getitem_return_receiver,

(procedure_user_data_type)NULL, 0, 1, current_context);
gsi_set_rpc_remote_return_include_system_attrs(getitem, items);

Argument Description

gsi_function_handle_type
*function_handle

A pointer to the global variable used to
identify the remote function.

gsi_item *attributes A newly allocated C array of gsi_item
structures that determine the attributes to
include or exclude.
451

gsi_set_rpc_remote_return_value_kind
Specifies how G2 returns a particular argument that a G2 Gateway bridge passed
to G2 in a remote procedure call. The choices are: COPY, HANDLE, or BY-COPY-WITH-
HANDLE.

Synopsis

void gsi_set_rpc_remote_return_value_kind (function_handle,
return_value_index, kind)

Argument Description

gsi_function_
handle_type
function_handle

Specify the function_handle argument
specified in the call to gsi_rpc_declare_
remote() that you used to declare the G2
procedure as a remote procedure.

gsi_int return_
value_index

An index into the list of arguments passed
to G2 through the remote procedure call.
The index value of the first argument is 0.

If the return_count argument of gsi_rpc_
declare_remote() was not -1, specify a
value between 0 and 1 less than the return_
count argument of gsi_rpc_declare_
remote() to designate the particular
argument to which the kind value specified
in this call applies.

If the return_count argument of gsi_rpc_
declare_remote() was -1, you must
specify -1 for return_value_index. This
means that the kind value specified in this
call applies to all arguments returned to the
G2 Gateway bridge.

gsi_char *kind Specify one of: COPY, HANDLE (corresponds
to the G2 as handle item passing grammar),
or BY-COPY-WITH-HANDLE (corresponds to
the G2 with handle item passing grammar).

By default, G2 passes the return value by
COPY.
452

gsi_set_rpc_remote_return_value_kind
Description

gsi_set_rpc_remote_return_value_kind() enables G2 Gateway to specify how
G2 returns values to G2 Gateway.
453

gsi_set_run_loop_timeout
Specifies a timeout period for gsi_run_loop().

Synopsis

void gsi_set_run_loop_timeout(max_run_time)

Description

gsi_run_loop() executes until G2 Gateway has nothing to do, or until the
timeout period is reached, whichever happens first. By default, the timeout
period is 200 ms. You can call gsi_set_run_loop_timeout() to specify a
different timeout period for gsi_run_loop().

Argument Description

gsi_int max_run_
time

The timeout period, in milliseconds.
454

gsi_set_status
gsi_set_status
Sets the status code associated with a registered item.

Synopsis

void gsi_set_status(registered_item, status)

Description

gsi_set_status() modifies the status of a registered item.

To access the status code of a registered item, use the API function gsi_status_
of().

Caution An error results if your user code attempts return a gsi_registered_item to G2
with a null type (GSI_NULL_TAG) and a status value of OK (0). For information
about the values to which you can set the status of gsi_registered_item
structures, see Using the Gsi-Variable-Status Attribute.

Argument Description

gsi_registered_item
registered_item

A registered item whose status code is
set by this function.

gsi_int status The new status code for item.
455

gsi_set_str
Sets the value of an item, registered item, or embedded item in an attribute to a
text string.

Synopsis

void gsi_set_str(item, text_value)

void gsi_set_str(registered_item, text_value)

void gsi_set_str(attribute, text_value)

Description

gsi_set_str() sets the value(s) component of a gsi_item, gsi_registered_
item, or gsi_attr structure to a text string.

This function also sets the G2 Gateway type of the item represented by the first
argument to GSI_STRING_TAG.

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Argument Description

gsi_item item An item whose value is set by this
function.

gsi_registered_item
registered_item

A registered item whose value is set by
this function.

gsi_attr attribute An attribute containing an embedded
item whose value is set by this function.

gsi_char *text_value The text of the new value of the item.

gsi_set_str() does not deallocate the
text_value string. If your user code
allocated memory for the text_value
string, it can deallocate this memory
after gsi_set_str() completes, if it has
no further use for the string.
456

gsi_set_str_array
gsi_set_str_array
Changes the array of text values stored in an item or embedded item in an
attribute to a new array of text values.

Synopsis

void gsi_set_str_array(item, text_values_array, count)

void gsi_set_str_array(registered_item, text_values_array, count)

void gsi_set_str_array(attribute, text_values_array, count)

Description

gsi_set_str_array() copies the contents of a string array into the value(s)
component of an item or embedded item. The original and copied string arrays
are represented by C arrays whose elements are of type gsi_char*.

Argument Description

gsi_item item An item whose array of text values is
changed by this function.

gsi_registered_item
registered_item

A registered item that points to the
gsi_item whose array of text values is
changed by this function.

gsi_attr attribute An attribute containing an embedded
item (gsi_item) to which this function
writes the contents of a string array.

gsi_char **text_values_
array

An array of strings representing the text
values. The contents of this array are
copied into the value(s) component of
the item or embedded item.

If text_values_array is located in a block
of memory previously allocated with
malloc(), you can deallocate this
memory after gsi_set_str_array()
completes if your user code no longer
needs it.

gsi_int count Number of elements in the text_values_
array array.
457

If the first argument to this function is neither a gsi_item nor a gsi_attr, or if the
third argument is out-of-bounds relative to text_values_array, G2 Gateway
signals an error.

If the gsi_item or gsi_attr contains a user-allocated array when gsi_set_str_
array() is called, this function does not automatically free the memory for this
array. In contrast, if the gsi_item or gsi_attr contains memory allocated by G2
Gateway itself (for example, as the result of item-passing), this function
automatically frees that memory.

To determine whether a gsi_item or gsi_attr represents an array of text values,
verify that the value returned by the API function gsi_type_of() is GSI_STRING_
ARRAY_TAG.

To access the contents of a gsi_item or gsi_attr that stores an array of text
values, use the API function gsi_str_array_of().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Caution If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
458

gsi_set_str_list
gsi_set_str_list
Sets the list of text values stored in an item or registered item embedded item in
an attribute to a new list of text values

Synopsis

void gsi_set_str_list(item, text_values_array, count)

void gsi_set_str_list(registered_item, text_values_array, count)

void gsi_set_str_list(attribute, text_values_array, count)

Description

gsi_set_str_list() changes the list of text values stored in the value(s)
component of a gsi_item or gsi_attr to a new list, represented by a C array
whose elements are of type gsi_char*.

If the first argument to this function is neither a gsi_item nor a gsi_attr, or if the
third argument is out-of-bounds relative to text_values_array, G2 Gateway
signals an error.

Argument Description

gsi_item item An item whose list of text values is
changed by this function

gsi_registered_item
registered_item

A registered item that points to the
gsi_item whose list of text values is
changed by this function

gsi_attr attribute An attribute containing an embedded
item whose list of text values is changed
by this function.

gsi_char **text_values_
array

An array of pointers to strings
representing the new text values.

If your user code allocates memory for
the text_values_array string, it should
deallocate this memory as soon as it has
no further use for it. gsi_set_str_
list() does not itself deallocate the
text_values_array string.

gsi_int count Number of values in text_values_array
459

If the gsi_item or gsi_attr already contains a user-allocated list when gsi_set_
str_list() is called, this function does not automatically free the memory for
that list. In contrast, if the gsi_item or gsi_attr contains memory allocated by
G2 Gateway itself (for example, as the result of item-passing), this function
automatically frees that memory.

To determine whether a gsi_item or gsi_attr represents a list of text values,
verify that the value returned by the API function gsi_type_of() is GSI_STRING_
LIST_TAG.

To access the contents of a gsi_item or gsi_attr that stores a list of text values,
use the API function gsi_str_list_of().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
460

gsi_set_string_converson_style
gsi_set_string_converson_style
Specifies the string conversion style used to convert strings passed between a G2
Gateway application and a G2.

Synopsis

void gsi_set_string_conversion_style(style)

Description

G2 Version 5.0 uses the Unicode character set internally for all strings. G2
Gateway can use a variety different character sets, known as string conversion
styles, to represent strings for all G2 Gateway API functions and callbacks.

You can use gsi_set_string_conversion_style() to set the string
conversion style if the compile time switchGSI_WIDE_STRING_API has not been
set. If this switch has been set, G2 Gateway uses the Unicode character set,
regardless of the style that you specify with gsi_set_string_conversion_
style() or the setting of any other options. The GSI_WIDE_STRING_API option is
set automatically if you compile your G2 Gateway code with the C preprocessor
switch GSI_USE_WIDE_STRING_API defined.

The runtime option GSI_STRING_CHECK determines the string conversion style if
neither the runtime option GSI_WIDE_STRING_API is set, nor gsi_set_string_
conversion_style() has been called to specify a style. In this case, G2 Gateway
uses the ISO_8859_1 character set, also known as LATIN_1. This is the same as
making a call to gsi_set_string_conversion_style() with the character set
GSI_CHAR_SET_ISO_8859_1.

The default string conversion style, if neither GSI_WIDE_STRING_API nor GSI_
STRING_CHECK is set, and gsi_set_string_conversion_style() has not been
called, is the GENSYM character set, also know as UTF_G. This is the character set
that the previous releases of G2 Gateway (GSI) used.

The following list includes all the string conversion styles that you can specify for
the style argument of gsi_set_string_conversion_style(). The styles listed in
each bullet are synonyms for a same style, and can be used interchangeably. For
more information about these styles, see The Unicode Standard, Version 2.0 or other
relevant documentation for international standards.

Argument Description

gsi_int style The style for string conversions that is set by
this function call. For information about the
supported string conversion styles, see
Description below.
461

• GSI_CHAR_SET_GENSYM
GSI_CHAR_SET_UTF_G

The default string conversion style used if neither the GSI_STRING_CHECK nor
the GSI_WIDE_STRING_API runtime option is set, and gsi_set_string_
conversion_style() has not been called.

This is the character set that the previous releases of G2 Gateway (GSI) used.

• GSI_CHAR_SET_ISO_8859_1 GSI_CHAR_SET_LATIN_1

The default string conversion style used if GSI_STRING_CHECK is set and
GSI_WIDE_STRING_API is not set, and gsi_set_string
_conversion_style() has not been called to specify a style.

• GSI_CHAR_SET_ISO_8859_2,
GSI_CHAR_SET_LATIN_2

• GSI_CHAR_SET_ISO_8859_3,
GSI_CHAR_SET_LATIN_3

• GSI_CHAR_SET_ISO_8859_4,
GSI_CHAR_SET_LATIN_4

• GSI_CHAR_SET_ISO_8859_5,
GSI_CHAR_SET_LATIN_CYRILLIC

• GSI_CHAR_SET_ISO_8859_6,
GSI_CHAR_SET_LATIN_ARABIC

• GSI_CHAR_SET_ISO_8859_7,
GSI_CHAR_SET_LATIN_GREEK

• GSI_CHAR_SET_ISO_8859_8,
GSI_CHAR_SET_LATIN_HEBREW

• GSI_CHAR_SET_ISO_8859_9,
GSI_CHAR_SET_LATIN_5

• GSI_CHAR_SET_ISO_8859_1,
GSI_CHAR_SET_LATIN_6

• GSI_CHAR_SET_US_ASCII,
GSI_CHAR_SET_ASCII,
GSI_CHAR_SET_FILTER_TEXT_FOR_GSI,
GSI_CHAR_SET_ISO_646_IRV

• GSI_CHAR_SET_JIS,
GSI_CHAR_SET_JIS_X_0208

• GSI_CHAR_SET_JIS_EUC,
GSI_CHAR_SET_JIS_X_0208_EUC
462

gsi_set_string_converson_style
• GSI_CHAR_SET_SHIFT_JIS,
GSI_CHAR_SET_SHIFT_JIS_X_0208,
GSI_CHAR_SET_MS_KANJI

• GSI_CHAR_SET_KS,
GSI_CHAR_SET_KS_C_5601

• GSI_CHAR_SET_KS_EUC,
GSI_CHAR_SET_KS_C_5601_EUC

• GSI_CHAR_SET_UNICODE_UTF_,
GSI_CHAR_SET_UTF_7

• GSI_CHAR_SET_ISO_2022,
GSI_CHAR_SET_X_COMPOUND_TEXT
463

gsi_set_sym
Uses a text string to set the value of an item, registered item, or embedded item in
an attribute with a value of the G2 Gateway type GSI_SYMBOL_TAG.

Sets the symbol value associated with a gsi_item, gsi_registered_item, or
gsi_attr structure.

Synopsis

void gsi_set_sym(item-regitem-attr, symbol-value)

Description

gsi_set_sym() sets the value(s) component of a gsi_item, gsi_registered_
item, or gsi_attr to a value of G2 Gateway type GSI_SYMBOL_TAG.

This function also sets the G2 Gateway type of the first argument to
GSI_SYMBOL_TAG.

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Argument Description

gsi_struct
item-regitem-attr

The gsi_item, gsi_registered_item, or
gsi_attr structure whose associated
symbol value is set.

gsi_symbol
symbol-value

The symbol value assigned to item-regitem-
attr.
464

gsi_set_sym_array
gsi_set_sym_array
Sets the values in the symbol array associated with a gsi_item or gsi_attr
structure.

Synopsis

void gsi_set_sym_array(item-attr, symbol-values-array, count)

Description

gsi_set_sym_array() copies the contents of a symbol array into the value(s)
component of an item or embedded item. The original and copied symbol arrays
are represented by arrays of type gsi_symbol.

If the first argument to this function is neither a gsi_registered_item, gsi_
item, nor a gsi_attr, or if the third argument is out-of-bounds relative to
symbol_values_array, G2 Gateway signals an error.

This function does not manage memory allocated by user-written functions in
your GSI application. If the gsi_item or gsi_attr already contains a user-
allocated array when gsi_set_sym_array() is called, this function does not
automatically free the memory for that array. In contrast, if the gsi_item or gsi_
attr contains memory allocated by G2 Gateway itself (for example, as the result
of item-passing), this function automatically frees that memory.

To determine whether a gsi_item or gsi_attr represents an array of symbol
values, verify that the value returned by the API function gsi_type_of() is
GSI_SYMBOL_ARRAY_TAG.

To access the contents of a gsi_item or gsi_attr that stores an array of symbol
values, use the API function gsi_sym_array_of().

Argument Description

gsi_struct
item-attr

The gsi_item or gsi_attr structure whose
symbol array is assigned values.

gsi_symbol
*symbol-values-array

The array of symbol values assigned to item-
attr.

gsi_int count The number of values in symbol-values-
array.
465

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
466

gsi_set_sym_list
gsi_set_sym_list
Sets the values in the symbol list associated with a gsi_item or gsi_attr
structure.

Synopsis

void gsi_set_sym_list(item, symbol-values-array,count)

void gsi_set_sym_list(attr, symbol-values-array,count)

Description

gsi_set_sym_list() changes the list of symbols stored in the value(s)
component of a gsi_item or gsi_attr to a new list, represented by an array of
type gsi_symbol.

If the first argument to this function is neither a gsi_item nor a gsi_attr or if the
third argument is out-of-bounds relative to symbol_values_array, G2 Gateway
signals an error.

If the gsi_item or gsi_attr already contains a user-allocated array when gsi_
set_sym_list() is called, this function does not automatically free the memory
for that list. In contrast, if the gsi_item or gsi_attr contains memory allocated
by G2 Gateway itself (for example, as the result of item-passing), this function
automatically frees that memory.

To determine whether a gsi_item or gsi_attr represents a list of symbol values,
verify that the value returned by the API function gsi_type_of() is GSI_SYMBOL_
LIST_TAG.

To access the contents of a gsi_item or gsi_attr that stores a list of symbol
values, use the API function gsi_sym_list_of().

Argument Description

gsi_item item The gsi_item whose symbol list is assigned
values.

gsi_attr attr The gsi_attr whose symbol list is assigned
values.

gsi_symbol
*symbol-values-array

The list of symbol values assigned to item-
attr.

gsi_int
count

The number of values in symbol-values-
array.
467

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Note If a gsi_item structure was allocated by the G2 Gateway user code through a call
to the API function gsi_make_items(), the structure does not have a class name
until you assign one to it through a call to gsi_set_class_name().

You must assign a class name to the gsi_item structure if you intend to pass the
gsi_item back to G2 as an object. In this case, the gsi_item structure must have a
class name so that G2 can create a G2 object of that class to represent the gsi_
item. The class name of the gsi_item must be the name of an existing G2 class.

If you are allocating a gsi_item that your bridge will send back to G2 as a value,
you do not have to assign a class name to the gsi_item.
468

gsi_set_symbol_user_data
gsi_set_symbol_user_data
Sets the user data associated with a symbol.

Synopsis

void gsi_set_symbol_user_data(symbol,symbol_user_data)

Description

gsi_set_symbol_user_data() enables you to associate an arbitrary value,
specified in the symbol_user_data argument, with a specified symbol value.

Argument Description

gsi_symbol symbol The symbol with which user data is to be
associated.

gsi_symbol_user_
data_type symbol_
user_data

The user data associated with symbol.

Note: The data type gsi_symbol_user_
data_type is defined to have the type
(void *).
469

gsi_set_timestamp
Sets the timestamp of an item or registered item embedded item in an attribute.

Synopsis

void gsi_set_timestamp(registered_item, timestamp_value)

void gsi_set_timestamp(item, timestamp_value)

void gsi_set_timestamp(attribute, timestamp_value)

Description

Use gsi_set_timestamp() to set the timestamp of a gsi_item that is part of data
service for a GSI variable. In the call to gsi_set_timestamp(), you can specify the
gsi_item directly, specify the gsi_registered_item that points to the gsi_
item, or specify a gsi_attr in which the gsi_item is embedded.

You cannot use gsi_set_timestamp() to set timestamps on data returned to G2
through remote procedure calls.

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

Argument Description

gsi_registered_item
registered_item

A G2 Gateway registered item, which
points to the gsi_item structure whose
timestamp is set by this function.

gsi_item item An item whose timestamp is set by this
function.

gsi_attr attribute An attribute containing an embedded
gsi_item structure, whose timestamp
is set by this function.

double timestamp_value On UNIX and Windows, a timestamp
value representing the number of
seconds since midnight, January 1, 1970,
GMT.
470

gsi_set_type
gsi_set_type
Sets the G2 Gateway type of an item, registered item, or embedded item in an
attribute.

Synopsis

void gsi_set_type(item, gsi_type)

void gsi_set_type(registered_item, gsi_type)

void gsi_set_type(attribute, gsi_type)

Description

Use gsi_set_type() to set the type of a gsi_item, gsi_registered_item, or
gsi_attr structure. The type determines how the gsi_item, gsi_registered_
item, or gsi_attr structure will be interpreted by G2 and by your G2 Gateway
user code.

Argument Description

gsi_item item An item whose G2 Gateway type is set
by this function.

gsi_registered_item
registered_item

A registered item whose G2 Gateway
type is set by this function.

gsi_attr attribute An attribute containing an embedded
item whose G2 Gateway type is set by
this function.

gsi_int gsi_type Specify one of the following G2
Gateway types:

GSI_NULL_TAG
GSI_INTEGER_TAG
GSI_STRING_TAG
GSI_LOGICAL_TAG
GSI_FLOAT64_TAG
GSI_SEQUENCE_TAG,
GSI_STRUCTURE_TAG
all array and list tags

If you specify an array or list type for
an item originally in some other type,
gsi_set_type() sets the length of the
array or list to 0.
471

For most purposes, it is not necessary to call gsi_set_type(), because the API
functions that set the value component of a gsi_item, gsi_registered_item, or
gsi_attr structure also set the type component to the type of that value. For
example, gsi_set_flt() sets the value component of a gsi_item structure to a
floating point value and also sets the type component of that structure to GSI_
FLOAT64_TAG.

However, gsi_set_type() is the only API function that can set the value of a G2
Gateway data structure to null.

Beginning in GSI 4.0, Rev.3, gsi_set_type() also sets default values for G2
Gateway structures. The following table lists the default values to which gsi_
set_type() sets G2 Gateway structures.

If you use gsi_set_type() with types that are not listed in the table above, your
user code should use the corresponding functions in the table below, to make
them compatible with GSI 4.0 Rev. 3 and subsequent versions.

The following table lists the recommended API functions for setting the types of
G2 Gateway structures.

 Default Values Set by gsi_set_type()

Value Type in G2
G2 Gateway
Type Tag Name Default Value

no value condition GSI_NULL_TAG There is no default
value for the GSI_
NULL_TAG type.

integer GSI_INTEGER_TAG 0

float GSI_FLOAT64_TAG 0.0

text GSI_STRING_TAG ""

truth-value GSI_LOGICAL_TAG 0

Halfway between
GSI_TRUE (1000)
and GSI_FALSE
(-1000)

API Functions for Setting Data Structure Types

Type Tag Function

GSI_NULL_TAG gsi_set_type()

GSI_INTEGER_TAG gsi_set_int()

GSI_SYMBOL_TAG gsi_set_sym()
472

gsi_set_type
GSI_STRING_TAG gsi_set_str()

GSI_LOGICAL_TAG gsi_set_log()

GSI_FLOAT64_TAG gsi_set_flt()

GSI_HANDLE_TAG gsi_set_handle()

GSI_INTEGER_ARRAY_TAG gsi_set_int_array()

GSI_SYMBOL_ARRAY_TAG gsi_set_sym_array()

GSI_STRING_ARRAY_TAG gsi_set_str_array()

GSI_LOGICAL_ARRAY_TAG gsi_set_log_array()

GSI_FLOAT64_ARRAY_TAG gsi_set_flt_array()

GSI_ITEM_ARRAY_TAG gsi_set_elements()

GSI_VALUE_ARRAY_TAG gsi_set_elements()

GSI_INTEGER_LIST_TAG gsi_set_int_list()

GSI_SYMBOL_LIST_TAG gsi_set_sym_list()

GSI_STRING_LIST_TAG gsi_set_str_list()

GSI_LOGICAL_LIST_TAG gsi_set_log_list()

GSI_FLOAT64_LIST_TAG gsi_set_flt_list()

GSI_ITEM_LIST_TAG gsi_set_elements()

GSI_VALUE_LIST_TAG gsi_set_elements()

API Functions for Setting Data Structure Types

Type Tag Function
473

gsi_set_unqualified_attr_name
Sets the unqualified part of an attribute’s name.

Synopsis

void gsi_set_unqualified_attr_name(attribute, attribute_name)

Description

Use gsi_set_unqualified_attr_name() to change the part of the name
component of a gsi_attr that is not class-qualified.

This function does not manage memory allocated by user-written functions in
your GSI application. In particular, any memory malloc’d by a user-written
function to form the new unqualified part of a gsi_attr instance’s attribute name
must also be free’d by a user-written function.

The functions for accessing and modifying the name component of a gsi_attr are:

gsi_attr_name_of()
gsi_set_attr_name()
gsi_unqualified_attr_name_of()
gsi_set_unqualified_attr_name()
gsi_attr_name_is_qualified()
gsi_class_qualifier_of()
gsi_set_class_qualifier()

Argument Description

gsi_attr attribute An attribute, for which this function sets the
unqualified part of the attribute name.

gsi_symbol
attribute_name

The new unqualified part of the attribute
name. Specify the unqualified part of the
attribute name in uppercase letters only.

gsi_set_unqualified_att_name() does
not retain the attribute_name string. If your
user code allocated memory for the
attribute_name string, it can deallocate this
memory after gsi_set_unqualified_att_
name() completes, if it has no further use
for the string.
474

gsi_set_update_items_in_lists_and_arrays_flag
gsi_set_update_items_in_lists_and_arrays_
flag

If this flag is on then the contents of item is used to update attribute values of
items in an existing G2 array or list when returned to G2 through a call to gsi_
return_values().

Synopsis

void gsi_set_update_items_in_lists_and_arrays_flag(item, flag)

Description

gsi_set_update_items_in_lists_and_arrays_flag() sets an internal G2
Gateway flag that causes items in a G2 list or array to be updated with the
attribute values of the corresponding items returned to G2 through a call to gsi_
return_values(). Non-items in the G2 list or array are replaced with the
corresponding elements in the list or array returned to G2. Items have valid G2
class names in the class name component.

Argument Description

gsi_item item The item with a list or array type that you
intend to return to G2 through a call to gsi_
return_values(), or a gsi_item contained
in the item that you return.

gsi_int flag Specify 1 to turn the flag on, causing the
values in item to be used to update the array
or list in G2.

Specify 0 to turn the flag off, causing the
values not to be appended.
475

gsi_set_user_data
Sets the user data component of a gsi_registration or gsi_item structure.

Synopsis

void gsi_set_user_data(registration, user_data)

void gsi_set_user_data(item, user_data)

Description

Use gsi_set_user_data() to set the value of the user data component of a gsi_
registration or gsi_item structure.

The user data component of these structures exists for the convenience of the G2
Gateway application programmer. It can store data specific to your G2 Gateway
application, and specific to a particular data-served GSI variable in the current KB
of a connected G2 process.

G2 Gateway itself does not read or reclaim the user data component of gsi_
registration or gsi_item structures.

Argument Description

gsi_registration
registration

A registration whose user data
component is set by this function.

gsi_item item An item whose user data component is
set by this function.

gsi_item_user_data_
type user_data

The new value of the user data
component of registration.
476

gsi_set_usv
gsi_set_usv
Sets the value of an item, registered item, or embedded item in an attribute to an
unsigned short vector.

Synopsis

void gsi_set_usv(item ,usv , length)

void gsi_set_usv(reg-item ,usv , length)

void gsi_set_usv(attr ,usv , length)

Description

The function gsi_set_usv() sets the value component of a gsi_item, gsi_
registered_item, or gsi_attr structure to an unsigned short vector.

This function also sets the G2 Gateway type of the item represented by the first
argument to GSI_UNSIGNED_SHORT_VECTOR_TAG.

G2 5.0 enables the user to create classes that inherit from the mixin class unique-
identification. All instances of any subclass of unique-identification inherit an
attribute named UUID. The value of this attribute is sent to G2 Gateway as an
unsigned short vector.

The universal unique identifiers are similar to strings, except that they can contain
embedded zeros, and cannot undergo character set translation. For more
information about universal unique identifiers, see the G2 Reference Manual.

Unsigned short vectors are currently used only for universal unique identifiers
(UUIDs).

Argument Description

gsi_item item An item whose universal unique
identifier is set by this function.

gsi_registered_item
reg-item

A registered item whose universal
unique identifier is set by this function.

gsi_attr attr An attribute containing an embedded
item whose universal unique identifier
is set by this function.

unsigned short *usv The contents of the unsigned short
vector.

gsi_int length The length of the unsigned short vector.
477

gsi_signal_error
Invoke the G2 Gateway error handler and pass to it user-defined error
information.

Synopsis

void gsi_signal_error(origin_of_error, user_error_code, message)

Description

Include gsi_signal_error() in user-written functions to enable these functions
to access the G2 Gateway error handler. The user-written function can call gsi_
signal_error() when needed to invoke the G2 Gateway error handler and pass
to it the error code and message specified by user_error_code and message.

You can use gsi_signal_error() in conjunction with a customized error
handler. That is, the user-written customized error handler is called by the G2
Gateway error handler as a result of calling this function. For more information
about installing a customized error handler, see the gsi_install_error_
handler.

Argument Description

gsi_char
*origin_of_error

A descriptive key documenting the
location of the error.

gsi_int user_error_code An integer (greater than 1023) that
represents a user-defined error code.

gsi_char *message Text that describes the user-defined
error code.

gsi_signal_error() does not retain
the message string. If your user code
allocated memory for the message
string, it can deallocate this memory
after gsi_signal_error()
completes, if it has no further use for the
string.
478

gsi_signal_handler
gsi_signal_handler
Enables you to invoke the G2 Gateway default error handler to handle particular
signals.

Synopsis

void gsi_signal_handler(signal_code)

Description

gsi_signal_handler() invokes the G2 Gateway signal handler, which then
invokes the G2 Gateway error handler.

G2 Gateway by default registers its own signal handlers with the operating
system, making it unnecessary for user code to handle signals. However, in some
cases, you may require different handling for some signal codes from that
provided by G2 Gateway.

To handle signals through your G2 Gateway user code, follow these steps:

1 Call gsi_set_option(GSI_NO_SIGNAL_HANDLERS) from within gsi_set_up(),
to prevent G2 Gateway from registering its own signal handlers with the
operating system.

2 Register your own signal handlers with the operating system, using the C
library function signal.

3 Use gsi_signal_handler() to invoke the G2 Gateway error handler to
handle particular signals. gsi_signal_handler() handles the specified
signals even though you disabled the default G2 Gateway signal handling by
setting the GSI_NO_SIGNAL_HANDLERS option.

If you want to use the default G2 Gateway signal handling for a particular
signal, you must either call gsi_signal_handler() from within your signal
handler, or cause gsi_signal_handler() itself to be the signal handler.

Argument Description

gsi_int signal_code The code of the signal, as listed in the
documentation of the C library function
signal.
479

gsi_simple_content_copy
Copies a source gsi_item structure to a specified destination gsi_item structure.

Synopsis

void gsi_simple_content_copy(destination_item, source_item)

Description

The destination and source structures are distinct at the level of the given G2
Gateway item, but share substructures, such as attributes whose values are
themselves gsi_item structures.

To duplicate complex gsi_item structures, you need to create recursive routines
like the examples in gsi_misc.c. gsi_simple_content_copy does not duplicate
attribute data structures.

Argument Description

gsi_item destination_
item

An item to which this function copies
source.

gsi_item source _item The item that this function copies into
destination.
480

gsi_start
gsi_start
Initializes G2 Gateway, sets up network listeners, and passes control to the API
function gsi_run_loop().

Synopsis

void gsi_start(argc, argv)

Description

gsi_start() takes as input the argc and argv arguments that were passed to the
main() function in your G2 Gateway application. The argc and argv arguments
can be modified in your G2 Gateway application’s main() routine before being
passed to gsi_start().

gsi_start() does the following:

• Initializes G2 Gateway internals.

• Calls the callback function gsi_set_up().

• Calls the callback function gsi_get_tcp_port().

• Establishes TCP/IP network listener.

• Passes control to the API function gsi_run_loop().

Whether gsi_run_loop() returns controls to gsi_start() depends on whether
you operate your G2 Gateway application in Continuous mode or One-Cycle
mode:

• In Continuous mode (the default), gsi_start() calls gsi_run_loop(), which
loops continuously, rather than returning control to its caller. Your G2
Gateway bridge process executes entirely within the gsi_run_loop() call tree
as long as no fatal error occurs.

• In One-Cycle mode, gsi_run_loop() executes only once and then returns
control to gsi_start(), which then exits and returns control to main().

Argument Description

int argc Number of arguments passed from the
command line to your G2 Gateway
application’s process.

char **argv Array of strings containing the text of the
arguments passed from the command line
to your G2 Gateway application’s process.
481

Note One-Cycle mode does not automatically cause your G2 Gateway application’s
process to sleep while waiting for incoming network events from the connected
G2 process. To cause your bridge process to sleep in one-cycle mode, your user
code must call the API function gsi_pause().

Data transmitted from your G2 Gateway application to the connected G2 process
need not pass through gsi_run_loop().
482

gsi_status_of
gsi_status_of
Returns the current status code associated with a registered item.

Synopsis

gsi_int gsi_status_of(registered_item)

Description

Use gsi_status_of() to obtain the status of a registered item.

To change the status code in a registered item, use the API function gsi_set_
status().

Argument Description

gsi_registered_item
registered_item

A registered item whose status code is
returned by this function.

Return Value Description

gsi_int Represents the current status code of
registered_item.
483

gsi_string_conversion_style
Returns the currently selected string conversion style.

Synopsis

gsi_int gsi_string_conversion_style()

Description

gsi_string_conversion_style() returns the currently selected string
conversion style. For information about the string conversion styles and how to
set them, see gsi_set_string_converson_style.

Return Value Description

gsi_int The string conversion style currently
selected for all strings in G2 Gateway. For a
list of the supported string conversion
styles, see gsi_set_string_converson_
style.
484

gsi_str_array_of
gsi_str_array_of
Returns the array of text values stored in an item or registered item embedded
item in an attribute

Synopsis

gsi_char **gsi_str_array_of(registered_item)

gsi_char **gsi_str_array_of(item)

gsi_char **gsi_str_array_of(attribute)

Description

Use gsi_str_array_of() to obtain a pointer to the C array of strings in a gsi_
item or gsi_attr. This C array represents the value a G2 text-array item.

If the argument to this function is neither a gsi_item nor a gsi_attr, G2 Gateway
signals an error.

Argument Description

gsi_registered
_item registered_item

A registered item pointing to an item (gsi_
item) whose array of text values is returned
by this function.

gsi_item item An item whose array of text values is
returned by this function.

gsi_attr attribute An attribute containing an item whose array
of text values is returned by this function.

Return Value Description

gsi_char ** A one-dimensional array of C strings that
represents the value of a G2 text-array item.

The array of C strings persists only as long
as the data structure with which it is
associated. If your user code needs to keep
the array of strings for longer than the life-
span of the data structure, it must copy the
array into memory that it has allocated
independently.
485

This function does not allocate any new memory. It copies neither this array nor
any of its elements, and its return value points to the array stored in the gsi_item
or gsi_attr.

To determine whether a gsi_item or gsi_attr represents an array of text values,
verify that the value returned by the API function gsi_type_of() is GSI_STRING_
ARRAY_TAG.

To modify a gsi_item or gsi_attr so that it stores an array of text values, use the
API function gsi_set_str_array().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.
486

gsi_str_list_of
gsi_str_list_of
Returns the list of text values stored in an item or registered item embedded item
in an attribute.

Synopsis

gsi_char **gsi_str_list_of(registered_item)

gsi_char **gsi_str_list_of(item)

gsi_char **gsi_str_list_of(attribute)

Description

Use gsi_str_list_of() to obtain a pointer to the list of text values in a gsi_item
or gsi_attr.

If the argument to this function is neither a gsi_item nor a gsi_attr, G2 Gateway
signals an error.

