
Telewindows2 Toolkit

Java Developer’s Guide
Application Classes

Version 1.2 Rev. 2

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 21:10:45
Telewindows2 Toolkit Java Developer’s Guide, Version 1.2 Rev. 2
May 2002

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.
Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright 2002 Gensym Corporation
All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, G2 Real-Time Expert System®, Dynamic Scheduling®, NeurOn-Line®,
ReThink®, and Telewindows® are registered trademarks of Gensym Corporation.
G2 ActiveXLink™, G2 BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™,
G2 Gateway™, G2 GUIDE™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™,
Integrity™, Symcure™, and Optegrity™, are trademarks of Gensym Corporation.
SCOR® is a registered trademark of PTRM.
All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 272-7101 Part Number: DOC067-122

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Version 3.1 Mode: Working Size: 7x9x11
Contents Summary
Preface xv

Part I Introduction 1

Chapter 1 Overview 3

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell 33

Chapter 3 Road Maps to Using This Guide 61

Part II UI Controls and Containers 69

Chapter 4 Using Standard Dialogs 71

Chapter 5 Creating Menus and Toolbars 113

Chapter 6 Creating Palettes 163

Chapter 7 Creating Multiple Document Interface Containers 187

Chapter 8 Using Telewindows2 Toolkit MDI Documents 207

Part III Application Classes 217

Chapter 9 Creating Telewindows2 Toolkit Applications 219

Chapter 10 Using Shell Dialogs and UI Controls 259

Chapter 11 Using Shell Commands 271

Chapter 12 Understanding the Telewindows2 Toolkit Shell 301
loper’s Guide Application Classes iii

Contents Summary
Part IV Appendices 329

Appendix A Localization 331

Appendix B Deploying Your Application 333

Part V Glossary and Index 337

Glossary 339

Index 345
iv Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 21:10:45
Contents
Preface xv

Using this Guide xv

Audience xvii

A Note About the API xvii

Conventions xvii
Typographic xvii
Procedure Signatures xix

Related Documentation xix

Customer Support Services xxii

Part I Introduction 1

Chapter 1 Overview 3

Introduction 4

Packages 5
Package Categories 5
Package Dependencies 7

Supporting Features 8

Java Requirements 8

Telewindows2 Toolkit Application Classes 9

Standard Dialogs 9

Menus and Toolbars 10

Palettes 13

Multiple Document Interface Containers 15

Telewindows2 Toolkit MDI Documents 16

Application Foundation Classes 18
Generic UI Applications 18
Single Document Interface Applications 19
loper’s Guide Application Classes v

Contents
Chapter 1 Overview (continued)

Application Foundation Classes (continued)
Multiple Document Interface Applications 22
Connections to G2 24

Shell Dialogs and UI Controls 25

Shell Commands 26

Telewindows2 Toolkit Default Application Shell 27

Using Telewindows2 Toolkit Demonstrations for Java 30

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell 33

Introduction 33

Running the Telewindows2 Toolkit Shell 34
Running the Shell as a Java Program 34
Telewindows2 Toolkit Shell Features 36
Exiting the Shell 36

Running the Telewindows2 Toolkit Demo 37
Running the Demo Manually 37
Connecting to G2 from the Client 38
Running the Demo from a File 39

Displaying Workspace Views in the Client 40
Getting a Workspace View 41

Controlling the G2 Run State from the Client 42

Interacting with Items in Workspace Views 43
Displaying the Popup Menu for an Item 43
Editing Item Properties 44
Item Configurations and User Modes 47
Custom Dialogs 47
Interacting with an Item from its Popup Menu 48
Editing Attribute Displays and Layout 49
Selecting, Moving, and Resizing Items 50

Interacting with Workspace Views 51
Editing KB Workspace Properties 51
Creating New Items on a KB Workspace 52
Cloning a KB Workspace 54
Shrink Wrapping a KB Workspace 54
Scaling a Workspace View 54
Printing a KB Workspace 56
vi Telewindows2 Toolkit Java Developer’s Guide Application Classes

Contents
Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell (continued)

Connecting to Multiple G2 Applications from the Client 56
Displaying Multiple Workspace Views for Different G2 Connections 57

Using Menu Command Mnemonics and Shortcuts 58

Exiting the Telewindows2 Toolkit Demo 59

Chapter 3 Road Maps to Using This Guide 61

Introduction 61

Road Maps 62

Part II UI Controls and Containers 69

Chapter 4 Using Standard Dialogs 71

Introduction 71
Summary of Standard Dialog Classes 72
Standard Dialog Clients 73
Dialog Layout 74
Custom Dialogs 74

Packages Covered 75
com.gensym.dlg 75

Relevant Demos 75

Using Standard Dialogs 75
Inheritance Structure of the Standard Dialog Classes 76
Common Arguments to Standard Dialog Constructors 76
Listening for Dialog Events 77
Localizing Dialog Text 79
Creating and Launching Standard Dialogs 81

Customizing Dialogs 85
Customizing Dialog Buttons and Icons 86
Customizing Dialog Behavior When it is Launched or Dismissed 89
Customizing Dialog Controls 89
Example 90

Standard Dialogs Reference 94
AboutDialog 95
ErrorDialog 97
InputDialog 99
MessageDialog 102
QuestionDialog 104
Telewindows2 Toolkit Java Developer’s Guide Application Classes vii

Contents
Chapter 4 Using Standard Dialogs (continued)

Standard Dialogs Reference (continued)
SelectionDialog 106
WarningDialog 109

Chapter 5 Creating Menus and Toolbars 113

Introduction 114
Commands 114
Command-Aware Containers 115
Representation Constraints 116
Structured Commands 116
Abstract Commands 117
Using Commands in Applications 118

Packages Covered 121
com.gensym.ui 121
com.gensym.ui.menu 121
com.gensym.ui.menu.awt 121
com.gensym.ui.toolbar 122

Relevant Demos 122

Creating Command-Aware Containers 122
Creating an Instance of a Command-Aware Container 123
Adding All Command Keys 124
Adding Individual Command Keys 126
Adding Commands with Representation Constraints 127
Adding Separators 129

Creating Commands 131
Defining the Command Class 131
Implementing the Constructor 132
Defining the Action of the Command 134
Delivering Command Events By Setting Properties 135
Getting Command Properties 137
Localizing Command Text and Mnemonics 138
Example 140

Creating Commands with a Structure 144
Defining the Command Class 145
Implementing the Constructor 146
Delivering Structured Command Events by Setting Properties 151
Getting the Structure 157

Implementing the Command Interface 158
Example 158

Overriding Mnemonics and Shortcuts for Shell Commands 161
viii Telewindows2 Toolkit Java Developer’s Guide Application Classes

Contents
Chapter 6 Creating Palettes 163

Introduction 163
Palettes and Palette Buttons 164
Object Creators 165
Structured Object Creators 165
G2 Palettes and G2 Object Creators 166
GFR Palettes 166
Comparing Palettes to Menus and Toolbars 167

Packages Covered 168
com.gensym.ntw.util 168
com.gensym.ui 168
com.gensym.ui.palette 169
com.gensym.clscupgr.gfr 169

Relevant Demos 169

Creating a Palette of Objects 169
Creating the Palette 170
Creating Palette Buttons 170
Adding Buttons to the Palette 172
Specifying Palette Behavior and Layout 175
Getting Palette Properties 177
Listening for Palette Events 177
Listening for ObjectCreator Property Changes 178

Creating G2 Palettes 179
Creating the Palette 179
Adding Objects to the Palette 179
Creating Palette Buttons from G2 Objects 180

Creating GFR Palettes 181

Example 182

Chapter 7 Creating Multiple Document Interface Containers 187

Introduction 188
MDIFrame 188
MDIDocument 190
MDIManager 191

Packages Covered 192
com.gensym.mdi 192

Relevant Demos 193

Creating and Managing MDI Frames 193
Creating the Frame 193
Setting the Default UI Controls of the Frame 195
Telewindows2 Toolkit Java Developer’s Guide Application Classes ix

Contents
Chapter 7 Creating Multiple Document Interface Containers (continued)

Creating and Managing MDI Frames (continued)
Getting the Manager 196
Getting the Frame 196

Creating an MDI Toolbar Panel 197
Example 197

Creating and Managing MDI Documents 199
Adding Documents to the Frame 199
Getting Active and Open Documents 200
Activating Documents 202

Using Tiling Commands to Arrange Documents 202
Getting the Default Tiling Commands 203
Arranging New Documents 203

Listening for MDI Events 204
Example 204

Creating MDI Document Types 206

Chapter 8 Using Telewindows2 Toolkit MDI Documents 207

Introduction 207

Packages Covered 208
com.gensym.shell.util 208

Relevant Demos 208

Using MDI Document Types 209
Class Hierarchy of MDIDocument Types 209
TW2Document 209
WorkspaceDocument 210
Creating MDI Documents that Display Views into the G2 Server’s

Data 210

Using Workspace Document Factories 211

Example 213
Creating a Custom Workspace Document 214
Implementing a Workspace Document Factory 215
Setting the Workspace Document Factory 215
x Telewindows2 Toolkit Java Developer’s Guide Application Classes

Contents
Part III Application Classes 217

Chapter 9 Creating Telewindows2 Toolkit Applications 219

Introduction 219
UI Applications 220
SDI and MDI Applications 220
Organization of this Chapter 221

Packages Covered 222
com.gensym.shell.util 222
com.gensym.mdi 222
com.gensym.core 222

Relevant Demos 223

Determining Which Application Foundation Class to Extend 223
Will the Application Have a User Interface? 223
Will the Application Support Connecting to G2 Through the UI? 224
Will the Application Provide a Single or Multiple Document Frame? 224
Decision Tree to Determine Which Class to Extend 226

Application Foundation Classes 227
GensymApplication 228
UiApplication 229
TW2Application 230
MDIApplication 232
TW2MDIApplication 232
Summary of Application Foundation Class Features 233

Creating Telewindows2 Toolkit Applications 233
Required Features of SDI and MDI Applications 233
Optional Features of SDI and MDI Applications 235
Optional Feature Specific to SDI and MDI Applications 235

Creating and Managing Connections to G2 236
Will the Application Support Single or Multiple Connections to G2? 236
Creating a ConnectionManager 237
Opening a Connection through a ConnectionManager 237
Getting Connection and Login Information 238
Getting and Setting the Current Connection 240
Listening for Changes in the Current Connection Context 242
Implementing Abstract Methods to Manage Connections 244

Creating Single Document Interface Applications 247
Creating and Setting the Frame in an SDI Application 249
Listening for Programmatic Show and Hide KB Workspace Events in SDI

Applications 250
Telewindows2 Toolkit Java Developer’s Guide Application Classes xi

Contents
Chapter 9 Creating Telewindows2 Toolkit Applications (continued)

Creating Multiple Document Interface Applications 251
Creating and Setting the Frame in an MDI Application 252
Listening for Programmatic Show and Hide KB Workspace Events in an

MDI Application 254
Registering Workspace Document Factories 255

Chapter 10 Using Shell Dialogs and UI Controls 259

Introduction 259

Packages Covered 260
com.gensym.shell.dialogs 260
com.gensym.shell.util 260

Relevant Demos 260

HostPortPanel 261

LoginDialog 263

UserModePanel 267

Chapter 11 Using Shell Commands 271

Introduction 272
Command Keys 273
Constructors 273
Availability 274

Packages Covered 275
com.gensym.shell.commands 275

Relevant Demos 275

ConnectionCommands 276

CreationCommands 278

EditCommands 279

ExitCommands 281

G2StateCommands and CondensedG2StateCommands 283

HelpCommands 286

ItemCommands 287

SwitchConnectionCommand 290

TraceCommands 291

WorkspaceCommands 293
xii Telewindows2 Toolkit Java Developer’s Guide Application Classes

Contents
Chapter 11 Using Shell Commands (continued)

WorkspaceInstanceCommands 296

ZoomCommands 299

Chapter 12 Understanding the Telewindows2 Toolkit Shell 301

Introduction 302

Telewindows2 Toolkit Default Application Shell Features 302

The Shell Class 303
Inheritance Structure 304
Source Code 304

Constructor and Constructor Method 314

TW2MDIApplication Methods 315

Application Frame and UI Components 316
Create the Menu Bar 316
Create the Toolbar Panel 317
Create the Status Bar 317

Menus and Toolbars 318
Create File, G2, and Help Menu 318
Create Toolbar 319

Register WorkspaceDocumentFactory 321

ContextChangedListener Method 321

Status Bar Method 322

Main Method 322

ShellWorkspaceDocument and ShellWorkspaceDocumentFactory 325
ShellWorkspaceDocument 325
ShellWorkspaceDocumentFactory 327

Part IV Appendices 329

Appendix A Localization 331

Appendix B Deploying Your Application 333
Required Library Files 334
Required Files for Beans Created with BeanXporter 335
Telewindows2 Toolkit Java Developer’s Guide Application Classes xiii

Contents
Part V Glossary and Index 337

Glossary 339

Index 345
xiv Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Version 3.1 Mode: Working Size: 7x9x11
Preface
Describes this document and the conventions that it uses.

Using this Guide xv

Audience xvii

A Note About the API xvii

Conventions xvii

Related Documentation xix

Customer Support Services xxii

Using this Guide
This guide uses a bottom-up organizational approach to describe how to build
client user interface applications for G2, using Java. A bottom-up approach
means:

• The chapters progress sequentially from describing how to integrate
individual, generic, UI components, and G2 application-specific components
in any Java application, to describing how to build complete applications.

• Later chapters assume knowledge of earlier chapters.

The exception to this approach is Chapter 2, “Guided Tour of the Telewindows2
Toolkit Shell” on page 33, which provides a walk-through of the default
application shell user interface.
loper’s Guide Application Classes xv

Preface
The following table summarizes the topics covered in each chapter in Parts II
and III:

For detailed road maps of topics covered in this guide, see Chapter 3, “Road
Maps to Using This Guide” on page 61.

Topic Example Chapter

Informational and input
dialogs

Dialogs with text boxes,
selection dialogs, and error
dialogs.

Chapter 4, “Using
Standard Dialogs”

Application components
for building UI

Menus, toolbars, and
commands.

Chapter 5, “Creating
Menus and Toolbars”

Palettes Generic palettes of objects
and palettes of G2 objects.

Chapter 6, “Creating
Palettes” on page 163

Multiple document
interface (MDI) containers
and managers

MDI frame, document,
manager, and listener.

Chapter 7, “Creating
Multiple Document
Interface Containers”

MDI document types MDI documents that
display views of G2 data,
with context-specific menu
bars.

Chapter 8, “Using
Telewindows2 Toolkit
MDI Documents”

Application foundation
classes that handle
connections to G2 and
manage the application
frame

Single document interface
(SDI), multiple document
interface (MDI), and
generic UI applications.

Chapter 9, “Creating
Telewindows2 Toolkit
Applications”

G2 application-specific
dialogs and UI components

A dialog for logging into a
secure G2, and a panel for
switching the current
connection.

Chapter 10, “Using Shell
Dialogs and UI Controls”
on page 259

G2 application-specific
commands

Commands for connecting
to G2 and getting a named
workspace.

Chapter 11, “Using Shell
Commands”

Source code for the TW2
Toolkit Java application
shell.

A multiple connection MDI
application.

Chapter 12,
“Understanding the
Telewindows2 Toolkit
Shell”
xvi Telewindows2 Toolkit Java Developer’s Guide Application Classes

Audience
Audience
This guide is for user interface developers, who use TW2 Toolkit application
classes to build G2 client applications in Java.

In general, this guide stands on its own to describe how UI developers can use
TW2 Toolkit application classes to build a G2 client UI. Using these classes alone,
you can create a simple user interface that provides an application frame, menus
and toolbars, basic commands for interacting with the KB, and basic connectivity
to a G2 server. If your KB provides navigation through GUIDE/UIL buttons, you
can use these buttons for navigation in the client, as well.

If your application needs to customize the way in which TW2 Toolkit application
classes handle connections, display and manipulate workspace views, or manage
and launch dialogs, you will also need to refer to the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes. This guide references the
components and core classes guide, where relevant.

A Note About the API
The techniques by which Telewindows2 Toolkit implements its capabilities are
subject to change at any time without notice or explanation, and are expected to
change as the toolkit evolves. These techniques, and any changes to them, will not
be described in any documentation.

Therefore, it is essential that you use TW2 Toolkit exclusively through its API as
described here and in the API documentation. Any methods or classes that are not
included in the API are subject to change without notice. Any code that calls
undocumented methods may cease to work in newer versions.