Argument Description

gsi_registered
_item registered_item

A registered item pointing to an item (gsi_
item) whose array of text values is returned
by this function.

gsi_item item An item whose list of text values is returned
by this function.

gsi_attr attribute An attribute containing an embedded item
whose list of text values is returned by this
function.

Return Value Description

gsi_char ** A one-dimensional array of C strings that
represents the value of a G2 text-list item.

The array of C strings persists only as long
as the data structure with which it is
associated. If your user code needs to keep
the array of strings for longer than the life-
span of the data structure, it must copy the
array into memory that it has allocated
itself.
487

This function does not allocate any new memory. It copies neither this list nor any
of its elements, and its return value points to the list stored in the gsi_item or
gsi_attr.

To determine whether a gsi_item or gsi_attr represents a list of text values,
verify that the value returned by the API function gsi_type_of() is GSI_STRING_
LIST_TAG.

To modify a gsi_item or gsi_attr so that it stores a list of text values, use the
API function gsi_set_str_list().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.
488

gsi_str_of
gsi_str_of
Returns the value of an item, registered item, or embedded item in an attribute
whose G2 Gateway type is GSI_STRING_TAG

Synopsis

gsi_char *gsi_str_of(item)

gsi_char *gsi_str_of(registered_item)

gsi_char *gsi_str_of(attribute)

Description

Use gsi_str_of() to retrieve the value of a gsi_item, gsi_registered_item, or
gsi_attr whose G2 Gateway type is GSI_STRING_TAG as a C string.

The G2 Gateway type of the argument must be GSI_STRING_TAG, or G2 Gateway
signals an error.

Argument Description

gsi_item item An item whose value is returned by this
function.

gsi_registered_item
registered_item

A registered item whose value is
returned by this function.

gsi_attr attribute An attribute containing an embedded
item whose value is returned by this
function.

Return Value Description

gsi_char* A C string representing the value of item,
registered_item, or attribute.

The C string persists only as long as the data
structure with which it is associated. If your
user code needs to keep the C string for
longer than the life-span of the data
structure, it must copy the array into
memory that it has allocated itself.
489

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.
490

gsi_sym_array_of
gsi_sym_array_of
Returns the symbol array associated with a gsi_item, gsi_registered_item, or
gsi_attr structure.

Synopsis

gsi_symbol *gsi_sym_array_of(item-regitem-attr)

Description

gsi_sym_array_of() obtains a pointer to the array of symbol values in a gsi_
item, gsi_registered_item, or gsi_attr structure.

If the argument to this function is not one of these structures, G2 Gateway signals
an error.

This function does not allocate any new memory. Its return value points to the
array stored in the specified structure, and this function copies neither this array
nor any of its elements.

To determine whether a gsi_item, gsi_registered_item, or gsi_attr structure
represents an array of symbol values, verify that the value returned by the API
function gsi_type_of() is GSI_SYMBOL_ARRAY_TAG.

To modify a gsi_item or gsi_attr so that it stores an array of symbol values, use
the API function gsi_set_sym_array().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Argument Description

gsi_struct
item-regitem-attr

The gsi_item, gsi_registered_item, or
gsi_attr structure for which a symbol
array is returned.

Return Value Description

gsi_symbol* The symbol array associated with item-
regitem-attr.
491

gsi_sym_list_of
Returns the symbol list associated with a gsi_item, gsi_registered_item, or
gsi_attr structure.

Synopsis

gsi_symbol *gsi_sym_list_of(item-regitem-attr)

Description

Use gsi_sym_list_of() to obtain a pointer to the list of symbol values in a gsi_
item or gsi_attr. If the argument to this function is neither a gsi_item nor a
gsi_attr, G2 Gateway signals an error.

This function does not allocate any new memory. Its return value points to the list
stored in the gsi_item or gsi_attr, and it copies neither this list nor any of its
elements.

To determine whether a gsi_item or gsi_attr represents a list of symbol values,
verify that the value returned by the API function gsi_type_of() is GSI_SYMBOL_
LIST_TAG.

To modify a gsi_item, gsi_attr, or gsi_registered_item so that it stores a list
of symbol values, use the API function gsi_set_sym_list().

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Argument Description

gsi_struct
item-regitem-attr

The gsi_item, gsi_registered_item, or
gsi_attr structure for which a symbol list is
returned.

Return Value Description

gsi_symbol* The symbol list associated with item-
regitem-attr.
492

gsi_sym_of
gsi_sym_of
Returns the symbol associated with a gsi_item, gsi_registered_item, or gsi_
attr structure.

Synopsis

gsi_symbol gsi_sym_of(item)

gsi_symbol gsi_sym_of(regitem)

gsi_symbol gsi_sym_of(attr)

Description

Use gsi_sym_of() to retrieve the value of a gsi_item, gsi_registered_item, or
gsi_attr, whose G2 Gateway type is GSI_SYMBOL_TAG, as a C string.

The type of the structure specified in the item-regitem-attr argument must be GSI_
SYMBOL_TAG, or G2 Gateway signals an error.

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

Argument Description

gsi_item item The gsi_item, for which the symbol is
returned.

gsi_registered_item
regitem

The gsi_registered_item, for which the
symbol is returned.

gsi_attr attr The gsi_attr structure for which the
symbol is returned.

Return Value Description

gsi_symbol The symbol associated with the gsi_item,
gsi_registered_item, or gsi_attr.
493

gsi_symbol_name
Returns the string associated with a symbol. This string must not be modified.

Synopsis

gsi_char *gsi_symbol_name(symbol)

Argument Description

gsi_symbol symbol The symbol for which the associated string
is returned.

Return Value Description

gsi_char* The string associated with symbol.
494

gsi_symbol_user_data
gsi_symbol_user_data
Returns the user data associated with a symbol.

Synopsis

gsi_symbol_user_data_type gsi_symbol_user_data(symbol)

Argument Description

gsi_symbol symbol The symbol for which user data is returned.

Return Value Description

gsi_symbol_user_data
_type

The user data associated with symbol.

Note: The data type gsi_symbol_
user_data_type is defined to have
the type (void *).
495

gsi_timestamp_of
Returns the timestamp for an item, registered item, or embedded item in an
attribute that was set by gsi_set_timestamp().

Synopsis

double gsi_timestamp_of(item)

double gsi_timestamp_of(registered_item)

double gsi_timestamp_of(attribute)

Description

Use gsi_timestamp_of() to obtain the timestamp associated with a gsi_item
passed through a remote procedure call, or with a gsi_registered_item
representing a data-served GSI variable. Use the API function gsi_decode_
timestamp() to decode a timestamp into component parts (month, day, year, and
so on).

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

Argument Description

gsi_item item An item whose timestamp is returned.

gsi_registered_item
registered_item

A registered item whose timestamp is
returned.

gsi_attr attribute An attribute containing an embedded
item whose timestamp is returned.

Return Value Description

double On UNIX and Windows, a timestamp value
representing the number of seconds since
midnight, January 1, 1970, GMT.
496

gsi_type_of
gsi_type_of
Returns the G2 Gateway type of the value of an item, registered item, embedded
item in an attribute, or registration.

Synopsis

gsi_int gsi_type_of(item)

gsi_int gsi_type_of(registered_item)

gsi_int gsi_type_of(attribute)

gsi_int gsi_type_of(registration)

Description

Use gsi_type_of() to obtain the G2 Gateway type of a gsi_item, gsi_
registered_item, gsi_registration, or gsi_attr.

Argument Description

gsi_item item An item whose G2 Gateway type is
returned by this function.

gsi_registered_item
registered_item

A registered item whose G2 Gateway
type is returned by this function.

gsi_attr attribute An attribute containing an item whose
G2 Gateway type is returned by this
function.

gsi_registration
registration

A registration whose G2 Gateway type
is returned by this function.

Return Value Description

gsi_int The G2 Gateway type of a gsi_item, gsi_
registered_item, gsi_attr, or gsi_
registration.

The return value can be any G2 Gateway
type tag except GSI_QUANTITY_TAG and GSI_
VALUE_TAG.
497

gsi_unqualified_attr_name_of
Returns the unqualified part of an attribute’s name.

Synopsis

gsi_symbol gsi_unqualified_attr_name_of(attribute)

Description

Use gsi_unqualified_attr_name_of() to access the unqualified part of the name
component of a gsi_attr.

This function does not allocate any new memory. Its return value points to a
string stored in attribute, and not to a copy of that string.

The functions for accessing and modifying the name of an attribute are:

gsi_attr_name_of()
gsi_set_attr_name()
gsi_unqualified_attr_name_of()
gsi_set_unqualified_attr_name()
gsi_attr_name_is_qualified()
gsi_class_qualifier_of()
gsi_set_class_qualifier()

Argument Description

gsi_attr attribute An attribute from which this function
returns the unqualified part of the
attribute’s name.

Return Value Description

gsi_symbol A read-only symbol that contains the
unqualified part of the name component of
attribute.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory that it has allocated itself either
through malloc() or a make_xxx G2
Gateway function.
498

gsi_unwatch_fd
gsi_unwatch_fd
Causes gsi_run_loop() not to wake up when input or output takes place on a file
descriptor.

Synopsis

void gsi_unwatch_fd(file_descriptor)

Description

gsi_unwatch_fd() undoes the effect of both gsi_watch_fd() and gsi_watch_
fd_for_writing(). It stops gsi_run_loop() from waking up whenever read,
write, or error input or output takes place on the specified file descriptor. You
must call gsi_unwatch_fd() before closing the specified file descriptor.

Use this function on file descriptors that have been previously passed as
arguments to the API function gsi_watch_fd() or gsi_watch_fd_for_
writing(). Calling this function on other file descriptors is not an error, but has
no effect.

Note On Windows platforms, this facility only supports socket input/output as
provided by the supported third-party socket facilities — for example, Multinet
and the WinSock API.

For more information, consult the section on the API function gsi_watch_fd().

Argument Description

long file_descriptor A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.
499

Related Functions

Function Description

gsi_watch_fd() Specifies a file descriptor that G2
Gateway watches for network read
or error activity.

gsi_watch_fd_for_
writing()

Specifies a file descriptor that G2
Gateway watches for network write
activity.

gsi_unwatch_fd_for_
writing()

Stops G2 Gateway from watching for
write activity on a file descriptor.
500

gsi_unwatch_fd_for_writing
gsi_unwatch_fd_for_writing
Stops G2 Gateway from watching for write activity on a file descriptor.

Synopsis

void gsi_unwatch_fd_for_writing(file_descriptor)

Description

gsi_unwatch_fd_for_writing() undoes the effect of gsi_watch_fd_for_
writing(). It stops gsi_run_loop() from waking up whenever writing input or
output takes place on the specified file descriptor.

Use this function on file descriptors that have been previously passed as
arguments to the API function gsi_watch_fd_for_writing(). Calling this
function on other file descriptors is not an error, but has no effect. This function
causes gsi_run_loop() to not wake up when write input or output takes place on
a file descriptor.

Note On Windows platforms, this facility only supports socket input/output as
provided by the supported third-party socket facilities — for example, Multinet
and the WinSock API.

Related Functions

Argument Description

long file_descriptor A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.

Function Description

gsi_pause() Causes the G2 Gateway bridge
process to sleep for 1 second, or until
a network event occurs on a network
connection to the G2 Gateway bridge
process.

gsi_watch_fd() Specifies a file descriptor that G2
Gateway watches for network read
or error activity.
501

gsi_unwatch_fd () Causes gsi_run_loop() to not wake
up when input or output takes place
on a file descriptor.

gsi_unwatch_fd_for_
writing()

Specifies a file descriptor that G2
Gateway watches for network write
activity.

Function Description
502

gsi_update_items_in_lists_and_arrays_flag
gsi_update_items_in_lists_and_arrays_flag
Causes contents of a gsi_item with a list or array type to be used to update
attribute values of items in an existing G2 array or list when returned to G2
through a call to gsi_return_values().

Synopsis

gsi_int gsi_update_items_in_lists_and_arrays_flag(item)

Description

The function gsi_update_items_in_lists_and_arrays_flag() returns the
value of an internal G2 Gateway flag that causes items in a G2 list or array to be
updated with the attribute values of the corresponding items returned to G2
through a call to gsi_return_values(). Non-items in the G2 list or array are
replaced with the corresponding elements in the list or array returned to G2.
Items have valid G2 class names in the class name component.

Argument Description

gsi_item item The item with a list or array type that you
intend to return to G2 through a call to gsi_
return_values(), or a gsi_item contained
in the item that you return.

Return Value Description

gsi_int A value of 1 turns the flag on, causing the
values in item to be used to update the array
or list in G2.

A value of 0 to turns the flag off, causing the
values not to be appended.
503

gsi_user_data_of
Obtains the contents of the user data component of a gsi_registration or
gsi_item.

Synopsis

gsi_item_user_data_type gsi_user_data_of(registration)

gsi_item_user_data_type gsi_user_data_of(item)

Description

Use gsi_user_data_of() to obtain the contents of the user data component of a
gsi_registration or gsi_item.

Argument Description

gsi_registration
registration

The registration whose user data
component is returned by this function.

gsi_item item The item whose user data component
is returned by this function.

Return Value Description

gsi_item_user_
data_type

The value of the user data component in
registration or item.
504

gsi_usv_length_of()
gsi_usv_length_of()
A macro that calls the API function gsi_element_count_of(). Returns the length
of an unsigned short vector.

Synopsis

gsi_int gsi_element_count_of(item-regitem-or-attr)

Description

Use gsi_usv_length_of() to determine the length of the unsigned short vector
associated with an item, an item referenced by a registered item, or an embedded
item in an attribute that is a list or array. The unsigned short vector represents the
universal unique identifier of the item.

G2 5.0 enables the user to create classes that inherit from the mixin class unique-
identification. All instances of any subclass of unique-identification inherit an
attribute named uuid. The value of this attribute is sent to G2 Gateway as an
unsigned short vector.

The universal unique identifiers are similar to strings, except that they can contain
embedded zeros, and cannot undergo character set translation. For more
information about universal unique identifiers, see the G2 Reference Manual.

Unsigned short vectors are currently used only for universal unique identifiers
(UUIDs).

Argument Description

gsi_struct
item-regitem-or-attr

A gsi_item for which this function returns
the length of the unsigned short vector, or a
gsi_registered_item pointing to a gsi_
item for which the length is returned, or a
gsi_attr containing an embedded gsi_
item for which a length is returned.

Return Value Description

gsi_int The length of the unsigned short vector
associated with the specified item,
registered item, or embedded item in an
attribute.
505

gsi_usv_of
Returns the universal unique identifier of an item, registered item, or embedded
item in an attribute of G2 Gateway type GSI_UNSIGNED_SHORT_VECTOR_TAG.

Synopsis

gsi_char *gsi_usv_of(item)

gsi_char *gsi_usv_of(registered_item)

gsi_char *gsi_usv_of(attribute)

Description

Use gsi_usv_of() to retrieve the value component of a gsi_item, gsi_
registered_item, or gsi_attr whose G2 Gateway type is GSI_UNSIGNED_SHORT_
VECTOR_TAG as a C string. The G2 Gateway type of the argument must be
GSI_UNSIGNED_SHORT_VECTOR_TAG, or G2 Gateway signals an error.

Argument Description

gsi_item item An item whose universal unique
identifier is returned by this function.

gsi_registered_item
registered_item

A registered item whose universal
unique identifier is returned by this
function.

gsi_attr attribute An attribute containing an embedded
item whose universal unique identifier
is returned by this function.

Return Value Description

gsi_char * A C unshort short array representing the
universal unique identifier of item,
registered_item, or attribute.

The C array persists only as long as the data
structure with which it is associated. If your
user code needs to keep the C string for
longer than the life-span of the data
structure, it must copy the array into
memory that it has allocated itself.
506

gsi_version_information
gsi_version_information
Returns the G2 Gateway version as a structure.

Synopsis

gsi_int gsi_version_information(*version_id)

Description

To get the G2 Gateway version, create a gsi_version_id structure and pass a
pointer to that structure into gsi_version_information. G2 Gateway fills in the
values of the structure. The return value is always 0.

The gsi_version_id type has the following members:

typedef struct {
gsi_int major_version;
 gsi_int minor_version;
 gsi_int revision_number;
 gsi_int release_quality;
 char *build_id;
} gsi_version_id;

The release_quality structure element can return the following constants:

GSI_PROTOTYPE_RELEASE_QUALITY
GSI_ALPHA_RELEASE_QUALITY
GSI_BETA_RELEASE_QUALITY
GSI_FCS_RELEASE_QUALITY
507

gsi_wakeup
In a multi-threaded application, causes a gsi_pause() running in another thread
to exit.

Synopsis

gsi_int gsi_wakeup()

Description

Use gsi_wakeup() in a multi-threaded application to cause a gsi_pause() in
another thread to exit, allowing that thread to wake up.

The first invocation of gsi_wakeup() causes it to initialize itself, and has no effect
on gsi_pause(). For this reason, your user code should make a first initializing
call to gsi_wakeup() before the first call to gsi_pause(), and make a second call
to gsi_wakeup() after the call to gsi_pause().

gsi_wakeup() can be used only by console applications (non-event-based
modes), running on UNIX or Windows platforms.

Return Value Description

gsi_int One of the following:

• 1: Success. The gsi_pause() function
exited.

• 0: Initializing call. This has no effect on
gsi_pause().

• -1: Failure. This call to gsi_wakeup() did
not cause the gsi_pause() to exit.
508

gsi_watch_fd
gsi_watch_fd
Specifies an open file descriptor that G2 Gateway watches for network activity.
Activity on the specified file descriptor awakens G2 Gateway from an
interruptible sleep.

Synopsis

void gsi_watch_fd(file_descriptor)

Description

gsi_watch_fd() tells G2 Gateway to watch for network activity on a connection
to a system other than G2. The file_descriptor argument specifies the file
descriptor for that connection. G2 Gateway will not watch for write activity
unless gsi_watch_fd_for_writing() is subsequently called.

The G2 Gateway API function gsi_pause() will return if any file descriptor on
which gsi_watch_fd() has been called has:

• Data available for reading.

• An error condition.

Note This function must be called before calling the corresponding function for write
watching: gsi_watch_fd_for_writing().

gsi_watch_fd() is more useful in one-cycle mode than in continuous mode,
because one-cycle mode is the more efficient mode for responding to events on
connections to external systems. However, you can use gsi_watch_fd() in
continuous mode if you want your bridge process to wake up as soon as there is
network activity on a connection to an external system, rather than waiting for
activity on a connection to a G2 process.

Argument Description

long file_descriptor An open UNIX file descriptor, usually
referring to a network socket (or possibly a
pipe), on which input or output can occur
asynchronously. You can specify a file
descriptor on any platform that supports
Berkeley sockets and the TCP/IP protocol.

Note: On Windows, you can specify only
socket descriptors.
509

In one-cycle mode, you can use the API function gsi_pause() to pause the G2
Gateway bridge process until it detects network activity on one of the file
descriptors designated by gsi_watch_fd(). G2 Gateway immediately wakes up
whenever input arrives on that file descriptor.

Note On Windows platforms, this facility only supports socket input/output as
provided by the supported third-party socket facilities — for example, Multinet
and the WinSock API.

Related Functions

Function Description

gsi_pause() Causes the G2 Gateway bridge
process to sleep for 1 second, or until
a network event occurs on a network
connection to the G2 Gateway bridge
process.

gsi_unwatch_fd () Causes gsi_run_loop() to not wake
up when input or output takes place
on a file descriptor.

gsi_watch_fd_for_
writing()

Specifies a file descriptor that G2
Gateway watches for network write
activity.

gsi_unwatch_fd_for_
writing()

Stops G2 Gateway from watching for
write activity on a file descriptor.
510

gsi_watch_fd_for_writing
gsi_watch_fd_for_writing
Specifies a file descriptor that G2 Gateway watches for network write activity.

Synopsis

void gsi_watch_fd_for_writing (file_descriptor)

Description

gsi_watch_fd_for_writing() tells G2 Gateway to watch for network write
activity on a connection to a system other than G2. Before calling gsi_watch_fd_
for_writing(), you must first call gsi_watch_fd() with a given file descriptor,
otherwise, this function has no effect. The file_descriptor argument specifies the
file descriptor for that connection.

The G2 Gateway API function gsi_pause() will return if any file descriptor on
which gsi_watch_fd_for_writing() has been called has:

• Data available for reading.

• An error condition.

Note On Windows platforms, this facility only supports socket input/output as
provided by the supported third-party socket facilities — for example, Multinet
and the WinSock API.

Argument Description

long file_descriptor A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously. You can specify a file
descriptor on any platform that supports
Berkeley sockets and the TCP/IP protocol.
511

Related Functions

Function Description

gsi_pause() Causes the G2 Gateway bridge
process to sleep for 1 second, or until
a network event occurs on a network
connection to the G2 Gateway bridge
process.

gsi_watch_fd() Specifies a file descriptor that G2
Gateway watches for network read
or error activity.

gsi_unwatch_fd () Causes gsi_run_loop() to not wake
up when input or output takes place
on a file descriptor.

gsi_unwatch_fd_for_
writing()

Stops G2 Gateway from watching for
write activity on a file descriptor.
512

gsi_watchdog
gsi_watchdog
Calls a specified user-written function when a time-out interval expires.

Synopsis

void gsi_watchdog(watchdog_function, timeout_interval)

Description

After gsi_watchdog() is called, a watchdog timer, internal to G2 Gateway, begins
counting down to zero from a number of seconds, which must be greater than or
equal to zero.

Note The watchdog function runs asynchronously from the rest of the program;
therefore, timeout_interval values that are too small can cause unpredictable
results.

If gsi_watchdog() is called again before the time-out period expires, G2
Gateway’s own internal timer is set again to timeout_interval, which puts off the
call to the user-written watchdog function.

At any time, by calling gsi_watchdog() and passing it a timeout_interval of zero
(0), your G2 Gateway application can disable G2 Gateway’s internal watchdog
timer.

Argument Description

gsi_watchdog
_function_type
*watchdog_function

Pointer to a user-written function that
performs customized processing. G2
Gateway calls watchdog_function when
timeout_interval expires.

The name of a function, specified without
parentheses, will evaluate to a pointer to
that function. Setting this argument to 0 can
cause unpredictable results.

gsi_int timeout_
interval

An integer greater than or equal to zero, that
specifies the time-out interval in seconds. If
timeout_interval is set to zero (0), the G2
Gateway watchdog timer is disabled.
513

Note gsi_watchdog() is supported on all platforms in continuous mode; however, we
do not recommend using it in one cycle mode where delays in user code could
cause the timeout interval to expire.
514

10
Preprocessor Flags
and Runtime Options
Describes C preprocessor macros and runtime options that you can use to modify
the behavior of your G2 Gateway bridge.

Introduction 513

G2 Gateway C Preprocessor Flags 513

G2 Gateway Runtime Options 517

Introduction
This chapter describes the G2 Gateway C preprocessor flags and runtime options.
These flags and options determine particular aspects of the G2 Gateway bridge’s
runtime behavior.

G2 Gateway C Preprocessor Flags
G2 Gateway C preprocessor flags enable you to determine aspects of G2 Gateway
behavior at compile time. The header file gsi_main.h contains the #defines for
these macros.

Some of the C preprocessor flags have corresponding G2 Gateway options. The C
macro GSI_SET_OPTIONS_FROM_COMPILE() sets these options based on settings of
the C preprocessor flags. See the section, Defining C Preprocessor Flags for
instructions on defining the C Preprocessor flags at compile time and calling GSI_
SET_OPTIONS_FROM_COMPILE() from gsi_main.c.
515

The following table lists the G2 Gateway C preprocessor flags that affect
compilation. See the sections that follow for a more detailed description of some
of these macros.

G2 Gateway C Preprocessor Flags

C Preprocessor
Flag

G2 Gateway
Option Description

GSI_USE_DLL none You must define this option
when you compile and link a G2
Gateway delivered as a DLL.
This flag also causes G2
Gateway to initialize the
standard GSI 4.1 callback
functions and sets the
appropriate version control
variables.

GSI_USE_NEW
_SYMBOL_API

GSI_NEW
_SYMBOL_API

Enables API functions to access
symbols efficiently. Use of this
option is recommended if your
user code includes calls to
functions that access symbols.

GSI_USE_NON_C
_CALLBACKS

GSI_NON_C Enables the use of callback
functions written in a language
other than C.

GSI_USE_USER
_DATA_FOR
_CALLBACKS

GSI_USER_DATA
_FOR
_CALLBACKS

Enables the use of call identifiers
and procedure user data as
arguments of remote procedure
calls between G2 and G2
Gateway. For information about
arguments of these types, see
Call Identifiers and Procedure
User Data.

GSI_USE_WIDE
_STRING_API

GSI_WIDE
_STRING_API

When set, G2 Gateway defines
gsi_char as the C type
unsigned char to support 16-bit
Unicode (wide string)
characters. When not set, gsi_
char type is defined by default
to be a char (8 bits).
516

G2 Gateway C Preprocessor Flags
GSI_USE_NEW_SYMBOL_API

Enables API functions to access symbols efficiently. Use of this C preprocessor
flag is recommended if your user code includes calls to functions that access
symbols.

For a list of the API functions that access symbols, see Symbols.

Caution Symbols and text strings cannot be used interchangeably. For example, using
gsi_set_sym on a text attribute will fail and using gsi_set_str on a symbol
attribute will fail.

GSI_NON_C

Enables you to program your application in languages that pass arguments by
reference instead of by value, such as FORTRAN or Ada. Setting this option
causes all callback functions to accept pointers to their expected argument types.

Do not set this option for applications in C++.

__GENSYM_
NOALIAS__

none All the function names and
types defined in gsi_main.h
begin with the prefix gsi_. For
convenience, Gensym has
included in gsi_main.h
versions of these names without
the gsi_ prefix defined by C
preprocessor macros. If __
GENSYM_NOALIAS__ is defined
before gsi_main.h is read, then
these macros are not defined.

__GENSYMKR__ none To disable ANSI C prototypes
and use Kernighan and Ritchie
style function declarations,
define __GENSYMKR__ before
you define the header file gsi_
main.h.

G2 Gateway C Preprocessor Flags

C Preprocessor
Flag

G2 Gateway
Option Description
517

GSI_USE_WIDE_STRING_API

Enables the use of the wide string type to represent characters in the Unicode
character set. G2 uses the Unicode character set for all strings.

When GSI_USE_WIDE_STRING_API is in effect, G2 Gateway uses the C type gsi_
char to support 16-bit Unicode (wide string) characters and ignores any style that
you specify using gsi_set_string_conversion_style().

When the GSI_USE_WIDE_STRING_API option is not in effect, gsi_char type is
defined by default to be a char (8 bits). With this setting, you can:

• Use the GSI_STRING_CHECK compile time switch to specify how strings are
converted, or

• Call gsi_set_string_conversion_style() to specify a string conversion
style.

A string conversion style set through a call to gsi_set_string_conversion_
style() takes precedence over the string conversion style set by the GSI_
STRING_CHECK compiler option.

For information about wide strings, see Wide String Type.

Defining C Preprocessor Flags

The C preprocessor flags should be defined when you compile your G2 Gateway
application. You can define the C preprocessor flag in the compiler command line
or in gsi_main.c. For example, under UNIX, you can use the following compile
time switch to define GSI_USE_WIDE_STRING_API:

-DGSI_USE_WIDE_STRING_API

You can also define GSI_USE_WIDE_STRING_API by including the following
statement

#define GSI_USE_WIDE_STRING_API

before the #include "gsi_main.h" statement in any C file that includes gsi_
main.h.

Some of the C preprocessor flags have corresponding G2 Gateway options, as
documented in the previous sections. The C macro GSI_SET_OPTIONS_FROM_
COMPILE() sets these options based on settings of the C preprocessor flags. You
should therefore include a call to GSI_SET_OPTIONS_FROM_COMPILE() before the
call to gsi_start() in your gsi_main.c main() function.

Note The gsi_main.c file included with your version of G2 Gateway already includes a
call to GSI_SET_OPTIONS_FROM_COMPILE().
518

G2 Gateway Runtime Options
G2 Gateway Runtime Options
G2 Gateway runtime options are global settings that control operations and
communications within your G2 Gateway application.

The following table lists the G2 Gateway runtime options that affect G2. See the
sections that follow for a more detailed description of each.

GSI_NO_SIGNAL_HANDLERS

Prevents G2 Gateway from registering its own signal handlers with the operating
system. This can in some cases make debugging easier.

In addition, user code can register its own signal handlers with the operating
system, using the C library function signal.

G2 Gateway Runtime Options

Runtime Option Description

GSI_NO_SIGNAL_

HANDLERS

Prevents G2 Gateway from registering its own
signal handlers with the operating system. This
can in some cases make debugging easier.

GSI_ONE_CYCLE Allows control to be returned to your main
function once per cycle. Refer to Processing
Events through gsi_run_loop() for more
information.

GSI_PROTECT_
INNER_CALLS

After encountering an error, G2 Gateway
returns control to the caller rather than
returning control to gsi_run_loop().

GSI_STRING
_CHECK

Filters out all non-ASCII characters sent to (but
not from) G2.

GSI_SUPPRESS
_OUTPUT

Prevents all output generated by G2 Gateway
or the communications link from appearing as
standard output to your screen.

GSI_TRACE_RUN_
LOOP

Prints a message whenever gsi_start() or
gsi_run_loop() are entered or exited.

GSI_TRACE_RUN
_STATE

Prints a message whenever the flow of control
enters or leaves G2 Gateway. If the gsi_run_
state_change() callback is initialized, it prints
the message before this callback is called.
519

Note On systems running UNIX, G2 Gateway handles SIGALRM even when the G2
Gateway runtime option GSI_NO_SIGNAL_HANDLERS is set. This is necessary
for the operation of G2 Gateway on Unix systems.

The following table lists how G2 Gateway handles signals when GSI_NO_SIGNAL_
HANDLERS is not set.

It is necessary to set this option in the gsi_set_up() callback, rather than in your
main() function, because G2 Gateway normally registers its signal handlers after
gsi_set_up() returns.

Description

gsi_set_option(GSI_NO_SIGNAL_HANDLERS) directs G2 Gateway not to register
its own signal handlers.

gsi_reset_option(GSI_NO_SIGNAL_HANDLERS) directs G2 Gateway to register its
own signal handlers. This is the default.

GSI_ONE_CYCLE

Allows control to be returned to your main function once per cycle. Refer to
Processing Events through gsi_run_loop() for more information.

Description

gsi_set_option(GSI_ONE_CYCLE) directs the G2 Gateway bridge to run in one-
cycle mode.

gsi_reset_option(GSI_ONE_CYCLE) directs the G2 Gateway bridge to run in
continuous mode. This is the default.

Signal Handled

SIGQUIT, SIGILL,
SIGTRAP, SIGIOT,
SIGEMT, SIGFPE,
SIGBUS, SIGSEVG,
SIGSYS

As aborts

SIGPIPE Ignored

SIGLOST Causes a core dump

SIGCHLD Special handling (unspecified). This signal is
irrelevant to G2 Gateway since it does not
spawn child processes.
520

G2 Gateway Runtime Options
GSI_PROTECT_INNER_CALLS

After encountering an error, G2 Gateway returns control to the caller rather than
returning control to gsi_run_loop().

For example, suppose gsi_run_loop() calls gsi_receive_deregistrations(),
which then calls an API function. If G2 Gateway encounters an error in the API
function and GSI_PROTECT_INNER_CALLS is not set, it returns control to gsi_run_
loop(). This can cause undesirable results if gsi_receive_deregistrations() is
unable to complete some of its tasks, such as freeing the memory reserved for
registered variables. This same scenario may be applied to housekeeping
activities usually performed by gsi_shutdown_context().

You should be aware that this runtime option can make G2 Gateway API
functions slower, but it prevents a potential cause of G2 Gateway aborts and
protocol-out-of-synchronization problems. However, using the GSI_PROTECT_
INNER_CALLS runtime option can prevent hangs in applications that use the
gsi_run_state_change callback.

Description

gsi_set_option(GSI_PROTECT_INNER_CALLS) returns control to the caller rather
than returning control to gsi_run_loop() after encountering an error.

gsi_reset_option(GSI_PROTECT_INNER_CALLS) returns control to gsi_run_
loop() after encountering an error. This is the default.

GSI_STRING_CHECK

Filters out all non-ASCII characters sent to G2.

In addition, it converts escaped characters sent from G2, as shown in the
following table:

Description

gsi_set_option(GSI_STRING_CHECK) causes strings to be converted as shown in
the table above.

Name of
Character

Encoding Used
in G2 Gateway

Encoding Used
in G2

Newline ‘\n’ @L

Backslash \ ~\

Tilde ~ ~~

At sign @ ~@
521

gsi_reset_option(GSI_STRING_CHECK) causes strings not to be converted. This
is the default.

GSI_SUPPRESS_OUTPUT

Directs G2 Gateway not to send information and error messages to standard
output. Set this option if you do not want information and error messages
displayed on the screen.

Description

gsi_set_option(GSI_SUPPRESS_OUTPUT) directs G2 Gateway not to send
information and error messages to standard output.

gsi_reset_option(GSI_SUPPRESS_OUTPUT) directs G2 Gateway to send
information and error messages to standard output. This is the default.

GSI_TRACE_RUN_LOOP

Prints a message whenever gsi_start() or gsi_run_loop() are entered or
exited.

Description

gsi_set_option(GSI_TRACE_RUN_LOOP) causes messages to print whenever gsi_
start() or gsi_run_loop() are entered or exited.

gsi_reset_option(GSI_TRACE_RUN_LOOP) disables this option. This is the
default.

GSI_TRACE_RUN_STATE

Prints a message whenever the flow of control enters or leaves G2 Gateway. If the
gsi_run_state_change() callback is initialized, it prints the message before this
callback is called.

Description

gsi_set_option(GSI_TRACE_RUN_STATE)causes messages to be printed
whenever the flow of control enters or leaves G2 Gateway.

gsi_reset_option(GSI_TRACE_RUN_STATE) disables this option.