Conventions

Typographic

Convention Examples Description

g2-window, g2-window-1,
gfr-top-level, sys-mod

G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature G2 attribute names

true, 1.234, ok, “Burlington, MA” Attribute values and values
specified or viewed through
dialogs
Telewindows2 Toolkit Java Developer’s Guide Application Classes xvii

Preface
Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start
KB Workspace > New Object
create subworkspace
Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save
Properties

GMS and native top-level menu
choices and native popup menu
choices

workspace Glossary terms

c:\Program Files\Gensym\g2 Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xviii Telewindows2 Toolkit Java Developer’s Guide Application Classes

Related Documentation
Procedure Signatures
A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

−> transferred-items: g2-list

Related Documentation

Telewindows2 Toolkit
Online Files
The following document is available in the following directory, depending on
your platform:

Java Developer’s Guides
The online files are located in this directory, by default, depending on your
platform:

• Telewindows2 Toolkit Release Notes

• Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes

• Telewindows2 Toolkit Java Developer’s Guide: Application Classes

• Telewindows2 Toolkit Java Demos Guide

• BeanXporter User’s Guide

NT: %SEQUOIA_HOME%\readme-tw2.html

UNIX: $SEQUOIA_HOME/readme-tw2.html

NT: c:\Program Files\Gensym\g2-6.1\doc\tw2\Java\
docs\guides\

UNIX: /usr/gensym/g2-6.1/doc/tw2/Java/docs/guides/
Telewindows2 Toolkit Java Developer’s Guide Application Classes xix

Preface
G2 JavaLink
Online Files
The following document is available in the following directory, depending on
your platform:

User’s Guides
The online files are located in this directory, depending on your platform:

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

Java Reference Material
• JDK 1.3 documentation set *

• The Java Language Specification (Gosling, Joy, Steele. Addison Wesley) *

• The Java Bean Specification V1.0 *

• *These and other Java documents can be downloaded from Sun
Microsystems’ Java web site at http://www.javasoft.com.

NT: %JAVALINK_HOME%\readme-javalink.html

UNIX: $JAVALINK_HOME/readme-javalink.html

NT: c:\Program Files\Gensym\g2-6.1\doc\javalink\
docs\guides\

UNIX: /usr/gensym/g2-6.1/doc/javalink/docs/guides/
xx Telewindows2 Toolkit Java Developer’s Guide Application Classes

Related Documentation
G2 Core Technology
• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual, Volumes I and II

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities
• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

G2 Diagnostic Assistant
• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Bridges and External Systems
• G2 WebLink User’s Guide

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide
Telewindows2 Toolkit Java Developer’s Guide Application Classes xxi

Preface
• G2 OPCLink User’s Guide

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2-ODBC Bridge Release Notes

• G2 Database Bridge User’s Guide

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

Access G2 HelpLink at http://www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxii Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part I Introduction
Version 3.1 Mode: Working Size: 7x9x11
Part I
Introduction
Chapter 1 Overview 3

Provides an overview of the Telewindows2 Toolkit packages, Java requirements, and
application features you can use to build a G2 client user interface application, using
Telewindows2 Toolkit.

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell 33

Gives a guided tour of the end user features of the Telewindows2 Toolkit default application
shell, which serves as an example of the type of client user interface you can build for G2
applications, using Telewindows2 Toolkit application classes.

Chapter 3 Road Maps to Using This Guide 61

Gives a road map for where to go in this guide for information about building various types of
applications, using Telewindows2 Toolkit application classes.
1

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part I Introduction
Chapter 1 Overview
Version 3.1 Mode: Working Size: 7x9x11
1
Overview
Provides an overview of the Telewindows2 Toolkit packages, Java requirements,
and application features you can use to build a G2 client user interface application,
using Telewindows2 Toolkit.

Introduction 4

Packages 5

Supporting Features 8

Java Requirements 8

Telewindows2 Toolkit Application Classes 9

Standard Dialogs 9

Menus and Toolbars 10

Palettes 13

Multiple Document Interface Containers 15

Telewindows2 Toolkit MDI Documents 16

Application Foundation Classes 18

Shell Dialogs and UI Controls 25

Shell Commands 26

Telewindows2 Toolkit Default Application Shell 27

Using Telewindows2 Toolkit Demonstrations for Java 30
3

Chapter 1 Overview
Introduction
The Telewindows2 Toolkit Java Developer’s Guide: Application Classes is for Java
application developers who want to build native, client applications that provide
user interfaces for viewing and manipulating data in a G2 server.

Here is what each of these phrases means in more detail for the Telewindows2
(TW2) Toolkit:

For additional terms relating to the TW2 Toolkit, see the “Glossary” on page 339.

Note This guide does not describe any Java terms or concepts, which are explained
fully in numerous, readily available Java programming language books, as well
as on Sun’s Java website at www.java.sun.com.

Java application developer A programmer who builds applications in
a Java programming environment, such as
Symantec Visual Café, IBM’s Visual Age,
or pure Java.

Native Conforms to the native “look-and-feel” of
the window system on which the UI
application is running.

Client application An application that runs on any platform
and interacts through a network
connection with a server.

User interface Any kind of visual application that allows
end users or developers to interact with
data, using menus, toolbars, and dialogs.

View data To display a visual representation of any
type of G2 data, such as a KB workspace
or item properties dialog.

Manipulate data To modify data in the G2 server through a
native, client user interface.

G2 server A running G2 executable, which is the
source of all G2 data that users view and
manipulate.
4 Part I Introduction

Packages
Packages
To build a user interface application for interacting with G2, using Telewindows2
(TW2) Toolkit, you use classes in these categories of packages:

• Application packages — Provide stand-alone classes for use in any Java
application.

• Shell packages — Provide classes that you can use to build G2 client
applications, and the source code for the TW2 Toolkit default application
shell.

For a listing of all packages, see the API documentation in this location in your
G2 Bundle product directory:

NT:\doc\tw2\Java\Docs\api\packages.html

UNIX:/doc/tw2/Java/Docs/api/packages.html

Package Categories
This table describes the contents of the available packages in each category:

Package Description

Application Packages

com.gensym.dlg Standard dialogs that display information to
the user and get input from the user.

com.gensym.ui Basic interfaces and classes to support
menus, toolbars, and palettes.

com.gensym.ui.menu
com.gensym.ui.toolbar

User interface containers that display and
represent user actions and listen for
associated events.

com.gensym.ui.palette Generic classes to support palettes.

com.gensym.mdi Multiple document interface (MDI) frames,
and their associated containers and
managers.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 5

Chapter 1 Overview
Shell Packages

com.gensym.shell.dialogs Application-specific dialogs and UI controls
that support common interactions with a G2
server.

com.gensym.shell.commands Common user interactions with a G2 server,
which you can include in a menu or toolbar.

com.gensym.shell.util Support for:

• Managing multiple connections to G2
and handling associated events.

• Creating single and multiple document
applications that manage application
frames and connections to G2.

• MDI document types that display
workspace views.

Package Description
6 Part I Introduction

Packages
Package Dependencies
This diagram illustrates the package dependencies of the application and shell
packages on other TW2 Toolkit packages and G2 JavaLink packages:

shell

mdi

dlg

ui

ui.menu

ui.toolbar

ui.palette

ntw

wksp

jgi

classesnetutil

message

shell.util

TW2 Toolkit application
packages.

TW2 Toolkit component and
core classes packages.

G2 JavaLink packages.

shell.dialogs

shell.commands
Telewindows2 Toolkit Java Developer’s Guide Application Classes 7

Chapter 1 Overview
Supporting Features
The underlying features of Telewindows2 Toolkit that allow users to view and
manipulate G2 server data through a native, client user interface are:

• Telewindow2 Toolkit components and core classes — Provide the basic
support for connecting to a G2 server, displaying and manipulating data
through a workspace view, and handling the associated events.

• G2 JavaLink — Provides the underlying technology that enables TW2 Toolkit
components to access and manipulate data in a G2 server, and to represent G2
items as components.

For additional information on building G2 client applications, using TW2 Toolkit
components and core classes, and G2 JavaLink, see these guides:

• Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

Java Requirements
To use Telewindows2 Toolkit to build G2 client applications in Java, you must
have a working knowledge of:

• Java programming — Creating Java applications that:

– Manipulate the properties, events, and methods of classes and interfaces.

– Use the Java 1.1. event model.

– Support internationalization.

• Java Abstract Windowing Toolkit (AWT) and Java Foundation Classes
(JFC) — The base classes upon which the TW2 Toolkit user interface classes
are built.

• User interface development — The general technique of constructing a user
interface by:

– Adding Java components to containers.

– Arranging those components, using layout managers.

For more information, see the java.sun.com website.
8 Part I Introduction

Telewindows2 Toolkit Application Classes
Telewindows2 Toolkit Application Classes
Telewindows2 Toolkit provides several categories of classes, which you can use
to build client user interface applications for G2:

• Graphical user interface classes, which let you create:

– Standard informational dialogs and dialogs that interact with G2 items,
such as error dialogs, input dialogs, and selection dialogs.

– Menus and toolbars.

– Palettes for cloning G2 items onto a KB workspace.

– Multiple document interface (MDI) applications, which includes MDI
document types for displaying views of G2 server data, such as workspace
views.

• Application foundation classes, which let you create these types of
applications that manage connections to G2:

– Generic UI applications.

– Single document interface (SDI) applications.

– Multiple document interface (MDI) applications.

• Shell dialogs and UI controls, which allow you to perform common
interactions with G2, such as logging in and switching the user mode.

• Shell commands, which provide common user interactions with G2 for
inclusion in menus and toolbars, such as making a connection, changing the
G2 run state, and creating and getting a KB workspace.

• Shell classes, which provide the classes that define the TW2 Toolkit default
application shell, a simple user interface for connecting to multiple G2s, and
displaying and manipulating G2 items through a workspace view.

The following sections show examples of some of these features and provide
references to the chapters in this guide where the feature is discussed.

Standard Dialogs
Telewindows2 Toolkit provides a number of standard dialogs that you can use
directly in your application. These dialog classes are part of G2 JavaLink.

You use the dialogs to provide information to and obtain input from the user. The
dialogs provide standard buttons for dismissing and cancelling the dialog, as well
as icons appropriate to the particular type of dialog.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 9

Chapter 1 Overview
This figure shows examples of some of the dialogs in the com.gensym.dlg
package:

You can customize the buttons and icon for any standard dialog by subclassing
the dialog. You can also create standard dialogs with different types of controls,
where you specify the layout of the controls.

For detailed information on creating standard dialogs, see Chapter 4, “Using
Standard Dialogs” on page 71.

Menus and Toolbars
Telewindows2 Toolkit provides a number of classes and interfaces to support
“commands,” which are actions that the user can perform through the UI, and
“command-aware containers,” which are containers that know how to represent
those commands, such as menus and toolbars. These TW2 Toolkit classes support:

• Encapsulation by keeping the command separate from the UI that
represents it.

• Reusability by allowing you to add the same command to more than one
command-aware container.

• Command availability by notifying command-aware containers of changes in
command state.

ErrorDialog

InputDialog

SelectionDialog
10 Part I Introduction

Menus and Toolbars
For example, this figure shows a representation of the same command in a menu
and in a toolbar:

This figure shows an application with a menu that includes both text and icons:

File menu represents
commands as text.

Toolbar represents commands as
icons with tool tips.

Tool tip

Menu represents
commands, using
constraints to show both
text and icons.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 11

Chapter 1 Overview
This figure shows the Edit menu of an application where neither the Cut, Copy,
and Paste menu choice nor the corresponding toolbar button is available, because
no item is currently selected:

You create commands by extending one of these two classes in the com.gensym.
ui package:

• AbstractCommand — Creates a set of related actions.

• AbstractStructuredCommand — Creates a set of related actions with a
hierarchical structure or logical grouping.

These classes provide default implementations of the Command interface. You can
implement this interface to customize the way in which a command handles
event notification or the behavior of its abstract methods.

TW2 Toolkit provides these classes for creating command-aware containers:

The classes located in the com.gensym.ui.menu and com.gensym.ui.toolbar
package inherit from classes in the javax.swing package. The classes in the com.
gensym.ui.menu.awt package inherit from classes in the java.awt package.

For detailed information on creating commands and adding them to command-
aware containers, see Chapter 5, “Creating Menus and Toolbars” on page 113.

Menu choices are
unavailable.

Toolbar buttons are
also unavailable.

Class Type of Container

CMenu Pulldown menu

ToolBar Toolbar

CMenuBar Menu bar

CPopupMenu Popup menu
12 Part I Introduction

Palettes
Palettes
Telewindows2 Toolkit provides a number of classes in different packages for
creating palettes of objects. You can create these types of palettes, where each item
is represented as a palette button:

• A generic palette of items.

• A generic palette of items with a hierarchical structure.

• A palette of G2 items.

For example, when you load the sequoia.jar file into a Java visual programming
environment, you see a generic palette such as the following, which consists of a
group of palette buttons for creating dialog controls and buttons for switching the
palette:

TW2 Toolkit provides these classes in these packages for creating palettes and
palette buttons:

• These classes are located in the com.gensym.ui.palette package:

– Palette and PaletteButton — Create a generic palette and associated
buttons.

– PaletteListener — Receives notification when a palette is created.

– PaletteDropTarget — An interface that you implement to receive
notification when a PaletteButton gets toggled.

• These classes are located in the com.gensym.ui package:

– ObjectCreator — An interface that creates a set of PaletteButton objects
for each object that gets created.

– ObjectCreatorListener — Receives notification when the availability,
icon, or description of any ObjectCreator changes.

– StructuredObjectCreator — Creates a hierarchical structure of
PaletteButton objects.

PaletteButton
Telewindows2 Toolkit Java Developer’s Guide Application Classes 13

Chapter 1 Overview
– StructuredObjectCreatorListener — Receives notification when the
structure of a StructuredObjectCreator changes.

– ObjectFactory — Determines the type of object a PaletteButton creates.

• These classes are located in the com.gensym.ntw.util package:

– G2Palette — Creates a PaletteButton from a G2 class.

– G2ObjectCreator — A default implementation of the
StructuredObjectCreator interface that creates a hierarchical structure
of PaletteButton objects from a hierarchical set of G2 class.

• This class is located in the com.gensym.clscupgr.gfr package:

– GFRPalette — Creates a palette from a G2 Foundation Resources (GFR)
palette.

For detailed information on creating generic palettes, palettes of G2 objects, and
GFR palettes, see Chapter 6, “Creating Palettes” on page 163.
14 Part I Introduction

Multiple Document Interface Containers
Multiple Document Interface Containers
The Telewindows2 Toolkit default application shell is an example of an MDI
application that provides the following MDI containers and features:

MDIManager provides standard tiling
commands for arranging documents.

MDIToolBarPanel

Minimized document.

MDIDocument provides
standard buttons for
minimizing, maximizing, and
closing the window.

Context-specific menu
bar associated with
MDIDocument.

MDIFrame
MDIDocument
Telewindows2 Toolkit Java Developer’s Guide Application Classes 15

Chapter 1 Overview
Theses classes in the com.gensym.mdi package allow you to create multiple
document interface (MDI) applications:

• MDIFrame — A multiple document interface frame that contains child frames,
or MDIDocuments.

• MDIDocument — A child frame within an MDIFrame that:

– Displays views into your application’s data.

– Provides context-specific menu bars and toolbars.

– Contains standard buttons for minimizing, maximizing, and closing the
document window.

• MDIToolBarPanel — A container for displaying one or more toolbars in an
MDIFrame.

• MDIManager — Provides support for:

– Adding documents to the frame and swapping in context-specific menu
bars and toolbars.

– Getting the active document or an array of open documents.

– Activating a particular document.

– Providing a Window menu with commands for arranging multiple
documents within the application frame.

– Handling event notification when a new document is added to the frame.

• MDIEvent and MDIListener — The event is delivered by the manager when a
document is added to the frame, and the listener receives notification of those
events.

• MDITilingConstants — An interface that provides constants for use when
getting standard tiling commands for arranging documents vertically,
horizontally, or in a cascade within the frame.

For detailed information on MDI containers and managers, see Chapter 7,
“Creating Multiple Document Interface Containers” on page 187.

Telewindows2 Toolkit MDI Documents
Telewindows2 Toolkit provides two MDIDocument types in the com.gensym.
shell.util package that contain views of G2 server data:

• TW2Document — A document that you can extend to display any view into the
G2 server’s data, for example, a class manager.

• WorkspaceDocument — A document for displaying a KB workspace, which
you can extend to provide a context-specific menu bar and/or toolbars for
interacting with the KB workspace.
16 Part I Introduction

Telewindows2 Toolkit MDI Documents
An example of a type of WorkspaceDocument is com.gensym.shell.
ShellWorkspaceDocument, which provides the File, Edit, Item, Workspace, G2,
Window, and Help menus in its context-specific menu bar.

This figure shows a single connection application with its default menu bar which
appears when no workspace document is visible, and the same application with
its context-specific menu bar, which appears when a workspace document has
focus:

For detailed information, see Chapter 8, “Using Telewindows2 Toolkit
MDI Documents” on page 207.

Context-specific menu bar.

Default menu bar.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 17

Chapter 1 Overview
Application Foundation Classes
Telewindows2 Toolkit provides foundation classes that you can extend to build
the following types of applications:

• Generic UI applications, which allow you to interact with G2 through any
type of container application.

• Single document interface (SDI) applications, which provide a single
document frame for displaying G2 server data and which support G2
connections.

• Multiple document interface (MDI) applications, which provide multiple
document windows within a single frame for displaying G2 server data and
which support G2 connections.

The SDI and MDI application foundation classes provide support for connecting
to single or multiple G2 servers.

They also provide support for various other required and optional features, such
as using command line arguments for connecting to G2 and specifying the frame
geometry.

The SDI and MDI application foundation classes are located in the com.gensym.
shell.util package, while the generic UI application foundation class is in the
com.gensym.core package, which is part of G2 JavaLink.

The following sections provide examples of each type application.

For detailed information about determining the type of application foundation
class to extend and about building TW2 Toolkit applications, see Chapter 9,
“Creating Telewindows2 Toolkit Applications” on page 219.

Generic UI Applications
You create a generic UI application by extending UiApplication.

You provide the application frame and its UI containers, such as menus and
toolbars. You can use Java and/or TW2 Toolkit classes to build the application.
For example, the following simple workspace application shows a generic UI
application for:

• Opening and closing connections to G2.

• Displaying a named KB workspace.

Note TW2 Toolkit applications allow you to navigate unnamed KB workspaces by
using GUIDE/UIL navigation buttons that exist in the KB.
18 Part I Introduction

Application Foundation Classes
The application uses these classes to implement these features:

• java.awt classes to implement the application frame, the menu bar, and the
individual menus and menu items.

• java.awt events and listeners to handle action events associated with
choosing an item from a menu.

• TW2 Toolkit application classes to make the connection to G2 and display a
workspace view.

For details about the features of a generic UI application, see “UiApplication” on
page 229.

Single Document Interface Applications
An SDI application provides a frame that contains a single document window in
which to display workspace views and other G2 server data.

You create an SDI application by extending TW2Application.

com.gensym.wksp.WorkspaceView

java.awt.MenuBar
java.awt.Menu

java.awt.Frame
Telewindows2 Toolkit Java Developer’s Guide Application Classes 19

Chapter 1 Overview
The application foundation class provides methods for getting and setting the
application frame, and getting and setting the connection. You must provide the
UI containers such as menus and toolbars.

For example, the following workspace browser application shows a simple SDI
application for:

• Opening and closing connections to G2 by using a menu or toolbar.

• Getting a named workspace by using a menu or toolbar.

• Browsing through multiple named workspaces by clicking the previous and
next buttons on the toolbar.

• Displaying the current connection on the toolbar.

• Switching the user mode from the toolbar.
20 Part I Introduction

Application Foundation Classes
This application uses... To implement these features...

javax.swing components The application frame, toolbar
panel, toolbar layout.

java.awt events and listeners Handle action events associated
with choosing an item from a
menu or clicking a toolbar button.

javax.swing.JFrame

com.gensym.ui.menu.CMenuBar
com.gensym.ui.menu.CMenu
com.gensym.ui.AbstractCommand

com.gensym.ui.toolbar.ToolBar
com.gensym.ui.

com.gensym.shell.util.HostPortPanel
com.gensym.shell.util.UserModePanel

javax.swing.Panel

com.gensym.wksp.MultipleWorkspacePanel
Telewindows2 Toolkit Java Developer’s Guide Application Classes 21

Chapter 1 Overview
For details about building SDI applications, see:

• “Creating Telewindows2 Toolkit Applications” on page 233.

• “Creating Single Document Interface Applications” on page 247.

Multiple Document Interface Applications
An MDI application provides a frame that contains multiple document windows
in which to display workspace views for simultaneous viewing.

You create an MDI application by extending TW2MDIApplication.

The application provides methods for getting and setting the application frame,
and getting and setting the connection. You must provide the UI containers such
as menus and toolbars.

For example, the following multiple connection application shell shows a simple
MDI application for:

• Opening and closing multiple connections to G2 by using the menu or toolbar.

• Switching between those connections by choosing the current connection
from the toolbar.

• Switching the user mode from the toolbar.

• Displaying multiple named workspaces in different document windows by
using the menu or toolbar.

• Arranging the multiple documents windows vertically, horizontally, or in a
cascade.

• Controlling the G2 run state by using the menu or toolbar.

java.javabeans events
and listeners

Handle events associated with
displaying workspaces within the
application frame, and cycling
through multiple workspaces by
using the previous and next
buttons in the toolbar.

TW2 Toolkit graphical UI classes The menu bar, toolbar buttons,
and panels for switching the
connection and user mode from
the toolbar.

TW2 Toolkit graphical UI classes Handle connections to G2 and
represent multiple KB workspaces
in a panel.

This application uses... To implement these features...
22 Part I Introduction

Application Foundation Classes
Primarily, the application uses TW2 Toolkit application and UI classes to
implement these features:

• The MDI frame that displays the multiple windows.

com.gensym.mdi.MDIFrame

com.gensym.shell.util.WorkspaceDocument

javax.swing.JMenuBar
com.gensym.ui.menu.CMenu
com.gensym.ui.AbstractCommand

com.gensym.ui.toolbar.ToolBar
com.gensym.ui.

javax.swing.Panel

com.gensym.ui.toolbar.ToolBar
com.gensym.shell.util.HostPortPanel
com.gensym.shell.util.UserModePanel
Telewindows2 Toolkit Java Developer’s Guide Application Classes 23

Chapter 1 Overview
• Multiple workspace document windows and a standard Window menu for
arranging them.

• Menus, menu choices, toolbar panel, toolbars, toolbar buttons, and panels for
showing the connection and switching the user mode from the toolbar.

• Standard commands for opening connections to G2, switching the G2 run
state, getting named workspaces and displaying them in document windows,
and exiting the application.

• Multiple connections to G2.

• Event handling associated with switching the current connection to G2, which
the application uses to create its own command for disconnecting from G2.

• Events handling associated with programmatically showing a KB workspace
in G2.

The only application features that use javax.swing are the:

• Menu bar.

• Font, color, and style of the application windows.

• Initial splash image, which the application displays when it is launched.

For details about building MDI applications, see:

• “Creating Telewindows2 Toolkit Applications” on page 233.

• “Creating Multiple Document Interface Applications” on page 251.

Connections to G2
All TW2 Toolkit applications must provide a way of connecting to G2, from the
command line and/or through the user interface. TW2 Toolkit applications allow
these types of connections to G2:

• Single connections, where the user connects to a single G2 server through an
implementation of the com.gensym.ntw.TwAccess interface, such as a
TwGateway.

• Multiple connections, where the user simultaneously connects to multiple G2
servers by using a ConnectionManager, which manages those connections.

Thus, if your application is an MDI application that supports multiple
connections, the user can display multiple workspace views simultaneously and
easily switch between them.

Both SDI and MDI applications allow single or multiple connections.

The com.gensym.shell.util package provides managers and listeners that
handle multiple connections to G2.
24 Part I Introduction

Shell Dialogs and UI Controls
For detailed information, see “Creating and Managing Connections to G2” on
page 236.

Shell Dialogs and UI Controls
Telewindows2 Toolkit provides several dialogs and UI controls, which you can
use directly in an application shell to allow users to perform these common
interactions:

• Connecting and logging in to a secure or unsecure G2 through a tabbed
dialog.

• Customizing tracing.

• Displaying and switching the current connection.

• Displaying and switching the current user mode.

This figure shows examples of these dialogs and UI controls:

The dialogs and UI controls are located in these packages:

com.gensym.shell.dialogs
com.gensym.shell.util

For detailed information, see Chapter 10, “Using Shell Dialogs and UI Controls”
on page 259.

LoginDialog

HostPortPanel

UserModePanel
Telewindows2 Toolkit Java Developer’s Guide Application Classes 25

Chapter 1 Overview
Shell Commands
TW2 Toolkit provides a number of commands, which you can add directly to
your application menus and/or toolbars to support these common interactions
with G2:

• Opening, closing, and switching between G2 connections.

• Getting named KB workspaces and creating new workspaces.

• Controlling the G2 run state.

• Performing standard cut/copy/paste operations on items on a KB workspace.

• Performing standard G2 interactions with items on a KB workspace.

• Interacting with KB workspaces.

• Getting help.

• Customizing tracing.

• Exiting the application.
26 Part I Introduction

Telewindows2 Toolkit Default Application Shell
The following figures show examples of the commands located in the com.
gensym.shell.commands package as they appear in the TW2 Toolkit default
application shell menus:

For detailed information about these commands, see Chapter 11, “Using Shell
Commands” on page 271.

Telewindows2 Toolkit Default Application Shell
Telewindows2 Toolkit provides a default application shell, which is an example
of a simple user interface for running G2 applications. The source code for the
Shell class and its associated classes are located in the following directory:

ExitCommands

WorkspaceCommands

EditCommands

WorkspaceInstanceCommands

ItemCommands

SwitchConnectionCommand

ConnectionCommands

CondensedG2StateCommands

HelpCommands
TraceCommand

NT: %SEQUOIA_HOME%\classes\com\gensym\shell\

UNIX: $SEQUOIA_HOME/classes/com/gensym/shell/
Telewindows2 Toolkit Java Developer’s Guide Application Classes 27

Chapter 1 Overview
The TW2 Toolkit default application shell:

• Allows connecting to multiple G2s and switching between those connections.

• Simultaneously displays multiple workspace views, each in its own document
window within an MDI application frame.

• Responds to programmatic show and hide KB workspace events in G2.

• Allows choosing named KB workspaces and navigating between those
workspaces.

• Provides its own type of MDIDocument called ShellWorkspaceDocument,
which:

– Displays a workspace view.

– Provides a context-specific menu bar that includes the Edit, Item,
Workspace, and Window menus, in addition to the default menus.

– Handles all aspects of managing the document when the connection to G2
closes or switches, and when the KB workspace in G2 is deleted.

• Provides its own type of WorkspaceDocumentFactory called
ShellWorkspaceDocumentFactoryImpl, which generates a
ShellWorkspaceDocument.

The source code used to create the TW2 Toolkit shell is available to you as an
example of the kind of application you can build. The techniques that this shell
uses are applicable for building any multiple connection, MDI application.

For a walk-through of the TW2 Toolkit default application shell end user
interface, see Chapter 2, “Guided Tour of the Telewindows2 Toolkit Shell” on
page 33.

For a walk-through of the source code for the shell, see Chapter 12,
“Understanding the Telewindows2 Toolkit Shell” on page 301.
28 Part I Introduction

Telewindows2 Toolkit Default Application Shell
Here is the TW2 Toolkit default application shell that appears when you display a
KB workspace.

com.gensym.mdi.MDIFrame

com.gensym.menu.CMenuBar
com.gensym.ui.menu.CMenu
com.gensym.ui.AbstractCommand

com.gensym.ui.toolbar.ToolBar
com.gensym.ui.AbstractCommand

com.gensym.mdi.MDIToolBarPanel

com.gensym.ui.toolbar.ToolBar
com.gensym.shell.util.HostPortPanel
com.gensym.shell.util.UserModePanel

com.gensym.mdi.MDIStatusBar
com.gensym.shell.ShellWorkspaceDocument
Telewindows2 Toolkit Java Developer’s Guide Application Classes 29

Chapter 1 Overview
Using Telewindows2 Toolkit Demonstrations
for Java

Telewindows2 Toolkit includes numerous demonstrations illustrating various
functionality for Java programmers. These demos show how to use Java Beans
components, Java UI components, and Java application classes to build applets
and applications that connect to a G2 server, display workspace views, and
manipulate data.

These demos are located in this directory, depending on your platform:

To run the demos, you must either:

• Place the current version of G2 as the first G2 in your PATH environment
variable.

• Define the SEQUOIA_G2 environment variable to point to this version of G2.

A number of the demos make use of TW2 Toolkit components exclusively. These
demos are described in the introduction to and throughout the Telewindows2
Toolkit Java Developer’s Guide: Components and Core Classes.

Others demos are designed to illustrate how to use TW2 Toolkit application
classes, although some of these demos also use TW2 Toolkit components.

The table below lists the source code location of each Java demo that uses TW2
Toolkit application classes and provides a description of each:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos

Java Demos

 Source Code Description

NT:
standarddialogs\DlgTestApp.java

UNIX:
standarddialogs/DlgTestApp.java

Creates a Java frame that creates
and launches informational
dialogs and dialogs that accept
user input.

NT:
palettedemo\rundemo.bat

UNIX:
palettedemo/rundemo.sh

Shows how to create a palette of
G2 objects and a native palette
directly from a GFR palette.
30 Part I Introduction

Using Telewindows2 Toolkit Demonstrations for Java
NT:
wksppanel\
SimpleWorkspaceApplication.java

UNIX:
wksppanel/
SimpleWorkspaceApplication.java

Creates a TW2 Toolkit UI
application that lets you connect
to a single G2 and display
workspace views within a
multiple workspace panel.

NT:
wksppanel\BrowserApplication.java

UNIX:
wksppanel/BrowserApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a multiple workspace panel
inside a single document frame.

NT:
singlecxnsdiapp\
BrowserApplication.java

UNIX:
singlecxnsdiapp/
BrowserApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a single document frame.

NT:
singlecxnmdiapp\
SingleConnectionApplication.java

UNIX:
singlecxnmdiapp/
SingleConnectionApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a multiple document frame.

NT:
multiplecxnsdiapp\
WorkspaceBrowserApp.java

UNIX:
multiplecxnsdiapp/
WorkspaceBrowserApp.java

Creates a TW2 Toolkit
application that allows you to
connect to multiple G2s and
display workspace views within
a single document frame.

Java Demos

 Source Code Description
Telewindows2 Toolkit Java Developer’s Guide Application Classes 31

Chapter 1 Overview
NT:
multiplecxnmdiapp\Shell.java

UNIX:
multiplecxnmdiapp/Shell.java

Creates a TW2 Toolkit
application that allows you to
connect to multiple G2s and
display workspace views within
a multiple document frame.

NT:
classes\com\gensym\shell\
Shell.java

UNIX:
classes/com/gensym/shell/
Shell.java

Shows the source code for
Telewindows2 Toolkit default
application shell.

Java Demos

 Source Code Description
32 Part I Introduction

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part I Introduction
Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
Version 3.1 Mode: Working Size: 7x9x11
2
Guided Tour of the
Telewindows2 Toolkit Shell
Gives a guided tour of the end user features of the Telewindows2 Toolkit default
application shell, which serves as an example of the type of client user interface you
can build for G2 applications, using Telewindows2 Toolkit application classes.

Introduction 33

Running the Telewindows2 Toolkit Shell 34

Running the Telewindows2 Toolkit Demo 37

Displaying Workspace Views in the Client 40

Controlling the G2 Run State from the Client 42

Interacting with Items in Workspace Views 43

Interacting with Workspace Views 51

Connecting to Multiple G2 Applications from the Client 56

Using Menu Command Mnemonics and Shortcuts 58

Exiting the Telewindows2 Toolkit Demo 59

Introduction
This chapter provides a guided tour of the Telewindows2 Toolkit default
application shell for Java, a client user interface built in Java for running G2
applications. This application is also called the TW2 Toolkit shell or just the
33

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
shell. The shell allows you to connect to multiple G2 applications and to navigate
between KB workspaces.

The chapter is structured as a tutorial; read it sequentially and follow the sets of
steps in order. To go directly to the code used to implement this shell, see
Chapter 12, “Understanding the Telewindows2 Toolkit Shell” on page 301.

This tutorial assumes you are running the G2 server on the same computer as the
client.

Running the Telewindows2 Toolkit Shell
The TW2 Toolkit shell is based on this class:

com.gensym.shell.Shell

You can run the shell either:

• From the shell DOS batch file or UNIX shell script, depending on your
platform, which is located in the bin directory of your TW2 Toolkit product
directory.

• As a Java application, using the fully qualified class name.

When running the shell, you can provide command-line arguments for
connecting to G2 and specifying the frame geometry.

Note Before you can run the shell, be sure you have installed all supporting software
and set all required environment variables as described in the readme.tw2.html
file.

Running the Shell as a Java Program
You will now run the TW2 Toolkit shell as a Java application, using command-
line arguments.

The following example shows a partial list of the supported command-line
arguments. For a complete list, see “Application Foundation Classes” on
page 227.

To run the shell as a Java program:

Enter the following command in a DOS command window or UNIX shell,
depending on your platform:

java com.gensym.shell.Shell
[-title title -host host-name -port port-number
-geometry widthXheight[+x+y][-x-y]]
34 Part I Introduction

Running the Telewindows2 Toolkit Shell
For example, enter the following command to start the shell. This command
connects the shell to the G2 server running on the local machine on port 1111, and
places the window, which is 600x400 pixels, in the top-left corner of the screen,
which is the default.

java com.gensym.shell.Shell -title "Default Application Shell"
-host localhost -port 1111 -geometry 600x400+0+0

Here is the shell you will see:

Command-Line Argument Description

title The title of the application’s window as a
string.

host-name The name of the computer on which the G2
server is running.

port-number The port on which the G2 server is running.

widthXheight
[+x+y][-x-y]

The width and height in pixels of the
application window, separated by an “x”,
with optional x and y offsets from any
corner of the screen.

Title bar

Application frame

Default toolbar panel

Default menu bar

Status bar

Icon

Close
buttons
Telewindows2 Toolkit Java Developer’s Guide Application Classes 35

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
Telewindows2 Toolkit Shell Features
The TW2 Toolkit shell has these features:

• An application frame with the Gensym logo as the icon in the upper-left
corner of the frame for minimizing, maximizing, and closing the window.

• A default menu bar with these menus:

– File menu for getting a KB workspace and exiting the application.

– View menu for zooming a KB workspace.

– G2 menu for opening, closing, and switching G2 connections, and for
controlling the G2 run state.

– Help menu with an About dialog and trace facilities.

• A default toolbar with:

– Buttons for getting a KB workspace, connecting to and disconnecting from
G2, controlling the G2 run state, and zooming in and out.

– Choice boxes for switching the G2 connection and setting the user mode.

• A status bar.

• Mnemonics for all menu commands and shortcuts for certain menu
commands.

Exiting the Shell
The TW2 Toolkit shell provides standard features for closing the application.