Setting and Resetting Runtime Options

The API functions gsi_set_option() and gsi_reset_option() set and reset G2
Gateway options, using the name of an option as their single argument. gsi_set_
option() turns on a G2 Gateway runtime option (sets the option), and gsi_
522

G2 Gateway Runtime Options
reset_option() turns it off (resets the option). G2 Gateway runtime options
default to the reset state.

You set or reset a G2 Gateway runtime option in the bridge’s user code. You
generally manipulate these options in your application’s callback function gsi_
set_up(), though your application can set them at any time and from any part of
the application after it calls the callback function gsi_start().

For example, the following code illustrates how to set and reset the GSI_ONE_
CYCLE option:

/* Run bridge in one-cycle mode */
gsi_set_option(GSI_ONE_CYCLE)

/* Run bridge in continuous mode. */
gsi_reset_option(GSI_ONE_CYCLE)
523

524

11
Building and Running
a G2 Gateway Bridge
Describes how to compile, link, and run a G2 Gateway bridge executable image,
and how to start and stop a G2 Gateway bridge process from within a G2
procedure.

Introduction 524

G2 Gateway Files 524

Compiling G2 Gateway on UNIX 525

Compiling G2 Gateway on Windows 527

Command-Line Options and Arguments 533
cert 535
help 536
log 537
rgn1lmt 538
rgn2lmt 540
secure 542
tcpipexact 545
tcpport 546

Starting a G2 Gateway Bridge from within G2 551

Placement of the GSI Interface 552

Representing the Bridge Process Information 552

Stopping G2 Gateway from within G2 552
525

Introduction
This chapter describes:

• How to compile, link and run your G2 Gateway bridge on UNIX® and
Windows™ platforms.

• The configuration requirements, if any, that you must satisfy before you begin
to run your G2 Gateway bridge.

Note This chapter does not describe how to install the hardware devices, network
boards, and software that you need to support your G2 Gateway bridge.

G2 Gateway Files
If you have installed G2 Gateway on your computer, you should have the
following files in your G2 Gateway directory:

• gsi_main.h, a header file that you must include in your user code.

• gsi_main.c and gsi_main.o (gsi_main.obj on Windows) for your main
routine, can be used as part of your user code.

• gsimmain.c and gsimmain.obj (on Windows only). Required for building
Windows applications; not required when building console applications.

• gsi_misc.h, a header file that you must include if you use the functions
contained in gsi_misc.c.

• gsi_misc.c and gsi_misc.o (gsi_misc.obj on Windows). Contain functions
for duplicating, displaying, and freeing memory associated with GSI items;
for viewing G2 Gateway structures; for copying, printing, and deleting
recursive structures; and for using gsi_history_type_of() and gsi_set_
history_type() to find the type of variables or parameters that have no value
or that have a value but are quantity types.

• libgsi, libtcp, libdec, libnet and librtl, the G2 Gateway libraries, some
combination of which you must link with your user code.

On Windows only, gsi.lib and gsi.dll are used instead of libgsi, libtcp,
and librtl for G2 Gateway delivered as a DLL.

• The sample make files, source files, object files, and executable files to support
the sample G2 knowledge bases gsi_exam.kb, itempass.kb, and mapchar.kb,
and the sample program named skeleton. For example, the files for the
skeleton program on UNIX are named skeleton.c, skeleton.o, and
skeleton.
526

Compiling G2 Gateway on UNIX
The skeleton.c file contains stub versions of the GSI 4.1 standard callback
functions that form the basis of your G2 Gateway user code. In order to link
properly, your G2 Gateway bridge code must include at least the stub version
of each callback function in skeleton.c. For information about how to write
callback functions, see Callback Functions.

The sample knowledge base mapchar.kb, together with the mapchar.c file,
demonstrates how a GSI application can read and write from a standard
international character set, such as Korean KSC5601, and display the
international characters in G2. mapchar.c contains code to translate between
the Gensym character set, which can encode various characters such as
Japanese kanji and Korean, and international character sets.

mapchar.c contains code translating between Gensym codes and:

• Korean: KSC5601-EUC

• Japanese: JISX0208-EUC

• Japanese: JISX0208-Shift-JIS

• Latin-1: ISO-8859-1

• Latin-Cyrillic: ISO-8859-5

For more information about the Gensym character set and descriptions of
translation algorithms used in this file, see the G2 Reference Manual.

Compiling G2 Gateway on UNIX
On computers running UNIX, the G2 Gateway bridge process is a separate
process executing on the same or a separate computer from the G2 process. The
two processes communicate by using TCP/IP. In each arrangement, G2 assumes
the role of a client process, and G2 Gateway acts as the server.

Configuration Requirements

There are no special configuration requirements for G2 Gateway on UNIX
computers. However, you must have access to a C compiler.

Compiling and Linking G2 Gateway Applications on
UNIX Platforms

To compile and link your G2 Gateway application on UNIX platforms, Gensym
recommends that you create a make file to handle the tasks. Gensym provides a
sample make file named makefile, which you can modify to suit your
application.
527

Note The information in this section is presented as a set of guidelines for preparing a
make file to compile and link your G2 Gateway application. Gensym assumes that
you know how to prepare and use make files.

As you prepare your make file, specify the location of the following files, if they
are not present or will not be stored in the current working directory when you
run the make file:

• The G2 Gateway header files gsi_main.h and gsi_misc.h.

• The G2 Gateway libraries (use libgsi.a, librtl.a, and one of libtcp.a or
libnet.a).

• Platform-specific libraries (such as -ldl on Solaris), and the system math
library (such as -lm) that you will need for your application.

• The source files.

• The object modules.

• The executable files.

Specify only the G2 Gateway protocol libraries that you need.

Make certain that you specify the optimize flag (-O) before you specify the
locations of the files.

When you are ready to run the make file, enter the following syntax at the
command line:

make -f makefile-name

where makefile-name is the name of your make file.

Running the Bridge

To run your bridge executable at the command line, use the following syntax:

executable [listener [-network {tcpip | all}]]

where:

executable must be the first argument. Specifies the name of the bridge
executable file.

listener must be the second argument (if used). Specifies the alphanumeric
identifier for a network listener.

-network {tcpip|all} must be the final argument. Specifies the network
protocol of the connection to listen on. The keyword all specifies that G2
Gateway looks for all types of network connections. This argument is also
known as the transport argument.
528

Compiling G2 Gateway on Windows
If you do not specify a listener on the command line, TCP/IP connections are
opened using the TCP/IP port number specified by:

• G2 Gateway callback function gsi_get_tcp_port()

• The default TCP/IP port number 22041 if gsi_get_tcp_port() is left as
a stub.

For information about gsi_get_tcp_port(), see gsi_get_tcp_port.

If you do not specify a network protocol on the command line, G2 Gateway
assumes that the listener is a TCP/IP port number if it contains only numbers and
no letters.

The following example shows how to override G2 Gateway’s algorithm for
selecting a port:

#my_bridge 11111 -network all

In the example, the name of the executable is my_bridge, and one listener is
opened at port 11111.

Compiling G2 Gateway on Windows
On computers running Windows, the G2 Gateway bridge process is a separate
process that can execute on the same computer as the G2 process or on a different
computer. The two processes communicate by using TCP/IP. In each
arrangement, G2 acts as the client process, and G2 Gateway acts as the server.

G2 Gateway runs on Windows platforms. However, it runs as both a Windows
application and a console application (that is, it can link with GUIxxx libraries as
well as CONxxx ones).

To compile a G2 Gateway application on a Windows platform, you must use the
Microsoft Visual C++ compiler, Version 6.0 or later, which includes Visual Studio
.NET 2003.

Caution If you compile your user code with a compiler other than the Microsoft Visual
C++ compiler Version 6.0 or later, or Intel® C++ Compiler 8.0 for Windows, you
may not be able to link your object files with G2 Gateway libraries.

For a DLL bridge, link in gsi.lib.

G2 Gateway provides a Microsoft Visual C++ project file that you can use to build
your bridge. The project file consists of a project workspace called bridges.dsw
and eight projects, one for each bridge. Similar to the makefile, each project uses
gsimmain.c, so they are all Windows applications. The projects also use
libgsi.lib, rather than gsi.dll.
529

Configuration Requirements

There are no special configuration requirements for G2 Gateway applications
running on Windows platforms.

Compiling and Linking G2 Gateway on Windows

On Windows platforms, G2 Gateway can be delivered either as a DLL or as a
non-DLL library. Windows is the only platform on which G2 Gateway can be
delivered as a DLL.

The following libraries are provided for G2 Gateway on Windows:
libgsi.lib, librtl.lib, libtcp.lib, libmmt.lib, libicrmt.lib, and gsi.lib.
Which of these libraries you link in depends on whether your G2 Gateway bridge
is a DLL or non-DLL:

• For a non-DLL bridge, link in: libgsi.lib, librtl.lib, libtcp.lib,
libmmt.lib, and libicrmt.lib.

• For a DLL bridge, link in: gsi.lib.

If you are creating a new G2 Gateway application, delivering G2 Gateway as a
DLL can result in a smaller executable and save disk space. If you are upgrading
your G2 Gateway application, delivering G2 Gateway as a non-DLL does not
produce a significantly smaller executable.

You can compile and link your G2 Gateway application on Windows in the
following ways, as a Windows application and as a console application.

As a Windows application:

• Using gsi_main.c and gsimmain.c without editing them.

gsimmain.c performs special initializations required only on Windows
platforms, and then calls the main() function that you define in the gsi_main.
c file. You do not need to make any changes to gsimmain.c.

• Editing the main() and WinMain() procedures before compiling and linking
gsi_main.c and gsimmain.c. Use this option if your application includes
Windows code, which you place in WinMain().

As a console application:

• Using gsi_main.c without editing it.

• Include the main() procedure from gsi_main.c within your own application
with whatever edits it requires.

Note GSI 4.x supported GSI only as a console application. G2 Gateway 5.0 Rev. 0
supported only Windows applications. Beginning with 5.0 Rev. 1, G2 Gateway
supports both windows and console applications.
530

Compiling G2 Gateway on Windows
You can compile and link a G2 Gateway as a DLL only when you define the C
preprocessor flag GSI_USE_DLL. See Using Standard Callback Functions for more
information.

Note Linking G2 Gateway causes files named skeleton.lib and skeleton.exp to be
created. These files are not needed, and you can delete them when you finish
linking.

Using gsi_main.c and gsimmain.c without Modification
(Windows Applications)

To link with the G2 Gateway DLL, using gsi_main.c and gsimmain.c:

1 Compile gsi_main.c, with the C preprocessor flag GSI_USE_DLL defined.

2 Compile gsimmain.c.

3 Link using $(guilflags), gsi_main.obj, gsimmain.obj, gsi.lib, and
$(guilibsmt).

Using gsi_main.c without Modification (Console Applications)

To link with the G2 Gateway DLL, using gsi_main.c:

1 Compile gsi_main.c, with the C preprocessor flag GSI_USE_DLL defined.

2 Link using $(guilflags), gsi_main.obj, gsi.lib, and $(guilibsmt).

Using a Customized WinMain() and main()

To link with the G2 Gateway DLL, using a user-written main() and WinMain():

1 Make sure that your G2 Gateway user code includes a WinMain() procedure.
If your code does not have a WinMain() procedure, create one using
gsimmain.c as an example.

2 Call gsi_initialize_for_win32() in your WinMain(), as in this example
from gsimmain.c:

gsi_initialize_for_win32(hInstance, lpCmdLine);

gsi_initialize_for_win32() performs Windows-specific initialization
and looks for a -log argument in the command line. If the -log argument
is present, it redirects console output to a file whose name is specified by the
argument following -log. To do this, it needs certain handles from the
operating system, so in the call to gsi_initialize_for_win32(), the first
argument must correspond to the first parameter of WinMain(), and the
second argument must correspond to the third parameter of WinMain(). If
you do not intend to use -log from your bridge, you could just pass NULL for
the arguments, but you still must call the function.
531

3 Call gsi_set_include_file_version() to specify the major, minor, and
revision file version of the include file, as follows:

gsi_set_include_file_version(GSI_INCLUDE_MAJ_VER_NUM,
GSI_INCLUDE_MIN_VER_NUM, GSI_INCLUDE_REV_VER_NUM);

Note For a G2 Gateway delivered as a DLL, you cannot use the variables gsi_
include_file_major_version to specify the major include file version, gsi_
include_file_minor_version to specify the minor include file version, or
gsi_include_file_revision_version to specify the revision.

4 Declare and install any callback functions that you may use. See Using
Standard Callback Functions for instructions.

5 Include a call to GSI_SET_OPTIONS_FROM_COMPILE() before the call to gsi_
start() in your main() function.

6 Make any desired calls to gsi_set_option().

7 Call gsi_start(argc, argv). You must supply argc and argv, possibly by
parsing lpCmdLine.

8 Link using $(guilflags) and $(guilibsmt).

Using a Customized main()

To link with the G2 Gateway DLL, using a user-written main():

1 Make sure that your G2 Gateway user code includes a main() procedure. If
your code does not have a main() procedure, create one using gsi_main.c as
an example.

2 Call gsi_initialize_for_win32() in your main(), as in this example
from gsi_main.c:

gsi_initialize_for_win32(NULL, NULL);

gsi_initialize_for_win32() performs Windows-specific initialization. In a
Windows application, it also allows you to specify a log file, but that functionality
is not supported for console applications.

Compiling and Linking G2 Gateway Applications on
Windows Platforms

The steps that you must follow to compile and link a G2 Gateway application on
an Windows platform are similar to the steps that you must follow on a Unix
platform.

To compile and link your G2 Gateway application on Windows platforms,
Gensym recommends that you create a make file to handle the tasks. Gensym
532

Compiling G2 Gateway on Windows
provides a sample make file named makefile, which you can modify to suit your
application.

As you prepare your make file, specify the location of the following files, if they
are not present or will not be stored in the current working directory when you
run the make file:

• The G2 Gateway header files gsi_main.h and gsi_misc.h

• The G2 Gateway libraries libgsi.lib, libtcp.lib, and librtl.lib

If G2 Gateway is delivered as a DLL (possible only on Windows), it is
delivered in the gsi.dll and gsi.lib (rather than libgsi.lib, libtcp.lib,
and librtl.lib).

• Platform-specific libraries that you will need for your application

• The source files

• The object modules

• The executable files

When you are ready to run the make file, enter the following syntax at the
command line:

nmake -f makefile-name

where makefile-name is the name of your make file.

Compiling and Linking a Windows Application

You compile and link your G2 Gateway Windows application on an Intel-based
Windows platform by using the following command:

cl source-file(s).c gsi_main.obj gsimmain.obj libgsi.lib libtcp.lib
librtl.lib libc.lib kernel32.lib advapi32.lib user32.lib
wsock32.lib gdi32.lib

-Feexecutable.exe
-Iinclude-path -link -subsystem:windows,4.0
-entry:WinMainCRTStartup

where:

source-file(s).c are the source file or files of your G2 Gateway bridge

executable.exe is the name that you give to the executable that you create when
you compile and link the bridge
533

include-path is the search path for an include file. Use the include-path syntax
as shown below:

c:\Program Files\gensym\g2-2015\gsi

cl skeleton.c gsi_main.obj gsimmain.obj libgsi.lib libtcp.lib
librtl.lib libc.lib kernel32.lib advapi32.lib user32.lib
wsock32.lib gdi32.lib -Feskeleton.exe
-Ic:\Program Files\gensym\g2-2015\gsi -link
-subsystem:windows,4.0 -entry:WinMainCRTStartup

Note When using a make file with Visual Studio .NET 2003, you must add
/nodefaultlib:libc to the -link line. When using a Project file with Visual
Studio .NET 2003, choose Project > Properties > Configuration Properties >
Linker > Input and change Ignore Specific Library = libc.

Compiling and Linking a Console Application

You can also compile and link your G2 Gateway console application on an Intel-
based Windows platform by using the following command:

cl source-file(s).c gsi_main.obj libgsi.lib libtcp.lib librtl.lib
libc.lib kernel32.lib advapi32.lib user32.lib wsock32.lib
gdi32.lib

-Feexecutable.exe
-Iinclude-path -link -subsystem:console
-entry:mainCRTStartup

where:

source-file(s).c are the source file or files of your G2 Gateway bridge

executable.exe is the name that you give to the executable that you create when
you compile and link the bridge

include-path is the search path for an include file. Use the include-path syntax
as shown below:

c:\Program Files\gensym\g2-2015\gsi

cl skeleton.c gsi_main.obj libgsi.lib libtcp.lib librtl.lib
libc.lib kernel32.lib advapi32.lib user32.lib wsock32.lib
gdi32.lib -Feskeleton.exe -Ic:\Program Files\gensym\
g2-2015\gsi -link -subsystem:console -entry:mainCRTStartup
534

Command-Line Options and Arguments
Note When using a make file with Visual Studio .NET 2003, you must add
/nodefaultlib:libc to the -link line. When using a Project file with Visual
Studio .NET 2003, choose Project > Properties > Configuration Properties >
Linker > Input and change Ignore Specific Library = libc.

Running the Bridge

To run your bridge executable at the command line, use the following syntax:

executable [listener [-network tcpip]]

where:

executable must be the first argument specified, and is the name of the bridge
executable file.

listener must be the second argument specified (if used), and is the
alphanumeric identifier for a network listener.

-network tcpip must be the final argument specified.

An example is:

#my_bridge 11111 -network tcp/ip

In this example, the name of the executable is my_bridge, and 11111 is the TCP/IP
listener that is opened.

If you omit listener from the command line, a TCP/IP connection is opened using
the TCP/IP port number specified by:

• The G2 Gateway callback function gsi_get_tcp_port(), or

• The default for TCP/IP (22041), if gsi_get_tcp_port() is left as a stub.

For information about gsi_get_tcp_port(), see gsi_get_tcp_port.

Command-Line Options and Arguments
In the command line that starts a G2 Gateway bridge process, you can optionally
include one or more of the following command line options:

• General command line options: help, rgn1lmt, rgn2lmt, tcpipexact, and
tcpport.

• Command line switches for initiating connections to G2: nolistener,
noconnect, connect.

• Command line arguments for initiating connections to G2:
connect-interface-name interface_name, connect-class-name class_name,
535

connect-network network, connect-host host_name, connect-port port_
number, connect-initialization-string string.

• Command line options for secure communication: secure and cert.

You can also set command-line options in your user code, using the GSI_SET_
OPTIONS_FROM_COMPILE() C macro. GSI_SET_OPTIONS_FROM_COMPILE() is called
from gsi_main.c to generate the code that sets runtime G2 Gateway options. It
calls gsi_set_option() to set these options, based on settings of the G2 Gateway
C preprocessor macros. For information about this function, see Defining C
Preprocessor Flags.

The following sections describe these options in detail.
536

cert
cert
Specifies the SSL server certificate to use.

Platforms

All platforms

Syntax

Windows:

-cert name

name: The Common Name (CN) of the SSPI certificate in the local machine’s my
certificate store.

UNIX:

-cert file

file: The name of the OpenSSL server certificate to use, where file is a file
containing a private key and a certificate in PEM format, which consists of the
DER format base64 encoded with additional header and footer lines.

Equivalent Environment Variable

G2_CERT

Description

You specify the certificate when encrypting communication, using the -secure
command-line option.
537

help
Directs a new G2 Gateway bridge process to output the text of the syntax of all G2
Gateway bridge command line options to the window from which the process
was launched.

Platforms

 All platforms

Syntax

-help

Equivalent Environment Variable

None.

Description

This option directs the new G2 Gateway bridge process to output text that
describes the syntax of each support command line option, then to exit.

The G2 Gateway bridge writes the help text to the launch window.

Example

This command directs the G2 Gateway bridge process to output the text of the
syntax of all G2 command line options, then exit. Unlike all other options, which
must come after the listener (port name or number) on the command line, help
must be the first or last option after the bridge:

g2dbbridge tw -help
538

log
log
Redirects command window output to a specified file.

Platforms

All platforms

Syntax

-log file

Equivalent Environment Variable

None.

Description

This option redirects the command window output to the file whose pathname is
specified by the file argument following -log.

On Windows, this option is only supported if it is passed to gsi_initialize_
for_win32 as part of the lpCommandLine.
539

rgn1lmt
Specifies the initial supply of available memory for G2 Gateway data other than
symbols and graphics images.

Platforms

 All platforms

Syntax

-rgn1lmt number-of-bytes

number-of-bytes: The integer 800,000 or higher, up to the maximum per-process
allocation determined by your platform’s operating system settings. The only
exception to this minimum is the Compaq Tru64 Unix operating system, which
requires 2,900,000 bytes.

Equivalent Environment Variable

G2RGN1LMT=<number-of-bytes>

where number-of-bytes has the same requirements as -rgn1lmt.

If set, this environment variable determines the initial supply of available
memory in the Region 1 memory pool of G2, TeleWindows, and G2 Gateway.
You can override this setting for G2 Gateway by issuing the env command before
the command to invoke G2 Gateway or G2 (whichever is more convenient). For
example:

env G2RGN1LMT=<number-of-bytes> bridge-invocation-command

This changes the setting for all G2, TeleWindows, and G2 Gateway processes
running on your system.

Description

G2 Gateway maintains its supply of available memory in three regions. This
option controls the initial supply of available memory in its Region 1 memory
pool. G2 Gateway uses its Region 1 memory pool to store all data other than
symbols and graphics images.

The new G2 Gateway process allocates Region 1 memory when it is launched. G2
Gateway’s standard output message at start-up reflects this fact.

For a G2 Gateway process the default amount of Region 1 memory is 800,000
bytes. The default for the Compaq Tru64 Unix operating system is 3,500,000 bytes.
540

rgn1lmt
Special Considerations

If your -rgn1lmt option specifies less than the minimum number of bytes, G2
Gateway displays a warning standard output message and supplies the
minimum amount. Do not include commas when specifying number-of-bytes.

Example

This command starts a new G2 Gateway process and directs it to allocate
8,500,000 bytes as its initial supply of Region 1 memory:

g2dbbridge -tcpport 22041 -rgn1lmt 8500000

G2 Gateway attempts to allocate more Region 1 memory as is required by the
connected G2’s processing.

Additional Information

For information about G2 memory management, see the chapter on memory
management in the G2 Reference Manual.
541

rgn2lmt
Specifies the initial supply of available memory for G2 Gateway symbol data.

Platforms

All platforms

Syntax

-rgn2lmt number-of-bytes

number-of-bytes: The integer 300,000 or higher, up to the maximum per-process
allocation determined by your platform’s operating system settings.

Equivalent Environment Variable

G2RGN2LMT=<number-of-bytes>

where number-of-bytes has the same requirements as -rgn2lmt.

If set, this environment variable determines the initial supply of available
memory in the Region 2 memory pool of G2, TeleWindows, and G2 Gateway.
You can override this setting for G2 Gateway by issuing the env command before
the command to invoke G2 Gateway or G2 (whichever is more convenient). For
example:

env G2RGN2LMT=<number-of-bytes> bridge-invocation-command

This changes the setting for all G2, TeleWindows, and G2 Gateway processes
running on your system.

Description

G2 Gateway maintains its supply of available memory in three regions. This
option controls the initial supply of available memory in its Region 2 memory
pool. G2 Gateway uses its Region 2 memory pool to store symbols and related
internal data.

The new G2 Gateway process allocates Region 2 memory when it is launched. G2
Gateway’s standard output message at start-up reflects this fact.

The default amount of Region 2 memory is 500,000 bytes.
542

rgn2lmt
Special Considerations

If your -rgn2lmt option specifies less than the minimum number of bytes, G2
Gateway displays a warning standard output message and supplies the
minimum amount. Do not include commas when specifying number-of-bytes.

Example

This command starts a new G2 Gateway process and directs it to allocate
4,500,000 bytes as its initial supply of Region 2 memory:

g2dbbridge -tcpport 22041 -rgn1lmt 4500000

G2 Gateway attempts to allocate more Region 2 memory as is required by the
connected G2’s processing.

Additional Information

For information about G2 memory management, see the chapter on memory
management in the G2 Reference Manual.
543

secure

Platforms

All platforms

Syntax

-secure

Use SSL on all TCP/ICP connections.

Equivalent Environment Variable

None

Description

This command-line option causes G2 Gateway to use SSL on all TCP/ICP
connections. G2 Gateway uses SSPI on Windows and OpenSSL on UNIX.

To access SSL, you need to include the following libraries, depending on your
platform:

If you do not want to use SSL, you need to include the following libraries instead:

Failure to include one of these libraries or attempts to include both results in
link errors.

In addition, you must also provide the following platform-specific libraries:

• Windows: crypt32.lib, available with your Microsoft compiler.

• Solaris, Linux, HP-UX, IBM AIX: libssl.a and libcrypto.a, which are
supplied with G2 Gateway. Note that you must supply these two libraries in
exactly this order; failure to do so will result in link errors.

• HP-UX: You must also include libgcc.a, also provided with G2 Gateway.

UNIX Windows

libgsec.a libgsec.lib

UNIX Windows

libnogsec.a libnogsec.lib
544

secure
On the Windows platforms, the default gsi.dll is linked without SSL support; a
separate library gsi_ssl.dll is provided to include SSL support as a DLL.

Currently, G2 Gateway does not support SSL on the alphaosf platform, but
libnogsec.a must be linked in anyway. The example is not present.

The example makefile for G2 Gateway compiles most of the examples without
SSL support. The skeleton_ssl example includes SSL support.

Attempting to give the -secure option to a G2 Gateway bridge that has not been
linked with SSL support results in a warning message; however, the bridge will
start up normally, but without SSL support.

Upon startup, a bridge gives the port number with /SSL appended when
-secure is requested and available. For example:

GSI Version 8.3 Rev. 0 IBM POWERstation (JA28)
2007-01-30 15:00:05 Waiting to accept a connection on:
2007-01-30 15:00:05 TCP_IP:cs-aix4:22000/SSL

To establish a secure connection and test the secure status, use these procedures:

• gsi_establish_secure_listener.

• gsi_initiate_secure_connection.

• gsi_initiate_secure_connection_with_user_data.

• gsi_context_is_secure.

• gsi_current_context_is_secure.

Note that if G2 is not listening for secure connections, this connection fails and
G2 Gateway becomes inoperative. We recommend that you determine whether
G2 is listening securely before executing either of these procedures.

To establish a GSI connection with security, use the secure yes option in the
gsi-connection-configuration attribute, after the host and port number.
For example:

tcp-ip host "localhost" port-number 22044 secure yes

For G2-G2 connections, use the icp-connection-specification attribute.

Specifying the secure yes option attempts to make a secure connection to the port
number on the specified host. Note that if the host is not listening for secure
connections on the specified port, this connection fails and G2 becomes
inoperative. If no host is listening at the port, then the connection simply fails.

In addition, the gsi-interface class defines the gsi-interface-is-secure attribute, and
the g2-to-g2-interface class defines the interface-is-secure attribute, whose value
545

is yes or no, which determines whether or not security was established on the
connection from the remote system.

Note that you cannot make a secure G2-to-G2 connection to the same G2. This
condition is detected, and an insecure connection is created instead, with a
warning on the logbook.

For OpenSSL copyright information, see the readme-g2.html file.
546

tcpipexact
tcpipexact
Prohibits the new G2 Gateway bridge process from attempting to open a network
connection to any TCP/IP port other than that specified by the accompanying
-tcpport command line option.

Platforms

All platforms

Syntax

-tcpipexact

Equivalent Environment Variable

None.

Description

This option directs the new G2 Gateway bridge process to exit before completing
its startup, if it cannot open a network connection to the TCP/IP port specified by
the -tcpport command line option.

This option requires that you also include the -tcpport option in the command
line that launches this G2 Gateway bridge process. The G2 Gateway bridge
ignores this option unless the command line also includes the -tcpport option.

Example

This command starts a G2 Gateway bridge process that attempts to open a
network connection to the TCP/IP port 22041:

g2dbbridge -tcpport 22041 -tcpipexact

If this attempt is not successful, the bridge process does not attempt to open a
network connection to another TCP/IP port, and automatically exits.
547

tcpport
Directs the new G2 Gateway bridge process to open a network connection to the
specified TCP/IP port, with additional attempts to connect to other TCP/IP ports
as necessary.

Platforms

All platforms

Syntax

-tcpport tcpip-port-number

tcpip-port-number: A positive integer; however, TCP/IP port numbers under 1000
are often reserved by your platform and should be avoided for use with a G2
Gateway bridge process.

Equivalent Environment Variable

None.

Description

This option directs the new G2 Gateway bridge process to open a network
connection to a TCP/IP port. Specify the port’s name as an argument, following
the option.

If the new G2 Gateway bridge process cannot open a connection to the specified
port, this option also directs the bridge process to attempt to open a connection to
the default TCP/IP port 22041. If this is not successful, the G2 Gateway bridge
process increments the port’s last digit (to 22042), attempts to connect to that port,
and so on. The bridge process stops after trying to connect to TCP/IP port 22140
— that is, after incrementing the default TCP/IP port number 100 times.

Special Considerations

Including the -tcpipexact option in the command line modifies how the new G2
Gateway bridge process attempts to open a TCP/IP network connection. See the
section tcpipexact.

The first argument after the bridge must be the port number. The only exception
for this is if you are using the -help option, in which case it must come first.
548

tcpport
Example

This command starts a G2 Gateway bridge process that attempts to open a
network connection to TCP/IP port 22041:

g2dbbridge -tcpport 22041

Command Line Switches for Initiating Connections
to G2

The following table describes G2 Gateway command line switches that support
the ability of G2 Gateway to initiate connections to G2.

G2 Gateway Command-Line Switches

Switch Description

–nolistener Inhibits establishment of listener(s).

Suppresses the G2 Gateway default launch
behavior of automatically creating TCP/IP
listeners based on the specification on the
remainder of command line. You can use the
API function gsi_establish_listeners() to
create the specified listeners later -- for example,
after you log in or confirm that your system is
ready. This has the additional benefit of
preventing a gsi-interface from connecting
on the G2 side until your application has
decided it is ready.

This switch does not affect the ability of G2
Gateway to establish a connection to a G2.
549

Note If you specify neither -connect or -noconnect, G2 Gateway nevertheless
establishes a connection to G2 if you specify at least one of the G2 Gateway
connection command line arguments (see below).

If you specify neither the -connect switch nor the G2 Gateway connection
command line arguments, the bridge does not establish a connection.

–noconnect Use this switch to specify that no initial
connection to G2 is established. Any arguments
specified in the G2 Gateway command line
provide default values for the call to gsi_
initiate_connection().

-connect When you use this switch, an initial connection
to G2 is established, before gsi_set_up() is
called.

The connection is established using values
specified in command line arguments. Default
values are used for any unspecified arguments.

The connection is established without a call to
the API function gsi_initiate_connection().
However, your G2 Gateway bridge process can
subsequently call gsi_initiate_connection()
to establish additional connections to G2
processes.

G2 Gateway Command-Line Switches

Switch Description
550

tcpport
Command-Line Arguments for Initiating
Connections to G2

The following table describes the G2 Gateway command line arguments that
support the ability of G2 Gateway to establish a connection to a G2 process.

G2 Gateway Command-Line Arguments

Argument Description

-connect-interface-name
interface_name

The name of a GSI interface that
G2 Gateway creates in the G2
knowledge base to which G2
Gateway establishes a connection.
G2 uses this GSI interface to
communicate with the G2
Gateway that establishes the
connection.

Note: Specify interface_name using
all upper case, for example:
-connect-interface-name
MY-INTERFACE

-connect-class-name class_name The name of an existing class
definition in the G2 knowledge
base. The GSI interface interface_
name is created as an instance of
this class.

If you omit the -connect-class-
name argument, G2 Gateway
creates the GSI interface as an
instance of the G2 class
gsi-interface.

Note: Specify class_name using all
upper case, for example:
-connect-class-name MY-CLASS
551

-connect-network network The network protocol used on the
connection to the G2.

Specify TCP-IP. You need to
specify only the first letter (T), in
upper or lower case.

The value that you specify for
network is the default for the API
function gsi_initiate_
connection().

-connect-host host_name Specify the host name of the
computer where the G2 is listening
for a connection to this G2
Gateway.

The value that you specify for
host_name is the default for the
API function gsi_initiate_
connection().

-connect-port port_number Specify the number of the port on
which the G2 process is listening
for a connection to this G2
Gateway.

The value that you specify for
port_number is the default for the
API function gsi_initiate_
connection().

The first argument after the bridge
must be the port number. The only
exception for this is if you are
using the -help option, in which
case it must come first.

-connect-initialization-
string string

A string that is written to the
remote-process-initialization-string
attribute of the GSI interface
created by this G2 Gateway. When
the connection is established, G2
Gateway passes this string to the
callback function gsi_
initialize_context().

G2 Gateway Command-Line Arguments

Argument Description

Starting a G2 Gateway Bridge from within G2
Starting a G2 Gateway Bridge from within G2
Typically, you start the G2 Gateway bridge process before you start the G2
process. When the G2 is launched successfully, the GSI interface used by G2 to
connect to the bridge process then becomes active, which causes G2 to attempt to
establish a connection to the bridge. Thereafter, you deactivate, then activate, the
GSI interface each time you want G2 to attempt to make a connection to the
bridge.

However, you can also start and stop your G2 Gateway bridge process from a
procedure that you have written in G2. Using the approach described in this
appendix, you start the G2 process first, start the bridge process next, and then
activate the GSI interface. You can activate the GSI interface separately from the
G2 launch if you place it on an activatable subworkspace.

To start the bridge process from G2, you perform the following tasks:

1 Choose an object on whose subworkspace you will place the GSI interface
used by G2 to connect to the bridge

2 Create G2 parameters to represent the bridge process pathname, TCP/IP port
number, and unique identification (so that G2 can identify the process)

3 Create a procedure that starts the bridge process

4 Create a procedure that stops the bridge process

5 Create one or two procedures that:

a Activate the subworkspace on which you have placed the GSI interface

b Deactivate the subworkspace containing the GSI interface

These tasks are described in their own selections procedures described are
provided as guidelines for your own procedures, which may vary from those
presented here. See the G2 Reference Manual for instructions about creating and
using G2 procedures.