To close the shell:

Click the close button in the upper-right corner of the window.

or

Click the Gensym logo in the upper-left corner of the window and choose
Close.

or

Choose Exit from the File menu.
36 Part I Introduction

Running the Telewindows2 Toolkit Demo
Running the Telewindows2 Toolkit Demo
You can use the TW2 Toolkit shell to view a demo G2 application by using the
t2demo DOS batch file or UNIX shell script, depending on your platform. The
batch file or shell script:

• Runs G2 on the local machine, using the default port, 1111.

• Loads mill.kb, located in the kbs directory of your TW2 Toolkit product
directory.

• Runs the TW2 Toolkit shell and connects to the G2 application.

You can also run the demonstration manually by starting G2, loading the KB,
running the shell, and connecting to G2.

Note Before you can run the demo, be sure that you have a valid g2.ok file that G2 can
locate. For example, you can create a G2V51_OK environment variable that points
to the location of your g2.ok file, you can specify the -ok command-line
argument, or you can place the g2.ok file in your G2 directory.

First, you will run the demonstration manually, so you become familiar with this
technique, then you will run it from the batch file or shell script, depending on
your platform.

Running the Demo Manually
To run the demo manually, run the TW2 Toolkit shell, then start G2 and load the
demo KB.

To run the TW2 Toolkit shell from a DOS batch file or UNIX shell script:

Run the shell DOS batch file or UNIX shell script as follows, depending on
your platform:

On Windows NT platforms:

Double click the shell.bat batch file in the bin directory of your TW2
Toolkit product directory.

or

From a DOS window, run the shell batch file from the bin directory of
your TW2 Toolkit product directory.

On UNIX platforms:

In a UNIX shell, run the shell script from the bin directory of the TW2
Toolkit product directory.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 37

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
To run the G2 demo:

1 Run the g2 executable as follows, depending on your platform:

On Windows NT platforms:

Double-click the g2.exe executable file in your G2 product directory.

or

From a DOS window, run the g2 executable from your G2 product
directory.

or

Double-click the start_g2.bat file in the bin directory of your TW2
Toolkit product directory.

On UNIX platforms:

In a UNIX shell, run the g2 executable from your G2 product directory.

2 Load mill.kb from the kbs directory of your TW2 Toolkit product directory.

You should now see two application windows and two DOS command windows:

• A G2 application window with a schematic diagram of a mill application and
its associated command window.

• The TW2 Toolkit shell with a top menu bar, toolbar, and its associated
command window.

Connecting to G2 from the Client
Once you are running the shell and G2, you must connect manually to the G2
from the shell by using a menu choice or toolbar button.

When you connect to a secure G2 from the shell, you make a login request by
providing a user name, user mode, and password.

By default, the shell logs you on in administrator mode, which allows you to
access any G2 application.
38 Part I Introduction

Running the Telewindows2 Toolkit Demo
To connect to G2 manually:

Do one of the following:

The Mill application is running on the host computer named localhost on port
1111. G2 starts running the Mill application and displays the top-level workspace.

When the shell is connected, the toolbar shows the host machine and port, as well
as the user mode of the current connection.

You will now exit both applications and run the demo from a file.

To exit both applications:

1 To exit G2, choose Main Menu > Pause, then choose Main Menu > Miscellaney
> Shutdown G2.

2 To exit the TW2 Toolkit shell, choose File > Exit.

Running the Demo from a File
Now you will run the demo from a DOS batch file or UNIX shell script,
depending on your platform, which perform all of the functions for you,
including connecting to G2, using command line arguments.

Note Depending on the processing speed of your computer, the login attempt might
time out before G2 finishes loading the KB. If this happens, you will receive an
error message. Clicking the OK button in the error dialog displays the Open
Connection dialog for you to attempt the login again.

Menu bar: 1 Choose Open Connection from the G2 menu.

2 Choose the Connection tab in the dialog.

3 Enter the Host and Port of the G2 to which
you want to connect.

Toolbar: 1 Click the Open Connection button on the
toolbar:

2 Specify the host and port in the dialog.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 39

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
To run the TW2 Toolkit demo from a DOS batch file or UNIX shell script:

1 Run the t2demo DOS batch file or UNIX shell script as follows, depending on
your platform:

On Windows NT platforms:

Double click the t2demo.bat batch file in the bin directory of your TW2
Toolkit product directory.

or

From a DOS window, run the t2demo batch file from the bin directory of
your TW2 Toolkit product directory.

On UNIX platforms:

In a UNIX shell, run the t2demo shell script from the bin directory of your
TW2 Toolkit product directory.

2 Minimize the DOS command windows or UNIX shells for the G2 and TW2
Toolkit applications.

Caution Do not close the DOS command windows or UNIX shells, or the TW2 Toolkit and
G2 applications will close.

Displaying Workspace Views in the Client
When the TW2 Toolkit shell is connected to a G2 server, you can display and
manipulate any named KB workspace in the G2 application from the client. The
KB workspace appears in the shell as a workspace view, which is a client
representation of a KB workspace.

The workspace view, in turn, appears within a child frame, called a workspace
document, of the overall application frame. The workspace document has its own
context-sensitive menu bar, which the application automatically swaps in when
the workspace document gains focus. The workspace document uses the default
toolbars of the application frame.

You can view multiple copies of the same KB workspace by choosing the same
named workspace multiple times, if desired.
40 Part I Introduction

Displaying Workspace Views in the Client
Getting a Workspace View
To get a workspace view:

1 Do one of the following:

2 Select mill-process-diagram from the list of named workspaces and click OK.

The shell creates and displays a child document in which it displays the selected
workspace view. Notice that the workspace document has its own context-
specific menu bar that includes these additional top-level menu choices:

• Edit

• Item

• Workspace

• Window

You will see a view of a schematic diagram of a milling application that creates
bolts on an assembly line, which is running in G2:

When the shell displays the workspace view, G2 JavaLink automatically loads the
necessary visual information about each G2 item into Java, thereby making it

Menu bar: Choose Get Workspace from the File menu.

Toolbar: Click the Get Workspace button on the
toolbar:

Context-sensitive
menu bar

Workspace view

Workspace document
Telewindows2 Toolkit Java Developer’s Guide Application Classes 41

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
available for display. In addition, the shell can get and set attributes, and call
methods on all the items in the workspace view, as needed. The workspace view
obtains non-visual information, such as attribute values, only when the client
requires that information.

You can get a handle on selected items in a workspace view and call methods on
those items in any Java application, using JavaLink methods. If you need to get or
set item properties, or call methods on a G2 item directly, without going through
a workspace view, you can manually download Java class definitions for any G2
class to use in your Java application. You can also create Java Beans from G2
classes for use in any JavaBeans-compliant visual programming environment.

For more information, see these G2 JavaLink guides:

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

Controlling the G2 Run State from the Client
The TW2 Toolkit shell provides menu choices and toolbar buttons for controlling
the G2 run state. You can pause, resume, restart, reset, and start G2 from the client
through the menu or toolbar.

The Mill application is initially running.

To pause and resume G2 from the client:

1 Do one of the following to pause the KB:

2 Do one of the following to resume the KB:

G2 pauses and resumes running the KB, and notifies the shell that the run state
has changed. The shell updates the buttons to reflect the current G2 run state.

Menu bar: Choose Pause from the G2 menu.

Toolbar: Click the Pause button on the
toolbar:

Menu bar: Choose Resume from the G2 menu.

Toolbar: Click the Resume button on the
toolbar:
42 Part I Introduction

Interacting with Items in Workspace Views
Interacting with Items in Workspace Views
Workspace views in a client support most of the same features that KB
workspaces in G2 support. You interact with items in a workspace view by using
standard windowing techniques. For example, clicking an item in a workspace
view selects the item, and clicking the right mouse button on an item displays its
popup menu.

For information about the differences in behavior between workspace views and
KB workspaces, see Chapter 10 “The Workspace View User Interface” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

Displaying the Popup Menu for an Item
You use an item’s popup menu to perform the same operations that you perform
through the item menu in G2. These operations include:

• Cutting, copying, and pasting the item, using the clipboard.

• Editing the name of the item.

• Deleting the item.

• Enabling and disabling the item.

• Creating a subworkspace for the item.

• Rotating and reflecting the icon for the item.

• Editing the color of the icon regions for the item.

• Lifting the item to the top and dropping it to the bottom.

• Describing the item.

• Editing the attribute display of an item.

• Displaying the item’s Properties dialog.

The workspace view automatically creates menu choices in the popup menu for
all relevant system-defined menu choices and all user-defined menu choices for
the G2 class. Clicking a user menu choice on the item in the client executes the
action in the G2 server, which updates the representation of that item in the TW2
Toolkit client appropriately.

Note User menu choices only appear in the popup menu if G2 is running.

You will now display the popup menu on the Warehouse item.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 43

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
To display the popup menu for an item:

Click the right mouse button on the Warehouse in the upper-left corner of the
workspace view to display its popup menu:

Editing Item Properties
The TW2 Toolkit shell automatically generates a properties dialog for each item
in the workspace view when the user chooses Properties from the item’s popup
menu. The properties dialog is analogous to the G2 attributes table for an item.

The automatically generated properties dialog uses a variety of controls,
depending on the type specification of the attributes of the G2 class definition.
When you edit an attribute that requires G2 syntax, the properties dialog launches
a native, syntax-guided text editor.

For information on how to use the text editor, see Chapter 11 “Using the Text
Editor” in theTelewindows2 Toolkit Java Developer’s Guide: Components and Core
Classes.

Editing the properties of an item through the dialog edits the corresponding
attribute in the G2 server, which updates the representation of the item in the
client appropriately.

You will now edit the Names property of the Warehouse in the mill-process-
diagram workspace view through the properties dialog.

System-defined user menu choices

User-defined user menu choices
44 Part I Introduction

Interacting with Items in Workspace Views
To edit the attributes of an item in a workspace view:

1 Do one of the following to display the automatically generated properties
dialog for the item:

Choose Properties from the Warehouse’s popup menu.

or

Double-click the item.

You will see this dialog:
Telewindows2 Toolkit Java Developer’s Guide Application Classes 45

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
2 Click the button next to the Names edit box to display the syntax-guided text
editor:

Note The button with ellipses appears next to all attributes that you cannot edit in
place, which includes attributes with a grammar, attributes that contain
subobjects, and color attributes. Editing an attribute that contains a subobject
displays a Properties dialog for the subobject.

3 Edit the name to be new-warehouse.

4 Do one of the following to save the changes and exit:

Menu bar: Choose Save, then choose Exit from the
Session menu.

or

Choose Exit from the Session menu, then click
OK in the confirmation dialog that appears.

Toolbar: Click the Apply Changes and Exit button on
the toolbar.

or

Click the Save button followed by the
Exit button.
46 Part I Introduction

Interacting with Items in Workspace Views
The attribute display of the name is updated in the G2 server. The representation
of the item in the TW2 Toolkit client then updates to reflect the new name:

Item Configurations and User Modes
The workspace view reflects all the G2 item configurations that are active in the
connected G2 at the time of the connection. For example:

• If the visible attributes in the G2 table have been restricted in the server, the
automatically generated properties dialog hides those attributes in the client.

• If the user menu choices for a G2 class have been restricted, the popup menu
for the item hides those menu choices in the client.

• If you configure the behavior of an item when you select it in G2, the item has
the same behavior in the client.

You switch the user mode by entering an existing user mode in the choice box on
the toolbar panel. Once you have entered an existing user mode, you can switch
the user mode by choosing from the list of available modes.

To edit the user mode:

Enter Developer in the user mode choice box.

The user mode changes in G2, which updates all aspects of the application that
depend on the user mode through its item configurations. The client is notified of
the change in user mode, which updates the user mode choice box in the client.

The user mode you entered now appears in the list of available modes in the
choice box:

Custom Dialogs
You can replace automatically generated properties dialogs with custom dialogs
for individual classes or instances. You create custom item properties dialogs by
using the TW2 Toolkit dialog components in any Java programming
environment. Because the TW2 Toolkit components that you use to create dialogs
Telewindows2 Toolkit Java Developer’s Guide Application Classes 47

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
are JavaBeans compliant, you can use an JavaBeans-compliant visual
programming tools, such as Symantec Visual Café or Borland J Builder.

You can also edit the way in which TW2 Toolkit automatically generates dialogs
for items.

You can also create, launch, and manage dialogs for any purpose in your
application, such as launching a dialog based on an event in the server or in the
client.

Interacting with an Item from its Popup Menu
As described earlier, you can perform standard G2 operations on an item through
its popup menu. In general, the system menu choices behave just as they do in G2,
with the following exceptions:

• Cut, Copy, and Paste allow you to clone and transfer items between
workspaces in the same G2; they do not work for cloning and transferring
items between workspaces in different G2s. These commands replace the
clone and transfer system menu choices in G2.

• Editing the item name displays the native text editor.

For information on... See...

Creating custom dialogs Chapter 15 “Using Dialog
Components” in the Telewindows2
Toolkit Java Developer’s Guide:
Components and Core Classes.

Launching custom item properties
dialogs

Chapter 16 “Launching Custom
Item Properties Dialogs” in the
Telewindows2 Toolkit Java
Developer’s Guide: Components and
Core Classes.

Customizing automatically
generated dialogs

Chapter 17 “Customizing
Automatically Generated Dialogs”
in the Telewindows2 Toolkit Java
Developer’s Guide: Components and
Core Classes.

Launching and managing custom
item properties dialogs

Chapter 18 “Launching General
Dialogs” in the Telewindows2
Toolkit Java Developer’s Guide:
Components and Core Classes.

Creating, launching, and
managing Java dialogs

Chapter 4, “Using
Standard Dialogs” on page 71.
48 Part I Introduction

Interacting with Items in Workspace Views
• Editing the item color displays a dialog that lets you choose from a palette a
G2 color for each icon region.

• Describing the item displays a dialog in the client.

Experiment with the popup menu choices for the Warehouse item now.

Editing Attribute Displays and Layout
You can edit the value of an attribute of an item by double-clicking the attribute
display, which launches the text editor.

You can also edit which attribute displays appear next to an item and whether the
attribute display includes the attribute name.

To edit the attribute display layout for an item:

1 Choose Edit Attribute Display Layout from the item popup menu to display
this dialog:

Each attribute display can have one or more attributes and is displayed in its
own tab page in the dialog.

2 Select an attribute from the unselected attributes list on the left, whose value
you want to display next to the item, then click the right arrow button to move
it to the selected attributes list.

3 Click the Show Name toggle button next to the selected attribute to display
the attribute name with its value.

Tip You can resize the width of the Attribute and Show Name columns in the
selected attributes list by dragging the border between the header of the two
columns.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 49

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
4 To add and remove attribute displays and corresponding tab pages, click the
Insert Attribute Display and Remove Attribute Display buttons.

If you wish to rename the tab associated with an attribute display, click the
Name Attribute Display button and enter a name.

5 Click the OK button to add the attribute display.

Selecting, Moving, and Resizing Items
You use standard windowing techniques for selecting, deselecting, moving, and
resizing items in a workspace view.

For additional information on working with items in a workspace view, see
Chapter 10 “The Workspace View User Interface” in the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes.

To select an item:

Click the item.

or

Drag the mouse over a region of the workspace view to select all the items in
the region.

To add items to a selection:

1 Select one or more items, using the standard techniques.

2 Hold down the Shift key while selecting additional items.

To deselect an item:

Shift-click the selected item.

To move an item:

Select the item, then drag it to a new location.

To resize an item:

Select the item, then drag the selection handles.

To select all the items in a workspace view:

Choose Select All from the Workspace menu.
50 Part I Introduction

Interacting with Workspace Views
Interacting with Workspace Views
You can edit the properties of and interact with a KB workspace from the popup
menu for the workspace view or from the top-level Workspace menu. The popup
menu for a workspace view is similar to that of an item, with these additional
menu choices:

• New Item — Displays a palette of items from which you can create items on
the KB workspace, and allows you to edit the classes of items on the palette.

• Clone — Clones the KB workspace.

• Shrink Wrap — Shrink wraps the KB workspace.

• Print — Displays a standard print dialog for printing the workspace view to a
printer.

In addition, you can scale the workspace view in the client.

In general, all interactions with the workspace view in the client modify the KB
workspace in the G2 server. The exceptions are printing and scaling the
workspace view, which affect only the client.

For additional information on interacting with workspace views, see Chapter 10
“The Workspace View User Interface” in the Telewindows2 Toolkit Java Developer’s
Guide: Components and Core Classes.

Editing KB Workspace Properties
To edit the properties of a KB workspace:

1 Do one of the following:

Choose Properties from the Workspace menu.

or

a Click the right mouse button anywhere on the background of the
workspace view to display its popup menu:
Telewindows2 Toolkit Java Developer’s Guide Application Classes 51

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
b Choose Properties to display the automatically generated properties
dialog for the KB workspace:

2 Edit the desired attribute of the KB workspace.

3 Close the properties dialog.

The workspace name is updated in the G2 server, and the new name is reflected
in the TW2 Toolkit client.

Creating New Items on a KB Workspace
You can create new items on a KB workspace by using a palette. You can edit the
palette to include those items you create most often.

To create a new item:

1 Choose New Item from the popup menu for a workspace view to display this
default palette:

2 Click an item on the palette, then click the cross-hairs that appear anywhere in
the workspace view to place the item.

To edit the palette of objects:

1 Choose New Item from the popup menu for a workspace view.

2 Click the right mouse button on the background of the Item Palette and
choose Edit Classes.
52 Part I Introduction

Interacting with Workspace Views
The following Class Chooser dialog appears, which contains a tree view of the
class hierarchy of all system-defined and user-defined classes, and a list of
selected classes to display in the palette:

3 Click the plus sign next to a class to expand the tree to show subclasses.

If a class does not have any subclasses, clicking the plus sign simply removes
the plus sign.

Tip If you know the name of the class you wish to include on the palette, enter it
directly in the Class field.

4 To include a class in the Item Palette, select the item and click the right arrow
button to move it to the Selected Classes list.

5 To remove a class from the palette, select the item in the Selected Classes list
and click the Remove button.

6 Click OK.

Here is an Item Palette that includes the user-defined material-source class:
Telewindows2 Toolkit Java Developer’s Guide Application Classes 53

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
Cloning a KB Workspace
Cloning a workspace view in the client creates a duplicate KB workspace in G2
and shows that workspace in the client.

To clone a KB workspace:

Choose Clone from the popup menu for the workspace view.

Shrink Wrapping a KB Workspace
When you shrink wrap a workspace view in the client, the borders of the KB
workspace in G2 shrink to just contain the items. Shrink wrapping a workspace
view in the client has the same effect, except it does not shrink wrap the
workspace document that contains the workspace view.

To adjust the workspace document to fit the view, drag the corner until it just fits
the workspace view.

To shrink wrap a KB workspace:

Choose Shrink Wrap from the Workspace menu.

or

Choose Shrink Wrap from the workspace view’s popup menu.

Scaling a Workspace View
You can explicitly scale a workspace view to fit the dimensions of the workspace
document, scale the view in standard increments, scale the view to a given scale
that you enter, or incrementally scale the view in and out.

If you choose to scale the workspace view to fit, then dragging the corner of the
workspace document scales the workspace view to fit the document, while
maintaining the aspect ratio of the workspace view.

Scaling the workspace view in the client has no effect on the KB workspace in the
G2 server.
54 Part I Introduction

Interacting with Workspace Views
To scale a workspace view:

Choose Zoom from the View menu to display the following dialog, then
choose Fit, choose a zoom scale, or enter a specific percent value, then
click OK:

or

Click the Zoom In or Zoom Out button on the toolbar.

Here is a workspace view that has been scaled:

Grey border is not part of
the workspace view.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 55

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
Notice that the workspace document that contains the view does not scale with
the workspace view; sometimes, a grey border appears around the workspace
view, which is not part of the workspace view.

Printing a KB Workspace
To print the KB workspace:

1 Do one of the following:

Choose Print from the Workspace menu to display a standard print dialog
for configuring the printer.

or

Choose Print from the workspace view’s popup menu.

2 Configure the Print dialog and click OK.

Connecting to Multiple G2 Applications from
the Client

You can connect to one or more G2 applications and switch between them in the
client. To do this, you must have sufficient Telewindows2 Toolkit licenses to
connect to multiple G2s.

For example, you will now load on your local host the application named
sq-demos.kb, located in the kbs directory of your Telewindows2 Toolkit product
directory.

To connect to a second G2 application:

1 Launch a second G2 application on your local host from the command line
and load sq-demos.kb, as follows:

2 Open a connection to the local host on port 1234 by using the Open
Connection command on the G2 menu or the equivalent toolbar button.

NT: g2 -kb %SEQUOIA_HOME%\kbs\sq-demos.kb
-host localhost -tcpport 1234

UNIX: g2 -kb %SEQUOIA_HOME%/kbs/sq-demos.kb
-host localhost -tcpport 1234
56 Part I Introduction

Connecting to Multiple G2 Applications from the Client
Tip To determine the host and port of your G2 application, choose Main Menu >
Miscellany > Network Info in your G2 application. If you do not specify a port
when you launch G2 on your local host, G2 automatically assigns sequential port
numbers, beginning with 1111.

Displaying Multiple Workspace Views for Different
G2 Connections

When multiple G2 connections exist in the client, you can display multiple
workspace views associated with different G2 servers simultaneously and switch
between those views. Each time you switch workspace views, the shell
automatically switches the current connection. You can also switch the connection
manually.

The shell provides several ways of switching between multiple workspace views:

• Clicking anywhere in the workspace document to make it active.

• Choosing a named KB workspace from the Windows menu.

• Switching the connection manually and choosing Get Workspace.

You manage the window that contains a workspace view by using standard
buttons to minimize, maximize, and close the window.

You can arrange the multiple windows vertically, horizontally, or in a cascade,
using the Windows menu.

To display and arrange workspace views for different G2 connections:

1 Open a G2 connection to the host running sq-demos.kb.

Notice that the workspace view of the mill-process-diagram workspace no
longer has focus.

2 Display the solar-system workspace.

You will see a schematic diagram of a solar system.

3 Click the title bar of the mill-process-diagram workspace view to bring it to the
foreground.

Notice that the current connection has changed, as the toolbar indicates.

4 Choose solar-system from the list of available workspace views in the
Window menu.

The solar-system workspace is in the foreground again, and the connection
has changed.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 57

Chapter 2 Guided Tour of the Telewindows2 Toolkit Shell
5 Choose Tile Vertically from the Window menu to display the two workspace
views side-by-side.

6 Close both workspace views.

To switch the connection manually:

1 Do one of the following:

2 Choose Get Workspace from the menu or toolbar.

Using Menu Command Mnemonics and
Shortcuts

The default shell supports mnemonics for all menu choices, which lets you
execute the menu choice by entering Alt + <menu key> + <choice key>.

The conventions for the mnemonics follow the conventions of the native user
interface for your platform. To determine the mnemonic for a menu choice, look
for the underlined letter in the top-level menu and menu choice labels. For
example, to execute the File > Get Workspace command, enter Alt + f + g.

In addition, the default shell supports keyboard shortcuts for the following menu
choices:

Menu bar: Choose Switch Connection from the G2 menu
and choose the desired connection from the
cascading submenu.

Toolbar: Choose the desired connection from the
choice box on the toolbar:

Menu Command Shortcut

Edit > Cut Ctrl + x

Edit > Copy Ctrl + c

Edit > Paste Ctrl + v

Workspace > Print Ctrl + p

Workspace > Select All Ctrl + a
58 Part I Introduction

Exiting the Telewindows2 Toolkit Demo
Exiting the Telewindows2 Toolkit Demo
You have finished the tutorial.

Exit the demonstration:

Exit the shell and G2 to finish this tutorial.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 59

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part I Introduction
Chapter 3 Road Maps to Using This Guide
Version 3.1 Mode: Working Size: 7x9x11
3
Road Maps to
Using This Guide
Gives a road map for where to go in this guide for information about building
various types of applications, using Telewindows2 Toolkit application classes.

Introduction 61

Road Maps 62

Introduction
This chapter provides several road maps to guide you through the chapters and
sections in this manual.

The first road map describes the following two high-level tasks, while the
subsequent road maps describe the specific tasks listed below each high-level
task:

• Using Telewindows2 (TW2) Toolkit UI controls and containers, including:

– Standard dialogs.

– Menus, toolbars, and commands.

– Palettes.

– Multiple document interface (MDI) containers.

– MDI document types that display views of G2 server data.
61

Chapter 3 Road Maps to Using This Guide
• Using TW2 Toolkit application foundation and shell classes to create:

– Single document interface (SDI) and multiple document interface (MDI)
applications that manage frames and connections as part of the API.

– Dialogs and UI components that provide user interfaces for common
interactions, such as logging on to the G2 server.

– Commands that perform common actions, such as connecting to and
disconnecting from the G2 server, and getting a KB workspace.

The page numbers in the maps provide references to the relevant chapters and
sections in this guide.

Road Maps
The road maps that follow use these symbols:

Road signs indicate the task you want to perform.

Circles indicate that the task involves making built-in TW2
Toolkit functionality visible to the user, which requires very little
Java programming, typically, 1 - 5 lines of code. For example,
creating a menu bar requires one line of code for each menu item.

Squares indicate that the task involves implementing your own
functionality, which requires somewhat more Java programming.

Roads indicate the dependency order of tasks and a relative
increase in the amount of programming required to
accomplish the task as you move from task to task. A broken
road indicates a partial dependency. Start at the top/left of the
map with the most fundamental task, then proceed along the
roads to more advanced tasks, which depend on previous

Shaded areas indicate categories of topics from
which to choose. To view a detailed map of tasks for
the topic, go to the page number of the category that
most closely matches your application’s needs.

Book symbols indicate that the documentation
provides reference information for the topic.
62 Part I Introduction

Road Maps
Telewindows2 Toolkit UI Controls and Containers

Standard
Dialogs

Menus and
Toolbars

MDI
Containers

TW2 Toolkit
Applications

Palettes

page 64 page 67

page 68

page 65 page 66
Telewindows2 Toolkit Java Developer’s Guide Application Classes 63

Chapter 3 Road Maps to Using This Guide
Create custom
standard dialogs.

Create standard
informational and
input dialogs that
handle events.

Standard
Dialogs

page 75

page 85

Use standard
informational

and input dialogs.
page 94
64 Part I Introduction

Road Maps
Create submenus
and command

groups.

Create custom
implementations of

commands.

Create application-
specific commands.

Menus
and

Toolbars Create menus
and toolbars from

commands.
page 122 page 131

page 144

page 158
Telewindows2 Toolkit Java Developer’s Guide Application Classes 65

Chapter 3 Road Maps to Using This Guide
Palettes
Create a palette

of objects

page 169

Create a palette of
G2 objects

page 179

Create a GFR
palette

page 181
66 Part I Introduction

Road Maps
Create MDI
frames and

documents for use in
MDI applications.

Create custom
MDI document

types.

Subclass built-in
MDI document
types to display
views into G2.

Create factories
for generating

custom workspace
document types.

MDI
Containers

page 187

page 209

page 211

page 206
Telewindows2 Toolkit Java Developer’s Guide Application Classes 67

Chapter 3 Road Maps to Using This Guide
Determine which
application foundation

class to extend.

View features,
behaviors, and

methods of application
foundation classes.

Create and manage
single and multiple
connections to G2.

Create an MDI
application.

Create an SDI
application.

Build a TW2
Toolkit application

that manages frames

View source
code for the TW2

Toolkit default
application shell.

TW2 Toolkit
Applications

Use built-in TW2
Toolkit dialogs

and UI controls.

Use built-in TW2
Toolkit commands.

page 223

page 227

page 233

page 236

page 247 page 251

page 301

page 259

page 271

Override default
mnemonics and

shortcuts
page 161
68 Part I Introduction

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Version 3.1 Mode: Working Size: 7x9x11
Part II
UI Controls
and Containers
Chapter 4 Using Standard Dialogs 71

Describes how to use standard information dialogs and dialogs that accept user input, and
provides a reference for each dialog.

Chapter 5 Creating Menus and Toolbars 113

Describes how to create menu bars, pulldown menus, popup menus, submenus, command
groups, and toolbars from commands.

Chapter 6 Creating Palettes 163

Describes how to create palettes from commands.

Chapter 7 Creating Multiple Document Interface
Containers 187

Describes how to create the various components of an MDI application, which include frames,
child documents, and toolbar panels. Describes how to add documents to a frame, manage
open documents, handle event notification, and create tiling commands for arranging
documents in a frame.

Chapter 8 Using Telewindows2 Toolkit MDI Documents 207

Describes the various MDI document types that you can use and extend to create documents
that display workspace views and other views into your G2 server’s data. Describes the
associated factories that you can use and extend to generate different types of workspace
documents.
69

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Chapter 4 Using Standard Dialogs
Version 3.1 Mode: Working Size: 7x9x11
4
Using
Standard Dialogs
Describes how to use standard information dialogs and dialogs that accept user
input, and provides a reference for each dialog.

Introduction 71

Packages Covered 75

Relevant Demos 75

Using Standard Dialogs 75

Customizing Dialogs 85

Introduction
The com.gensym.dlg package, which is part of G2 JavaLink, includes classes that
you can use to create:

• Informational dialogs — Dialogs that display information to the user, which
have a read-only text area, an OK button for dismissing the dialog, and, in
most cases, an icon.

• Input dialogs — Dialogs that accept input from the user, which have dialog
controls for specifying values and, in most cases, OK and Cancel buttons.

These classes are called standard dialogs, because they inherit their definition
from this abstract class:

com.gensym.dlg.StandardDialog
71

Chapter 4 Using Standard Dialogs
You may use the classes in this package to create informational dialogs in your
application, or you may use a Java dialog class such as java.awt.Dialog or
javax.swing.JDialog.

Summary of Standard Dialog Classes
This table describes and gives examples of each standard dialog class:

Class Description Example

AboutDialog Displays information
about an application in
a scrollable text area,
typically invoked from
a Help menu choice.

ErrorDialog Displays error text to
the user.

InputDialog Obtains information
from the user through
one or more text fields.

MessageDialog Displays message text
to a user.
72 Part II UI Controls and Containers

Introduction
Standard Dialog Clients
Typically, you use standard dialogs in conjunction with a
StandardDialogClient, which handles event notification when the user has
clicked a button to dismiss the dialog. If a standard dialog provides more than
one way to dismiss the dialog, you can determine which button the user has
clicked to specify unique behavior for each button.

QuestionDialog Requests that the user
respond to a question
by clicking the Yes or
No button.

SelectionDialog Displays a list of items
from which the user
can choose one or more
items, depending on
how the dialog is
created.

WarningDialog Displays warning text
to the user.

For information on... See...

Using the common features of
standard dialog classes

“Using Standard Dialogs” on
page 75.

Using individual standard dialog
classes

“Standard Dialogs Reference” on
page 94.

Class Description Example
Telewindows2 Toolkit Java Developer’s Guide Application Classes 73

Chapter 4 Using Standard Dialogs
For details, see “Listening for Dialog Events” on page 77.

Dialog Layout
All standard dialogs consists of:

• A title bar.

• A single dialog component with one or more dialog controls, which are
centered vertically.

• A command panel with one or more action buttons, which use a java.awt.
FlowLayout as its layout manager.

The following diagram shows the layout of a standard dialog:

Custom Dialogs
You can customize the buttons, icon, and behavior of any standard dialog by
extending one of the standard dialog classes. You can also customize the Java
components that appear in the dialog by extending the StandardDialog class.

For details, see “Customizing Dialogs” on page 85.

Dialog component

Title bar

Button1 Button2 Command panel uses
FlowLayout.
74 Part II UI Controls and Containers

Packages Covered
Packages Covered

com.gensym.dlg
Interfaces

CommandConstants
StandardDialogClient

Classes
AboutDialog
ErrorDialog
InputDialog
MessageDialog
QuestionDialog
SelectionDialog
WarningDialog

Relevant Demos
The demo in the following directory, depending on your platform, uses the
standard dialog classes:

Other demos in the com.gensym.demos package also uses standard dialog classes.

Using Standard Dialogs
This section provides the following information and techniques for using
standard dialogs:

• The inheritance structure for standard dialog classes.

• Common arguments to standard dialog constructors.

• Listening for dialog events.

• Localizing standard dialog text.

• Creating and launching standard dialogs.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
standarddialogs\DlgTestApp.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
standarddialogs/DlgTestApp.java
Telewindows2 Toolkit Java Developer’s Guide Application Classes 75

Chapter 4 Using Standard Dialogs
Inheritance Structure of the Standard Dialog
Classes

All standard dialogs inherit from javax.swing.JDialog, as this diagram
illustrates:

Common Arguments to Standard Dialog
Constructors

Standard dialogs provide a set of common arguments in their public constructor,
which always appear in the same order. Most standard dialogs provide one or
more additional arguments as well, which always appear just before the last
argument.

StandardDialog

MessageDialog

ErrorDialog

QuestionDialog

AboutDialog

SelectionDialog

InputDialog

javax.swing.JDialog

IconDialog

WarningDialog
Private Class

Abstract Class
76 Part II UI Controls and Containers

Using Standard Dialogs
This table describes the common arguments to the public constructor of any
standard dialog, in order:

For information about StandardDialogClient, see “Listening for Dialog Events”
on page 77.

Listening for Dialog Events
Any class can implement a StandardDialogClient, which is an interface that:

• Gets notified when the user has clicked a button on any standard dialog.

• Implements the behavior of the dialog when it is dismissed in the
dialogDismissed method.

Type and Argument Description

Frame parent The first argument is the parent
java.awt.Frame in which the dialog
is centered when it is launched.

This argument can be null, in which
case the dialog is centered in the
frame returned by getCurrentFrame
on a com.gensym.core.
UiApplication, or centered in the
screen, if the application is not a
subclass of UiApplication.

String title The second argument is the dialog
title as a java.lang.String, which
you can localize.

boolean isModal The third argument is a boolean
value that determines whether the
dialog is modal. A modal dialog is
one that the user must dismiss
before performing any other action
in the application.

StandardDialogClient client The last argument is an instance of a
StandardDialogClient, which gets
notified when the user has clicked a
dialog button.

This argument can be null if the
dialog requires no post-processing.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 77

Chapter 4 Using Standard Dialogs
For example, you might want to launch a WarningDialog when the application is
in a particular state. The class that launches the dialog would implement a
StandardDialogClient to receive notification when the user has clicked the OK
button by invoking the client’s dialogDismissed method.

To listen for dialog events:

Create a class that implements this interface:

com.gensym.dlg.StandardDialogClient

The following sections describe typical features of such an implementation.