Note The G2 Gateway process that you spawn using the system procedure g2-spawn-
process-to-run-command-line() must be on the local machine.

You can start a G2 Gateway process on a remote machine only if that machine has
a Telewindows session into the G2 from which you are starting GSI. In this case,
you can start the G2 Gateway process on the remote machine using the system
procedure g2-spawn-remote-process().
553

Placement of the GSI Interface
Place the GSI interface that you use to connect to the bridge on the subworkspace
of another object in G2. If the class has this capability, its subworkspaces are
deactivated automatically when G2 starts, but can be activated with the activate
action. In addition, the subworkspaces that you have activated can be deactivated
with the deactivate action.

The GSI interface must be on a deactivated subworkspace when G2 starts, so that
G2 does not automatically look for the connection to the bridge as soon as G2 is
launched (based on the information provided by the GSI interface).

Representing the Bridge Process Information
Create G2 parameters to represent the following information:

• Create a text parameter to represent the pathname of the bridge executable
file. For its initial-value attribute, specify the pathname of the executable file.
An example is:

"/home/gsi/gsi-app"

• For TCP/IP, create an integer parameter to represent the bridge process port
number. For its Initial-value attribute, specify the port number. An example is:

22040

• Create a floating point variable to represent a unique bridge process
identification. Its value will be returned to it by a procedure you write. A
floating point number is used because process IDs frequently use all 32 bits of
a long word, whereas G2 integers can support only 30-bit integers.

See the G2 Reference Manual for information about creating G2 parameters.

Stopping G2 Gateway from within G2
To stop the bridge process from within G2, you must write two procedures that
stop the bridge process and deactivate the subworkspace containing the GSI
interface.

You can also write a local procedure in G2 Gateway which, when called as a
remote procedure by G2, cleans up and exits.
554

Part III
Appendixes
Appendix A: Functions by Argument and Return Type

Lists the API and callback functions provided by G2 Gateway, grouped by the data types of
their arguments and their return values.

Appendix B: Constants

Lists symbolic constants defined in G2 Gateway header files.

Appendix C: G2 Gateway Error Messages

Lists and describes the standard error messages returned by G2 Gateway.

Appendix D: G2 Gateway Data Types

Describes the data types defined for use in G2 Gateway user code.

Appendix E: Limits and Ranges

Describes limits and ranges applicable in G2 Gateway.

Appendix F: How G2 and G2 Gateway Exchange Data

Provides a brief summary of techniques for exchanging data between a G2 Gateway bridge
and a G2 KB.

Appendix G: Upgrading G2 Gateway Applications

Describes how to upgrade existing GSI applications to the current version of G2 Gateway.
555

556

A

Functions by Argument
and Return Type
Lists the API and callback functions provided by G2 Gateway, grouped by the data
types of their arguments and their return values.

Introduction 555

Functions by Argument Type 555

Functions by Type of Return Value 571

Functions with No Arguments 578

Introduction
This chapter lists the APIs and callback functions grouped by the data types of
their arguments and their return values.

Functions by Argument Type
The following table lists API and callback functions grouped by the types of their
arguments. In each group, the arguments of the given type appears in bold
characters.

Note The curly braces ({}) around a function name indicate that this function is a
callback function defined by the user. The brackets ([]) around an argument
indicate that this argument is supplied if the C preprocessor macro GSI_USE_
USER_DATA_FOR_CALLBACKS is defined and is not supplied otherwise.
557

Functions Grouped by Argument Type

HANDLE

gsi_initialize_for_win32(hInstance, lpCmdLine)

char *

gsi_initialize_for_win32(hInstance, lpCmdLine)
gsi_convert_string_to_unicode(string, style)
gsi_initialize_callbacks(name1, ...)

char **

gsi_start(argc, argv)

double *

gsi_set_flt_array(item_or_attr, doubles_array, gsi_int count)
gsi_set_flt_list(item_or_attr, doubles_array, count)
gsi_set_history(item_or_attr, values, timestamps, count, type,

maximum_count, maximum_age, min_interval)

double **

gsi_extract_history
(item, values_address, timestamps_address, type_address)

double

gsi_decode_timestamp
(timestamp, year_address, month_address, day_address,
hour_address, minute_address, second_address)

gsi_set_flt(item_or_regitem_or_attr, float_value)
gsi_set_timestamp(item_or_attr, timestamp)

gsi_attr *

gsi_reclaim_attrs(attributes)
gsi_reclaim_attrs_with_items(attributes)
gsi_return_attrs(registered_item, attributes, count, context)
gsi_return_timed_attrs(registered_item, attributes, count,

context)
gsi_set_attrs(item_or_attr, new_attributes, count)
558

Functions by Argument Type
gsi_attr

gsi_attr_is_transient(attribute)
gsi_attr_name_is_qualified(attribute)
gsi_attr_name_of(attribute)
gsi_class_qualifier_of(attribute)
gsi_item_of_attr(attribute)
gsi_set_attr_by_name(item_or_attr, search_name, source_attr)
gsi_set_attr_is_transient(attribute, new_value)
gsi_set_attr_name(attribute, attribute_name)
gsi_set_class_qualifier(attribute, attribute_name)
gsi_set_item_of_attr(attribute, source_item)
gsi_set_unqualified_attr_name(attribute, attribute_name)
gsi_unqualified_attr_name_of(attribute)

gsi_call_identifier_type

gsi_rpc_call
(function_handle, arguments, [call_identifier], context)

gsi_rpc_call_with_count
(function_handle, arguments, count,[call_identifier], context)

gsi_rpc_return_error_values
(arguments, count, call_identifier, context)

gsi_rpc_return_values
(arguments, count, call_identifier, context)

{gsi_rpc_local_fn}
([procedure_user_data], rpc_arguments, count, call_identifier)

{gsi_rpc_receiver_fn}
([procedure_user_data], rpc_arguments, count, [call_identifier])

Functions Grouped by Argument Type
559

gsi_char *

gsi_establish_listener(network, port, exact)
gsi_initiate_connection

(interface_name, interface_class_name,
keep_connection_on_g2_reset, network, host, port,
remote_process_initialization_string)

gsi_initiate_connection_with_user_data
(interface_name, interface_class_name,
keep_connection_on_g2_reset, network, host, port,
remote_process_initialization_string, context_user_data)

gsi_make_symbol(name)
gsi_return_message(message, context)
gsi_rpc_declare_local(local_function, [procedure_user_data],

g2_function_name)
gsi_rpc_declare_remote

(function_handle, g2_function_name, receiver_function,
[procedure_user_data], argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

gsi_set_rpc_remote_return_value_kind
(function_handle, return_value_index, kind)

gsi_set_str(item_or_regitem_or_attr, text_value)
gsi_signal_error

(originating_function_name, user_error, message)
{gsi_error_handler}

(error_context, error_code, error_message)
{gsi_initialize_context}

(remote_process_initialization_string, length)
{gsi_missing_procedure_handler}(name)
{gsi_receive_message}(message, length)

gsi_char **

gsi_set_str_array
(item_or_attr, text_values_array, gsi_int count)

gsi_set_str_list
(item_or_attr, text_values_array, gsi_int count)

Functions Grouped by Argument Type
560

Functions by Argument Type
gsi_context_user_data_type

gsi_initiate_connection_with_user_data
(interface_name, interface_class_name,
keep_connection_on_g2_reset, network, host, port,
remote_process_initialization_string, context_user_data)

gsi_set_context_user_data(context, context_user_data)

gsi_function_handle_type *

gsi_rpc_declare_remote
(function_handle, g2_function_name, receiver_function,
[procedure_user_data], argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

gsi_function_handle_type

gsi_rpc_call
(function_handle, arguments, [call_identifier], context)

gsi_rpc_call_with_count
(function_handle, arguments, count, [call_identifier],
context)

gsi_rpc_start(function_handle, arguments, context)
gsi_rpc_start_with_count

(function_handle, arguments, count, context)
gsi_set_rpc_remote_return_value_kind

(function_handle, return_value_index, kind)
gsi_set_rpc_remote_return_exclude_user_attrs

(function_handle, attributes)
gsi_set_rpc_remote_return_include_system_attrs

(function_handle, attributes)
gsi_set_rpc_remote_return_include_all_system_attrs_except

(function_handle, attributes)

Functions Grouped by Argument Type
561

gsi_int *

gsi_decode_timestamp
(timestamp, year_address, month_address, day_address,
hour_address, minute_address, second_address)

gsi_extract_history
(item, values_address, timestamps_address, type_address)

gsi_extract_history_spec
(item, maximum_count_address, maximum_age_address,
minimum_interval_address)

gsi_initialize_error_variable(error_variable_address)
gsi_set_int_array(item_or_attr, integers_array, count)
gsi_set_int_list(item_or_attr, integers_array, count)
gsi_set_log_array
(item_or_attr, truth_values_array, gsi_int count)
gsi_set_log_list

(item_or_attr, truth_values_array, gsi_int count)

Functions Grouped by Argument Type
562

Functions by Argument Type
gsi_int

gsi_convert_string_to_unicode(string, style)
gsi_convert_unicode_to_string(string, style)
gsi_convert_unicode_to_wide_string(string, style)
gsi_convert_wide_string_to_unicode(string, style)
gsi_context_received_data(context)
gsi_context_socket(context)
gsi_context_user_data(context)
gsi_encode_timestamp(year, month, day, hour, minute, second)
gsi_error_message(error_code)
gsi_establish_listener(network, port, exact)
gsi_flush(context)
gsi_identifying_attr_of(registration,

identifying_attribute_index)
gsi_initiate_connection

(interface_name, interface_class_name,
keep_connection_on_g2_reset, network, host, port,
remote_process_initialization_string)

gsi_initiate_connection_with_user_data
(interface_name, interface_class_name,
keep_connection_on_g2_reset, network, host, port,
remote_process_initialization_string, context_user_data)

gsi_item_of_identifying_attr_of(registration,
identifying_attribute_index)

gsi_kill_context(context)
gsi_make_array(count)
gsi_make_attrs(count)
gsi_make_attrs_with_items(count)
gsi_make_items(count)
gsi_make_registered_items(count)
gsi_option_is_set(option_index)
gsi_registration_of(item_handle, context)
gsi_registration_of_handle(item_handle, context)
gsi_reset_option(option_index)
gsi_return_attrs(registered_item, attributes, count, context)
gsi_return_attrs(registered_item, attributes, count, context)
gsi_return_message(message, context)
gsi_return_timed_attrs

(registered_item, attributes, count, context)
gsi_return_timed_values(registered_items, count, context)

Functions Grouped by Argument Type
563

gsi_int (continued)

gsi_return_values(registered_items, count, context)
gsi_rpc_call

(function_handle, arguments, [call_identifier], context)
gsi_rpc_call_with_count

(function_handle, arguments, count, [call_identifier],
context)

gsi_rpc_declare_remote
(function_handle, g2_function_name, receiver_function,
[procedure_user_data], argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

gsi_rpc_return_error_values
(arguments, count, call_identifier, context)

gsi_rpc_return_values
(arguments, count, call_identifier, context)

gsi_rpc_start(function_handle, arguments, context)
gsi_rpc_start_with_count

(function_handle, arguments, count, context)
gsi_set_attr_count(item_or_regitem_or_attr_or_reg, count)
gsi_set_attr_is_transient(attribute, new_value)
gsi_set_attrs(item_or_attr, new_attributes, count)
gsi_set_context_limit(limit)
gsi_set_context_user_data(context, context_user_data)
gsi_set_element_count(item, count)
gsi_set_elements

(item_or_attr, elements_array, count, type_tag)
gsi_set_flt_list(item_or_attr, doubles_array, count)
gsi_set_handle(item_or_regitem, handle_value)
gsi_set_history

(item_or_attr, values, timestamps, count, type,
maximum_count, maximum_age, min_interval)

gsi_set_include_file_version(major, minor)
gsi_set_int(item_or_regitem_or_attr, integer_value)
gsi_set_int_array(item_or_attr, integers_array, count)
gsi_set_int_list(item_or_attr, integers_array, count)
gsi_set_interval(registered_item, interval)
gsi_set_item_append_flag(item, append_flag)
gsi_set_item_reference_flag(item, reference_flag)

Functions Grouped by Argument Type
564

Functions by Argument Type
gsi_int (continued)

gsi_set_log(item_or_regitem_or_attr, truth_value)
gsi_set_option(option_index)
gsi_set_pause_timeout(max_idle_time)
gsi_set_rpc_remote_return_value_kind

(function_handle, return_value_index, kind)
gsi_set_run_loop_timeout(max_run_time)
gsi_set_status(registered_item, status)
gsi_set_string_conversion_style(style)
gsi_set_type(item_or_regitem_or_attr, gsi_type)
gsi_set_update_items_in_lists_and_arrays_flag

(item, immediate_flag)
gsi_set_usv(item_or_regitem_or_attr, us_vector, length)
gsi_signal_error

(originating_function_name, user_error, message)
gsi_watchdog(user_watchdog_function, timeout_interval)
{gsi_close_fd}(fd)
{gsi_error_handler}(error_context, error_code, error_message)
{gsi_get_data}(registered_items, count)
{gsi_initialize_context}

(remote_process_initialization_string, length)
{gsi_open_fd}(fd)
{gsi_read_callback}(context, state)
{gsi_receive_deregistrations}(registered_items, count)
{gsi_receive_message}(message, length)
{gsi_rpc_local_fn}

([procedure_user_data], rpc_arguments, count,
call_identifier)

{gsi_rpc_receiver_fn}
([procedure_user_data], rpc_arguments, <count>,
[call_identifier])

{gsi_run_state_change}(direction_code, type_code, char * name)
{gsi_set_data}(registered_items, count)
{gsi_write_callback}(context, state)

Functions Grouped by Argument Type
565

gsi_item *

gsi_reclaim_array(array)
gsi_reclaim_items(items)
gsi_rpc_call

(function_handle, arguments, [call_identifier], context)
gsi_rpc_call_with_count(function_handle, arguments, count,

[call_identifier], context)
gsi_rpc_return_error_values(arguments, count, call_identifier,

context)
gsi_rpc_return_values(arguments, count, call_identifier,

context)
gsi_rpc_start(function_handle, arguments, context)
gsi_rpc_start_with_count(function_handle, arguments, count,

context)
gsi_set_elements(item_or_attr, elements_array, count, type_tag)
{gsi_rpc_local_fn}

([procedure_user_data], rpc_arguments, count,
call_identifier)

{gsi_rpc_receiver_fn}
([procedure_user_data], rpc_arguments, count,
[call_identifier])

gsi_set_rpc_remote_return_exclude_user_attrs
(function_handle, attributes)

gsi_set_rpc_remote_return_include_system_attrs
(function_handle, attributes)

gsi_set_rpc_remote_return_include_all_system_attrs_except
(function_handle, attributes)

Functions Grouped by Argument Type
566

Functions by Argument Type
gsi_item

gsi_extract_history
(item, values_address, timestamps_address, type_address)

gsi_extract_history_spec
(item, maximum_count_address, maximum_age_address,
minimum_interval_address)

gsi_is_item(item)
gsi_item_append_flag(item)
gsi_item_reference_flag(item)
gsi_reclaim_item(item)
gsi_set_attr_by_name(item_or_attr, search_name, source_item)
gsi_set_element_count(item, count)
gsi_set_item_append_flag(item, append_flag)
gsi_set_item_of_attr(attribute, source_item)
gsi_set_item_of_attr_by_name

(item_or_attr, search_name, source_item)
gsi_set_item_reference_flag(item, reference_flag)
gsi_set_name(item, name)
gsi_set_update_items_in_lists_and_arrays_flag

(item, immediate_flag)
gsi_simple_content_copy(destination, source)
gsi_update_items_in_lists_and_arrays_flag(item)

Functions Grouped by Argument Type
567

gsi_item or gsi_attr

gsi_attr_count_of(item_or_attr)
gsi_attrs_of(item_or_attr)
gsi_class_name_of(item_or_attr)
gsi_class_type_of(item_or_attr)
gsi_elements_of(item_or_attr)
gsi_history_count_of(item_or_attr)
gsi_history_type_of(item_or_attr)
gsi_timestamp_of(item_or_attr)
gsi_set_flt_list(item_or_attr, doubles_array, count)
gsi_set_flt_array(item_or_attr, doubles_array, gsi_int count)
gsi_set_elements(item_or_attr, elements_array, count, type_tag)
gsi_set_int_array(item_or_attr, integers_array, count)
gsi_set_int_list(item_or_attr, integers_array, count)
gsi_set_class_name(item_or_attr, name)
gsi_set_attrs(item_or_attr, new_attributes, count)
gsi_attr_by_name(item_or_attr, search_name)
gsi_attr_by_name(item_or_attr, search_name)
gsi_item_of_attr_by_name(item_or_attr, search_name)
gsi_set_attr_by_name(item_or_attr, search_name, source_attr)
gsi_set_attr_by_name(item_or_attr, search_name, source_item)
gsi_set_item_of_attr_by_name

(item_or_attr, search_name, source_item)
gsi_set_sym_array

(item_or_attr, symbol_values_array, gsi_int count)
gsi_set_sym_list

(item_or_attr, symbol_values_array, gsi_int count)
gsi_set_str_array

(item_or_attr, text_values_array, gsi_int count)
gsi_set_str_list

(item_or_attr, text_values_array, gsi_int count)
gsi_set_timestamp(item_or_attr, timestamp)
gsi_set_log_array

(item_or_attr, truth_values_array, gsi_int count)
gsi_set_log_list

(item_or_attr, truth_values_array, gsi_int count)
gsi_set_history

(item_or_attr, values, timestamps, count, type,
maximum_count, maximum_age, min_interval)

gsi_item or gsi_registered_item

gsi_set_handle(item_or_regitem, handle_value)

Functions Grouped by Argument Type
568

Functions by Argument Type
gsi_item, gsi_registered_item, or gsi_attr

gsi_clear_item(item_or_regitem_or_attr)
gsi_element_count_of(item_or_regitem_or_attr)
gsi_flt_array_of(item_or_regitem_or_attr)
gsi_flt_list_of(item_or_regitem_or_attr)
gsi_flt_of(item_or_regitem_or_attr)
gsi_int_array_of(item_or_regitem_or_attr)
gsi_int_list_of(item_or_regitem_or_attr)
gsi_int_of(item_or_regitem_or_attr)
gsi_log_array_of(item_or_regitem_or_attr)
gsi_log_list_of(item_or_regitem_or_attr)
gsi_log_of(item_or_regitem_or_attr)
gsi_str_array_of(item_or_regitem_or_attr)
gsi_str_list_of(item_or_regitem_or_attr)
gsi_str_of(item_or_regitem_or_attr)
gsi_sym_array_of(item_or_regitem_or_attr)
gsi_sym_list_of(item_or_regitem_or_attr)
gsi_sym_of(item_or_regitem_or_attr)
gsi_usv_length_of(item_or_regitem_or_attr)
gsi_usv_of(item_or_regitem_or_attr)
gsi_set_flt(item_or_regitem_or_attr, float_value)
gsi_set_type(item_or_regitem_or_attr, gsi_type)
gsi_set_int(item_or_regitem_or_attr, integer_value)
gsi_set_sym(item_or_regitem_or_attr, symbol_value)
gsi_set_str(item_or_regitem_or_attr, text_value)
gsi_set_log(item_or_regitem_or_attr, truth_value)
gsi_set_usv(item_or_regitem_or_attr, us_vector, length)

gsi_item, gsi_registered_item, gsi_attr, or gsi_registration

gsi_name_of(item_or_regitem_or_attr_or_reg)
gsi_owner_of(item_or_regitem_or_attr_or_reg)
gsi_type_of(item_or_regitem_or_attr_or_reg)
gsi_set_attr_count(item_or_regitem_or_attr_or_reg, count)

gsi_item, gsi_registered_item, or gsi_registration

gsi_handle_of(item_or_regitem_or_reg)
gsi_registration_of_item(item_or_regitem_or_reg)

gsi_item_user_data_type

gsi_set_user_data(registration, item_user_data)

Functions Grouped by Argument Type
569

gsi_procedure_user_data_type

gsi_rpc_declare_local
(local_function, [procedure_user_data], g2_function_name)

gsi_rpc_declare_remote
(function_handle, g2_function_name, receiver_function,
[procedure_user_data], argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

{gsi_rpc_local_fn}
([procedure_user_data], rpc_arguments, count,
call_identifier)

{gsi_rpc_receiver_fn}
([procedure_user_data], rpc_arguments, count,
[call_identifier])

gsi_registered_item *

gsi_reclaim_registered_items(registered_items)
gsi_return_timed_values(registered_items, count, context)
gsi_return_values(registered_items, count, context)

gsi_registered_item

gsi_item_of_registered_item(registered_item)
gsi_return_attrs(registered_item, attributes, count, context)
gsi_return_timed_attrs

(registered_item, attributes, count, context)
gsi_set_interval(registered_item, interval)
gsi_set_status(registered_item, status)
gsi_status_of(registered_item)

gsi_registered_item_array

{gsi_get_data}(registered_items, count)
{gsi_receive_deregistrations}(registered_items, count)
{gsi_set_data}(registered_items, count)

gsi_registered_item or gsi_registration

gsi_interval_of(regitem_or_reg)

Functions Grouped by Argument Type
570

Functions by Argument Type
gsi_registration

gsi_identifying_attr_of
(registration, identifying_attribute_index)

gsi_item_of_identifying_attr_of
(registration, identifying_attribute_index)

gsi_set_user_data(registration, item_user_data)
gsi_user_data_of(registration)
{gsi_receive_registration}(registration)

gsi_rpc_local_fn_type *

gsi_rpc_declare_local
(local_function, [procedure_user_data], g2_function_name)

gsi_rpc_receiver_fn_type *

gsi_rpc_declare_remote
(function_handle, g2_function_name, receiver_function,
[procedure_user_data], argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

gsi_rpc_declare_remote_with_error_handler_and_user_data
(function_handle, g2_function_name, receiver_function,
error_receiver_function, [procedure_user_data],
argument_count, return_count, context)

gsi_symbol *

gsi_set_sym_array
(item_or_attr, symbol_values_array, gsi_int count)

gsi_set_sym_list
(item_or_attr, symbol_values_array, gsi_int count)

Functions Grouped by Argument Type
571

gsi_symbol

gsi_attr_by_name(item_or_attr, search_name)
gsi_item_of_attr_by_name(item_or_attr, search_name)
gsi_set_attr_by_name(item_or_attr, search_name, source_item)
gsi_set_attr_name(attribute, attribute_name)
gsi_set_class_name(item_or_attr, name)
gsi_set_class_qualifier(attribute, attribute_name)
gsi_set_item_of_attr_by_name

(item_or_attr, search_name, source_item)
gsi_set_name(item, name)
gsi_set_sym(item_or_regitem_or_attr, symbol_value)
gsi_set_symbol_user_data(sym, symbol_user_data)
gsi_set_unqualified_attr_name(attribute, attribute_name)
gsi_symbol_name(sym)
gsi_symbol_user_data(sym)

gsi_symbol_user_data_type

gsi_set_symbol_user_data(sym, symbol_user_data)

gsi_version_id

gsi_version_information(gsi_version_id)

gsi_watchdog_function_type *

gsi_watchdog(gsi_watchdog_function, timeout_interval)

int

gsi_signal_handler(signal_code)
gsi_start(argc, argv)

long

gsi_unwatch_fd(file_descriptor)
gsi_watch_fd(file_descriptor)

short *

gsi_convert_unicode_to_string(string, style)
gsi_convert_unicode_to_wide_string(string, style)
gsi_convert_wide_string_to_unicode(string, style)

unsigned short *

gsi_set_usv(item_or_regitem_or_attr, us_vector, length)

Functions Grouped by Argument Type
572

Functions by Type of Return Value
Functions by Type of Return Value
The following table lists API and callback functions grouped by the types of their
return values.

Note The curly braces ({}) around a function name indicate that this function is a
callback function defined by the user. The brackets ([]) around an argument
indicate that this argument is supplied if the C preprocessor macro GSI_USE_
USER_DATA_FOR_CALLBACKS is defined and is not supplied otherwise.

void *

gsi_set_history
(item_or_attr, values, timestamps, count, type,
maximum_count, maximum_age, min_interval)

void **

gsi_extract_history
(item, values_address, timestamps_address, type_address)

Functions Grouped by Argument Type

Functions Grouped by Return Type

char *

convert_unicode_to_string()

double *

gsi_flt_array_of()

double

gsi_encode_timestamp()
gsi_flt_of()
gsi_interval_of()
gsi_timestamp_of()

gsi_attr *

gsi_attrs_of()
gsi_make_attrs()
gsi_make_attrs_with_items()

gsi_attr

gsi_attr_by_name()
573

gsi_call_identifier_type

gsi_last_error_call_handle()

gsi_char **

gsi_str_array_of()
gsi_str_list_of()

gsi_char *

gsi_error_message()
gsi_last_error_message()
gsi_str_of()
gsi_symbol_name()

gsi_context_user_data_type

gsi_context_user_data()

gsi_int *

gsi_int_array_of()
gsi_int_list_of()
gsi_log_array_of()
gsi_log_list_of()

Functions Grouped by Return Type
574

Functions by Type of Return Value
gsi_int

{gsi_get_tcp_port}()
{gsi_initialize_context}()

gsi_attr_count_of()
gsi_attr_is_transient()
gsi_attr_name_is_qualified()
gsi_class_type_of()
gsi_context_received_data()
gsi_context_socket()
gsi_current_context()
gsi_element_count_of()
gsi_establish_listener()
gsi_extract_history()
gsi_extract_history_spec()
gsi_handle_of()
gsi_history_count_of()
gsi_history_type_of()
gsi_initiate_connection()
gsi_initiate_connection_with_user_data()
gsi_int_of()
gsi_is_item()
gsi_item_append_flag()
gsi_item_reference_flag()
gsi_last_error()
gsi_listener_socket()
gsi_log_of()
gsi_option_is_set()
gsi_owner_of()
gsi_status_of()
gsi_string_conversion_style()
gsi_type_of()
gsi_update_items_in_lists_and_arrays_flag()
gsi_usv_length_of()
gsi_version_information()
gsi_wakeup()

gsi_item *

gsi_elements_of()
gsi_make_array()
gsi_make_items()

Functions Grouped by Return Type
575

gsi_item

gsi_attr_by_name()
gsi_identifying_attr_of()
gsi_item_of_attr()
gsi_item_of_attr_by_name()
gsi_item_of_identifying_attr_of()
gsi_item_of_registered_item()
gsi_make_item()

gsi_item_user_data_type

gsi_user_data_of()

gsi_registered_item *

gsi_make_registered_items()

gsi_registration

gsi_registration_of()
gsi_registration_of_handle()
gsi_registration_of_item()

gsi_symbol *

gsi_sym_array_of()
gsi_sym_list_of()

gsi_symbol

gsi_attr_name_of()
gsi_class_name_of()
gsi_class_qualifier_of()
gsi_make_symbol()
gsi_name_of()
gsi_sym_of()
gsi_unqualified_attr_name_of()

gsi_symbol_user_data_type

gsi_symbol_user_data()

short *

gsi_convert_string_to_unicode()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()

Functions Grouped by Return Type
576

Functions by Type of Return Value
unsigned short *

gsi_usv_of()

void

gsi_clear_item()
gsi_clear_last_error()
gsi_close_listeners()
gsi_decode_timestamp()
gsi_flush()
gsi_initialize_callbacks()
gsi_initialize_error_variable()
gsi_initialize_for_win32()
gsi_install_error_handler()
gsi_install_missing_procedure_handler()
gsi_install_run_state_change()
gsi_kill_context()
gsi_pause()
gsi_reclaim_array()
gsi_reclaim_attrs()
gsi_reclaim_attrs_with_items()
gsi_reclaim_item()
gsi_reclaim_items()
gsi_reclaim_registered_items()
gsi_reset_option()
gsi_return_attrs()
gsi_return_message()
gsi_return_timed_attrs()
gsi_return_timed_values()
gsi_return_values()
gsi_rpc_call()
gsi_rpc_call_with_count()
gsi_rpc_declare_local()
gsi_rpc_declare_remote()
gsi_rpc_declare_remote_with_error_handler_and_user_data()
gsi_rpc_return_error_values()
gsi_rpc_return_values()
gsi_rpc_start()
gsi_rpc_start_with_count()
gsi_run_loop()
gsi_set_attr_by_name()

Functions Grouped by Return Type
577

void (continued)

gsi_set_attr_by_name()
gsi_set_attr_count()
gsi_set_attr_is_transient()
gsi_set_attr_name()
gsi_set_attrs()
gsi_set_class_name()
gsi_set_class_qualifier()
gsi_set_context_limit()
gsi_set_context_user_data()
gsi_set_element_count()
gsi_set_elements()
gsi_set_flt()
gsi_set_flt_array()
gsi_set_flt_list()
gsi_set_handle()
gsi_set_history()
gsi_set_include_file_version()
gsi_set_int()
gsi_set_int_array()
gsi_set_int_list()
gsi_set_interval()
gsi_set_item_append_flag()
gsi_set_item_of_attr()
gsi_set_item_of_attr_by_name()
gsi_set_item_reference_flag()
gsi_set_log()
gsi_set_log_array()
gsi_set_log_list()
gsi_set_name()
gsi_set_option()
gsi_set_pause_timeout()
gsi_set_rpc_remote_return_value_kind()
gsi_set_rpc_remote_return_exclude_user_attrs ()
gsi_set_rpc_remote_return_include_system_attrs()
gsi_set_rpc_remote_return_include_all_system_attrs_except()
gsi_set_run_loop_timeout()
gsi_set_status()
gsi_set_str()
gsi_set_str_array()
gsi_set_str_list()
gsi_set_string_conversion_style()
gsi_set_sym()
gsi_set_sym_array()
gsi_set_sym_list()

Functions Grouped by Return Type
578

Functions by Type of Return Value
void (continued)

gsi_set_symbol_user_data()
gsi_set_timestamp()
gsi_set_type()
gsi_set_unqualified_attr_name()
gsi_set_update_items_in_lists_and_arrays_flag()
gsi_set_user_data()
gsi_set_usv()
gsi_signal_error()
gsi_signal_handler()
gsi_simple_content_copy()
gsi_start()
gsi_unwatch_fd()
gsi_watch_fd()
gsi_watchdog()
{gsi_close_fd}()
{gsi_error_handler}()
{gsi_g2_poll}()
{gsi_get_data}()
{gsi_missing_procedure_handler}()
{gsi_open_fd}()
{gsi_pause_context}()
{gsi_read_callback}()
{gsi_receive_deregistrations}()
{gsi_receive_message}()
{gsi_receive_registration}()
{gsi_resume_context}()
{gsi_rpc_local_fn}()
{gsi_rpc_receiver_fn}()
{gsi_run_state_change}()
{gsi_set_data}()
{gsi_set_up}()
{gsi_shutdown_context}()
{gsi_write_callback}()
{gsi_watchdog_function}()

Functions Grouped by Return Type
579

Functions with No Arguments
The following table lists API and callback functions that have no arguments:

API and Callback Functions with No Arguments

gsi_clear_last_error()
gsi_close_listeners()
gsi_current_context()
gsi_last_error()
gsi_last_error_call_handle()
gsi_last_error_message()
gsi_listener_socket()
gsi_make_item()
gsi_pause()
gsi_run_loop()
gsi_string_conversion_style()
gsi_wakeup()
{gsi_g2_poll}()
{gsi_get_tcp_port}()
{gsi_pause_context}()
{gsi_resume_context}()
{gsi_set_up}()
{gsi_shutdown_context}()
{gsi_watchdog_function}()
580

B

Constants
Lists symbolic constants defined in G2 Gateway header files.

Introduction
The following table lists the constants provided by Gensym for use in your G2
Gateway application. These constants are defined in the header file gsi_main.h.
Files that use the API functions of G2 Gateway must include the gsi_main.h file.

G2 Gateway Constants

Constant Value

NO_ERR 0

NULL_PTR 0

TRUE 1

FALSE 0

GSI_ACCEPT 0

GSI_REJECT 1

GSI_UNDEFINED_CONTEXT –1

GSI_VOID_INDEX –1

GSI_NULL_TAG 0

GSI_INTEGER_TAG 1
581

GSI_IO_UNBLOCKED 1

GSI_IO_BLOCKED 0

GSI_CALL_HANDLE_OF_START 0

GSI_SYMBOL_TAG 3

GSI_STRING_TAG 4

GSI_LOGICAL_TAG 5

GSI_FLOAT64_TAG 6

GSI_ITEM_TAG 7

GSI_VALUE_TAG 8

GSI_HANDLE_TAG 9

GSI_QUANTITY_TAG 10

GSI_INTEGER_ARRAY_TAG 17

GSI_SYMBOL_ARRAY_TAG 19

GSI_STRING_ARRAY_TAG 20

GSI_LOGICAL_ARRAY_TAG 21

GSI_FLOAT64_ARRAY_TAG 22

GSI_ITEM_ARRAY_TAG 23

GSI_VALUE_ARRAY_TAG 24

GSI_ITEM_OR_VALUE
_ARRAY_TAG

25

GSI_QUANTITY_ARRAY_TAG 26

GSI_INTEGER_LIST_TAG 33

GSI_SYMBOL_LIST_TAG 35

GSI_STRING_LIST_TAG 36

GSI_LOGICAL_LIST_TAG 37

G2 Gateway Constants

Constant Value
582

Introduction
GSI_FLOAT64_LIST_TAG 38

GSI_ITEM_LIST_TAG 39

GSI_VALUE_LIST_TAG 40

GSI_ITEM_OR_VALUE_LIST
_TAG

41

GSI_QUANTITY_LIST_TAG 42

GSI_SEQUENCE_TAG 49

GSI_STRUCTURE_TAG 50

GSI_PORT_NUM 22041

GSI_TRUE 1000

GSI_FALSE –1000

MAX_G2_INTEGER 536870911

MIN_G2_INTEGER –536870912

G2 Gateway Constants

Constant Value
583

584

C

G2 Gateway
Error Messages
Lists and describes the standard error messages returned by G2 Gateway.