Implementing the Behavior of the Dialog When it is Dismissed
The StandardDialogClient typically implements one or more of the following
tasks in its dialogDismissed method:

• Tests whether the dialog was cancelled by calling:

wasCancelled()

If the method returns true, the method dismisses the dialog without applying
the edits.

• If the dialog accepts user input, obtains the results of the dialog by calling:

getResults()

The getResults method returns a string or an array of strings, depending on
the type of dialog. For example, calling getResults on an InputDialog that
provides multiple text fields returns an array of strings, whereas calling
getResults on a SelectionDialog that allows a single selection returns a
string.

For more information, see “InputDialog” on page 99 and “SelectionDialog” on
page 106.

• Uses the results of the dialog to perform some action.

For example, if the dialog provides Host and Port fields, the dialogDismissed
method might use these values to connect to G2.

• If necessary, explicitly closes the dialog by calling:

setVisible(false)

Determining Which Button the User Has Clicked
The dialogDismissed method takes two arguments:

• StandardDialog d — Any subclass of StandardDialog.

• int cmdCode — An integer that determines which dialog button the user has
clicked.
78 Part II UI Controls and Containers

Using Standard Dialogs
The cmdCode argument is called a command code. All standard dialogs
implement the following interface, which provides static final variables for use as
command codes:

com.gensym.dlg.CommandConstants

For example, to determine which button the user has clicked in a
QuestionDialog, you use the following command codes:

• YES

• NO

For an example that uses command codes to customize the buttons that appear in
a dialog, see “Customizing Dialog Buttons and Icons” on page 86.

To determine which button the user has clicked:

Refer to the cmdCode argument to the dialogDismissed method in the
implementation of this method.

For example, the following code fragments might appear in the dialogDismissed
method of a StandarDialogClient that launches a QuestionDialog, where code
is the cmdCode argument to the dialogDismissed method. The action of each
conditional statement depends on purpose of the dialog.

if (code == CommandConstants.YES) {
//Perform the action when the user clicks YES

}

if (code == CommandConstants.NO) {
//Perform the action when the user clicks NO

}

Localizing Dialog Text
You can localize these pieces of dialog text when you create a standard dialog,
depending on the type of dialog:

• Title

• Text labels

• Message text

To localize dialog button text, you must create a custom dialog, described in
“Customizing Dialog Buttons and Icons” on page 86.

In the examples that follow, i18nUI and bundle are instances of a com.gensym.
message.Resource, which is a G2 JavaLink class that supports localization.

For general information about using resources, see Appendix A, “Localization.”
Telewindows2 Toolkit Java Developer’s Guide Application Classes 79

Chapter 4 Using Standard Dialogs
Examples

Localizing the Title and Prompt of a SelectionDialog
You can localize the title and prompt of a SelectionDialog. In the following
example, getWkspTitle and getWkspPrompt are the keys.

private com.gensym.message.Resource i18nUI = Resource.getBundle
("com.gensym.demos.wksppanel.UiLabels");

private com.gensym.core.UiApplication application;

new SelectionDialog (application.getCurrentFrame(),
i18nUI.getString ("getWkspTitle"),
false,
i18nUI.getString ("getWkspPrompt"),
names, false,
SelectionDialog.NO_SELECTION, true,
getHandler);

For more information, see “SelectionDialog” on page 106.

Localizing the Dialog Title and Text Field Labels
You can localize the title and text box labels of an InputDialog. In the following
example, title and numberOfMoons are the keys.

private com.gensym.message.Resource bundle =
Resource.getBundle("com.gensym.demos.
internationalizationdemo.InternationalizationDemoResource");

private com.gensym.core.UiApplication application;

//Localize labels
String dialogTitle = bundle.getString("title");
String textboxLabel = bundle.getString("numberOfMoons");

//Define labels and initial values
String[] textFieldLabels = new String[]{textboxLabel};
String[] initialValues = new String[]

{Integer.toString(numberOfMoons)};

//Create input dialog
new InputDialog(application.getCurrentFrame(), dialogTitle,

true, textFieldLabels, initialValues,
(StandardDialogClient)this);

For more information, see “InputDialog” on page 99.

Localizing Dynamically Updating Error Messages
Typically, dialog messages consist of static and dynamic text, for example:

Error on line 5 of MyExample.java
80 Part II UI Controls and Containers

Using Standard Dialogs
To localize dynamic message text, call the format method on a com.gensym.
message.Resource. You provide a key and an object, or a key and an array of
objects as arguments. The Resource dynamically updates the text associated with
the key by substituting the object(s) for special characters in the text.

For example, this code fragment throws an exception by calling format on the
i18n resource, providing a key and an object as arguments:

throw new IllegalStateException
(i18n.format("CommandIsUnavailable", cmdKey));

Here is the command key and text as they appear in the error resource properties
file, where the dialog substitutes the special sequence of characters {0} with the
cmdKey argument:

CommandIsUnavailable=Command {0} is unavailable

Creating and Launching Standard Dialogs
Typically, you provide a frame as the first argument to the constructor of a
standard dialog to center the dialog in the parent frame when you launch it.

Each standard dialog class takes a unique set of arguments, in addition to the
common arguments described in “Common Arguments to Standard Dialog
Constructors” on page 76.

For details, see “Standard Dialogs Reference” on page 94.

To launch a standard dialog:

1 Create an instance of a standard dialog by calling its constructor.

2 If your dialog needs to support specific behavior when it is dismissed,
implement a StandardDialogClient.

We recommend that you define an implementation of the
StandardDialogClient as an anonymous inner class.

For details, see “Listening for Dialog Events” on page 77.

3 Launch the dialog by calling this method:

setVisible(true)

Examples

Launching an InputDialog that Connects to G2
The following example creates and launches an InputDialog for connecting to
G2. The dialog provides a Host and Port field, which the method uses to make the
connection.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 81

Chapter 4 Using Standard Dialogs
Here is the dialog the example creates:

The example method performs these tasks:

• Defines an implementation of a StandardDialogClient, whose
dialogDismissed method:

– Returns if the dialog is cancelled.

– Gets the results from the dialog and uses them to make a connection
through a com.gensym.ntw.TwGateway.

– Creates and launches an ErrorDialog if the connection fails.

• Creates and launches an InputDialog, passing in localized labels and initial
values for the Host and Port fields.

Here is the openConnection method that creates and launches the dialog:

private static com.gensym.message.Resource i18nUI = Resource.getBundle
("com.gensym.demos.wksppanel.UiLabels");

private com.gensym.core.UiApplication application;

private void openConnection () {

//Localize text and provide initial values
String[] labels = {i18nUI.getString ("hostPrompt"),

i18nUI.getString ("portPrompt")};
String[] initialValues = {"localhost", "1111"};

//Define the StandardDialogClient
StandardDialogClient openHandler = new StandardDialogClient () {

public void dialogDismissed (StandardDialog d, int code) {
try {

InputDialog id = (InputDialog)d;

//Return if dialog is cancelled
if (id.wasCancelled ()) return;

//Get the results from the dialog
String[] results = id.getResults ();
String host = results[0];
String port = results[1];
82 Part II UI Controls and Containers

Using Standard Dialogs
//Use the results to make a connection
TwAccess connection = TwGateway.openConnection (host,

port);
connection.login();

//Handle exceptions and launch ErrorDialog
} catch (Exception e) {
new ErrorDialog (null, "Error During Connect", true,

e.toString (), null).setVisible (true);
}

}
};

//Create and launch an InputDialog
new InputDialog

(application.getCurrentFrame (),
i18nUI.getString ("openConnectionTitle"),
true, labels, initialValues,
openHandler).setVisible (true);

}

Launching a SelectionDialog that Gets a Named Workspace
The following example launches a SelectionDialog for getting a named KB
workspace.

Here is the dialog the example creates:

The example method performs these tasks:

• Gets the print value of each named KB workspace by calling
getNamedWorkspaces on a connection.

• Defines an implementation of a StandardDialogClient, whose
dialogDismissed method:

– Returns if the dialog is cancelled.

– Initializes a variable for the SelectionDialog.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 83

Chapter 4 Using Standard Dialogs
– Gets the result from the dialog and uses it to create a symbol for the
selected KB workspace.

– Creates and starts a new thread to download the selected KB workspace.

• Creates and launches the dialog, providing these unique arguments to the
SelectionDialog:

– String prompt — The dialog prompt that appears above the list of
options, in this case, a localized text string.

– String initialValues[] — The list of available named KB workspaces,
which the method obtains from the connection.

– boolean allowMultipleSelections — false, which indicates that the
user can choose one item only from the list.

– int initialSelection — NO_SELECTION, which indicates that no item
should be selected initially; otherwise, the index of the initially selected
item.

– boolean requireSelection — true, which indicates that the user must
make a selection before being allowed to accept the dialog.

• Handles exceptions.

The dialogDismissed method creates an instance of the following inner class,
which starts a new thread to download a KB workspace and add it to the
application:

class WorkspaceDownloaderThread extends Thread {

public void run () {

//Get the unique named item from the connection
//and add it to the application

}
}

Here is the getWorkspace method that creates and launches the dialog:

private com.gensym.core.UiApplication application;
private com.gensym.message.Resource i18nUI = Resource.

getBundle("com.gensym.demos.singlecxnsdiapp.UiLabels");

private void getWorkspace () {
try {

//Get a sequence of named workspace from connection
final Sequence wkspNames =

application.getConnection().getNamedWorkspaces ();

//Determine its size
int numWksps = wkspNames.size ();
84 Part II UI Controls and Containers

Customizing Dialogs
//Create array of strings to hold each workspace name
String[] names = new String [numWksps];

//Iterate through the sequence getting each wksp name
for (int i=0; i<numWksps; i++)

names[i] = ((Symbol)wkspNames.elementAt(i)).getPrintValue();

//Define a StandardDiaolgClient
StandardDialogClient getHandler = new StandardDialogClient () {

public void dialogDismissed (StandardDialog d, int code) {
if (d.wasCancelled ()) return;
SelectionDialog sd = (SelectionDialog)d;
int chosenIndex = sd.getResult ();
Symbol wkspName_ = (Symbol) wkspNames.

elementAt (chosenIndex);
new WorkspaceDownloaderThread(application,

wkspName_).start ();
}

};

//Create and launch a SelectionDialog
new SelectionDialog (application.getCurrentFrame(),

i18nUI.getString ("getWkspTitle"),
false, i18nUI.getString("getWkspPrompt"),
names, false, SelectionDialog.NO_SELECTION,
true, getHandler).setVisible (true);

//Handle exceptions
} catch (Exception e) {

new WarningDialog (null,
i18nUI.getString ("getWkspError"),
true, e.toString (),
null).setVisible (true);

}
}

Customizing Dialogs
You create custom dialogs by extending the standard dialog classes:

To customize... Extend...

The buttons, icons, or behavior of
any standard dialog class

A standard dialog class, such as
InputDialog.

The dialog controls that appear in
the dialog component area

The StandardDialog
abstract class.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 85

Chapter 4 Using Standard Dialogs
The following sections describe how to customize:

• Dialog buttons and icons.

• Dialog behavior when it is launched or dismissed.

• Dialog controls.

For examples of custom dialogs, see “Example” on page 90.

For information about creating custom dialogs, see the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes.

Customizing Dialog Buttons and Icons
The standard dialog classes provide a protected constructor, which you use to
customize:

• The dialog buttons that appear.

• The dialog button text, which you can localize.

• The alignment of the buttons in the command panel.

• The icon that appears, in dialogs that support icons.

For example, you might want to add an Apply button, which applies the edits
and leaves the dialog open.

Calling the Protected Constructor
In addition to the arguments described in “Common Arguments to Standard
Dialog Constructors” on page 76, the protected constructor takes these
arguments:

Type and Argument Description

String buttonLabels[] An array of strings that provide
labels for each button.

int buttonCodes[] An array of command codes that
determine how the
StandardDialogClient interprets
the button the user has clicked.

Image img An instance of a java.awt.Image
that provides the icon to display.
This argument is only available to
dialogs that define an icon.
86 Part II UI Controls and Containers

Customizing Dialogs
Using Command Constants and Standard Dialog Constants
All standard dialogs provide the set of static final variables shown in the
following table. You use the command code constants to specify which buttons
appear in a dialog, you use the button label constants to localize button labels,
and you use the button alignment constants to specify the alignment of the
buttons in the dialog.

The following interface defines the command code constants:

com.gensym.dlg.CommandConstants

This abstract class defines the button label and button alignment constants:

com.gensym.dlg.StandardDialog

Note The OK, CANCEL, and DISMISS command codes automatically close the dialog
when the user clicks the appropriate button.

Customizing Button Labels, Command Codes, and Icons

To customize button labels, command codes, and/or icons of a standard dialog:

1 Create a subclass of the StandardDialog class whose labels, command codes,
and/or icon you want to customize.

2 In the constructor for the custom dialog, call the protected constructor for the
superior class, specifying the button labels, command codes, and/or icon as
arguments.

Command Codes Button Labels Button Alignment

OK OK_LABEL CENTER

APPLY APPLY_LABEL LEFT

CANCEL CANCEL_LABEL RIGHT

DISMISS DISMISS_LABEL

YES YES_LABEL

NO NO_LABEL

HELP HELP_LABEL
Telewindows2 Toolkit Java Developer’s Guide Application Classes 87

Chapter 4 Using Standard Dialogs
For example, the following code fragment defines a custom InputDialog class.
The constructor calls the protected constructor for the superior class to provide
custom button labels and button codes.

class ConnectionDialog extends InputDialog {
ConnectionDialog (Frame f, String title, boolean isModal,

String[] prompts, String[] initValues,
String[] btnLabels, int[] btnCodes,
StandardDialogClient client) {

super (f, title, isModal, prompts, initValues,
btnLabels, btnCodes, client);

}

Customizing Button Alignment
By default, the dialog buttons are centered in the dialog’s command panel, using
a java.awt.FlowLayout.

To customize the button alignment of a standard dialog:

1 Create a subclass of the standard dialog class whose button alignment you
want to customize.

2 Override the following method of the custom dialog:

getButtonAlignment()

The method can return one of these constants:

CENTER
LEFT
RIGHT

For example, the following method left-aligns the buttons in a custom dialog:

protected int getButtonAlignment () {
return LEFT;

}

88 Part II UI Controls and Containers

Customizing Dialogs
Customizing Dialog Behavior When it is Launched
or Dismissed

You can customize the behavior of a standard dialog when it is launched or
dismissed. For example, you might want the dialog to play a sound when it is
launched or to launch in a location other than in the center of the parent frame.

To customize the behavior when a standard dialog is launched or dismissed:

1 Create a subclass of the standard dialog class whose launch and/or dismiss
behavior you want to customize.

2 Override the following method of the custom dialog:

setVisible (boolean showQ)

For example, this method overrides the behavior of a custom dialog so it beeps
when it is launched:

public void setVisible (boolean showQ) {
if (showQ == true)

java.awt.Toolkit.getDefaultToolkit().beep ();
super.setVisible(showQ);

}

Customizing Dialog Controls
You can create a custom dialog with different types of controls, such as text fields
and radio buttons.

To customize dialog controls:

1 Create a class that extends:

com.gensym.dlg.StandardDialog

2 Call the constructor for the superior class in the custom dialog’s constructor.

3 Create the Java component to display.

The following sections explain steps 2 and 3 in detail.

Calling the Constructor for StandardDialog
In the constructor for the subclass, call the constructor for StandardDialog with
these arguments:

• Frame parent — The parent frame in which to center the dialog.

• String title — The dialog title.

• boolean isModal — true to launch the dialog modally, false otherwise.

• String buttonNames[] — An array of strings that represent the button labels.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 89

Chapter 4 Using Standard Dialogs
• int cmdCodes[] — An array of integers that represent the command codes
for each button.

• Component x — The Java component to add to the center of the dialog.

• StandardDialogClient client — The client that specifies the behavior when
the dialog is dismissed, or null.

For example, the following code fragment calls the constructor for
StandardDialog by referring to the static final variables that define button labels
and command codes. The component that gets added is PumpPanel, which is a
java.awt.Panel.

super (parent, title, isModal,
new String[] {OK_LABEL, APPLY_LABEL, CANCEL_LABEL},
new int[] {OK, APPLY, CANCEL},
new PumpPanel(), client);

Creating the Component to Display in the Dialog
The component to display can be:

• An individual Java component.

• A Java container with multiple Java components and an associated layout
manager.

To create the component to display in the dialog:

1 Create an instance of any java.awt.Component, such as a java.awt.Panel.

2 Add the desired control(s) to the component, such as text areas, text fields,
radio boxes, and/or choice boxes.

3 To ensure the dialog looks good on all platforms, arrange the controls, using a
layout manager, such as a java.awt.GridBagLayout.

Example
Creating a Custom InputDialog with OK, Apply, and Cancel Buttons
This example creates and launches a custom dialog called ConnectionDialog,
which provides two G2 text fields for entering the Host and Port of a connection
to G2.

ConnectionDialog provides these custom dialog features:

• OK, Apply, and Cancel buttons.

• Dialog buttons that are centered in the command panel.

• A beep when the dialog makes the connection.
90 Part II UI Controls and Containers

Customizing Dialogs
The custom dialog looks like this:

The example method defines an implementation of a StandardDialogClient so
the command is notified when the user has clicked a dialog button.

The implementation of the dialogDismissed method checks to see which dialog
button the user has clicked, as follows:

• If the user clicks the Apply button, the client gets the host and port from the
dialog and opens a connection.

• If the user clicks the OK button, the dialog performs the same actions as if the
user clicked the Apply button, plus it closes the dialog.

The method creates an instance of ConnectionDialog, which is an inner class.
ConnectionDialog extends InputDialog and overrides the dialog buttons,
button alignment, and dismiss behavior.

The ConnectionDialog uses localized text labels, button labels, and dialog title by
providing keys and a resource bundle.

Here is the openConnection method, which creates and launches a custom
InputDialog for connecting to G2:

private static com.gensym.message.Resource i18nUI = Resource.getBundle
("com.gensym.demos.wksppanel.UiLabels");

private com.gensym.core.UiApplication application;

private void openConnection () {

//Initialize variables for creating the custom dialog
String[] labels = {i18nUI.getString ("hostPrompt"),

i18nUI.getString ("portPrompt")};
String[] initialValues = {"localhost", "1111"};
String[] buttonLabels = {i18nUI.getString ("okLabel"),

i18nUI.getString ("applyLabel"),
 i18nUI.getString ("cancelLabel")};

int[] buttonCodes = {com.gensym.dlg.CommandConstants.OK,
com.gensym.dlg.CommandConstants.APPLY,
com.gensym.dlg.CommandConstants.CANCEL};
Telewindows2 Toolkit Java Developer’s Guide Application Classes 91

Chapter 4 Using Standard Dialogs
//Implement a StandardDialogClient to open a connection
StandardDialogClient openHandler =

new StandardDialogClient () {
public void dialogDismissed (StandardDialog d, int code) {

try {
InputDialog id = (InputDialog)d;
if (id.wasCancelled ()) return;
String[] results = id.getResults ();
String host = results[0];
String port = results[1];

//If the user clicks Apply or OK,
//connect and beep
if (code == CommandConstants.APPLY ||

code == CommandConstants.OK) {
TwAccess connection =

TwGateway.openConnection (host, port);
connection.login();
application.setConnection (connection);
java.awt.Toolkit.getDefaultToolkit().beep();

}

} catch (Exception e) {
new ErrorDialog (null, "Error During Connect",

true, e.toString (), null).setVisible (true);
}

}
};

//Create an instance of a ConnectionDialog
new ConnectionDialog

(application.getCurrentFrame(),
i18nUI.getString ("openConnectionTitle"),
true, labels, initialValues, buttonLabels, buttonCodes,
(StandardDialogClient) openHandler).setVisible (true);

}

//Define an inner class for ConnectionDialog
class ConnectionDialog extends InputDialog {

ConnectionDialog (Frame f, String title, boolean isModal,
 String[] prompts, String[] initValues,
 String[] btnLabels, int[] btnCodes,
StandardDialogClient client) {

super (f, title, isModal, prompts, initValues,
btnLabels, btnCodes, client);

}

//Override button alignment from super class
protected int getButtonAlignment () {

return CENTER;
}

92 Part II UI Controls and Containers

Customizing Dialogs
//Override behavior when dialog closes
public void setVisible (boolean showQ) {

if (showQ == false)
java.awt.Toolkit.getDefaultToolkit().beep ();
super.setVisible(showQ);

}
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 93

Chapter 4 Using Standard Dialogs
Standard Dialogs Reference
The following sections provide reference information for each standard dialog
class. Each reference section provides:

• A sample dialog.

• A description.

• The constructor or constructors, and the unique arguments to the public
constructor.

• An example.

Each dialog inherits its definition from this class:

com.gensym.dlg.StandardDialog

For general information on standard dialogs, see:

• “Using Standard Dialogs” on page 75.

• “Customizing Dialogs” on page 85.

The two categories of standard dialogs are:

• Dialogs that accept user input.

• Informational dialogs.

User Input Dialogs
InputDialog
QuestionDialog
SelectionDialog

Informational Dialogs
AboutDialog
ErrorDialog
MessageDialog
WarningDialog
94 Part II UI Controls and Containers

AboutDialog
AboutDialog

Description
AboutDialog defines a single java.awt.TextArea, with or without scroll bars, in
which to display help text. It provides an OK button to dismiss the dialog.

Constructor
The public AboutDialog constructor takes the following arguments, in addition to
the arguments common to all standard dialogs:

For information on... See...

Localizing help text “Localizing Dialog Text” on
page 79.

Customizing the dialog button “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Type and Argument Description

String aboutString The text string to display in the
dialog’s text area, which can
include any Java escape characters.

int numRows The number of rows in the text
area.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 95

Chapter 4 Using Standard Dialogs
For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

Example
The method in this example creates and launches an AboutDialog. The dialog has
vertical scroll bars in the text area. The dialog uses localized help text and a
localized title by providing keys and a resource bundle.

The constructor passes null as the StandardDialogClient argument because no
follow-up action is required.

Here is the method that creates and launches the dialog, with the constructor
shown in bold:

private com.gensym.message.Resource i18nUI = Resource.getBundle
("com.gensym.demos.singlecxnmdiapp.UiLabels");

private java.awt.Frame frame;

private void handleAboutApplication(){
if (aboutDialog == null){

String title = i18nUI.getString("AboutTitle");
String msg = i18nUI.getString("AboutMessage");
boolean isModal = true;
int numRows = 25;
int numColumns = 80;
int scrollbarVisibility = TextArea.SCROLLBARS_VERTICAL_ONLY;
aboutDialog = new AboutDialog(frame, title, isModal,

msg, numRows, numColumns,
scrollbarVisibility,
null);

}
aboutDialog.setVisible (true);

}

int numColumns The number of columns in the text
area.

int scrollbarVisibility A variable that determines
whether the text area contains
vertical and/or horizontal scroll
bars, where the options include
any of the static final variables
defined on java.awt.TextArea.

Type and Argument Description
96 Part II UI Controls and Containers

ErrorDialog
ErrorDialog

Description
ErrorDialog provides an error message, an icon, and an OK button for
acknowledging the error.

If the dialog is launched modally, it beeps when it is launched.

Constructor
ErrorDialog provides two constructors:

For information on... See...

Launching dialogs modally “Common Arguments to Standard
Dialog Constructors” on page 76.

Localizing error text “Localizing Dialog Text” on
page 79.

Customizing the button and icon “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Use this constructor... To create a dialog that uses...

The public constructor The default icon and OK button for
dismissing the dialog.

The protected constructor A custom icon and/or button.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 97

Chapter 4 Using Standard Dialogs
The public ErrorDialog constructor takes the following argument, in addition to
the arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments that the protected constructor
provides, see “Calling the Protected Constructor” on page 86.

Example
The following method creates and launches an ErrorDialog, with the constructor
shown in bold.

The constructor passes null as the StandardDialogClient argument because no
follow-up action is required.

public void handleErrorDialog(){
 if (errorDialog == null){
 boolean isModal = false;
 errorDialog = new ErrorDialog(null, "Error Dialog",

isModal,
"This is the error message!",
null);

}
errorDialog.setVisible(true);

}

Type and Argument Description

String message The error message to display in the
dialog, which can include any Java
escape characters.
98 Part II UI Controls and Containers

InputDialog
InputDialog

Description
InputDialog creates a dialog with one or more instances of a java.awt.
TextField. You provide the prompts and initial values for each text field in the
constructor.

An InputDialog provides an OK button for accepting the user input, and a
Cancel button for discarding the input and closing the dialog.

You get the results of the editing session by calling getResults on the dialog after
it is dismissed. This method returns an array of strings, where each string
represents the value of each text field.

Constructor
InputDialog provides two constructors:

For information on... See...

Localizing dialog text “Localizing Dialog Text” on
page 79.

Customizing the buttons “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Use this constructor... To create a dialog that uses...

The public constructor Text fields, initial values, and the
OK and Cancel buttons.

The protected constructor Custom dialog buttons.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 99

Chapter 4 Using Standard Dialogs
The public InputDialog constructor takes these arguments, in addition to the
arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments to the protected constructor, see
“Calling the Protected Constructor” on page 86.

Example
This example method creates and launches an InputDialog for connecting to G2.
The method creates a StandardDialogClient to receive notification when the
user has clicked a dialog button. The implementation of the dialogDismissed
method gets the results from the dialog, makes a connection, and makes a login
request to a secure G2.

Type and Argument Description

String labels[] An array of strings that provide
the labels for each text field.

String initialValues[] An array of strings that provide
the initial values for each text field.
100 Part II UI Controls and Containers

InputDialog
Here is the openConnection method, with the constructor shown in bold:
private static com.gensym.message.Resource i18nUI = Resource.

getBundle ("com.gensym.demos.singlecxnsdiapp.UiLabels");
private java.awt.Frame frame;

private void openConnection () {
String[] labels = {i18nUI.getString ("hostPrompt"),

i18nUI.getString ("portPrompt")};
String[] initialValues = {"localhost", "1111"};
StandardDialogClient openHandler = new StandardDialogClient() {

public void dialogDismissed (StandardDialog d, int code) {
try {

InputDialog id = (InputDialog)d;
if (id.wasCancelled ()) return;
String[] results = id.getResults ();
String host = results[0];
String port = results[1];
TwAccess connection = TwGateway.openConnection(host,

port);
connection.login();

} catch (Exception e) {
new ErrorDialog (null, Error During Connect",

true, e.toString (),
null).setVisible (true);

}
}

};
new InputDialog

(frame, i18nUI.getString ("openConnectionTitle"),
true, labels, initialValues, openHandler).setVisible

(true);
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 101

Chapter 4 Using Standard Dialogs
MessageDialog

Description
MessageDialog provides an informational message and an OK button for
acknowledging the message.

If the dialog is launched modally, it beeps when it is launched.

Constructor
MessageDialog provides two constructors:

For information on... See...

Launching dialogs modally “Common Arguments to Standard
Dialog Constructors” on page 76.

Localizing message text “Localizing Dialog Text” on
page 79.

Customizing the button and icon “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Use this constructor... To create a dialog that uses...

The public constructor The default icon and OK button for
dismissing the dialog.

The protected constructor A custom icon and/or button.
102 Part II UI Controls and Containers

MessageDialog
The public MessageDialog constructor takes this argument, in addition to the
arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments that the protected constructor
provides, see “Calling the Protected Constructor” on page 86.

Example
The constructor passes null as the StandardDialogClient argument because no
follow-up action is required.

The following method creates and launches a MessageDialog, with the
constructor shown in bold.

private java.awt.Frame frame;

public void handleMessageDialog(){
if (messageDialog == null){

boolean isModal = false;
messageDialog = new MessageDialog

(frame, "Message Dialog", isModal,
"This is a short message.", null);

}
messageDialog.setVisible(true);

}

Type and Argument Description

String message The message to display in the
dialog, which can include any Java
escape characters.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 103

Chapter 4 Using Standard Dialogs
QuestionDialog

Description
QuestionDialog provides a question that the user must answer by clicking the
Yes or No button.

Constructor
QuestionDialog provides two constructors:

For information on... See...

Implementing the behavior of the
dialog when the user has clicked
each button

“Determining Which Button the
User Has Clicked” on page 78.

Localizing question text “Localizing Dialog Text” on
page 79.

Customizing the buttons and icon “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Use this constructor... To create a dialog that uses...

The public constructor The default icon, and the Yes, No,
and Cancel buttons.

The protected constructor A custom icon and/or buttons.
104 Part II UI Controls and Containers

QuestionDialog
The public QuestionDialog constructor takes this argument, in addition to the
arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments that the protected constructor
provides, see “Calling the Protected Constructor” on page 86.

Example
The following example creates and launches a QuestionDialog, with the
constructor shown in bold.

The constructor passes this as the StandardDialogClient argument, which is an
implementation of StandardDialogClient.

The implementation of the dialogDismissed method tests its command code
argument to determine which button the user has clicked, and prints different
messages to the standard output window.

private java.awt.Frame frame;

public void handleQuestionDialog(){
if (questionDialog == null){

boolean isModal = false;
questionDialog = new QuestionDialog

(frame, "Question Dialog", isModal,
"Would you like to save before exiting?", this);

}
questionDialog.setVisible(true);

}

public void dialogDismissed (StandardDialog dlg,
int code) {

if (dlg instanceof QuestionDialog){
if (code == YES)

System.out.println("Save before exiting");
else

System.out.println("Do not save before exiting");
}

Type and Argument Description

String message The question to display in the
dialog, which can include any Java
escape characters.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 105

Chapter 4 Using Standard Dialogs
SelectionDialog

Description
SelectionDialog provides a list of items from which to choose one or more
items. You provide these items in the constructor:

• The prompt.

• The list of items from which to choose.

• Whether the dialog supports a single selection or multiple selections.

• The initially selected item.

• Whether the dialog requires a selection before the user is allowed to dismiss it.

You get the result from the dialog by calling one of these two methods, depending
on whether the dialog supports single or multiple selections:

• getResult — In a dialog that supports a single selection, returns a string that
is the selected item.

• getResults — In a dialog that supports multiple selections, returns an array
of strings representing the value of each selected item.

For information on... See...

Localizing dialog text “Localizing Dialog Text” on
page 79.

Customizing the buttons “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.
106 Part II UI Controls and Containers

SelectionDialog
Constructor
SelectionDialog provides two constructors:

The public SelectionDialog constructor takes these arguments, in addition to
the arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments that the protected constructor
provides, see “Calling the Protected Constructor” on page 86.

Use this constructor... To create a dialog that uses...

The public constructor A scrollable selection list, and the
OK and Cancel buttons.

The protected constructor Custom dialog buttons.

Type and Argument Description

String prompt The prompt string to display
above the list of items.

String initialValues[] An array of strings that specify the
items in the selection.

boolean allowMultipleSelection A boolean that determines
whether the dialog allows the user
to select multiple items.

int initialSelection An integer that specifies the item
that is selected by default. Use the
NO_SELECTION static final variable
if no initial selection exists.

boolean requireSelection A boolean that determines
whether the user must select an
item before being allowed to
accept the dialog.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 107

Chapter 4 Using Standard Dialogs
Example
The following example creates and launches a SelectionDialog for choosing
among several strings, with the constructor shown in bold.

The method uses this private variable:

private java.awt.Frame frame;

The implementation of the dialogDismissed method prints the selected value to
the standard output window.

public void handleSelectionDialog(){
if (selectionDialog == null){

boolean isModal = false;
String[] selectionDialogInitialValues =

{"Apples", "Bananas", "Grapes", "Oranges",
"Pears", "Peaches"};

boolean allowMultiSelect = false;
int initialSelection = 2;
boolean requireSelection = false;
selectionDialog =

new SelectionDialog (frame, "Selection Dialog",
isModal, "Selection Prompt:",
selectionDialogInitialValues,
allowMultiSelect,
initialSelection,
requireSelection, this);

}
selectionDialog.setVisible(true);

}

public void dialogDismissed (StandardDialog dlg, int code) {
if (dlg instanceof SelectionDialog){

SelectionDialog selectionDlg = (SelectionDialog)dlg;
int result = selectionDlg.getResult();
System.out.println("Selected:

"+selectionDialogInitialValues[result]);
}

}

108 Part II UI Controls and Containers

WarningDialog
WarningDialog

Description
WarningDialog displays a warning message to the user with an OK button for
acknowledging the warning.

If the dialog is launched modally, it beeps when it is launched.

Constructor
WarningDialog provides two constructors:

For information on... See...

Launching dialogs modally “Common Arguments to Standard
Dialog Constructors” on page 76.

Localizing message text “Localizing Dialog Text” on
page 79.

Customizing the button and icon “Customizing Dialog Buttons and
Icons” on page 86.

Customizing the dialog behavior “Customizing Dialog Behavior
When it is Launched or
Dismissed” on page 89.

Use this constructor... To create a dialog that uses...

The public constructor The default icon, and the OK
button for dismissing the dialog.

The protected constructor A custom icon and/or button.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 109

Chapter 4 Using Standard Dialogs
The public WarningDialog constructor takes this argument, in addition to the
arguments common to all standard dialogs:

For a description of the common arguments to all standard dialogs, see “Common
Arguments to Standard Dialog Constructors” on page 76.

For information on the standard arguments that the protected constructor
provides, see “Calling the Protected Constructor” on page 86.

Example
This example shows how you would launch a WarningDialog when you catch a
com.gensym.jgi.G2AccessException. The dialog uses the exception text if it
exists; otherwise, it provides localized message text, which it formats by
providing a key and a resource bundle.

The AccessError and AccessErrorWithReason keys appear as follows in the
resource properties file, where the additional argument to the format method
replaces the array in the localized text string associated with the key:

AccessError=Error accessing connection {0}.

AccessErrorWithReason=Error accessing connection {0}.\n{1}

For more information on localizing and formatting message text, see “Localizing
Dialog Text” on page 79.

The constructor passes null as the StandardDialogClient argument because no
follow-up action is required.