Introduction
The following table lists the standard severe G2 Gateway errors:

Errors

Value Error Symbol Text of Error

1 GSI_INVALID
_PROTOCOL

"Invalid network protocol
protocol-name - please specify
tcpip"

2 GSI_INVALID
_NETWORK_COMBO

"Duplication of network
protocol protocol-name - please
specify one of each"

3 GSI_INVALID_TCP
_PORT_NUMBER

"Invalid TCP port number
port-number - please specify an
integer number"

5 GSI_INVALID
_NETWORK_ADDRESS

"Invalid network address
network-address - does not
conform to tcpip"

6 GSI_ITEM
_DEFINITIONS_ARE
READ_ONLY

"Item registrations are
read-only - make modifications
through G2"
585

7 GSI_STRUCTURE_HAS_
NO_HANDLE

"Access function received
structure with no handle
element"

8 GSI_STRUCTURE_HAS_
NO_IDENTIFYING
_ATTRS

"Access function received
structure with no identifying
attribute elements"

9 GSI_STRUCTURE_HAS_
NO_INSTANCE

"Access function received an
incompatible structure as an
argument"

10 GSI_STRUCTURE_HAS_
NO_TIMESTAMP

"Access function received
structure with no timestamp
element"

11 GSI_STRUCTURE_HAS_
NO_TIMED_FLAG

"Access function received
structure with no is-timed
element"

12 GSI_STRUCTURE_HAS_
NO_INTERVAL

"Access function received
structure with no interval
element"

13 GSI_STRUCTURE_HAS_
NO_STATUS

Access function received
structure with no status
element"

14 GSI_STRUCTURE_HAS_
NO_ATTRIBUTE_NAME

"Access function expected an
attribute structure"

15 GSI_MISSING
_INSTANCE
_STRUCTURE

"Nothing was found where an
embedded value or instance
structure was expected"

16 GSI_INCOMPATIBLE
_TYPE

"Type mismatch - value of type
data-type passed to this
function"

17 GSI_LOCAL_FUNCTION_
UNDEFINED

"GSI could not find function
function-name which G2 attempted
to invoke"

18 GSI_INVALID_CALL
_HANDLE

"Call handle specified was not
for an outstanding RPC"

Errors

Value Error Symbol Text of Error
586

Introduction
19 GSI_REMOTE
_DECLARATION_NOT
_FOUND

"A remote procedure declaration
could not be found. Ensure
gsi_rpc_declare_remote()
called"

20 GSI_INCORRECT
_ARGUMENT_COUNT

"Remote procedure function-name
passed/received number-of-args
arguments - number-of-args were
expected"

21 GSI_UNEXPECTED
_OPERATION

"This operation not thought to
be useful and may imply a
misunderstanding of GSI"

22 GSI_INTERNAL
_MEMORY
_INCONSISTENCY

"Internal memory inconsistency
encountered in GSI - please
contact customer support"

23 GSI_BAD_MAGIC
_NUMBER

"Bad magic number - address
received was not the head of
an array"

24 GSI_INVALID
_CONTEXT

"Context context-number is
invalid or inactive"

25 GSI_IDENTIFYING
_ATTRIBUTE_INDEX_
OUT_OF_RANGE

"Identifying attribute index
attribute-index is out of the
acceptable range (1..limit)"

26 GSI_NO_CLASS_IN
_REGISTERED_ITEM

"The class name is in the
registration corresponding to
the handle of this registered
item"

27 GSI_G2_LOGICAL_OUT_
OF_BOUNDS

"Logical logical-name is out of
bounds. Logicals in GSI may
range from -1000 to 1000
inclusive"

28 GSI_MISSING
_ATTRIBUTE_NAME

"Requested attribute name where
there was none"

29 GSI_COUNT_OUT_OF
_ARRAY_BOUNDS

"Count element-count out of
bounds for array of size
array-size"

Errors

Value Error Symbol Text of Error
587

30 GSI_INCOMPATIBLE
_STRUCTURE

"Received null pointer
argument, or a structure type
incompatible with requested
operation"

31 GSI_STRUCTURE_HAS
_NO_CLASS
_QUALIFIER

"Requested class qualifier
where there was none"

32 GSI_NO_CLASS_NAME_
SPECIFIED

"Attempt to pass item without
specifying class name"

33 GSI_ARGUMENT_COUNT_
TOO_BIG

"Argument count argument-count
too large for provided argument
array of length array-size"

34 GSI_RPC_ERROR_
FROM_G2

"Remote procedure invocation
failed with level severity error:
text"

35 GSI_RPC_ERROR_FROM_
G2_PROCEDURE

"Invocation of remote procedure
function-name failed with level
severity error:text"

36 GSI_RESERVED_ERROR_
CODE

"Reserved error code error-code
signalled by user. Codes below
1024 are reserved"

37 GSI_CUSTOM_USER_
ERROR

"The following custom error has
been signalled: error-code"

38 GSI_CONNECTION
_LOST

"Network layer reports
connection was lost or ICP
protocol error occurred:
error-message"

39 GSI_OWNEROUS
_RECLAMATION
_VIOLATION

"Attempted to reclaim a
structure not owned (allocated)
by user"

40 GSI_NULL_POINTER
_ARGUMENT

"Access function received null
pointer argument"

Errors

Value Error Symbol Text of Error
588

Introduction
41 GSI_ITEM_HAS_NO
_VALUE

"Attempted to access value when
none present - see
GSI_NULL_TAG"

42 GSI_NOOP_CODE_
ACCESSED

"Support for desired network
transport type (TCP)
not linked in to your
executable"

43 GSI_ILLEGAL
_NESTING_OF_RUN_
LOOP

"Attempt to call gsi_run_loop
from within the extent of a
previous call to gsi_run_loop"

44 GSI_STRUCTURE_HAS_
NO_HISTORY

"Attempted to access history
when none present - see
gsi_history_count_of()"

45 GSI_INCOMPATIBLE
_HISTORY_SPEC

"Type code type-code is invalid -
see documentation for valid
type codes"

46 GSI_INVALID_TYPE "Type code type-code is invalid
for return to data served
variable"

47 GSI_TYPE_FOR_DATA_
SERVICE

"Attempt to load number-of-values
values into a history whose
spec allows for no more than
maximum-values"

48 GSI_BAD_MAGIC
_NUMBER_IN_QUERY

"Attempted to access non-
existent data - perhaps
reclaimed or never allocated?"

49 GSI_CONTEXT
_UNDEFINED

"Context -1 is the undefined
context - operation attempted
outside of any context"

50 GSI_INVALID_HANDLE "The handle of the registered_
item is invalid"

51 GSI_INVALID_HANDLE_
OF_NTH

"The handle of registered_
items[array-index] is invalid"

Errors

Value Error Symbol Text of Error
589

52 GSI_TIMESTAMP_OUT_
OF_BOUNDS

"Out-of-range timestamp seen:
timestamp: timestamp-value Valid
range: 0.0 < t < 2145934799"

(2145934799 means midnight,
December 31, 2037)

53 GSI_INVALID
_TIMESTAMP

"Invalid timestamp seen in
timestamped object."

54 GSI_INVALID_HANDLE_
FOR_CONTEXT

"The handle handle is not known
in context context-number"

55 GSI_NO_NAME_IN
_REGISTERED_ITEM

"The name is in the
registration corresponding to
the handle of this registered
item"

56 GSI_INCOMPATIBLE
_STRUCTURE2

"Received null pointer
argument, or incompatible type
for second structure argument"

57 GSI_ICP_MESSAGE
_TOO_LONG

"ICP message series too long --
please call Gensym customer
support"

58 GSI_ICP_MESSAGE
_OUT_OF_SYNCH_
CASE_2

"Protocol out-of-synch
(case 2)"

59 GSI_MAXIMUM_TEXT
_STRING_LENGTH
_ERROR

"Attempting to allocate
number-of-elements element
string, which is beyond the
established maximum of maximum-
elements."

60 GSI_EXTEND_CURRENT_
TEXT_STRING_ERROR

"Trying to write a string
longer than 1MB!"

61 GSI_UNDEFINED
_STRUCTURE_METHOD
_ERROR

"Call to structure method were
none was defined."

62 GSI_INDEX_SPACE
_FULL_ERROR

"Index space full."

Errors

Value Error Symbol Text of Error
590

Introduction
63 GSI_CIRCULARITY
_NOT_SUPPORTED

"Self referencing items may not
yet be sent to G2 - sorry"

Note: This error occurs only when G2
Gateway 5.0 is communicating with a
G2 4.0.

64 GSI_NO_MORE_RPC
_IDENTIFIERS

"The limit of outstanding calls
to G2 procedures has been
reached"

65 GSI_BAD_RPC_STATE "Internal state of RPC
identifier is unknown."

66 GSI_MALFORMED_
SOCKET

"GSI socket malformed-
extension data missing"

Causes the API function to
exit.

67 GSI_UNKNOWN_TYPE
_TAG

"GSI structure contains unknown
type tag."

68 GSI_INVALID_HISTORY
_TYPE

"GSI found an invalid value
type for this history."

69 GSI_UNCAUGHT_
EXCEPTION

Not used.

70 GSI_CANNOT_
ESTABLISH
_LISTENER

"Could not make exact ICP
connection."

71 GSI_MAXIMUM_
CONTEXTS
_EXCEEDED

"Connection rejected - GSI
bridge context limit
maximum-contexts exceeded."

Closes the connection.

72 GSI_CONNECTION_
DENIED

"Connection denied - the G2 at
protocol-host-port has
disallowed connections from
GSI"

Closes the connection.

Errors

Value Error Symbol Text of Error
591

73 GSI_UNKNOWN_STRING
_CONVERSION_STYLE

"Unknown string conversion
style"

74 GSI_ERROR_IN_
CONNECT

"Error during connection
attempt: error-message"

Closes the connection.

75 GSI_INVALID_RETURN
_VALUE_INDEX

"Invalid return value index"

76 GSI_INVALID_RETURN
_VALUE_KIND

"Invalid return value kind"

77 GSI_INVALID_
ATTRIBUTE
_TYPE

"Invalid attribute type"

78 GSI_RESUMABLE_ICP_
ERROR

Not used.

79 GSI_UNKNOWN_CALLING
_PROCEDURE_INDEX

"Unknown calling procedure
index."

Closes the connection.

80 GSI_ILLEGAL_ERROR
_ARGUMENT

"Illegal error arguments:
error-description."

Closes the connection.

81 GSI_INTEGER_TOO_
LARGE

"gsi_int argument was larger
than 536870911."

The number 536870911 is 229 – 1.

82 GSI_INTEGER_TOO_
SMALL

"gsi_int argument was smaller
than –536870912."

The number –536870912 is –229.

83 GSI_NOT_A_SYMBOL "Invalid gsi_symbol argument
(use gsi_make_symbol)."

84 GSI_NO_LICENSE No license is available for a
connection over connection

Errors

Value Error Symbol Text of Error
592

Introduction
85 GSI_CONTEXT_HAS_
BEEN_KILLED

Context connection has been
killed

86 GSI_CONTEXT_HAS_
BEEN_SHUT_DOWN

Context connection has been shut
down

87 GSI_CALLBACK_NAME_
NOT_FOUND

Invalid GSI callback name:
callback

88 GSI_INVALID_OPTION_
INDEX

Invalid GSI option index: index

89 GSI_APPLICATION_
LOAD_FAILED

Failed to successfully load the
application application

90 GSI_NETWORK_ERROR Network error event: socket-
handle is socket, event-status is
status

Warnings

Value Error Symbol Text of Error

256 GSI_ATTRIBUTE_NAME_
NOT_FOUND

"Could not find attribute with
qualified name of
attribute-name"

257 GSI_TIMESTAMP_NOT
_FOUND

"No timestamp specified. The
0.0 value returned does not
construe a valid timestamp"

258 GSI_RPC_ASYNC_ABORT "This call has been aborted by
the client - no values
returned"

Errors

Value Error Symbol Text of Error
593

259 GSI_RPC_LATE
_ASYNC_ABORT

"An RPC has been aborted by
the client while return
en route"

1024 GSI_BASE_USER_ERROR_
CODE

User-defined error
codes can use any value
greater than 1024. Your
user code can signal
user-defined errors,
using the API gsi_
signal_error().

Warnings

Value Error Symbol Text of Error
594

D

G2 Gateway
Data Types
Describes the data types defined for use in G2 Gateway user code.

Introduction 593

Data Types Supported by G2 Gateway 593

G2 Data Types and G2 Gateway Type Tags 599

G2 Gateway Data Types for RPC Arguments 602

Introduction
This appendix describes the data types supported by G2 Gateway, the G2 data
types and G2 Gateway type tags, and the G2 Gateway data types for RPC
arguments.

Data Types Supported by G2 Gateway
Some types are more efficient to process than others. When you choose a data
type to hold a value, select the type based on the purpose you have for the value.
Each of the following data types is defined for you in G2 Gateway.

Floats

Floating point numbers require more processing than integers because of the
manipulation involving the floating point. Use floats only if you need floating
point accuracy.
595

Always use the FLOAT64_TAG data type, which is a standard IEEE 64-bit floating
point number on UNIX platforms.

Integers

Integers are the most efficient data type. If you are returning whole numbers to
G2, use integers instead of floats.

In your G2 Gateway user code, integers must be declared as type gsi_int.

Note Upon entering G2 Standard, integers have their two most significant bits
removed. Upon entering G2 Standard, integers have their three most significant
bits removed. If you require integers with full 64-bit range, use long integers.

Long integers

Long integers are efficient data type with native 64-bit computing capabilities. If
you are returning signed 64-bit integers from/to G2, use long instead of integer or
floats.

In your G2 Gateway user code, long integers must be declared as type gsi_long.

Null

Use the Null type when you want the value of a variable to be undefined.

Logicals

G2 uses fuzzy logicals that are integers ranging in value from -1000 (100% false) to
1000 (100% true). When a logical value is sent from G2 to G2 Gateway it is sent as
a long integer. Since most external systems use standard 0/1 logic, values must be
converted accordingly on their way into and out of G2.

Strings

Strings are null-terminated character strings that can include any characters when
all are specified within double quotation marks (““). Use strings to represent data
whose value changes frequently or whose value is likely to be used only a few
times, as when you want to inform the operator with an error message concerning
some condition in the external system. Strings are evaluated by G2 character by
character, so long strings will take slightly longer to process than short ones.

Strings passed between G2 and G2 Gateway are limited in length only by the size
of the G2 Gateway network buffers (64K bytes).
596

Data Types Supported by G2 Gateway
G2 Version 5.0 uses the Unicode character set internally for all strings. G2
Gateway can use a variety of different character sets, known as string conversion
styles, to represent strings for all G2 Gateway API functions and callbacks. You
can set the current string conversion style by calling the function gsi_set_
string_conversion_style(). The function gsi_string_conversion_style()
returns a value indicating which string conversion style is currently in use. You
can apply string conversion styles to individual strings using the functions
convert_string_to_unicode(), convert_wide_string_to_unicode(),
convert_unicode_to_string(), and convert_unicode_to_wide_string(). For
information about these functions, see API Functions.

Symbols

Symbols are null-terminated character strings that function similarly to
enumerated types. Symbols are usually specified as upper-case alphanumeric
characters, excluding spaces and other special characters, although other
characters can be included through the use of escape characters. For information
about the proper format of G2 symbols, see the G2 Reference Manual.

G2 allocates space for the symbols in an internal table for looking up as needed.
After space is allocated for the symbol, G2 evaluates it by looking up its location
in the table. This evaluation is faster than string evaluation, which is performed
on a character-by-character basis. For this reason, it is good practice to use the
symbol type for data values that are evaluated frequently, or for data values used
in comparisons.

If you are using API functions that operate on symbols, it is good practice to
compile your G2 Gateway application with the GSI_USE_NEW _SYMBOL_API
preprocessor macro defined, or to set the runtime option GSI_NEW_SYMBOL_API.
These options enable the API functions to access the symbols efficiently. When
you use GSI_USE_NEW_SYMBOL_API or GSI_NEW_SYMBOL_API, a symbol value is
equivalent to a void *; otherwise, it is equivalent to a gsi_char *.

To set the symbol value associated with a gsi_item, gsi_registered_item, or
gsi_attr structure, use the function gsi_set_sym(). This function sets the type
of the structure on which it operates to _TAG.

Symbol values returned by gsi_sym_of() are of the type gsi_symbol.

Symbols passed between G2 and G2 Gateway are limited in length only by the
size of the G2 Gateway network buffers (64K bytes).

Note Symbol values that your G2 Gateway user code passes to G2 should be expressed
in uppercase letters only. This enables G2 to interpret the symbol values correctly.

The following table summarizes the API functions that operate on symbols:
597

API Functions that Operate on Symbols

API Function Description

gsi_attr_by_name Invokes gsi_item_of_attr_by_
name().

gsi_attr_name_of Returns the name of an attribute.

gsi_class_name_of Returns the name of the G2 class
of an item.

gsi_class_qualifier_of Returns the part of the name
component of an attribute that is
the class qualifier.

gsi_item_of_attr_by_name Returns the gsi_item structure
contained in a specified gsi_attr
structure.

gsi_make_symbol Returns a symbol, given the
name of that symbol.

gsi_name_of Returns a symbol representing
the name of a specified GSI item.

gsi_set_attr_by_name Invokes gsi_set_item_of_
attr_
by_name().

gsi_set_attr_name Changes the name of an attribute.

gsi_set_class_name Sets the value of the class name
component of an item or an
embedded item in an attribute.

gsi_set_class_qualifier Changes the part of the name of
an attribute that specifies the G2
class that defines the attribute.

gsi_set_item_of_attr_by_name Sets the gsi_item embedded in a
specified gsi_attr attribute
structure.

gsi_set_long Sets the name component of a
specified gsi_item structure.
598

Data Types Supported by G2 Gateway
gsi_set_sym Sets the symbol value associated
with a gsi_item, gsi_
registered_item, or gsi_attr
structure.

gsi_set_sym_array Sets the values in the symbol
array associated with a gsi_item,
gsi_registered_item, or gsi_
attr structure.

gsi_set_symbol_user_data Sets the user data associated with
a symbol.

gsi_set_sym_list Sets the values in the symbol list
associated with a gsi_item or
gsi_attr structure.

gsi_set_unqualified_attr_name Sets the unqualified part of an
attribute’s name.

gsi_sym_array_of Returns the symbol array
associated with a gsi_item, gsi_
registered_item, or gsi_attr
structure.

gsi_symbol_name Returns the string the
corresponds to a symbol. The
string must not be modified.

gsi_symbol_user_data Returns the user data associated
with a symbol.

gsi_sym_list_of Returns the symbol list
associated with a gsi_item, gsi_
registered_item, or gsi_attr
structure.

gsi_sym_of Returns the symbol associated
with a gsi_item, gsi_
registered_item, or gsi_attr
structure.

gsi_unqualified_attr_name_of Returns the unqualified part of
an attribute’s name.

API Functions that Operate on Symbols

API Function Description
599

Sequence and Structure Types

GSI_SEQUENCE_TAG

The G2 Gateway data structure that corresponds to a sequence in G2 is a gsi_
item having the type tag GSI_SEQUENCE_TAG. The elements of the sequence can be
accessed with the functions:

gsi_element_count_of()
gsi_elements_of()
gsi_set_elements()

GSI_STRUCTURE_TAG

The G2 Gateway data structure that corresponds to a structure in G2 is a gsi_
item having the type tag GSI_STRUCTURE_TAG. The components of the structure
can be accessed with the functions:

gsi_attr_count_of()
gsi_attrs_of()
gsi_set_attrs()

Wide String Type

G2 Gateway 5.0 uses the C type gsi_char to support either 8-bit or 16-bit Unicode
(wide string) characters.

All the G2 Gateway API functions and callback functions that in earlier versions
of G2 Gateway accepted or returned char* now accept or return gsi_char*,
except for gsi_start(), which retains a char argument (for the argv argument
passed to it from the command line) and for gsi_initialize_callbacks().

To make gsi_char support wide string characters, compile your G2 Gateway
user code with the C preprocessor macro GSI_USE_WIDE_STRING_API defined.
When GSI_USE_WIDE_STRING_API is not defined, the gsi_char type is defined by
default to be a char (8 bits).

You can define the C preprocessor macro GSI_USE_WIDE_STRING_API in your
compiler command line. For example, under UNIX, you can use the following
compile time switch:

-DGSI_USE_WIDE_STRING_API

You can also define GSI_USE_WIDE_STRING_API by including the following
statement

#define GSI_USE_WIDE_STRING_API

before the #define "gsi_main.h" statement in any C file that includes
gsi_main.h.

When you compile your user code with the GSI_USE_WIDE_STRING_API
preprocessor macro defined, the main() function in gsi_main.c automatically
600

G2 Data Types and G2 Gateway Type Tags
calls gsi_set_option(GSI_WIDE_STRING_API). The GSI_WIDE_STRING_API
runtime option must be set in order to define the gsi_char type as a short.

Note If you use a C file for your main() function other than the gsi_main.c provided
with G2 Gateway, and you need to define the gsi_char type as a short, you must
include in your main() C file a call to gsi_set_option(GSI_WIDE_STRING_API).

G2 Data Types and G2 Gateway Type Tags
G2 Gateway data structures are assigned data type tags that enable API functions
to perform type-checking on the data structures and to handle the data structures
appropriately to their type. For information about how G2 Gateway sets and uses
data type tags, see Type Tags of G2 Gateway Data Structures.

For information about how C and C++ data types are converted to G2 types, see
the G2 Reference Manual.

The following tables list G2 data types and classes and the corresponding G2
Gateway type tags.

 G2 Data Type G2 Gateway Type Tag

No value GSI_NULL_TAG

float GSI_FLOAT64_TAG

integer GSI_INTEGER_TAG

long GSI_LONG_TAG or GSI_INT64_TAG

truth-value GSI_LOGICAL_TAG

symbol GSI_SYMBOL_TAG

text GSI_STRING_TAG

sequence GSI_SEQUENCE_TAG

structure GSI_STRUCTURE_TAG

G2 Class Type G2 Gateway Type Tag

float-variable GSI_FLOAT64_TAG or GSI_NULL_TAG

integer-variable GSI_INTEGER_TAG or GSI_NULL_TAG
601

quantitative-variable GSI_INTEGER_TAG or GSI_FLOAT64_
TAG or GSI_NULL_TAG

logical-variable GSI_LOGICAL_TAG or GSI_NULL_TAG

symbolic-variable GSI_SYMBOL_TAG or GSI_NULL_TAG

text-variable GSI_STRING_TAG or GSI_NULL_TAG

float-parameter GSI_FLOAT64_TAG or GSI_NULL_TAG

integer-parameter GSI_INTEGER_TAG or GSI_NULL_TAG

long-parameter GSI_LONG_TAG or GSI_NULL_TAG

quantitative-parameter GSI_INTEGER_TAG or GSI_LONG_TAG
or GSI_FLOAT64_TAG or GSI_NULL_
TAG

logical-parameter GSI_LOGICAL_TAG or GSI_NULL_TAG

symbolic-parameter GSI_SYMBOL_TAG or GSI_NULL_TAG

text-parameter GSI_STRING_TAG or GSI_NULL_TAG

integer-array GSI_INTEGER_ARRAY_TAG

symbol-array GSI_SYMBOL_ARRAY_TAG

text-array GSI_STRING_ARRAY_TAG

truth-value-array GSI_LOGICAL_ARRAY_TAG

float-array GSI_FLOAT64_ARRAY_TAG

quantity-array GSI_QUANTITY_ARRAY_TAG

item-array GSI_ITEM_ARRAY_TAG

value-array GSI_VALUE_ARRAY_TAG

g2-array GSI_ITEM_OR_VALUE_ARRAY_TAG

integer-list GSI_INTEGER_LIST_TAG

symbol-list GSI_SYMBOL_LIST_TAG

text-list GSI_STRING_LIST_TAG

G2 Class Type G2 Gateway Type Tag
602

G2 Data Types and G2 Gateway Type Tags
The following table summarizes the G2 variable and parameter types that
correspond to the return values of gsi_class_type_of() and gsi_history_
type_of().

truth-value-list GSI_LOGICAL_LIST_TAG

float-list GSI_FLOAT64_LIST_TAG

quantity-list GSI_QUANTITY_LIST_TAG

item-list GSI_ITEM_LIST_TAG

value-list GSI_VALUE_LIST_TAG

g2-list GSI_ITEM_OR_VALUE_LIST_TAG

All other classes GSI_NULL_TAG

G2 Class Type G2 Gateway Type Tag

G2 Variable or Parameter Type G2 Gateway Type Tag

float-variable GSI_FLOAT64_TAG

integer-variable GSI_INTEGER_TAG

long-variable GSI_LONG_TAG or GSI_INT64_TAG

quantitative-variable GSI_QUANTITY_TAG

logical-variable GSI_LOGICAL_TAG

symbolic-variable GSI_SYMBOL_TAG

text-variable GSI_STRING_TAG

float-parameter GSI_FLOAT64_TAG

integer-parameter GSI_INTEGER_TAG

quantitative-parameter GSI_QUANTITY_TAG

logical-parameter GSI_LOGICAL_TAG

symbolic-parameter GSI_SYMBOL_TAG

text-parameter GSI_STRING_TAG
603

G2 Gateway Data Types for RPC Arguments
The following table lists data types for API function arguments:

G2 Gateway Data Types for Function Arguments

Type Description

gsi_call_
identifier_type

The type of a call identifier, which distinguishes
remote procedure function calls from each other.
When data is returned to the place where the
remote procedure call originated (either G2 or a G2
Gateway bridge), the call identifier identifies the
original call.

To enable the use of call identifiers, you must
compile your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor macro
defined or use the corresponding compile time
switch. For more info see Call Identifiers for
Remote Procedure Calls.

When the use of call identifiers is enabled:

• Calls to the API functions gsi_rpc_call() and
gsi_rpc_call_with_count() must include a
call identifier argument. The programmer must
provide a value for this argument.

• A G2 Gateway receiver function receives a call
identifier value from G2, which identifies the
original call made by G2 Gateway to the G2
function.

• A call identifier is the return value of the
function gsi_last_error_call_handle().

G2 always generates a call identifier value for G2
Gateway local functions that it invokes. A local
function invoked by G2 can use the call identifier as
an argument to gsi_rpc_return_values() or gsi_
rpc_return_error_values() if it returns a value
or signals an error to G2.
604

G2 Gateway Data Types for RPC Arguments
gsi_context_
user_data_type

The type of context user data, a value provided by
the programmer to identify a particular context.
Context user data can be useful for identifying
connections between different locations, or
connections used for different purposes.

A context user data value can be associated with a
connection in either or two ways:

• As an argument to a call to gsi_initiate_
connection
_with_user_data() that initiates the
connection.

• As an argument to gsi_set_context_user
_data(), to associate context user data with an
existing connection.

The API function gsi_context_user
_data() returns the context user data associated
with a specified connection.

gsi_function_
handle_type

The type of function handle arguments, which
identify G2 procedures in calls to the following API
functions: gsi_rpc_declare_remote(), gsi_rpc_
declare_remote_with
_error_handler_and_user_data(),
gsi_rpc_start(), gsi_rpc_start_with_count(),
gsi_rpc_call(), gsi_rpc_call_with_count(),
gsi_set_rpc_remote_return
_value_kind().

gsi_item_user_
data_type

The type of the user_data argument of gsi_set_
user_data() and of the return value of gsi_user_
data_of().

This datatype is aliased to void *, and can therefore
be a pointer to any type of data. gsi_item_user_
data_type provides a way for you to manage the
data that you are passing to and from API
functions, and thus gets passed back to G2
Gateway in callback functions. You would
typically use a cast operation with gsi_item_user_
data_type to access certain types of data, such as
structure members.

G2 Gateway Data Types for Function Arguments

Type Description
605

gsi_procedure_
user_data_type

The type of procedure user data. A procedure user
data argument can be the first argument of local
functions, receiver functions, and error receiver
functions in a G2 Gateway application.

To enable the use of call identifiers, you must
compile your G2 Gateway code with the GSI_USE_
USER_DATA_FOR_CALLBACKS preprocessor
macro defined or use the corresponding compile
time switch. For more info see Call Identifiers for
Remote Procedure Calls.

When you use procedure user data, you must
include a procedure_user_data argument in the
calls to gsi_rpc_declare_local() and gsi_rpc_
declare_remote() that you use to declare the local
and remote functions.

For more information about procedure user data,
see Procedure User Data for Remote Procedure
Calls.

gsi_rpc
_receiver
_fn_type

The type of a receiver function in your G2 Gateway
code. The API functions gsi_rpc_declare_
remote() and gsi_rpc_declare_remote_with
_error_handler_and_user_data() must include
an argument that is a pointer to a function of this
type.

gsi_rpc_local
_fn_type

The type of a local function in your G2 Gateway
code. The API function gsi_rpc_declare_local()
must include an argument that is a pointer to a
function of this type.

gsi_symbol_user
_data_type

The type of symbol user data, which you can
associate with symbol values.

The API function gsi_set_symbol_user_data()
associates symbol user data with a symbol value,
and the function gsi_symbol_user_data() returns
the symbol data associated with a function.

The data type gsi_symbol_user_data_type is
defined to have the type (void *).

G2 Gateway Data Types for Function Arguments

Type Description
606

G2 Gateway Data Types for RPC Arguments
gsi_struct The type of a function argument that can represent
one or more of the following structures, depending
on the function: gsi_item, gsi_registered_item,
gsi_attr, or gsi_registration.

handle The type of the first argument of gsi_initialize_for_
win32().

G2 Gateway Data Types for Function Arguments

Type Description
607

608

E

Limits and Ranges
Describes limits and ranges applicable in G2 Gateway.

Introduction 607

Limits on Contexts, Objects, Attributes, and Error Codes 608

Limits on G2 Data Types 609

Limits on Callback Functions 609

Limits on API Functions 610

Limits on Remote Procedure Calls 610

Introduction
This appendix describes the limits and ranges applicable in G2 Gateway for:

• Contexts, objects, attributes, and error codes.

• G2 data types.

• Callback functions.

• API functions.

• Remote procedure calls.
609

Limits on Contexts, Objects, Attributes, and
Error Codes

Limits on Contexts, Objects, Attributes, and Error Codes

G2 Feature Limits

contexts By default, a single G2 Gateway process can support
a maximum of 50 contexts. You can change this
default by calling gsi_set_context_limit().

objects There is no limit to the number of GSI variables per
context in G2 5.0 and later.

In G2 4.1 and earlier versions, the maximum number
of GSI variables per context is 65,534 if no G2
Gateway RPCs have been made available to G2. This
maximum number is 3 less for each G2 Gateway
function that G2 calls as a remote procedure, and is 2
less for each G2 Gateway function that G2 starts as a
remote procedure.

identifying
attributes

A GSI interface can have a maximum of 6 identifying
attributes. Strings that specify identifying attributes
can have a maximum of 64K characters.

attribute names The maximum length of attribute names is 64K
characters.

error codes Error codes must be positive integers not greater
than 65,537.
610

Limits on G2 Data Types
Limits on G2 Data Types

Limits on G2 Data Types

G2 Data Type Limits

integer In G2 Standard (32-bit), the G2 integer type is a
signed 30-bit integer, between -536870912 and
536870911, inclusive. In G2 Enterprise (64-bit), the
G2 integer type is a signed 61-bit integer, between -
1152921504606846976 and
1152921504606846975, inclusive. Both 32-bit and
64-bit GSI libraries are provided in G2 Enterprise.

GSI communications between 32-bit GSI bridge
and 64-bit G2 Server, or 64-bit GSI bridge and 32-
bit G2 Server, should consider the range of G2
integer type is a signed 30-bit integer, between -
536870912 and 536870911, inclusive. Otherwise
there will be data lost.

G2 Gateway applications should send large
numeric values to G2 quantitative-variable
variables, rather than to integer-variable variables;
G2 then automatically assigns any values exceeded
integer ranges to floating-variable variables.

long The G2 long type is a signed 64-bit integer, between
-9223372036854775808 and 9223372036854775807,
inclusive.

float The G2 float type is an IEEE double float (64-bit).

text To allow for internal header information, text
strings should contain no more than 60 thousand
characters.

symbol To allow for internal header information, symbols
should contain no more than 60 thousand
characters.
611

Limits on Callback Functions

Limits on API Functions

The maximum number of bytes that G2 Gateway can send to G2 in a single API
call is 60K.

Limits on Callback Functions

Callback Function Limits

gsi_initialize_context() The maximum length of the string
passed to this function as the remote
process initialization string argument
is 64K.

gsi_receive_message() This maximum length of the string
received by this function is 64K,
including the null terminator.

gsi_set_data() The longest string that this function
can send to G2 Gateway is 64K
characters.

Limits on API Functions

API Function Limits

gsi_return_attrs() The maximum length of strings that
this function can send to G2 is 64K.

gsi_return_message() The maximum length of strings that
this function can return to G2 is 64K.

gsi_return_timed_attrs() The maximum length of strings that
this function can send to G2 is 64K.

gsi_return_timed_values() The maximum length of strings that
this function can send to G2 is 64K.

gsi_return_values() The maximum number of values that
this function can send to G2 in a
single call is 200.

The maximum length of strings that
this function can send to G2 is 64K.
612

Limits on Remote Procedure Calls
Limits on Remote Procedure Calls
Note the following limits on remote procedure calls in G2 Gateway:

• The maximum number of G2 procedures that G2 Gateway can declare and
invoke as remote procedures is 64K.

• The maximum number of arguments in a remote procedure call, from
G2 Gateway to G2 or from G2 to G2 Gateway, is 1024.

• The maximum size of arguments in a remote procedure call, from
G2 Gateway to G2 or from G2 to G2 Gateway, is 64K.

• The maximum number of arguments that a G2 procedure, invoked by
G2 Gateway as a remote procedure, can return to a G2 Gateway return
handler function, is 64K.

• The maximum length of remote procedure names is 64K characters.

• There is no limit on the number of simultaneously executing remote
procedure calls. (In GSI 4.0, the maximum number of simultaneously
executing remote procedure calls is 4,096.)
613

614

F

How G2 and G2 Gateway
Exchange Data
Provides a brief summary of techniques for exchanging data between a
G2 Gateway bridge and a G2 KB.

Introduction 611

Setting an External Data Point and Updating a GSI Variable 612

Receiving Unsolicited Data from a G2 Gateway Bridge 613

Invoking a Local Function in a G2 Gateway Bridge from G2 614

Invoking G2 Procedures and Methods from a G2 Gateway Bridge 616

Exchanging Text Messages Between G2 and a G2 Gateway Bridge 617

Introduction
This appendix contains figures that illustrate how to implement the following
kinds of data exchange between G2 and a G2 Gateway bridge:

• Setting the value of a data point in an external system with the value of a GSI
variable in G2, and updating a GSI variable in G2 with the value of an external
data point.

• Receiving unsolicited data from the G2 Gateway bridge.

• Starting and calling remote procedures in the G2 Gateway bridge, from G2.

• Starting and calling G2 procedures, from the G2 Gateway bridge.

• Sending text messages from G2 to the G2 Gateway bridge, and from the G2
Gateway bridge to G2.
615

Setting an External Data Point and Updating a
GSI Variable

The following figure illustrates how to:

• Run a set action on a GSI variable to update the value of a data point in an
external system, using the value of the GSI variable.

• Run an update action on a GSI variable to update the value of that variable,
using a value retrieved from a data point in an external system.

For more information, see:

• Implementing Data Service in G2 Gateway.

• gsi_get_data.

• gsi_set_data.

• gsi_return_values.

Setting an External Data Point and Updating a GSI Variable

G2 Gateway Bridge G2 Process

GSI variable

set action
gsi_set_data() callback sets the
value of a data point in the
external system. After callback
sets the data point, it can call gsi_
return_values() to echo that value
back to the GSI variable in G2.

gsi_get_data() callback gets a new
value for the GSI variable and calls
gsi_return_values() to return this
value to the GSI variable in G2.

update action or
other G2 event
causing data
seeking on this
GSI variable.

data
value

data
value

GSI variable
616

Receiving Unsolicited Data from a G2 Gateway Bridge
• Returning Solicited Data to G2, for information about when G2 seeks data for
GSI variables.

• G2 Reference Manual, for information about the set and update actions, and
about data seeking for GSI variables.

Receiving Unsolicited Data from a G2 Gateway
Bridge

The following figure illustrates how a G2 Gateway bridge returns unsolicited data
to G2:

For more information, see:

• Sending Unsolicited Data to G2.

• gsi_g2_poll.

• gsi_return_attrs.

• gsi_return_timed_attrs.

• gsi_return_timed_values.

• gsi_return_values.

Receiving Unsolicited Data from a G2 Gateway Bridge

G2 Gateway Bridge G2 Process

Bridge receives values for
GSI variables when:

- gsi_g2_poll() obtains a value from an
external system

- External system reports a changed
value to the bridge

gsi_g2_poll() or other user code invokes
gsi_return_values(), gsi_return_attrs(),
gsi_return_timed _values(), or
gsi_return_timed_attrs() to return value
to GSI variable in G2. GSI variable
617

Invoking a Local Function in a G2 Gateway
Bridge from G2

The following figure illustrates how to:

• Invoke a G2 Gateway local function as a remote procedure using the start
action in G2.

• Invoke a G2 Gateway local function as a remote procedure using the call
statement in a G2 procedure.
618

Invoking a Local Function in a G2 Gateway Bridge from G2
For more information, see:

• Making Remote Procedure Calls from G2 to the G2 Gateway Bridge.

• gsi_rpc_declare_local.

• gsi_rpc_return_values.

• G2 Reference Manual, for information about the start action and the call
procedure statement.

 Invoking G2 Gateway Local Functions From G2

G2 Gateway Bridge G2 Process

Local function receives item or data
value from G2. Local function can
call:

value,
item,
handle,
or item
with
handle.

Remote Procedure Declaration
for GSI local function with no
return value.

start action invokes GSI local
function with no return value.

Remote Procedure Declaration for
GSI local function with return value.

call statement in G2 procedure
invokes GSI local function with
return value.

void gsi_rpc_declare_local
(local-function, g2_function_name)

gsi_rpc_return_values() to
return a value or values to G2
procedure.

gsi_rpc_return_error
_values() to signal error to G2
error object.

Error handler procedure of the G2
procedure, or of a procedure that
calls this procedure, or the default
error handler.

Error handler procedure of the G2
procedure, or of a procedure that
calls this procedure, or the default
error handler.

Local function receives item or data
value from G2.

If an error occurs, local function
can call gsi_rpc_return_error
_values() to signal error to G2
procedure.
619

Invoking G2 Procedures and Methods from a
G2 Gateway Bridge

The following figure illustrates how to call and start a G2 procedure or a method
of a G2 object from the G2 Gateway bridge:

 Invoking G2 Procedures or Methods from a G2 Gateway Bridge

gsi_rpc_call (function-handle,
arguments, context)

gsi_rpc_declare_remote
(function_handle, g2_function,
receiver_function, arg_count, return_count,
context)

G2 Gateway Bridge G2 Process

g2-function, a user-defined
G2 procedure or method of
G2 object, receives value
from G2 Gateway.

receiver_function, a GSI user function,
receives value returned by G2. return statement in

g2-function can
return value to
receiver_function.

gsi_rpc_start (function-handle, arguments,
context)

function_handle_type function-
handle;

gsi_rpc_declare_remote_with_error
_handler_and_user_data (function_handle,
g2_function, receiver_function, error_
handler, user_data, arg_count, return_count,
context)

value,
item,
handle,
or item
with
handle.

Error receiver function, invoked to handle
errors from g2-functions declared with gsi_
rpc_declare_remote_with_error_handler_
and_user_data().

g2_function, a user-
defined G2 procedure or
method of G2 object,
receives value from G2
Gateway.

Standard error handler, invoked to handle
errors from g2-function declared with gsi_
rpc_declare_remote().
620

Exchanging Text Messages Between G2 and a G2 Gateway Bridge
For more information, see:

• Making Remote Procedure Calls from a G2 Gateway Bridge to G2.

• gsi_rpc_declare_remote.

• gsi_rpc_call.

• gsi_rpc_start.

• G2 Reference Manual, for information about the call procedure statement and
about remote procedure declarations.

Exchanging Text Messages Between G2 and a
G2 Gateway Bridge

The following figure illustrates how to:

• Send a text message to a G2 Gateway bridge.

• Send a text message to the G2 Message Board.

For more information, see:

• Message Passing.

• gsi_receive_message.

Exchange of Text Messages Between a G2 Gateway Bridge and G2

G2 Gateway Bridge G2 Process

inform action

GSI
Message
Server

gsi_receive
_message() callback
receives text from
message server and
passes text to external
system.

gsi_return
_message() API
function sends text to
G2 Message Board.

G2 Message
Board

text

text
621

• gsi_return_message.

• G2 Reference Manual, for information about the inform action.
622

G

Upgrading G2 Gateway
Applications
Describes how to upgrade existing GSI applications to the current version of
G2 Gateway.

Introduction 619

Support of Earlier GSI Versions 620

New G2 Gateway 6.0 Features 620

Changes to G2 Gateway 6.0 622

Previously Undocumented Changes in 5.0 623

Upgrading from GSI 4.1 to G2 Gateway to 7.0 624

Upgrading from G2 Gateway 5.0 to 7.0 625

Introduction
This chapter describes the changes introduced by G2 Gateway Version 6.0 from
the previous release of this product, GSI Version 5.1. It also provides upgrade
procedures from GSI 4.1 or G2 Gateway 5.0 to G2 Gateway 7.0.

You can use the information in this chapter as a guideline when you modify
applications based on versions of the product earlier than G2 Gateway 6.0.
623

Support of Earlier GSI Versions
Gensym does not support versions of GSI prior to G2 5.1 Rev. 9. This means that
Gensym will not fix GSI bugs, produce patches, or add functionality to a version
of GSI earlier than G2 5.1 Rev. 9. Customers running earlier versions of GSI
should upgrade to a supported version. Gensym neither recommends nor
supports new bridge development in an unsupported version of G2 Gateway.

All versions of GSI, however, regardless of age, do remain compatible with newer
supported versions of G2. The oldest GSI executable can still run with all
subsequent versions of G2. This means you can run bridges built and compiled on
earlier versions of GSI with G2 5.1 Rev. 0 and higher.

Do not expect, however, your GSI bridge executable to use features from a
version of G2 developed after the GSI version you are using was developed.
Object passing, for example, was introduced in G2 4.0, so a GSI 3.2 bridge running
with G2 4.0 will not have object passing capability.

GSI 4.1 Support Policy

You can still run your GSI 4.1 bridge executables with G2 7.0.

Gensym will no longer ship GSI 4.1, nor will Gensym fix GSI 4.1 bugs, produce
patches, or develop new features in the GSI 4.1 sources in response to developer's
requests.

If you report problems with your GSI 4.1 bridge running on a supported version
of G2, Gensym will evaluate your problem and support fixes required in the G2
sources, but not in the GSI 4.1 sources.

New G2 Gateway 6.0 Features
G2 Gateway Version 6.0 introduced the following changes:

• Support for the Windows 2000/XP and Linux operating systems.

• Increase in the maximum text size from 65,533 to 1 million.

• The ability to return large amounts of data to a G2 array.

In previous versions of G2 Gateway, the limit for returning a G2 array was 65,533.
If data exceeded this amount, G2 Gateway returned the array unappended and
without generating a warning.

In G2 Gateway 6.0, the limit for returning a G2 array has increased to 1 million. If
data is within this limit, G2 Gateway appends the updated values to the end of
the array. If data exceeds this limit, G2 Gateway generates a warning.
624

New G2 Gateway 6.0 Features
New API Functions

gsi_print_backtrace

Prints a backtrace to the console on Sun4 and Solaris platforms.

Synopsis

void gsi_print_backtrace()

Description

gsi_print_backtrace() prints a backtrace to the console. If the G2 Gateway
executable is stripped, G2 Gateway prints a numeric bracktrace; if it is not, G2
Gateway prints a symbolic backtrace. This function is useful for debugging.

New Runtime Options

GSI_PROTECT_INNER_CALLS

After encountering an error, G2 Gateway returns control to the caller rather than
returning control to gsi_run_loop().

For example, suppose gsi_run_loop() calls gsi_receive_deregistrations(),
which then calls an API function. If G2 Gateway encounters an error in the API
function and GSI_PROTECT_INNER_CALLS is not set, it returns control to gsi_
run_loop(). This can cause undesirable results if gsi_receive_
deregistrations() is unable to complete some of its tasks, such as freeing the
memory reserved for registered variables. This same scenario may be applied to
housekeeping activities usually performed by gsi_shutdown_context().

You should be aware that this runtime option can make G2 Gateway API
functions slower, but it prevents a potential cause of G2 Gateway aborts and
protocol-out-of-synchronization problems. However, using the GSI_PROTECT_
INNER_CALLS runtime option can prevent hangs in applications that use the
gsi_run_state_change callback.

This runtime option was introduced in G2 Gateway 5.0 but not previously
documented.

Description

gsi_set_option(GSI_PROTECT_INNER_CALLS) returns control to the caller rather
than returning control to gsi_run_loop() after encountering an error.

gsi_reset_option(GSI_PROTECT_INNER_CALLS) returns control to gsi_run_
loop() after encountering an error. This is the default.
625

GSI_TRACE_RUN_LOOP

Prints a message whenever gsi_start() or gsi_run_loop() are entered or
exited.

Description

gsi_set_option(GSI_TRACE_RUN_LOOP) causes messages to print whenever gsi_
start() or gsi_run_loop() are entered or exited.

gsi_reset_option(GSI_TRACE_RUN_LOOP) disables this option. This is the
default.

This runtime option was introduced in G2 Gateway 5.0 but not previously
documented.

Changes to G2 Gateway 6.0

Make File Changes

Some of the libraries with which G2 Gateway 6.0 applications link are different
than the ones with which G2 Gateway 5.1 linked.

On Windows platforms, G2 Gateway 6.0 no longer uses the $(conlibs) library
and links with $(guilibsmt) in place of the $(guilibs) library. See Compiling
and Linking G2 Gateway on Windows for more information.

On Solaris platforms, the dynamic loader library (-ldl) should be included in
your make file when linking your G2 Gateway application. This switch is now
included in the sample make file provided with G2 Gateway.

gsi_main.c Changes

The gsi_main.c file included with your version of G2 Gateway now includes a
call to GSI_SET_OPTIONS_FROM_COMPILE(), which is a C macro that sets options
based on settings of the C preprocessor flags. If you are not using the standard
gsi_main.c file, you should include a call to GSI_SET_OPTIONS_FROM_COMPILE()
before the call to gsi_start() in your gsi_main.c main() function.

gsi_misc.h Changes

The gsi_misc.h file has been updated so that you no longer need to add the
extern C declaration when linking with C++ applications.

Superseded Practices

VMS is not supported for G2 Gateway 6.0 Rev. 0 and higher.
626

Previously Undocumented Changes in 5.0
32-bit and 64-bit Support for G2 Gateway

Gensym is continually updating support for G2 Gateway to operate in 32-bit and
64-bit environments. See the Release Notes for the most up-to-date information
about running G2 Gateway in your environment.

The following table lists the Application Binary Interface (ABI) with which G2
Gateway can operate for each supported operating system.

For compatibility with G2 Gateway libraries, you must compile and link your
applications in the modes listed in the above table. If your compiler is setup for
some other mode, you must set the flags necessary to conform to these settings.
The flags to set differ depending on the operating system and your system’s
configuration. Consult the documentation for your system to determine which
flags to set.

G2 Gateway provides a separate component called G2 Gateway (GSI) for HP-UX
Itanium, which is available on HP platforms only. This component installs into
the gsi-itanium directory in the G2 bundle installation directory, a parallel
directory to the gsi directory. The GSI libraries and examples in the gsi-itanium
directory have been compiled on an HP Itanium machine running HP-UX 11.23,
and are in the native ELF format. All other files in the G2 bundle on the HP
platform are compiled and linked on a PA-RISC machine running HP-UX 11.00
and will run in compatibility mode on the HP Itanium machine under HP-UX
11.23.

Previously Undocumented Changes in 5.0
Beginning with G2 Gateway 5.0 Rev. 0, handle assignments begin with the
number 1. Prior to 5.0 Rev. 0, handle assignments began with the number 2.

G2 Gateway Processor Support

Operating System ABI

Compaq Tru64 Unix Alpha (ECOFF)

HP HP-UX 11.00 and HP-UX 11i V2 HP9000 (PA-RISC 2.0)

HP HP-UX 11.23 HP Itanium

IBM AIX RS/6000 (32-bit XCOFF)

Microsoft Windows NT4/2000/XP (32-bit COFF)

RedHat Linux Intel (32-bit ELF)

Sun Solaris Sparc (32-bit ELF)
627

A handle is an integer that uniquely identifies items passed between G2 to G2
Gateway. A handle is assigned to all registered variables and can be assigned to
items passed as arguments to remote procedure calls between G2 and G2
Gateway. If G2 Gateway is version 5.0 or higher, G2 sets the first handle
assignment to 1. If the G2 Gateway (or GSI) version is prior to 5.0, G2 sets the first
handle assignment to 2.

In versions prior to 5.0, G2 Gateway deregistered large numbers of GSI variables
in batches. One call to gsi_receive_deregistrations() could derigister up to 48
variables. Beginning with 5.0, G2 Gateway deregisters variables one at time. In
other words, each variable requires a separate call to gsi_receive_
deregistrations(). This change should not affect performance. Although
incorporated in 5.0, this change of functionality was not previously documented.

Changes to API Functions in G2 Gateway 5.0

This section lists the G2 Gateway API functions whose functionality or calling
signature is different from what it was in previous versions.

gsi_watch_fd() functionality change. Starting with G2 Gateway 5.0, you can
only call gsi_watch_fd() on open file descriptors. This functionality change was
not documented in 5.0.

gsi_unwatch_fd() functionality change. Starting with G2 Gateway 5.0, you must
also call gsi_unwatch_fd() before closing the file descriptor. This functionality
change was not documented in 5.0.

Upgrading from GSI 4.1 to G2 Gateway to 7.0
After upgrading from GSI 4.0 to G2 Gateway 7.0, you must update your current
files so that they are compatible with the new version. If you do not, your
applications will not run due to version inconsistencies. If you have already
upgrade from Version 4.1 to Version 6.0, these steps are not necessary.

To update your files:

1 Replace all G2 Gateway libraries with the 7.0 versions of these files.

2 Replace the header files gsi_main.h and gsi_misc.h with the G2 Gateway 7.0
versions.

3 Incorporate the changes from gsi_main.c and gsi_misc.c into your
applications.

If you have not made changes to these files, you can simply compile and link
your applications with the 7.0 versions of the files. You should be aware that
there is a new version control variable, GSI_INCLUDE_REV_VER_NUM, in gsi_
main.c. The syntax in gsi_main.c:
628

Upgrading from G2 Gateway 5.0 to 7.0
gsi_set_include_file_version(
GSI_INCLUDE_MAJ_VER_NUM,
GSI_INCLUDE_MIN_VER_NUM,
GSI_INCLUDE_REV_VER_NUM);

If you have incorporated the contents of gsi_main.c or gsi_misc.c into
your source code or if you have additional information added to them,
you should update them with the changes in the new files. The syntax to
add the new version control variable, GSI_INCLUDE_REV_VER_NUM, is:

gsi_include_file_revision_version =
GSI_INCLUDE_REV_VER_NUM;

4 Edit your code so that it agrees with any changes made to the signature of the
G2 Gateway API functions. See the section, Changes to API Functions in G2
Gateway 5.0 for a list of changes.

Upgrading from G2 Gateway 5.0 to 7.0
After upgrading from G2 Gateway 5.0 to 7.0, you must update your current files
so that they are compatible with the new version. If you have already upgraded
from Version 5.0 to Version 6.0, and you are now upgrading to Version 7.0, these
steps are not necessary. If you do not make these changes, your applications will
not run due to version inconsistencies. To update your files:

1 Replace all G2 Gateway libraries with the 7.0 versions of these files.

2 Replace the header files gsi_main.h and gsi_misc.h with the G2 Gateway 7.0
versions.

3 Incorporate the changes from gsi_main.c and gsi_misc.c into your
applications.

If you have not made changes to these files, you can simply compile and link
your applications with the 7.0 versions of the files.

If you have incorporated the contents of gsi_main.c or gsi_misc.c into your
source code or if you have additional information added to them, you should
update them with the changes in the new files.

4 Edit your code so that it agrees with any changes made to the signature of the
G2 Gateway API functions. See the section, Changes to API Functions in G2
Gateway 5.0 for a list of changes.
629

630

Glossary
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A

access functions: A library of API functions provided with G2 Gateway that
enable your user code to access information in the internal G2 Gateway data
structures gsi_registration, gsi_registered_item, gsi_item, and gsi_attr.
For information about the access functions provided with G2 Gateway, see API
Functions.

application programmer interface (API): A formally defined programming
language interface. G2 Gateway provides its own library of API functions, which
you need in order to develop the user code of your G2 Gateway application. For
information about the API functions provided with G2 Gateway, see API
Functions.

The external system to which you are building the bridge may also provide an
API to enable a bridge process to communicate with the external system. If you
use this API, you must link it to the bridge, usually as an object library. The API of
your external system is an optional part of a G2 Gateway application (not
required for it to function). It is not provided by Gensym. Most APIs are
developed on site or by a third-party vendor.

B

bridge: A software application that provides an interface between G2 and some
external application, device, or system. If a bridge is not provided by Gensym for
your external application, you can create your own bridge, using G2 Gateway to
complete the bridge source code. The bridge source code includes G2 Gateway
libraries and standard G2 Gateway functions for transmitting data values and text
messages, and for starting, pausing, resuming, and stopping the external system.
See also bridge process and stub functions.

bridge process: A running executable that connects the G2 process to the external
system. The bridge process consists of G2 Gateway libraries of API functions, G2
Gateway callback functions that you complete to suit your application, and an
optional API to an external system, provided by you or by a third-party
developer. See also application programmer interface, G2 process, G2 Standard
Interface, and user code.
631

C

call: An action in G2 that can be used to invoke a remote procedure in the bridge
process and to return values from that procedure. This action is also used from
within G2 procedures to invoke other G2 procedures. See also start and remote
procedure call.

call handle: An integer that G2 generates to identify a particular remote
procedure call to a G2 Gateway local function, within the current context. The API
function gsi_rpc_return_values() references the call handle to indicate which
outstanding remote procedure call, within the specified context, to return values
to in G2.

callback functions: Functions that form the basis of your user code. G2 Gateway
invokes callback functions automatically, when network events occur on a
connection to a G2 KB. Each callback is invoked to respond to a particular event,
such as the activation of a GSI interface or a request by G2 for a value for a GSI
variable. Your user code never needs to invoke callback functions explicitly, and
should not attempt to do so.

Callback functions are invoked only while your G2 Gateway bridge process is
executing under the control of gsi_run_loop(), the API function that establishes
the main event-processing loop of your G2 Gateway bridge process.

See also skeleton file and stub functions.

communications link: The physical link that enables the G2 process and the G2
Gateway bridge process to communicate with each other. The link includes a
transport layer protocol (TCP/IP) and Gensym’s Intelligent Communications
Protocol (ICP). The transport layer protocol used depends on the platform that
you are using. See also Intelligent Communications Protocol and TCP/IP.

context: A connection between an instance of a GSI interface residing in a G2
knowledge base and a bridge process. You can have multiple contexts between a
single bridge process and one or more GSI interfaces in one or more G2 processes.
See also current context.

Continuous Mode: The default operational mode of a G2 Gateway bridge
process. When a bridge is running in continuous mode, gsi_start() invokes the
API function gsi_run_loop() repeatedly. gsi_run_loop() returns control only
when a fatal error occurs.

Continuous mode is the better mode for polling an external system for data. The
bridge can poll the external system using the callback function gsi_g2_poll(),
which is invoked by G2 Gateway approximately once per second.

See also One-Cycle Mode and G2 Gateway options.

current context: The one connection (out of many possible connections) between
the G2 Gateway bridge process and a G2 KB that is being served by the G2
Gateway bridge process at the present time. G2 Gateway uses an integer (gsi_
632

int) to identify each context. The API function gsi_current_context() returns
the number of the current context. You can use a macro, current_context, to
access gsi_current_context(). Note that macros are not available if you define
__GENSYM_NOALIAS__ when you compile your G2 Gateway bridge. See also
context.

D

data point: A value in an external system, represented in a G2 knowledge base by
a GSI variable. Your G2 KB can use the GSI variable to read from and write to the
data point.

data seeking: Providing values for variables. Data seeking occurs when a GSI
variable has the value gsi-data-server in its data-server attribute, and either of the
following conditions is true: the variable’s default-update-interval expires, or G2
requires a value from the last-recorded-value attribute of the variable and the
value of this attribute has expired or is set to no value. Data seeking causes the
function gsi_get_data() to be called within the bridge.

data server: Supplies the G2 process with data from a real, simulated, or recorded
environment. G2 Gateway is one possible data server for objects in G2.

In addition, data-server is the name of an attribute of a g2-variable that specifies
the data server from which the variable receives its values. If the data-server
attribute is specified as gsi-data-server, the variable receives a value from an
external system through G2 Gateway. The data server of a GSI variable must be
gsi-data-server. See also G2 Gateway and GSI variable.

E

echo: The return to G2 of a value that has been set in the external system. When
G2 executes a set action (for example, within a rule or procedure), a value is set
for an external variable that corresponds to a GSI variable in G2. The value is first
transferred over to G2 Gateway. G2 Gateway calls the function gsi_set_data()
in the bridge to get the value resulting from the set action to the external system.
After the value is set in the external system, the function gsi_return_values()
can be used to return, or “echo”, the value to the GSI variable that corresponds to
the external variable. To ensure that the GSI variable is also set to the new value,
the value must be echoed back to G2.

external system: An application or system being directly affected or controlled by
the G2 Gateway bridge process, such as a database or a PLC. Also, equipment or
sensors dependent upon the system (external data points are often embodied by
such equipment or sensors).
633

F

function handle: An integer used by G2 Gateway to identify the G2 procedure to
which you are making a remote procedure call. In your G2 Gateway user code,
you must declare a function handle as a variable of type gsi_int; as the name of
this variable, you can specify the name of the G2 procedure, so that you can know
which G2 procedure the handle refers to. You must specify the function handle
variable as the first argument of gsi_rpc_declare_remote() when you call this
API function to declare the G2 procedure.

G

G2 application: A system that uses one or more G2 processes to provide real-time
reasoning and data processing.

G2 Gateway standard interface (GSI): A network-oriented toolkit that enables
you to develop a bridge between G2 and an external system.

G2 process: A running G2 executable. A G2 process that uses G2 Gateway
contains a GSI interface configured for communication with a G2 Gateway bridge
process. The G2 process contains objects that exchange data with an external
system through the G2 Gateway bridge. See also bridge, bridge process, GSI
interface, and GSI variable.

Grouping: Using the values of the identifying attributes of GSI variables to
indicate how requests for data (to update the values of the variables) are to be
sorted and grouped. Requests are grouped according to the values of the
identifying attributes that the variables have in common. You specify the
identifying attributes by which to group requests in the grouping-specification
attribute of a GSI interface used by the variables. G2 packs data requests together
according to the specified attributes. See also GSI variable and identifying attributes.

gsi-interface class: A G2 standard class (gsi-interface). You can create a GSI
interface as an instance of this class, or as an instance of a class that inherits from
gsi-interface. See also GSI interface and GSI variable.

GSI interface: A user-created instance of the gsi-interface class, or of a class that
inherits from gsi-interface. This object is configured for use by GSI variables and
remote procedure calls to exchange data values and text messages with an
external system.

You must create and configure a GSI interface for each connection between a G2
knowledge base and a G2 Gateway bridge process. You edit attributes of the GSI
interface to configure one connection between G2 and a G2 Gateway bridge.

A GSI interface identifies a G2 Gateway bridge process with which the G2 process
will attempt to establish a network connection, indicates whether the G2 Gateway
bridge will receive unsolicited data from the external system, specifies whether
G2 or the G2 Gateway bridge determines when data is passed from the bridge to
G2, designates the identifying attributes of classes of GSI variables, and records
634

the current status of this particular connection between G2 and the G2 Gateway
bridge process.

See also identifying attributes, GSI interface class and GSI variable.

GSI Message Server: A user-defined G2 object or message class that includes
gsi-message-service as one of its direct superior classes. You run an inform action
on a GSI message server to send a message to an external system. See also inform.

G2 Gateway options: Modes of operation that affect the runtime behavior of a G2
Gateway bridge process. You can set (turn on) or reset (turn off) the runtime
options in the gsi_set_up() callback function, using the macros gsi_set_
option() and gsi_reset_option(). All options are turned off (reset) by default.

GSI variable: A user-created instance of a GSI variable class, used by a G2 KB to
read from and write to a data point in an external system. A G2 KB can use GSI
variables to send values to and read values from data points in an external
system. The current (last received) value of a GSI variable is stored in its last-
recorded-value attributives information about G2 variables, see the G2 Reference
Manual. See also data server, GSI interface, GSI variable class, and identifying
attributes.

GSI variable class: A user-defined class definition, which includes among its
direct superior classes one of the standard variable classes (integer-variable, float-
variable, quantitative-variable, logical-variable, symbolic-variable, text-variable, or
sensor), as well as the G2 mixin class gsi-data-service.

You create instances of GSI variable classes to represent individual data points in
external systems. See also data server, GSI interface, GSI variable, and identifying
attributes.

H

handle: See call handle and item handle.

history: The past values of a variable or parameter. Each value is stored with the
date and collections time.

I

identifying attributes: A group of one to six attributes of a GSI variable, used by
the G2 Gateway bridge to maintain a one-to-one mapping between that variable
and the G2 Gateway data structure that represents the variable in the bridge.
Identifying attributes can also be used by G2 to group data requests for GSI
variables.

Identifying attributes provide a unique identifier for each GSI variable. The
values of the identifying attributes of each GSI variable must distinguish that GSI
variable from all other variables in the KB.
635

You specify which attributes of a GSI variable class are to be used as identifying
attributes in the identifying-attributes attribute of the GSI interface. The gsi-
interface-name attribute of each GSI variable must refer to the GSI interface that
designates the identifying attributes for that variable’s class.

The identifying attributes of a GSI variable must be user-defined attributes —
either class-specific-attributes of the GSI variable’s own class, or class-specific-
attributes that the GSI variable inherits from a superior class.

Data should not be returned to identifying attributes of GSI variables.

inform: An action in G2 that sends a text message to a specified destination in an
external system. When you run an inform action on a GSI message server in G2,
G2 Gateway calls the callback function gsi_receive_message() to receive the
message from G2 and send it to the external system. See also GSI Message Server.

Intelligent Communications Protocol (ICP): Gensym’s proprietary
communications protocol, which enables G2 Gateway to communicate with an
external system over a network. ICP is used to share information and distribute
control among one or more G2 processes, G2 Gateway bridge processes,
Telewindows, and other applications. ICP is a layer built on top of the TCP/IP
networking protocol, depending on which platforms you are using in your
network. Note that ICP is not visible to the G2 Gateway user. See also
communications link.

item handle: An integer identifier that G2 generates to identify a G2 item that it
registers with the bridge, or that it passes to the G2 Gateway bridge through a
remote procedure call declared with the as handle grammar. G2 Gateway assigns
the item handle to the gsi_registration, gsi_registered_item, and gsi_item
data structures this it uses to perform data service for a GSI variable. G2 Gateway
assigns an item handle to the gsi_registration and gsi_item that it generates
when it receives a G2 object that G2 passes to it through a remote procedure call
declared using the as handle grammar.

J

One-Cycle Mode: The operational mode of a G2 Gateway bridge process. When
the bridge is running in one-cycle mode, the function gsi_run_loop() is called,
receives control, performs any outstanding tasks while it has control, and returns
control to the user-written event loop in the bridge. This loop must make periodic
calls to gsi_run_loop() to process network events.

One-cycle mode is the better mode for bridges designed to respond to network
activity on connections to external systems, rather than to poll the external
systems actively. You can use the API function gsi_watch_fd() to designate the
connections to external systems that the bridge watches for network activity. One-
cycle mode can be selected in the gsi_set_up() callback using the macro gsi_
set_option(GSI_ONE_CYCLE).

See also Continuous Mode and G2 Gateway options.
636

L

listener: A G2 process that listens for a network connection to a bridge process.
The G2 Gateway API function gsi_start() takes as input the argc and argv
arguments that were passed to the main() function of your G2 Gateway program
and uses these arguments to set up listeners as specified in the command line.

P

preprocessor macro: A macro directs the C preprocessor to substitute one string
of characters for another string or replace a list with another list. For example, G2
Gateway uses the __GENSYMKR__ to enable you to force the use of Kernighan
and Ritchie style function declarations, when using a compiler that supports
ANSI C prototypes.

programmable logic controller (PLC): A part of the external system that sends
and receives signals to factory equipment. The equipment is directly controlled or
measured by the PLC. The G2 Gateway bridge process can communicate with the
PLC using a data path, such as a serial line, data bus, or Ethernet connection.

R

real time: Refers to the default value for the scheduler-mode attribute in the
Timing Parameters system table of G2. The scheduler-mode attribute determines
how G2 schedules tasks. In real-time mode, a G2 clock-tick corresponds to one
second of real time. For more information, see the G2 Reference Manual.

receiver function: A user-written function in your G2 Gateway user code that
receives return values from a G2 procedure that your G2 Gateway bridge invokes
as a remote procedure.

remote procedure call (RPC): A programming language procedure contained in
the bridge is considered a remote procedure when called from G2; likewise, a G2
procedure is considered a remote procedure to G2 Gateway when called from
within the bridge. Both kinds of RPC can have more than one calling argument,
and can return values if called rather than started. See also call and start.

runtime option: Most of the G2 Gateway C preprocessor macros have
corresponding runtime options that, at run time, you can use to select or deselect
the option defined by the macro. The functions gsi_set_option() and gsi_
reset_option() set and reset G2 Gateway options, using the name of an option
as their single argument.

S

set: An action in G2 that sends a data value through a GSI variable and its GSI
interface to the bridge process. G2 Gateway receives the request and calls the
callback function gsi_set_data(). You code gsi_set_data() to set the value of
637

the external data point in the external system. You can optionally echo the value
set in the external system back to the corresponding variable in G2 using the API
function gsi_return_values(). See also echo.

skeleton file: A file named skeleton.c, provided with GSI. It contains an empty
stub version of each G2 Gateway callback function. You complete the code of the
stub functions as needed for your G2 Gateway bridge.

In order for your user code to link successfully, it must include all the callback
functions in skeleton.c. If you do not intend to use a particular callback
function, you must nevertheless include the stub version of that callback in your
user code.

See also callback functions and stub functions.

solicited data: Data returned to GSI variables in G2 only by GSI data seeking (G2
solicits the bridge process for data). Contrast with unsolicited data. See also data
seeking.

start: An action in G2 that starts a remote procedure in the bridge process, which
cannot return values. It is also used to start G2 procedures. See also call and remote
procedure call.

string conversion style: A character set that contains all the characters in the
Unicode character set. G2 5.0 uses the Unicode character set for all strings. You
can cause G2 Gateway to use the string conversion style by compiling your G2
Gateway application with the GSI_WIDE_STRING_API preprocessor macro set, by
setting the GSI_STRING_CHECK runtime option, or by calling the API function gsi_
set_string_conversion_style().

stub functions: Empty versions of callback functions provided in the source file
called skeleton.c. You complete the code of stub functions as needed for your
G2 Gateway bridge. Copy the skeleton.c file to form the basis of your own
source file, and then complete the code of the stub functions, as required by your
application.

In order for your user code to link successfully, it must include all the callback
functions in skeleton.c. If you do not intend to use a particular callback
function, you must nevertheless include the stub version of that callback in your
user code. See also callback functions and skeleton file.

T

TCP/IP: A transportation level protocol used in the communications link between
a G2 process and a bridge process. This protocol is available on each of the
supported platforms and is the default protocol for all platforms. See also
communications link.

timestamp: The collection time of a data value. The G2 Gateway data structure
gsi_item contains a component history times, which is used to store
timestamps. The history-keeping-spec attribute of a GSI variable indicates
638

whether to keep a history of values for the variable. If history keeping is enabled
for a variable, timestamp information is returned to the variable along with each
new data value, and G2 stores the timestamp information in the history for that
variable.

U

unsolicited data: Data returned to a variable in G2 by the bridge process without
G2 making a prior request for the data. Unsolicited data is always returned to G2
from within gsi_g2_poll(). The poll-external-system-for-data attribute of the GSI
interface used by the variable must be set to yes for gsi_g2_poll() to be called
once every G2 cycle. See also solicited data.

user code: The portion of the bridge process that is coded by you the G2 Gateway
user, and is specific to your application. See also callback functions and stub
functions.

user data: To store application-specific information on the objects that your
application registers with G2 Gateway, you can have your G2 Gateway user code
associate data with the following data structures:

• gsi_registration

• gsi_registered_item

• gsi_item

• gsi_attr

• gsi_symbol
639

640

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
abbreviated function names for API functions
aliases for function names
allocating

gsi_attr structures with embedded gsi_
item structures, using gsi_make_attrs_
with_items()

gsi_attr structures, using gsi_make_
attrs()

gsi_item structures, using gsi_make_
items()

gsi_registered_item structures, using gsi_
make_registered_item()

ANSI C prototypes for API functions
disabling in G2 Gateway 5.0
in G2 Gateway 5.0

API functions
abbreviated function names for
ANSI C prototypes for
arguments of that set G2 identifiers

expressed in uppercase letters
for accessing data structures
for error handling
for managing data structures
for passing messages
for performing data service
functional groups of
gsi_attr_by_name()
gsi_attr_count_of()
gsi_attr_is_transient()
gsi_attr_name_is_qualified()
gsi_attr_name_of()
gsi_attrs_of()
gsi_class_name_of()
gsi_class_qualifier_of()
gsi_class_type_of()
gsi_clear_item()
gsi_clear_last_error()
gsi_close_listeners
gsi_context_is_secure()
gsi_context_received_data()
gsi_context_remote_host()
gsi_context_remote_listener_port()
gsi_context_remote_process_start_time()
gsi_context_socket()
gsi_context_user_data()
gsi_convert_string_to_unicode
gsi_convert_unicode_to_string()
gsi_convert_unicode_to_wide_string()
gsi_convert_wide_string_to_unicode()
gsi_current_context_is_secure()
gsi_current_context()
gsi_decode_timestamp()
gsi_element_count_of()
gsi_elements_of()
gsi_encode_timestamp()
gsi_error_message()
gsi_establish_listener
gsi_establish_secure_listener
gsi_extract_history_spec()
gsi_extract_history()
gsi_flt_array_of()
gsi_flt_list_of()
gsi_flt_of()
gsi_flush()
gsi_handle_of()
gsi_history_count_of()
gsi_history_type_of()
gsi_identifying_attr_of()
gsi_initialize_callbacks()
gsi_initialize_error_variable()
gsi_initialize_for_win32()
gsi_initiate_connection()
gsi_initiate_secure_connection()
gsi_inititate_connection_with_user_
data()

gsi_inititate_secure_connection_with_
user_data()

gsi_install_error_handler()
gsi_int_array_of()
gsi_int_list_of()
gsi_int_of()
gsi_interval_of()
gsi_is_item()
gsi_item_of_attr_by_name()
gsi_item_of_attr()
gsi_item_of_identifying_attr_of()
gsi_item_of_registered_item()
gsi_kill_context()
gsi_last_error_call_handle()
gsi_last_error_message()
gsi_last_error()
gsi_listener_socket()
gsi_log_array_of()
gsi_log_list_of()
gsi_log_of()
gsi_make_array()
gsi_make_attrs_with_items()
gsi_make_attrs()
641

gsi_make_item()
gsi_make_items()
gsi_make_registered_items()
gsi_make_symbol()
gsi_name_of()
gsi_option_is_set()
gsi_owner_of()
gsi_pause()
gsi_print_backtrace()
gsi_reclaim_array()
gsi_reclaim_attrs_with_items()
gsi_reclaim_attrs()
gsi_reclaim_item()
gsi_reclaim_items()
gsi_reclaim_registered_items()
gsi_registration_of_handle()
gsi_registration_of_item()
gsi_reset_option()
gsi_return_attrs()
gsi_return_message()
gsi_return_timed_attrs()
gsi_return_timed_values()
gsi_return_values()
gsi_rpc_call_with_count()
gsi_rpc_call()
gsi_rpc_declare_local()
gsi_rpc_declare_remote_with_error_
handler_and_user_data()

gsi_rpc_declare_remote()
gsi_rpc_return_error_values()
gsi_rpc_return_values()
gsi_rpc_start_with_count()
gsi_rpc_start()
gsi_run_loop()
gsi_set_attr_by_name()
gsi_set_attr_count()
gsi_set_attr_is_transient()
gsi_set_attr_name()
gsi_set_attrs()
gsi_set_class_name()
gsi_set_class_qualifier()
gsi_set_class_type()
gsi_set_context_limit()
gsi_set_context_user_data()
gsi_set_element_count()
gsi_set_elements()
gsi_set_flt_array()
gsi_set_flt_list()
gsi_set_flt()
gsi_set_handle()
gsi_set_history()
gsi_set_include_file_version()
gsi_set_int_array()
gsi_set_int_list()
gsi_set_int()
gsi_set_interval()
gsi_set_item_append_flag()
gsi_set_item_of_attr_by_name()
gsi_set_item_of_attr()
gsi_set_log_array()
gsi_set_log_list()
642
gsi_set_log()
gsi_set_name()
gsi_set_option()
gsi_set_pause_timeout()
gsi_set_rpc_remote_return_exclude_user_
attrs

gsi_set_rpc_remote_return_include_all_
system_attrs_except

gsi_set_rpc_remote_return_include_
system_attrs

gsi_set_rpc_remote_return_value_kind()
gsi_set_run_loop_timeout()
gsi_set_status()
gsi_set_str_array()
gsi_set_str_list()
gsi_set_str()
gsi_set_string_conversion_style()
gsi_set_sym_array()
gsi_set_sym_list()
gsi_set_sym()
gsi_set_symbol_user_data()
gsi_set_timestamp()
gsi_set_type()
gsi_set_unqualified_attr_name()
gsi_set_update_items_in_lists_and_
arrays_flag()

gsi_set_user_data()
gsi_set_usv()
gsi_signal_error()
gsi_signal_handler()
gsi_simple_content_copy()
gsi_start()
gsi_status_of()
gsi_str_array_of()
gsi_str_list_of()
gsi_str_of()
gsi_string_conversion_style()
gsi_sym_array_of()
gsi_sym_list_of()
gsi_sym_of()
gsi_symbol_name()
gsi_symbol_user_data()
gsi_timestamp_of()
gsi_type_of()
gsi_unqualified_attr_name_of()
gsi_unwatch_fd_for_writing()
gsi_unwatch_fd()
gsi_update_items_in_lists_and_arrays_
flag()

gsi_user_data_of()
gsi_usv_length_of()
gsi_usv_of()
gsi_version_information
gsi_wakeup()
gsi_watch_fd_for_writing()
gsi_watch_fd()
gsi_watchdog()

header file gsi_main.h required by
remote procedures and
that allocate a gsi_symbol data structure

that allocate and reclaim gsi_attr data
structures

that return gsi_attr data structures
thread-safety not a feature of

application initialization using callback
functions

arrays
setting count of elements in, using gsi_
set_element_count()

attribute count component of gsi_item data
structures

attribute names
returning class-qualified parts of, using
gsi_class_qualifier_of()

attributes component of gsi_item data
structures

B
bridges

building on UNIX
building on Windows
compiling on UNIX
compiling on Windows
developing with only remote procedure

calls
flow of control in
G2 Gateway files required by
running on UNIX
running on Windows
starting from G2
steps for developing

building bridges
on UNIX
on Windows

C
c

Program Filesgensymg2-8.0r0gsi cl
skeleton.c gsi_main.obj gsimmain.obj
libgsi.lib libtcp.lib librtl.lib libc.lib
kernel32.lib advapi32.lib user32.lib
wsock32.lib gdi32.lib -Feskeleton.exe -Ic

Program Filesgensymg2-8.0r0gsi -link
C Preprocessor Flags

See preprocessor flags
C preprocessor flags

See preprocessor flags
call identifiers in remote procedure calls
callback functions
automatically invoked by G2 Gateway
declaring standard
deleting internal mappings with gsi_
receive_deregistrations()

for application initialization
for connection management
for data service
for managing connections
for message passing
G2 Gateway 5.0 callbacks
GSI 4.1 callbacks
gsi_close_fd()
gsi_error_handler()
gsi_get_data()
gsi_get_tcp_port()
gsi_get_tcp_port() (invoking)
gsi_initialize_context()
gsi_missing_procedure_handler()
gsi_not_writing_fd()
gsi_open_fd()
gsi_pause_context()
gsi_receive_deregistrations()
gsi_receive_message()
gsi_receive_registration()
gsi_reset_context()
gsi_resume_context()
gsi_run_state_change()
gsi_set_data()
gsi_set_up()
gsi_shutdown_context()
gsi_start_context()
gsi_write_callback()
gsi_writing_fd()

invoked only under control of gsi_run_
loop()

return values of
stub versions for G2 Gateway 5.0 callbacks
stub versions for GSI 4.1 callbacks
stub versions in skeleton.c
that access gsi_registered_item data

structures
callbacks

new in G2 Gateway 5.0
gsi_read_callback()

cert command-line option
class name component

of gsi_registration data structure
class name component of gsi_item data

structures
class-qualified attribute names

changing qualified part of, using gsi_set_
class_qualifier()
643

determining whether a name is class-
qualified, using gsi_attr_name_is_
qualified()

returning qualified part of, using gsi_
class_qualifier_of()

command-line options
cert
connect
connect-class-name
connect-host
connect-initialization-string
connect-interface-name
connect-network
connect-port
help
log
noconnect
nolistener
rgn1lmt
rgn2lmt
secure
tcpipexact
tcpport

compile time switches
See preprocessor macros

compiling bridges
on UNIX
on Windows

compiling G2 Gateway on UNIX
compiling G2 Gateway on Windows
configuring

connections between G2 and G2 Gateway
connect command-line option
connect-class-name command-line option
connect-host command-line options
connect-initialization-string command-line

option
connect-interface-name command-line option
connection management callback functions
connections

configuring
initializing
initiating from the G2 Gateway bridge

process
initiating secure
pausing
resuming after a pause
shutting down

connectivity problems
connect-network command-line option
connect-port command-line option
constants

FALSE
GSI_ACCEPT
644
GSI_CALL_HANDLE_OF_START
GSI_FALSE
GSI_FLOAT64_ARRAY_TAG
GSI_FLOAT64_LIST_TAG
GSI_FLOAT64_TAG
GSI_HANDLE_TAG
GSI_INTEGER_ARRAY_TAG
GSI_INTEGER_LIST_TAG
GSI_INTEGER_TAG
GSI_IO_BLOCKED
GSI_IO_UNBLOCKED
GSI_ITEM_ARRAY_TAG
GSI_ITEM_LIST_TAG
GSI_ITEM_OR_VALUE_ARRAY_TAG
GSI_ITEM_OR_VALUE_LIST_TAG
GSI_ITEM_TAG
GSI_LOGICAL_ARRAY_TAG
GSI_LOGICAL_LIST_TAG
GSI_LOGICAL_TAG
GSI_NULL_TAG
GSI_PORT_NUM
GSI_QUANTITY_ARRAY_TAG
GSI_QUANTITY_LIST_TAG
GSI_QUANTITY_TAG
GSI_REJECT
GSI_SEQUENCE_TAG
GSI_STRING_ARRAY_TAG
GSI_STRING_LIST_TAG
GSI_STRING_TAG
GSI_STRUCTURE_TAG
GSI_SYMBOL_ARRAY_TAG
GSI_SYMBOL_LIST_TAG
GSI_SYMBOL_TAG
GSI_TRUE
GSI_UNDEFINED_CONTEXT
GSI_VALUE_ARRAY_TAG
GSI_VALUE_LIST_TAG
GSI_VALUE_TAG
GSI_VOID_INDEX
MAX_G2_INTEGER
MIN_G2_INTEGER
NO_ERR
NULL_PTR
TRUE

contexts
defined
determining whether secure
determining whether there was network

activity in during most recent invocation
of gsi_run_loop()

error that shut down
flushing write buffers of, using gsi_
flush()

maximum number that G2 Gateway can
manage

pausing
resuming after a pause

returning file descriptors associated with,
using gsi_context_socket()

returning number of the current, using
gsi_current_context()

shut down after error
shutting down using gsi_shutdown_
context()

shutting down, using gsi_kill_context()
write buffer sizes of

continuous mode
error handling in
gsi_run_loop() in

interruptible sleep in
main() function in
recommended use for

controlling
message interleaving

current_context macro for gsi_current_
context()

Customer Support Hotline
customer support services
customized error handlers

when called
writing

D
data

echoing back to G2
grouping requests for
solicited

data collection problems
data service

API functions for performing
callback functions used in
implementing in a G2 Gateway bridge
solicited
unsolicited

data structures
accessing components of
allocating and reclaiming explicitly, in

your G2 Gateway user code
API functions for accessing
API functions for managing
for storing information associated with

registered items
gsi_attr
gsi_item
gsi_registered_item
gsi_registration
gsi_symbol

kinds of data transfer operations
referencing in user code
setting type of to null
summary of
summary of API functions for accessing
type tags of
used in setting the value of an external

data point
used in solicited updates of values of G2

Gateway variables
used to support object passing
used to support passing items as handles
used to support unsolicited updates of G2

Gateway variables
data transmission problems
data types

float
gsi_call_identifier_type
gsi_context_user_data_type
gsi_function_handle_type
gsi_item_user_data_type
gsi_procedure_user_data_type
gsi_rpc_local_fn_type
gsi_rpc_receiver_fn_type
gsi_struct
gsi_symbol
gsi_symbol_user_data_type

handle
integer
logical
null
sequence
string
structure
symbol
wide string

data-server-for-messages attribute of GSI
message servers

deallocating
gsi_attr structures with embedded gsi_
item structures, using gsi_reclaim_
attrs_with_items()

gsi_attr structures, using gsi_reclaim_
attrs()

gsi_item structures, using gsi_reclaim_
items()

gsi_registered_item structures, using gsi_
reclaim_registered_items()

declaring callback functions
default

error handling
network addresses

default update interval component
of gsi_registered_item data structures
645

of gsi_registration data structures
returning value of from gsi_registration
and gsi_registered_item structures,
using gsi_interval_of()

setting for gsi_registered_item structures,
using gsi_set_interval()

default-update-interval attribute of GSI
variables

delivering G2 Gateway
deregistering items

and gsi_receive_deregistrations()
callback for receiving deregistrations

automatically
using g2-deregister-on-network()

developing an application, steps for
disable-interleaving-of-large-messages

attribute of GSI interfaces

E
echoing data back to G2
element count component of gsi_item data

structures
elements component of gsi_item data

structures
embedded items

returning, using gsi_item_of_attr()
environment variables

for memory allocation
G2RGN1LMT
G2RGN2LMT

error codes for user-defined error conditions
error conditions

customized
default handling of warning and fatal
error messages
resetting last error number, using gsi_
clear_last_error()

returning most recent, using gsi_last_
error()

sending information about to standard
output

shutting down a context
signalling user-defined, using gsi_signal_
error()

that lead to shutdown
valid codes for user-defined
warning

error handlers
customized
default
646
invoking the G2 Gateway default error
handler, using gsi_signal_handler()

error handling
API functions for
customized handlers for
default
global error flag used for
in continuous and one-cycle modes
signalling user errors

error messages
escaped characters, as filtered by GSI_STRING_
CHECK runtime option

external-system-has-a-scheduler attribute of
GSI interfaces

effects of
external-system-has-a-scheduler of GSI

interfaces

F
FALSE constant
fatal error conditions

See error conditions
file descriptors

associated with specified contexts
causing G2 Gateway event loop not to

watch, using gsi_unwatch_fd()
causing G2 Gateway event loop to watch,

using gsi_watch_fd()
returning the one associated with G2

Gateway bridge? TCP listener, using
gsi_listener_socket()

float data type
floating-point timestamps

converting into components, using gsi_
decode_timestamps()

creating, using gsi_encode_timestamp()
flushing write buffers, using gsi_flush()
formula attribute of GSI variables
function handles
function name aliases

G
G2 Gateway

delivering as a DLL library
error handling features of
error messages
getting the version
language support for
sample Visual C++ project

structure of user code
G2 Gateway application programmer interface

(API) functions
See API functions

G2 Gateway bridge processes
components of
flow of control in
not re-entrant
starting, using gsi_start()
support only single-threaded

programming environments
G2 Gateway data structures

See data structures
G2 Gateway files

gsi_main.c
gsi_main.h
gsi_main.o
gsi_main.obj (Windows)
gsi_misc.c
gsi_misc.h
gsi_misc.o
gsi_misc.obj (Windows)
gsimmain.c
gsimmain.obj
gsimmain.obj (Windows)

skeleton.c, skeleton.o, and skeleton
G2 Gateway libraries

not thread-safe
tasks performed by

G2 Gateway user code
See user code

G2 Gateway variables
data structures that support unsolicited

updates of
data structures used for solicited updating

G2 identifiers represented in uppercase letters
__GENSYM_NOALIAS__ C preprocessor flag

defining before gsi_main.h
__GENSYMKR__ C preprocessor flag

using or omitting
__GENSYMKR__ C preprocessor flag

using or omitting
global error flag
grouping data requests
grouping-specification attribute of GSI

interfaces
GSI interfaces

activating
deactivating
defined
disable-interleaving-of-large-messages

attribute of
effects of external-system-has-a-scheduler
attribute of

external-system-has-a-scheduler attribute
of

group requests
grouping-specification attribute of
gsi-connection-configuration attribute of
gsi-interface-is-secure attribute of
gsi-interface-status attribute of
identifying-attributes attribute of
interface-initialization-timeout-period

attribute of
interface-timeout-period attribute of
interface-timeout-period of
interface-warning-message-level attribute

of
interval-to-poll-external-system attribute of
mapping with external data
names attribute of
naming
number of required
obtaining unsolicited data
poll-external-system-for-data attribute of
polling interval for gsi_g2_poll()
callback

purposes of
referencing by name
remote-process-initialization-string

attribute of
setting attributes of
summary of interface-initialization-timeout-

period attribute
summary of interface-timeout-period

attribute
summary of remote-process-initialization-

string attribute
updating with gsi-interface-status

attribute
GSI message servers

data-server-for-messages attribute of
defined
gsi-interface-name attribute of

GSI variables
assigning values to data points
creating
default-update-interval attribute of
defined
defining classes of
direct superior classes of
formula attribute of
gsi-interface-name attribute of
647

gsi-variable-status attribute of
identifying the status of
returning timestamped values to, using
gsi_return_timed_values()

returning values to
returning values to attributes of, using
gsi_return_attrs()

returning values to, using gsi_return_
values()

set action used with
setting arguments of
setting external data points to values of
status attribute of
updating last-recorded-value of after set

action
validity-interval attribute of

GSI_ACCEPT constant
gsi_attr data structure

allocating with embedded items, using
gsi_make_attrs_with_items()

allocating, using gsi_make_attrs()
changing the name of, using gsi_set_attr_
name()

class-qualified names of
components of
item component of
name component of
reclaiming a gsi_attr structure with

embedded gsi_item, using gsi_
reclaim_attrs_with_items()

reclaiming, using gsi_reclaim_attrs()
returning array of text values stored in,

using gsi_str_array_of()
returning arrays of from gsi_item

structures, using gsi_attrs_of()
returning class-qualified part of a name of,

using gsi_class_qualifier_of()
returning floating-point value from, using
gsi_flt_of()

returning gsi_attr specified by name,
using gsi_attr_by_name()

returning gsi_item structure embedded
in, using gsi_item_of_attr()

returning list of text values stored in, using
gsi_str_list_of()

returning name of, using gsi_attr_name_
of()

returning text string from, using gsi_str_
of()

returning timestamp of, using gsi_
timestamp_of()

returning truth-value from, using gsi_log_
of()
648
returning type tag of, using gsi_type_of()
returning unqualified part of the name of,

using gsi_unqualified_attr_name_of()
setting array of text values stored in, using
gsi_set_str_array()

setting class-qualified part of name of,
using gsi_set_class_qualifier()

setting contents of floating-point array
stored in, using gsi_set_flt_array()

setting contents of floating-point list
stored in, using gsi_set_flt_list()

setting integer array in, using gsi_set_int_
array()

setting integer in, using gsi_set_int()
setting list of text values stored in, using
gsi_set_str_list()

setting symbol type value in, using gsi_
set_sym()

setting text string for an item, registered
item, or embedded item

setting text string in, using gsi_set_str()
setting timestamp of, using gsi_set_
timestamp()

setting truth value in, using gsi_set_log()
setting type of, using gsi_set_type()
setting unqualified part of the name of,

using gsi_set_unqualified_attr_name()
setting value of to a floating-point, using
gsi_set_flt()

setting value of to an array of truth values,
using gsi_set_log_array()

setting value of to an integer list, using
gsi_set_int_list()

setting value of truth values in, using gsi_
set_log_list()

summary of changing the name of, using
gsi_set_attr_name()

summary of returning class-qualified part
of a name of, using gsi_class_qualifier_
of()

summary of returning gsi_attr specified
by name, using gsi_attr_by_name()

summary of returning name of, using gsi_
attr_name_of()

summary of returning unqualified part of
the name of, using gsi_unqualified_
attr_name_of()

summary of setting unqualified part of the
name of, using gsi_set_unqualified_
attr_name()

gsi_attr_by_name() API function
gsi_attr_count_of() API function
gsi_attr_is_transient() API function

gsi_attr_name_is_qualified() API function
gsi_attr_name_of() API function
gsi_attrs_of() API function
GSI_CALL_HANDLE_OF_START

and gsi_rpc_return_values()
constant

gsi_CALL_HANDLE_OF_START

and no return values to G2
gsi_call_identifier_type data type

gsi_class_name_of() API function
gsi_class_qualifier_of() API function
gsi_class_type_of() API function
gsi_clear_item() API function
gsi_clear_last_error() API function
gsi_close_fd() callback function
gsi_close_listeners() API function
gsi_context_is_secure() API function
gsi_context_received_data() API function
gsi_context_remote_host() API function
gsi_context_remote_listener_port() API

function
gsi_context_remote_process_start_time() API

function
gsi_context_socket() API function

description of
used to implement a customized sleep

facility
gsi_context_user_data_type data type

gsi_context_user_data() API function
gsi_convert_string_to_unicode() API

function
gsi_convert_unicode_to_string() API

function
gsi_convert_unicode_to_wide_string() API

function
gsi_convert_wide_string_to_unicode() API

function
gsi_current_context variable

gsi_current_context_is_secure() API
function

gsi_current_context() API function
gsi_decode_timestamp() API function
gsi_element_count_of() API function
gsi_elements_of() API function
gsi_encode_timestamp() API function
gsi_error_handler() callback function
gsi_error_message() API function
gsi_establish_listener() API function
gsi_establish_secure_listener() API

function
gsi_exam.kb sample G2 knowledge base
gsi_extract_history_spec() API function
gsi_extract_history() API function
GSI_FALSE constant

default values set by gsi_set_type()
GSI_FLOAT64_ARRAY_TAG constant
GSI_FLOAT64_LIST_TAG constant
GSI_FLOAT64_TAG constant
gsi_flt_array_of() API function
gsi_flt_list_of() API function
gsi_flt_of() API function
gsi_flush() API function
gsi_function_handle_type data type

gsi_g2_poll() callback function
description of
effect of poll-external-system-for-data

attribute value on
gsi_get_data() callback function

description of
using

gsi_get_tcp_port() callback function
using

gsi_handle_of() API function
GSI_HANDLE_TAG constant
gsi_history_count_of() API function
gsi_history_type_of() API function
gsi_icp.h file

gsi_identifying_attr_of() API function
gsi_initialize_callbacks() API function

gsi_initialize_context() callback function
description of
remote-process-initialization-string

attribute value passed to
structures used for initializing

gsi_initialize_error_variable() API
function

gsi_initialize_for_win32() API function
gsi_initiate_connection_with_user_data()

API function
gsi_initiate_connection() API function
gsi_initiate_secure_connection_with_user_

data() API function
gsi_initiate_secure_connection() API

function
gsi_install_error_handler() API function
gsi_int_array_of() API function
gsi_int_list_of() API function
gsi_int_of() API function
GSI_INTEGER_ARRAY_TAG constant
GSI_INTEGER_LIST_TAG constant
GSI_INTEGER_TAG constant
gsi_interval_of() API function
GSI_IO_BLOCKED constant
649

GSI_IO_UNBLOCKED constant
gsi_is_item() API function
gsi_item data structure

allocating, using gsi_make_items()
API functions for returning to G2
attribute count component of
attributes component of
class name component of
clearing for re-use, using gsi_clear_item()
copying one gsi_item structure to another
gsi_item structure, using gsi_simple_
content_copy()

deallocating, using gsi_reclaim_items()
element count component of
elements component of
history keeping specification component

of
history times component of
history type component of
history value component of
item handle component of
name component of
returning array of floating-point values

from, using gsi_flt_array_of()
returning array of gsi_item structures

from, using gsi_elements_of()
returning array of integer values from,

using gsi_int_array_of()
returning array of text values stored in,

using gsi_str_array_of()
returning array of truth-values in, using
gsi_log_array_of()

returning arrays of gsi_attr structures
embedded in, using gsi_attrs_of()

returning count of attributes of, using gsi_
attr_count_of()

returning count of elements in, using gsi_
element_count_of()

returning floating-point value from, using
gsi_flt_of()

returning from gsi_attr data structure,
using gsi_item_of_attr()

returning from gsi_registered_item data
structure, using gsi_item_of_
registered_item()

returning handle from, using gsi_handle_
of()

returning history data associated with,
using gsi_extract_history()

returning history-keeping specification
from, using gsi_extract_history_spec()
650
returning integer value of, using gsi_int_
of()

returning list of floating-point values
from, using gsi_flt_list_of()

returning list of integer values from, using
gsi_int_list_of()

returning list of text values stored in, using
gsi_str_list_of()

returning list of truth-values from, using
gsi_log_list_of()

returning name of G2 class represented in,
using gsi_class_name_of()

returning name of, using gsi_name_of()
returning number of history data values

associated with, using gsi_history_
count_of()

returning text string stored in, using gsi_
str_of()

returning timestamp of, using gsi_
timestamp_of()

returning truth-value in, using gsi_log_
of()

returning type of history data values
associated with

returning type tag of, using gsi_type_of()
setting array of text values stored in, using
gsi_set_str_array()

setting attribute count of, using gsi_set_
attr_count()

setting class name of, using gsi_set_
class_name()

setting contents of floating-point array
stored in, using gsi_set_flt_array()

setting contents of floating-point list
stored in, using gsi_set_flt_list()

setting gsi_attr structures associated
with, using gsi_set_attrs()

setting handle component of, using gsi_
set_handle()

setting history data and history-keeping
specification components of, using gsi_
set_history

setting list of text values stored in, using
gsi_set_str_list()

setting name component of, using gsi_
set_name()

setting timestamp of, using gsi_set_
timestamp()

setting type of, using gsi_set_type()
setting value of to a floating-point, using
gsi_set_flt()

setting value of to a list of truth values,
using gsi_set_log_list()

setting value of to a symbol type value,
using gsi_set_sym()

setting value of to a text string, using gsi_
set_str()

setting value of to a truth value, using gsi_
set_log()

setting value of to an array of truth-values,
using gsi_set_log_array()

setting value of to an integer array, using
gsi_set_int_array()

setting value of to an integer list, using
gsi_set_int_list()

setting value of to an integer, using gsi_
set_int()

summary of returning name of G2 class
represented in, using gsi_class_name_
of()

summary of returning name of, using gsi_
name_of()

summary of setting class name of, using
gsi_set_class_name()

summary of setting name component of,
using gsi_set_name()

user data component of
value component of
value type component of

GSI_ITEM_ARRAY_TAG constant
GSI_ITEM_LIST_TAG constant
gsi_item_of_attr_by_name() API function
gsi_item_of_attr() API function
gsi_item_of_identifying_attr_of() API

function
gsi_item_of_registered_item() API function
GSI_ITEM_OR_VALUE_ARRAY_TAG constant
GSI_ITEM_OR_VALUE_LIST_TAG constant
GSI_ITEM_TAG constant
gsi_item_user_data_type data type

gsi_kill_context() API function
gsi_last_error_call_handle() API function
gsi_last_error_message() API function
gsi_last_error() API function
gsi_listener_socket() API function

description of
used to implement a customized sleep

facility
gsi_log_array_of() API function
gsi_log_list_of() API function
gsi_log_of() API function
GSI_LOGICAL_ARRAY_TAG constant
GSI_LOGICAL_LIST_TAG constant
GSI_LOGICAL_TAG constant
gsi_main.c file
as a sample of main() routine
gsi_main.c sample user code file
gsi_main.h file
gsi_main.h header file

specifying version used
gsi_main.o file
gsi_main.obj file (Windows)

gsi_make_array() API function
gsi_make_attrs_with_items() API function
gsi_make_attrs() API function
gsi_make_item() API function
gsi_make_items() API function
gsi_make_registered_items() API function
gsi_make_symbol() API function
gsi_misc.c file
gsi_misc.h file
gsi_misc.o file
gsi_misc.obj file (Windows)

gsi_missing_procedure_handler() callback
function

gsi_name_of() API function
GSI_NEW_SYMBOL_API runtime option

resetting
setting

GSI_NO_SIGNAL_HANDLERS runtime option

gsi_not_writing_fd() callback function
description of

GSI_NULL_TAG constant
GSI_ONE_CYCLE runtime option

resetting
setting

gsi_open_fd() callback function
gsi_option_is_set() API function
gsi_owner_of() API function
gsi_pause_context() callback function

description of
invoked by G2 Gateway when G2 pauses

KB
gsi_pause() API function

description of
GSI_PORT_NUM constant
gsi_prefix

not using alias for
gsi_print_backtrace() API function
gsi_procedure_user_data_type data type
GSI_PROTECT_INNER_CALLS runtime option

resetting
setting

GSI_QUANTITY_ARRAY_TAG constant
GSI_QUANTITY_LIST_TAG constant
GSI_QUANTITY_TAG constant
gsi_read_callback() callback function
651

gsi_receive_deregistrations() callback
function

description of
using

gsi_receive_message() callback function
gsi_receive_registration() callback function

uses for
using

gsi_reclaim_array() API function
gsi_reclaim_attrs_with_items() API function
gsi_reclaim_attrs() API function
gsi_reclaim_item() API function
gsi_reclaim_items() API function
gsi_reclaim_registered_items() API function
gsi_registered_item data structure

accessing components of
allocating and reclaiming
allocating, using gsi_make_registered_
items()

callback functions that access
clearing for reuse, using gsi_clear_item()
deallocating, using gsi_reclaim_
registered_items()

default update interval component of
item component of
item handle component of
returning default update interval of, using
gsi_interval_of()

returning floating-point value from, using
gsi_flt_of()

returning gsi_item structure embedded in,
using gsi_item_of_registered_item()

returning handle of, using gsi_handle_
of()

returning status of, using gsi_status_of()
returning text string from, using gsi_str_
of()

returning timestamp of, using gsi_
timestamp_of()

returning truth-value from, using gsi_log_
of()

returning type tag of, using gsi_type_of()
setting default update interval component

of, using gsi_set_interval()
setting handle component of, using gsi_
set_handle()

setting status code of, using gsi_set_
status()

setting symbol type value in, using gsi_
set_sym()

setting text string in, using gsi_set_str()
setting timestamp of, using gsi_set_
timestamp()
652
setting truth value in, using gsi_set_log()
setting type of, using gsi_set_type()
setting value of to a floating-point, using
gsi_set_flt()

setting value of to an integer, using gsi_
set_int()

status component of
gsi_registration data structure

class name component of
default update interval component of
identifying attributes component of
item handle component of
name component of
returning default update interval of, using
gsi_interval_of()

returning for a specified item handle and
context, using gsi_registration_of()

returning handle of, using gsi_handle_
of()

returning identifying attributes of, using
gsi_identifying_attr_of()

returning type tag of, using gsi_type_of()
setting user data component of, using gsi_
set_user_data()

user data component of
value type component of

gsi_registration_of_handle() API function
gsi_registration_of_item() API function
GSI_REJECT constant
gsi_reset_context() callback function
gsi_reset_option() API function
gsi_resume_context() callback function

using
gsi_return_attrs() API function

description of
using

gsi_return_message() API function
description of
using

gsi_return_timed_attrs() API function
description of
using

gsi_return_timed_values() API function
description of
using

gsi_return_values() API function
description of
using

gsi_rpc_call_with_count() API function
gsi_rpc_call() API function

description of
using

gsi_rpc_declare_local() API function
description of
using

gsi_rpc_declare_remote_with_error_handler_

and_user_data() API function
gsi_rpc_declare_remote() API function

description of
using

gsi_rpc_local_fn_type data type
gsi_rpc_receiver_fn_type data type

gsi_rpc_return_error_values() API function
gsi_rpc_return_values() API function
gsi_rpc_start_with_count() API function
gsi_rpc_start() API function

description of
using

gsi_run_loop() API function
callback functions invoked within
calling to respond to messages received

while running in one-cycle mode
description of
errors occuring within call tree
errors occurring outside of call tree
in continuous and one-cycle modes
indicating whether network activity

occurred during most recent invocation
of, using gsi_context_received_data()

nested calls to result in error
processing events through
returning control to after error
tasks performed by

gsi_run_state_change() callback function
GSI_SEQUENCE_TAG constant
gsi_set_attr_by_name() API function
gsi_set_attr_count() API function
gsi_set_attr_is_transient() API function
gsi_set_attr_name() API function
gsi_set_attrs() API function
gsi_set_class_name() API function
gsi_set_class_qualifier() API function
gsi_set_class_type() API function
gsi_set_context_limit() API function
gsi_set_context_user_data() API function
gsi_set_data() callback function

and setting external data points
description of
using

gsi_set_element_count() API function
gsi_set_elements API function
gsi_set_flt_array() API function
gsi_set_flt_list() API function
gsi_set_flt() API function
gsi_set_handle() API function
gsi_set_history() API function
gsi_set_include_file_version() API function
gsi_set_int_array() API function
gsi_set_int_list() API function
gsi_set_int() API function
gsi_set_interval() API function
gsi_set_item_append_flag() API function
gsi_set_item_of_attr_by_name() API function
gsi_set_item_of_attr() API function
gsi_set_log_array() API function
gsi_set_log_list() API function
gsi_set_log() API function
gsi_set_name() API function
gsi_set_option() API function
GSI_SET_OPTIONS_FROM_COMPILE() macro
gsi_set_pause_timeout() API function
gsi_set_rpc_remote_return_exclude_user_

attrs API function
gsi_set_rpc_remote_return_include_all_

system_attrs_except API function
gsi_set_rpc_remote_return_include_system_

attrs API function
gsi_set_rpc_remote_return_value_kind() API

function
gsi_set_run_loop_timeout() API functions
gsi_set_status() API function
gsi_set_str_array() API function
gsi_set_str_list() API function
gsi_set_str() API function
gsi_set_string_conversion_style() API

functions
gsi_set_sym_array() API function
gsi_set_sym_list() API function
gsi_set_sym() API function
gsi_set_symbol_user_data() API function
gsi_set_timestamp() API function
gsi_set_type() API function
gsi_set_unqualified_attr_name() API

function
gsi_set_up() callback function

description of
using

gsi_set_update_items_in_lists_and_arrays_

flag() API function
gsi_set_user_data() API function

description of
using

gsi_set_usv() API function
gsi_show_callback() utility function
653

gsi_show_registered_items() utility
function

gsi_shutdown_context() callback function
description of
using

gsi_signal_error() API function
description of
using

gsi_signal_handler() API function
gsi_simple_content_copy() API function
gsi_start_context() callback function
gsi_start() API function

description of
operations performed by
required in main() function

gsi_status_of() API function
gsi_str_array_of() API function
gsi_str_list_of() API function
gsi_str_of() API function
GSI_STRING_ARRAY_TAG constant
GSI_STRING_CHECK runtime option

resetting
setting

gsi_string_conversion_style() API function
GSI_STRING_LIST_TAG constant
GSI_STRING_TAG constant
gsi_struct data type

GSI_STRUCTURE_TAG constant
GSI_SUPPRESS_OUTPUT runtime option

resetting
setting

gsi_sym_array_of() API function
gsi_sym_list_of() API function
gsi_sym_of() API function
gsi_symbol data structure

name component of
user data component of

gsi_symbol data structures
gsi_symbol data type

GSI_SYMBOL_ARRAY_TAG constant
GSI_SYMBOL_LIST_TAG constant
gsi_symbol_name() API function
GSI_SYMBOL_TAG constant
gsi_symbol_user_data_type data type

gsi_symbol_user_data() API function
gsi_timestamp_of() API function
GSI_TRACE_ONE_LOOP runtime option

resetting
setting

GSI_TRACE_RUN_LOOP runtime option
GSI_TRACE_RUN_STATE runtime option

resetting
654
GSI_TRUE constant
default values set by gsi_set_type()

gsi_type_of() API function
GSI_UNDEFINED_CONTEXT constant
gsi_unqualified_attr_name_of() API function
gsi_unwatch_fd_for_writing() API function
gsi_unwatch_fd() API function
gsi_update_items_in_lists_and_arrays_flag()

API function
GSI_USE_DLL preprocessor flag
GSI_USE_NEW_SYMBOL_API preprocessor flag
GSI_USE_NON_C_CALLBACKS preprocessor flag
GSI_USE_USER_DATA_FOR_CALLBACKS
preprocessor flag

GSI_USE_WIDE_STRING_API preprocessor flag

gsi_user_data_of() API function
gsi_user.h file

gsi_usv_length_of() API function
gsi_usv_of() API function
GSI_VALUE_ARRAY_TAG constant
GSI_VALUE_LIST_TAG constant
GSI_VALUE_TAG constant
gsi_version_id structure
gsi_version_information() API function
GSI_VOID_INDEX constant
gsi_wakeup() API function
gsi_watch_fd_for_writing() API function

description of
gsi_watch_fd() API function
gsi_watchdog() API function

description of
using to set up a watchdog function

gsi_write_callback() callback function
description of

gsi_writing_fd() callback function
description of

gsi-connection-configuration attribute of GSI
interfaces

identifying a running G2 Gateway bridge
summary of

gsi-data-service G2 mixin class
gsi-interface standard G2 class
gsi-interface-is-secure attribute of GSI

interfaces
gsi-interface-name attribute

of GSI message servers
of GSI variables

gsi-interface-status attribute
changing value of

during polling timeout
gsi-interface-status attribute of GSI interfaces
gsi-message-service G2 mixin class

gsimmain.c file (Windows)
gsimmain.obj file (Windows)
gsi-variable-status attribute of GSI variables

using

H
handle data type
handles

data structures that support passing by
remote procedure calls

header file required by G2 Gateway API
functions

help command-line option
history data

extracting from gsi_item data structures,
using gsi_extract_history()

returning number of values associated
with gsi_item data structures, using gsi_
history_count_of()

returning type of values associated with
gsi_item structures

setting for gsi_item and gsi_attr data
structures, using gsi_set_history()

history keeping specification component of
gsi_item data structures

history times component of gsi_item data
structures

history type component of gsi_item data
structures

history value component of gsi_item data
structures

history-keeping specification
extracting from gsi_item data structures,

using gsi_extract_history_spec()
setting for gsi_item and gsi_attr data

structures, using gsi_set_history()

I
ICP (Intelligent Communications Protocol)
identifying attributes

designating as many as six
purpose of
returning a specified attribute from a gsi_
registration structure, using gsi_
identifying_attr_of()

valid data types of
identifying attributes component of gsi_
registration data structure
identifying-attributes attribute
mapping with external data

identifying-attributes attribute of GSI interfaces
initializing applications with callback

functions
initiating connections to G2 Gateway
install-macros

Seemacros
integer data type
Intelligent Communications Protocol (ICP)
interface-initialization-timeout-period attribute

of GSI interfaces
summary of

interface-timeout-period attribute of GSI
interfaces

summary of
interface-timeout-period of GSI interfaces
interface-warning-message-level attribute of

GSI interfaces
interleaving

controlling message
interruptible sleep

customizing, in one-cycle mode
in continuous and one-cycle modes

interval-to-poll-external-system attribute of GSI
interfaces

interval-to-poll-external-system of GSI
interfaces

invoking methods of G2 objects from G2
Gateway

item arrays
changing elements of, using gsi_set_
elements()

item component
of gsi_attr data structures

item component of gsi_registered_item data
structures

item handle component
of gsi_item data structures
of gsi_registered_item data structures
of gsi_registration data structures

item lists
changing elements of, using gsi_set_
elements()

item passing
G2 grammar for
representing G2 objects in G2 Gateway

item registration problems
item rendezvous

passing network handles referring to items
network interfaces
655

passing UUIDs referring to items
network interfaces

itempass.kb sample G2 knowledge base

K
Kernighan and Ritchie style function

declarations

L
language support for G2 Gateway user code

development
last-recorded-value attribute of GSI variables
libdec G2 Gateway library
libgsi G2 Gateway library
libnet G2 Gateway library
libraries of G2 Gateway functions
librtl G2 Gateway library
libtcp G2 Gateway library
lock, for multi-threaded use
log command-line option
logical data type

M
macros

for declaring local functions
for declaring receiver functions
for declaring watchdog functions
for installing 5.0 callback functions
GSI_SET_OPTIONS_FROM_COMPILE()

main() function
contents of
in continuous and one-cycle mode
passing command-line arguments to
sample of provided in gsi_main.c

mapchar.kb sample G2 knowledge base
MAX_G2_INTEGER constant
memory management

managing arrays and lists
managing data structures
setting limits

using -rgn1lmt command-line option
using -rgn2lmt command-line option

message interleaving
controlling

messages
API functions for passing
656
gsi_receive_message() callback for
receiving

returning from bridge to G2
returning from the bridge to G2, using
gsi_return_message()

returning text associated with, using gsi_
error_message()

methods of G2 objects, invoking from G2
Gateway

MIN_G2_INTEGER constant
modes of bridge operation

continuous mode
one-cycle mode
setting

multi-threaded programming
not supported by G2 Gateway
obtaining and releasing the lock

N
name component

of gsi_attr data structures
of gsi_item data structures
of gsi_registration data structure
of gsi_symbol data structures
setting for a gsi_item structure, using gsi_
set_name()

summary of using gsi_set_name() for
names attribute of GSI interfaces

described
objects that reference

network addresses
default

network capabilities of G2 Gateway
network handles

passing in RPCs
network interfaces

NO_ERR constant
noconnect command-line option
nolistener command-line option
null data type
null type tags of G2 Gateway data structures
NULL_PTR constant

O
object passing

data structures that support
obtaining unsolicited data
one-cycle mode

customizing interruptible sleep in

error handling in
gsi_run_loop() in

interruptible sleep in
main() function in
recommended use for
setting bridge to run in, using gsi_set_
option(gsi_ONE_CYCLE)

options
See runtime options

P
pausing connections
poll-external-system-for-data attribute of GSI

interfaces
polling for data
polling interval, for gsi_g2_poll() callback
preprocessor flags

defined
defining
GSI_USE_DLL
GSI_USE_NEW_SYMBOL_API
GSI_USE_NON_C_CALLBACKS
GSI_USE_USER_DATA_FOR_CALLBACKS
GSI_USE_WIDE_STRING_API

procedure_user_data argument of remote
procedure calls

declaring in
bridge local functions
bridge receiver functions

processing events through gsi_run_loop()

R
receiver functions for values returned from G2
re-entrancy not a feature of G2 Gateway bridge

processes
referencing data structures in G2 Gateway

user code
registering items

and gsi_receive_registration() callback
for receiving registrations

automatically
kinds of items registered
purpose of
steps performed by G2 to
using G2-REGISTER-ON-NETWORK()

remote procedure calls
procedure_user_data arguments of
writing to G2 lists and arrays with

remote procedures
API functions cannot be called as
API functions supporting
calling from bridge, using gsi_rpc_call()
creating a receiver function
creating handles for
declaring a context-specific G2 procedure

as
declaring a G2 Gateway local function as

in G2
declaring a G2 Gateway local function as,

using gsi_rpc_declare_local()
declaring a G2 procedure as
declaring a GSI local function as, using
gsi_rpc_declare_local()

developing bridges using only
invoking a G2 Gateway local function that

returns values to G2
receiving values from G2 through
returning values to G2 procedure that calls

the G2 Gateway procedure, using gsi_
rpc_return_values()

returning values to G2 through
returning values to the bridge
starting a G2 procedure as, using gsi_rpc_
start()

starting from bridge, using gsi_rpc_
start()

starting from G2, using the start action
steps for invoking G2 Gateway local

functions as
steps for invoking G2 procedures as
troubleshooting
writing G2 Gateway local functions to be

called as
writing G2 procedures to be called as

remote-process-initialization-string attribute of
GSI interfaces

reporting data by exception
resuming paused connections
returning data to G2
rgn1lmt command-line option
rgn2lmt command-line option
RPCs

passing
UUIDs referring to items

network interfaces
passing network handles referring to items

network interfaces
running bridges

on UNIX
on Windows
657

runtime options
determining whether an option is set,

using gsi_option_is_set()
GSI_NEW_SYMBOL_API
GSI_NO_SIGNAL_HANDLERS
GSI_ONE_CYCLE
GSI_PROTECT_INNER_CALLS
GSI_STRING_CHECK
GSI_SUPPRESS_OUTPUT
GSI_TRACE_RUN_LOOP
GSI_TRACE_RUN_STATE

turning off, gsi_reset_option()
turning on, using gsi_set_option()
turning on, using gsi_set_option()
(syntax)

S
sample G2 knowledge bases
secure command-line option
sequence data type
setting attributes of GSI interfaces
setting values of data points in an external

application
setting values of data points in an external

system
shutting down connections
signalling error conditions
skeleton.c source file for stub callback

functions
skeleton.c, skeleton.o, and skeleton sample

G2 Gateway program files
skeleton.exp file
skeleton.lib file
solicited data
solicited data service

conditions under which it occurs
defined

spawning G2 Gateway processes from G2
standard callback functions

See callback functions
starting bridges from G2
starting remote procedures from bridge
starting the G2 Gateway bridge process, using
gsi_start()

status attribute of GSI variables
status component of gsi_registered_item data

structures
described
setting, using gsi_set_status()

steps for developing a G2 Gateway application
string data type
658
structure data type
stub functions

See callback functions
symbol data type

described
escaping uppercase letters
using uppercase letters only

symbols and text strings

T
TCP/IP protocol

specifying additional ports by using
tcpport command-line option

specifying exact ports by using tcpipexact
command-line option

tcpipexact command-line option
tcpport command-line option
text messages

returning to G2
sending from G2 to an external system
sending to and from a G2 Gateway bridge

thread-safety, not a feature of G2 Gateway
library of API functions

timestamps
converting floating-point into

components, using gsi_decode_
timestamp()

creating floating-point values for, using
gsi_encode_timestamp()

returning from a gsi_item, gsi_
registered_item, or gsi_attr structure,
using gsi_timestamp_of()

setting, using gsi_set_timestamp()
troubleshooting

connectivity problems
data collection
data transmission
item registration
printing a backtrace
remote procedure calls

TRUE constant
type tags of data structures

returning, using gsi_type_of()

U
unicode characters

converting a string into, using gsi_
convert_string_to_unicode()

converting a wide string into, using gsi_
convert_wide_string_to_unicode()

converting into a string, using gsi_
convert_unicode_to_string()

converting into a wide string, using gsi_
convert_unicode_to_wide_string()

string conversion styles for representing
Universal Unique Identifiers

getting length of with gsi_usv_length_of()
obtaining from an item, using gsi_usv_
of()

setting with gsi_set_usv()
unsolicited data

polling for
reporting by exception

unsolicited data service
user code

components of
languages supported for development of
main() function of
structure of
user-written components of

user data
associating with a registered item
returning from a gsi_registration

structure, using gsi_user_data_of()
setting for a registered item, using gsi_
set_user_data()

user data component of gsi_item data
structure

user data component of gsi_registration data
structure

user data component of gsi_symbol data
structures

UUID
See Universal Unique Identifiers

UUIDs
passing in RPCs

network interfaces

V
validity-interval attribute of GSI variables
value component of gsi_item data structures

returning array of gsi_item structures
from, using gsi_elements_of()

returning count of elements in, using gsi_
element_count_of()

value lists
changing elements of, using gsi_set_
elements()

value type component
of gsi_item data structures
of gsi_registration data structure

version, getting G2 Gateway
Visual C++ project, sample

W
warning error conditions
watchdog function

See gsi_watchdog()
wide string data type
write buffers

flushing, using gsi_flush()
size of per context
659

660

	Contents Summary
	Contents
	Preface
	About this Guide
	Product Name
	Audience
	Organization
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	User’s Guide
	G2 Gateway Solutions for Connectivity Problems
	Introduction
	Capabilities of G2 Gateway Bridges
	Providing Data Service for G2 Variables
	Invoking Remote Procedures
	Passing Objects
	Other Support for Dynamic Real-Time Processing

	Developing G2 Gateway Applications
	Steps for Developing a G2 Gateway Application
	Preparing a G2 KB to Communicate with a G2 Gateway Bridge
	Building a G2 Gateway Bridge Executable

	Deploying G2 Gateway Bridges
	Starting G2 Gateway Bridge Processes
	How a G2 Gateway Bridge Works
	Procedural Flow of a G2 Gateway Bridge Process
	Run-Time Modes of Bridge Operation
	Providing Data Service for GSI Variables in a G2 KB
	Setting Data Values in an External System
	Sending Text Values to and from the G2 Gateway Bridge
	Making and Receiving Remote Procedure Calls

	Configuring the G2 Knowledge Base
	Introduction
	Configuring Connections between G2 and G2 Gateway
	Number of GSI Interfaces Required
	Creating a GSI Interface
	Setting Attributes of a GSI Interface
	Updating GSI Interface Attributes While the KB is Running
	Activating and Deactivating a GSI Interface

	Configuring GSI Variables in the KB
	Defining GSI Variable Classes
	Attributes of GSI Variables
	Defining Identifying Attributes
	Identifying the Status of the GSI Variable
	Specifying Initial Values for GSI Variables

	Creating and Configuring GSI Message Servers
	Attributes of a GSI Message Server
	Running an Inform Action on a GSI Message Server

	Preparing the Bridge User Code
	Introduction
	Components of G2 Gateway User Code
	Structure of G2 Gateway User Code
	Contents of the main() Function
	Sample main() Function

	Using gsi_start()
	Performing Once-Only Operations through gsi_set_ up()
	Specifying a Default TCP/IP Port Number

	Managing a Connection between G2 and a G2 Gateway Bridge
	Initializing a Connection
	Pausing a Connection
	Resuming a Connection After a Pause
	Shutting Down a Connection

	Processing Events through gsi_run_loop()
	Behavior of gsi_run_loop() in Continuous and One-Cycle Modes
	Interruptible Sleep
	Handling Interrupts

	Implementing Data Service in G2 Gateway
	Solicited and Unsolicited Data Transfers
	Returning Solicited Data to G2
	Sending Unsolicited Data to G2
	Setting Values in the External Application

	Message Passing
	Sending Messages from G2 to the External System
	Returning Text Messages to G2

	Item Passing
	Registering and Deregistering Items
	Kinds of Items Registered by G2
	Registering Items Automatically
	Registering Items Explicitly
	What G2 Gateway Does When G2 Registers an Item
	How G2 Gateway Stores Information Associated with Registered Items
	Associating User Data with a Registered Item
	Deregistering Items Automatically
	Deregistering Items Explicitly

	Context Control
	Remote Procedure Calls within a Context

	User Watchdog Functions
	Memory Management Responsibilities of G2 Gateway User Code
	Managing Data Structures
	Managing Arrays and Lists
	Reclaiming Memory

	Write Buffer Management
	Using and Disabling Abbreviated Function Name Aliases
	Using and Disabling ANSI C Prototypes for API Functions

	Remote Procedure Calls
	Introduction
	Making Remote Procedure Calls from G2 to the G2 Gateway Bridge
	Writing a G2 Gateway Local Function to be Called by G2
	Declaring the Local Function in Your G2 Gateway User Code
	Declaring the G2 Gateway Local Function in G2
	Grammar for G2 Remote Procedure Argument Declarations
	Invoking the G2 Gateway Local Function from G2
	Passing a Varying Number of Arguments to the Same G2 Gateway Local Function
	How a Local Function Can Process Argument Arrays Received from G2

	Making Remote Procedure Calls from a G2 Gateway Bridge to G2
	Writing the G2 Procedure or Method to be Invoked by G2 Gateway
	Declaring the Remote Procedure in the Bridge
	Defining a Function to Receive Values Returned by G2
	Defining a Function to Receive Error Values Returned by G2
	Invoking the Remote G2 Procedure
	Passing Items from a G2 Gateway Bridge to G2
	Returning G2 Items from G2 Gateway Back to G2
	Passing Network Handles as the Class in RPCs
	Passing UUIDs Referring to Items in RPCs

	Developing a Bridge Using Only Remote Procedure Calls
	Call Identifiers and Procedure User Data
	Procedure User Data for Remote Procedure Calls
	Call Identifiers for Remote Procedure Calls

	Error Handling
	Introduction
	Default Error Handling
	Sending Error Information to Standard Output
	Shutting Down the Context Where the Error Occurred

	Customized Error Handling
	Signalling Customized Error Conditions
	Writing a Customized Error Handler
	Installing a Customized Error Handler
	Checking the Global Error Flag

	Error Handling in Continuous and One-Cycle Modes
	Errors that Shut Down a Context

	Troubleshooting Guidelines
	Introduction
	Connectivity
	Data Collection and Transmission
	Item Registration
	Remote Procedure Calls (G2-to-G2 Gateway)
	Reporting Problems to Gensym

	Reference
	G2 Gateway Data Structures
	Introduction
	Summary of G2 Gateway Data Structures
	Using Get and Set Functions for Data Structures
	Referencing Data Structures in Your User Code
	Accessing Data Structures through Other Data Structures
	Type Tags of G2 Gateway Data Structures
	Setting Type Tags
	Setting the Type to Null

	G2 Gateway Data Structures and Functions for Data Transfer Operations
	Setting the Value of an External Data Point
	Updating the Value of a GSI Variable
	Receiving Unsolicited Updates of GSI Variables
	Passing Objects through Remote Procedure Calls
	Passing Items as Handles

	Allocating and Reclaiming G2 Gateway Data Structures
	gsi_registration Data Structures
	Registering a GSI Variable or Item Handle
	Getting a gsi_registration Structure
	Accessing Components of a gsi_registration Structure

	gsi_registered_item Data Structures
	Returning Values to a GSI Variable
	Setting Arguments of GSI Variables
	Callbacks that Access gsi_registered_item Structures
	Allocating and Reclaiming gsi_registered_item Structures
	Accessing Components of a gsi_registered_item Structure

	gsi_item Structures
	Verifying that an Item is an Item
	gsi_item Structures as Arguments of Remote Procedure Calls
	Copying Contents of a gsi_item Structure
	API Functions that Return gsi_item Structures
	API Functions that Allocate and Reclaim gsi_item Structures
	Returning gsi_item Values and Attributes to G2
	Components of a gsi_item Structure

	gsi_attr Structures
	API Functions that Return gsi_attr Structures
	API Functions that Allocate and Reclaim gsi_attr Structures
	Components of a gsi_attr Structure

	gsi_symbol Structures
	API Functions that Return gsi_symbol Structures
	An API Function that Allocates a gsi_symbol Structure
	Accessing Components of a gsi_symbol Structure

	Callback Functions
	Introduction
	Standard Callback Functions
	Using Standard Callback Functions
	Using GSI 4.1 Callbacks with G2 Gateway Linked Statically
	Using GSI 4.1 Callbacks with G2 Gateway Linked Dynamically
	Using Stub Versions of GSI 4.1 Callbacks
	Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or Dynamically
	Using Stub Versions of G2 Gateway 5.0 Callbacks

	Calling Other Functions from Callbacks
	Values Returned by Callback Functions
	Groups of Functionally Related Callback Functions
	Application Initialization
	Connection Management
	Flow Control
	Item Registration and Deregistration
	Data Service
	Error Handling
	Message Passing
	Run State Change

	Standard Callbacks
	gsi_close_fd
	gsi_error_handler
	gsi_g2_poll
	gsi_get_data
	gsi_get_tcp_port
	gsi_initialize_context
	gsi_missing_procedure_handler
	gsi_not_writing_fd
	gsi_open_fd
	gsi_pause_context
	gsi_read_callback
	gsi_receive_deregistrations
	gsi_receive_message
	gsi_receive_registration
	gsi_reset_context
	gsi_resume_context
	gsi_run_state_change
	gsi_set_data
	gsi_set_up
	gsi_shutdown_context
	gsi_start_context
	gsi_write_callback
	gsi_writing_fd

	RPC Support Callback Functions
	local functions
	receiver functions
	error receiver functions
	watchdog functions

	Using the Select Function in G2 Gateway
	Supplying Arguments to the Select Function

	API Functions
	Introduction
	Groups of Functionally Related API Functions
	G2 Gateway Entry Points
	Initialization and Run State
	Context Management
	Data Structure Access
	Data Service
	Data Structure Allocation and Deallocation
	Error Handling
	File Descriptor Management
	Interruptible Sleep
	Message Passing
	Missing Callback Declarations
	Remote Procedure Support
	Runtime Options
	String Conversion
	Symbol Access
	User Data
	Watchdog Function

	Required Header File
	Specifying Symbolic Values in API Function Calls
	API Function Descriptions
	gsi_attr_by_name
	gsi_attr_count_of
	gsi_attr_is_transient
	gsi_attr_name_is_qualified
	gsi_attr_name_of
	gsi_attrs_of
	gsi_class_name_of
	gsi_class_qualifier_of
	gsi_class_type_of
	gsi_clear_item
	gsi_clear_last_error
	gsi_close_listeners
	gsi_context_is_secure
	gsi_context_received_data
	gsi_context_remote_host
	gsi_context_remote_listener_port
	gsi_context_remote_process_start_time
	gsi_context_socket
	gsi_context_user_data
	gsi_convert_string_to_unicode
	gsi_convert_unicode_to_string
	gsi_convert_unicode_to_wide_string
	gsi_convert_wide_string_to_unicode
	gsi_current_context
	gsi_current_context_is_secure
	gsi_decode_timestamp
	gsi_element_count_of
	gsi_elements_of
	gsi_encode_timestamp
	gsi_error_message
	gsi_establish_listener
	gsi_establish_secure_listener
	gsi_extract_history
	gsi_extract_history_spec
	gsi_flt_array_of
	gsi_flt_list_of
	gsi_flt_of
	gsi_flush
	gsi_handle_of
	gsi_history_count_of
	gsi_history_type_of
	gsi_identifying_attr_of
	gsi_initialize_callbacks
	gsi_initialize_error_variable
	gsi_initialize_for_win32
	gsi_initiate_connection
	gsi_initiate_connection_with_user_data
	gsi_initiate_secure_connection
	gsi_initiate_secure_connection_with_user_ data
	gsi_install_error_handler
	gsi_int_array_of
	gsi_int_list_of
	gsi_int_of
	gsi_interval_of
	gsi_is_item
	gsi_item_of_attr
	gsi_item_of_attr_by_name
	gsi_item_of_identifying_attr_of
	gsi_item_of_registered_item
	gsi_kill_context
	gsi_last_error
	gsi_last_error_call_handle
	gsi_last_error_message
	gsi_listener_socket
	gsi_log_array_of
	gsi_log_list_of
	gsi_log_of
	gsi_long_of
	gsi_make_array
	gsi_make_attrs
	gsi_make_attrs_with_items
	gsi_make_item
	gsi_make_items
	gsi_make_registered_items
	gsi_make_symbol
	gsi_name_of
	gsi_option_is_set
	gsi_owner_of
	gsi_pause
	gsi_print_backtrace
	gsi_reclaim_array
	gsi_reclaim_attrs
	gsi_reclaim_attrs_with_items
	gsi_reclaim_item
	gsi_reclaim_items
	gsi_reclaim_registered_items
	gsi_registration_of_handle
	gsi_registration_of_item
	gsi_reset_option
	gsi_return_attrs
	gsi_return_message
	gsi_return_timed_attrs
	gsi_return_timed_values
	gsi_return_values
	gsi_rpc_call
	gsi_rpc_call_with_count
	gsi_rpc_declare_local
	gsi_rpc_declare_remote
	gsi_rpc_declare_remote_with_error_handler_ and_user_data
	gsi_rpc_return_error_values
	gsi_rpc_return_values
	gsi_rpc_start
	gsi_rpc_start_with_count
	gsi_run_loop
	gsi_set_attr_by_name
	gsi_set_attr_count
	gsi_set_attr_is_transient
	gsi_set_attr_name
	gsi_set_attrs
	gsi_set_class_name
	gsi_set_class_qualifier
	gsi_set_class_type
	gsi_set_context_limit
	gsi_set_context_user_data
	gsi_set_element_count
	gsi_set_elements
	gsi_set_flt
	gsi_set_flt_array
	gsi_set_flt_list
	gsi_set_handle
	gsi_set_history
	gsi_set_include_file_version
	gsi_set_int
	gsi_set_int_array
	gsi_set_int_list
	gsi_set_interval
	gsi_set_item_append_flag
	gsi_set_item_of_attr
	gsi_set_item_of_attr_by_name
	gsi_set_log
	gsi_set_log_array
	gsi_set_log_list
	gsi_set_long
	gsi_set_name
	gsi_set_option
	gsi_set_pause_timeout
	gsi_set_rpc_remote_return_exclude_user_ attrs
	gsi_set_rpc_remote_return_include_system_ attrs
	gsi_set_rpc_remote_return_include_all_ system_attrs_except
	gsi_set_rpc_remote_return_value_kind
	gsi_set_run_loop_timeout
	gsi_set_status
	gsi_set_str
	gsi_set_str_array
	gsi_set_str_list
	gsi_set_string_converson_style
	gsi_set_sym
	gsi_set_sym_array
	gsi_set_sym_list
	gsi_set_symbol_user_data
	gsi_set_timestamp
	gsi_set_type
	gsi_set_unqualified_attr_name
	gsi_set_update_items_in_lists_and_arrays_ flag
	gsi_set_user_data
	gsi_set_usv
	gsi_signal_error
	gsi_signal_handler
	gsi_simple_content_copy
	gsi_start
	gsi_status_of
	gsi_string_conversion_style
	gsi_str_array_of
	gsi_str_list_of
	gsi_str_of
	gsi_sym_array_of
	gsi_sym_list_of
	gsi_sym_of
	gsi_symbol_name
	gsi_symbol_user_data
	gsi_timestamp_of
	gsi_type_of
	gsi_unqualified_attr_name_of
	gsi_unwatch_fd
	gsi_unwatch_fd_for_writing
	gsi_update_items_in_lists_and_arrays_flag
	gsi_user_data_of
	gsi_usv_length_of()
	gsi_usv_of
	gsi_version_information
	gsi_wakeup
	gsi_watch_fd
	gsi_watch_fd_for_writing
	gsi_watchdog

	Preprocessor Flags and Runtime Options
	Introduction
	G2 Gateway C Preprocessor Flags
	GSI_USE_NEW_SYMBOL_API
	GSI_NON_C
	GSI_USE_WIDE_STRING_API
	Defining C Preprocessor Flags

	G2 Gateway Runtime Options
	GSI_NO_SIGNAL_HANDLERS
	GSI_ONE_CYCLE
	GSI_PROTECT_INNER_CALLS
	GSI_STRING_CHECK
	GSI_SUPPRESS_OUTPUT
	GSI_TRACE_RUN_LOOP
	GSI_TRACE_RUN_STATE
	Setting and Resetting Runtime Options

	Building and Running a G2 Gateway Bridge
	Introduction
	G2 Gateway Files
	Compiling G2 Gateway on UNIX
	Configuration Requirements
	Compiling and Linking G2 Gateway Applications on UNIX Platforms
	Running the Bridge

	Compiling G2 Gateway on Windows
	Configuration Requirements
	Compiling and Linking G2 Gateway on Windows
	Compiling and Linking G2 Gateway Applications on Windows Platforms
	Compiling and Linking a Windows Application
	Compiling and Linking a Console Application
	Running the Bridge

	Command-Line Options and Arguments
	cert
	help
	log
	rgn1lmt
	rgn2lmt
	secure
	tcpipexact
	tcpport

	Starting a G2 Gateway Bridge from within G2
	Placement of the GSI Interface
	Representing the Bridge Process Information
	Stopping G2 Gateway from within G2

	Appendixes
	Functions by Argument and Return Type
	Introduction
	Functions by Argument Type
	Functions by Type of Return Value
	Functions with No Arguments

	Constants
	Introduction

	G2 Gateway Error Messages
	Introduction

	G2 Gateway Data Types
	Introduction
	Data Types Supported by G2 Gateway
	Floats
	Integers
	Long integers
	Null
	Logicals
	Strings
	Symbols
	Sequence and Structure Types
	Wide String Type

	G2 Data Types and G2 Gateway Type Tags
	G2 Gateway Data Types for RPC Arguments

	Limits and Ranges
	Introduction
	Limits on Contexts, Objects, Attributes, and Error Codes
	Limits on G2 Data Types
	Limits on Callback Functions
	Limits on API Functions
	Limits on Remote Procedure Calls

	How G2 and G2 Gateway Exchange Data
	Introduction
	Setting an External Data Point and Updating a GSI Variable
	Receiving Unsolicited Data from a G2 Gateway Bridge
	Invoking a Local Function in a G2 Gateway Bridge from G2
	Invoking G2 Procedures and Methods from a G2 Gateway Bridge
	Exchanging Text Messages Between G2 and a G2 Gateway Bridge

	Upgrading G2 Gateway Applications
	Introduction
	Support of Earlier GSI Versions
	GSI 4.1 Support Policy

	New G2 Gateway 6.0 Features
	New API Functions
	New Runtime Options

	Changes to G2 Gateway 6.0
	Make File Changes
	gsi_main.c Changes
	gsi_misc.h Changes
	Superseded Practices
	32-bit and 64-bit Support for G2 Gateway

	Previously Undocumented Changes in 5.0
	Changes to API Functions in G2 Gateway 5.0

	Upgrading from GSI 4.1 to G2 Gateway to 7.0
	Upgrading from G2 Gateway 5.0 to 7.0

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	P
	R
	S
	T
	U

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