Type and Argument Description

String message The warning message to display in
the dialog, which can include any
Java escape characters.
110 Part II UI Controls and Containers

WarningDialog
Here is the statement that catches the exception, with the constructors shown
in bold:

private com.gensym.ntw.TwGateway currentConnection;
private com.gensym.message.Resource i18n =

Resource.getBundle("com.gensym.demos.test.ErrorResources");

catch(G2AccessException ex){
ex.printStackTrace();
String cxnString = currentConnection.toShortString();
String msg = ex.getMessage();
if (msg == null)

new WarningDialog
(null, i18n.getString("Error"),
true, i18n.format("AccessError",
cxnString), null).setVisible(true);

else
new WarningDialog

(null, i18n.getString("Error"), true,
i18n.format("AccessErrorWithReason", cxnString,
msg), null).setVisible(true);

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 111

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Chapter 5 Creating Menus and Toolbars
Version 3.1 Mode: Working Size: 7x9x11
5
Creating Menus
and Toolbars
Describes how to create menu bars, pulldown menus, popup menus, submenus,
command groups, and toolbars from commands.

Introduction 114

Packages Covered 121

Relevant Demos 122

Creating Command-Aware Containers 122

Creating Commands 131

Creating Commands with a Structure 144

Implementing the Command Interface 158

Overriding Mnemonics and Shortcuts for Shell Commands 161
113

Chapter 5 Creating Menus and Toolbars
Introduction
Most modern user interfaces provide multiple ways of performing the same user
action, typically through a menu bar, popup menu, and/or toolbar. While
beneficial to the end user of an application, implementing these can be
challenging for several reasons:

• Every view of the same command needs to remain synchronized with every
other view when the status of the application changes.

• The application should not duplicate code for each view of the same action.

• Each action’s view should be kept separate from its implementation so the
implementation can change without requiring the views to change as well.

The com.gensym.ui package and its subpackages offer one solution to these
problems by providing:

• A set of interfaces and classes for creating user actions through the UI.

• A set of command-aware container classes.

These classes represent a powerful way of building user interfaces without
requiring the UI developer to keep track of individual instances of individual
actions in individual containers.

Commands
A command is an action that the user can perform through the UI. A command is
separate from the user interface that represents it.

The following interface defines a command:

com.gensym.ui.Command

The Command interface is an extension of java.awt.event.ActionListener,
which means it defines the actionPerformed method to describe its action. A
command receives an ActionEvent whenever the user invokes the action of the
command by clicking a menu choice or toolbar button.

The Command interface is analogous to the javax.swing.Action interface in that it
defines properties for the command’s textual and iconic descriptions, its state,
and its availability.

A command may perform one or more actions. You represent each action with a
unique command key, which is a string.

You can register a client as a CommandListener to receive notification of
CommandEvents, which the command delivers when the description, state, or
availability of the command changes.
114 Part II UI Controls and Containers

Introduction
Command-Aware Containers
A command-aware container is a UI container that knows how to add
commands, using a version of the add method. Command-aware containers are
listeners for CommandEvents, which the command generates when its description,
state, or availability change.

When you add a command to a command-aware container, the container:

• Represents the command appropriately for the particular container, for
example, a menu creates a menu item, whereas a toolbar creates a button.

• Configures the representation based on information obtained from the
command, for example:

– Sets the text and/or icon from the command description.

– Sets the initial state and availability.

– Enables and disables the command when it becomes available or
unavailable.

– Sets the current state when the command state changes.

• Registers a listener with the command for notification of command events.

The following figure illustrates the result of creating a menu and a toolbar from a
command:

For information on adding commands to command-aware containers, see
“Creating Command-Aware Containers” on page 122.

CMenuBar mb = new CMenuBar();

CMenu g2Menu = new CMenu("G2");

mb.add(connectionCommands);

ToolBar tb = new ToolBar();

tb.add(connectionCommands);
Telewindows2 Toolkit Java Developer’s Guide Application Classes 115

Chapter 5 Creating Menus and Toolbars
Command-Aware Containers Based on Java Foundation Classes
Telewindows2 (TW2) Toolkit provides these command-aware containers, which
are subclasses of these javax.swing classes:

Command-Aware Containers Based on Java AWT Classes
TW2 Toolkit provides the following analogous menu classes, which are
subclasses of these java.awt classes:

Representation Constraints
You can add a command to a command-aware container as text only, icon only, or
both by creating an instance of this class:

com.gensym.ui.RepresentationConstraints

RepresentationConstraints expose the alignment and position features
supported by javax.swing menus and buttons, which you use to represent a
command as both text and icon.

For information on adding commands to command-aware containers with
constraints, see “Adding Commands with Representation Constraints” on
page 127.

Structured Commands
A structured command is a set of related actions with a hierarchical structure
and/or grouping, such as might appear in a menu with a cascading submenu.
The contents of a structured command can update dynamically.

This class... Is a subclass of this class...

com.gensym.ui.menu.CMenu JMenu

com.gensym.ui.toolbar.ToolBar JToolBar

com.gensym.ui.menu.CMenuBar JMenuBar

com.gensym.ui.menu.CPopupMenu JPopupMenu

This class... Is a subclass of this class...

com.gensym.ui.menu.awt.CMenu Menu

com.gensym.ui.menu.awt.CMenuBar MenuBar

com.gensym.ui.menu.awt.CPopupMenu PopupMenu
116 Part II UI Controls and Containers

Introduction
The following interface defines a structured command:

com.gensym.ui.StructuredCommand

A structured command is just like a Command, except that it provides additional
methods that support the structure. In all other ways, structured commands are
commands in the general sense of the term described earlier.

You can register a client as a StructuredCommandListener to receive notification
of StructuredCommandEvents, which the command delivers when the structure
changes.

Abstract Commands
TW2 Toolkit provides two default implementations of commands, which are
collectively known as abstract commands. This table describes the abstract
command classes and the interfaces they implement, and shows an example of
each when added to a pulldown menu:

By subclassing one of these abstract command classes, your command supports
these features:

• Automatically notifies listeners of command events.

• Supports accessor methods for command properties.

• Supports localization of textual descriptions.

The constructor for an abstract command takes an array of objects of this class,
where each object describes a single action:

com.gensym.ui.CommandInformation

A CommandInformation object provides the command key, the initial state and
availability, a mnemonic and shortcut, the names of translation, image, and/or
mnemonic resource files, and whether or not the action is immediate.

This class...
Implements
this interface... Which looks like this...

com.gensym.ui.
AbstractCommand

com.gensym.ui.
Command

com.gensym.ui.
AbstractStructuredCommand

com.gensym.ui.
StructuredCommand
Telewindows2 Toolkit Java Developer’s Guide Application Classes 117

Chapter 5 Creating Menus and Toolbars
TW2 Toolkit provides several subclasses of CommandInformation for use with
structured commands:

com.gensym.ui.StructuredCommandInformation
com.gensym.ui.CommandGroupInformation
com.gensym.ui.SubCommandInformation

Using Commands in Applications
Commands can interact with classes in an application by:

• Listening for application events and delivering command events.

• Receiving action events from command-aware containers.

• Allowing the execution of methods on application objects.

Listening for Application Events and Delivering Command Events
Your command might be a listener for some kind of application event, such as
connecting to G2. In response to that event, your command might set one of its
properties, such as its availability, by calling one of its set methods. As a result,
the representation of the command in a command-aware container might become
unavailable when the connection to G2 closes.

When you set a command property based on an application event, the command
generates a CommandEvent to notify all registered listeners that the property has
changed. Because command-aware containers are CommandListeners, they
update the representation of the command in the container.

For information on... See...

Creating abstract commands page 131

Creating abstract structured commands page 144

Implementing the Command interface page 158
118 Part II UI Controls and Containers

Introduction
The following figure illustrates this process:

Object

Toolbar

CommandEvent CommandEvent

Menu

An application event occurs.

The command sets one of its properties, for
example, setAvailable(false).

Command setAvailable(false)

The command notifies listeners that a property
has changed by sending a CommandEvent.

2

3

1

3

1

2

3

Telewindows2 Toolkit Java Developer’s Guide Application Classes 119

Chapter 5 Creating Menus and Toolbars
Receiving Action Events From Command-Aware Containers
When the user executes the action of the command in a command-aware
container, the container generates a java.awt.event.ActionEvent. Because
commands are ActionListeners, they receive notification of these events and
invoke their actionPerformed method to trigger the action, which might call a
method on an object in the application. This figure illustrates this process:

ToolbarMenu

ActionEventActionEvent

When the user invokes a command in
a command-aware container, the
container notifies listeners by sending
an ActionEvent.

Command

Because a command is an ActionListener, it
invokes its actionPeformed method.

actionPerformed

2

1 1

1

2

object.abcMethod()

Object
3

The action of the command typically calls a
method on an object in the application.3
120 Part II UI Controls and Containers

Packages Covered
Packages Covered

com.gensym.ui
Interfaces

Command
CommandListener
KeyableCommand
StructuredCommand
StructuredCommandListener

Classes
AbstractCommand
AbstractStructuredCommand
CommandEvent
CommandGroupInformation
CommandInformation
CommandUtilities
KeyInformation
RepresentationConstraints
StructuredCommandInformation
SubCommandInformation

com.gensym.ui.menu
Classes

CMenu
CMenuBar
CPopupMenu

com.gensym.ui.menu.awt
Classes

Menu
MenuBar
PopupMenu
Telewindows2 Toolkit Java Developer’s Guide Application Classes 121

Chapter 5 Creating Menus and Toolbars
com.gensym.ui.toolbar
Classes

ToolBar

Relevant Demos
The following demos create TW2 Toolkit menus and toolbars from commands:

• wksppanel

• singlecxnsdiapp

• singlecxnmdiapp

• multiplecxnsdiapp

• multiplecxnmdiapp

The demos are located in this directory, depending on your platform:

Creating Command-Aware Containers
To create a command-aware container, you:

• Create an instance of a:

– Menu

– Menu bar

– Popup menu

– Toolbar

• Add commands to the container by adding:

– All command keys.

– Individual command keys.

– All command keys or a single command key with representation
constraints.

• If your container includes logical groupings of commands, add a separator, as
needed.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
122 Part II UI Controls and Containers

Creating Command-Aware Containers
Creating an Instance of a Command-Aware
Container

By default, command-aware containers represent commands as follows:

To create an instance of a CMenu or CPopupMenu, provide the title string as the
argument to the constructor. To localize the menu title, use a resource and a key
to provide a localized text string.

For information about localizing menu text, see Appendix A, “Localization” on
page 331.

To create an instance of a CMenuBar or ToolBar, you provide no argument.

You can create menus and toolbars based on classes in the javax.swing package
or based on classes in the java.awt package.

To create a command-aware container:

Call the constructor for one of these classes:

com.gensym.ui.menu.CMenu
com.gensym.ui.menu.CPopupMenu
com.gensym.ui.menu.CMenuBar
com.gensym.ui.toolbar.ToolBar

or

com.gensym.ui.menu.awt.CMenu
com.gensym.ui.menu.awt.CPopupMenu
com.gensym.ui.menu.awt.CMenuBar

For example, these code fragments create instances of a CMenu and a CPopupMenu,
providing a localized text string as the menu title:

private com.gensym.message.Resource bundle =
Resource.getBundle("com.gensym.shell.Messages")

CMenu menu = new CMenu(bundle.getString("G2Menu"));

CPopupMenu pm = new CPopupMenu(bundle.getString("PopupTitle"));

This command-aware container... Represents commands by using...

Menus The short description as the menu
label.

Toolbars The small or large icon as a button,
depending on whether small or
large icons are in use.

Toolbars The long description as a tool tip.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 123

Chapter 5 Creating Menus and Toolbars
These code fragments create instances of a CMenuBar and a ToolBar:

CMenuBar mb = new CMenuBar();

ToolBar tb = new ToolBar();

Adding All Command Keys
The simplest way to add a command to a command-aware container is to add all
the command keys.

When creating a menu bar, you typically add instances of either of the following
types of objects to create different types of menus:

• To create a simple pulldown menu, add a CMenu.

• To create a pulldown menu with a structure, add an implementation of the
StructuredCommand interface.

To add a command with all its keys to a command-aware container:

Call this version of the add method on the command-aware container:

add(Command cmd)

The argument to the add method is an instance of an implementation of the
Command interface, such as a subclass of AbstractCommand.

Examples

Adding Commands to a Menu
The following method creates a G2 menu, which consists of two commands. The
method performs these tasks in this order:

• Creates an instance of a CMenu, providing a localized text string as the title.

• Adds an implementation of the Command interface as a handler to the menu.

• Returns the menu.

Here is the method that creates the G2 menu from commands, where this refers
to the application:

private com.gensym.message.Resource bundle =
Resource.getBundle("com.gensym.shell.Messages")

private CMenu createG2Menu() {
CMenu menu = new CMenu(bundle.getString("G2Menu"));
connectionHandler = new ConnectionCommandsImpl(this);
menu.add(connectionHandler);
return menu;

}

124 Part II UI Controls and Containers

Creating Command-Aware Containers
The menu looks like this:

If the command specifies a short resource file, each command key uses its short
description as the menu label.

Adding Menus to a Menu Bar
You can add one or more instances of the following classes to a CMenuBar:

• CMenu, which creates a pulldown menu of commands.

• AbstractStructuredCommand, which creates a pulldown menu of commands
with a structure.

For an example of adding an AbstractStructuredCommand to a CMenuBar, see
“Examples” on page 148.

The following method:

• Creates an instance of a CMenuBar.

• Adds three pulldown menus, where each create method returns an instance
of a CMenu.

• Returns the menu.

For the code used to implement the createG2Menu, see the example under
“Adding All Command Keys” on page 124.

Here is the method that creates a menu bar from menus:

private CMenuBar createMenuBar() {
CMenuBar mb = new CMenuBar();
mb.add(createFileMenu());
mb.add(createG2Menu());
mb.add(createHelpMenu());
return mb;
}

The menu bar looks like this:

ConnectionCommandsImpl
CMenu
Telewindows2 Toolkit Java Developer’s Guide Application Classes 125

Chapter 5 Creating Menus and Toolbars
Adding Individual Command Keys
If your command defines multiple command keys, you might choose to include
only certain command keys in the container. For example, a toolbar might
support only certain command keys as icons, whereas a menu might support all
command keys.

To add an individual command key to a command-aware container:

Call this version of the add method on the command-aware container:

add(Command cmd, String cmdKey)

The cmd argument is the same as described in “Adding All Command Keys” on
page 124.

The cmdKey argument is the first argument to a CommandInformation object that
you pass to the constructor of an AbstractCommand.

For details, see “Implementing the Constructor” on page 146.

Example

Adding an Individual Command Key to a Toolbar
The following method creates a toolbar that consists of a single toolbar button.
The method performs these tasks in this order:

• Creates an instance of a ToolBar.

• Adds the command with a single command key to the toolbar, where
GET_WORKSPACE is a final static variable on the command.

• Returns the toolbar.

Here is the method that creates a toolbar from a single command key:

private java.awt.Frame frame;
private com.gensym.ntw.TwGateway connection;

private ToolBar createToolBar() {
ToolBar tb = new ToolBar();
wkspHandler = new WorkspaceCommandsImpl(frame, connection);
tb.add(wkspHandler, WorkspaceCommandsImpl.GET_KBWORKSPACE);
return tb;

}

Assuming the command defines a long resource properties file, the toolbar with
its tool tip might look like this:

Tool tip

Icon ToolBar
126 Part II UI Controls and Containers

Creating Command-Aware Containers
For more information on how to use long resource files, see “Localizing
Command Text and Mnemonics” on page 138.

Adding Commands with Representation Constraints
When you add a command to a command-aware container, you can choose to use
representation constraints to add the command as:

• Text only.

• Icon only.

• Icon and text.

This means, for example, you can override the default representation of a
command in a particular type of container, and you can represent a command in a
menu as both text and an icon.

If you choose to represent a command as both text and an icon, you can also
specify the vertical and horizontal alignment, and the position of the text relative
to the icon.

To add a command with representation constraints:

1 Create an instance of this class:

com.gensym.ui.RepresentationConstraints

2 Specify the first argument to the constructor as one of the following final static
variables:

ICON_ONLY
TEXT_ONLY
TEXT_AND_ICON

3 If you choose to represent the command as both text and icon, optionally
specify these additional arguments, in this order, in the
RepresentationConstraints constructor:

• int horizontalAlignment — Horizontal alignment of the text and icon
relative to the container.

• int verticalAlignment — Vertical alignment of the text and icon
relative to the container.

• int horizontalTextPosition — Horizontal position of the text relative
to the icon.

• int verticalTextPosition — Vertical position of the text relative to the
icon.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 127

Chapter 5 Creating Menus and Toolbars
You specify these constraints by using the following final static variables:

TOP
BOTTOM
RIGHT
LEFT
CENTER

4 Call either of these versions of the add method on the command-aware
container, depending on whether you want to add all command keys or a
single command key:

add(Command cmd,
RepresentationConstraints constraints)

add(Command cmd,
String cmdKey,
RepresentationConstraints constraints)

The cmd and cmdKey arguments are the same as described in “Adding Individual
Command Keys” on page 126.

Example

Adding Commands with Representation Constraints to a Menu
The following method creates a G2 menu that consists of a command represented
as both text and an icon. In addition to the tasks that any command-aware
container would perform, the method performs these tasks:

• Creates an instance of a RepresentationConstraints object, which uses both
the textual and iconic descriptions of the command.

• Left-aligns the text and icon horizontally and centers the text and icon
vertically within the menu.

• Positions the text to the right of the icon, and centers the text vertically relative
to the icon.

• Adds the command to the menu by calling the add method that takes a
command and a representation constraint object as arguments.
128 Part II UI Controls and Containers

Creating Command-Aware Containers
Here is the method that creates a G2 menu with representation constraints, where
this refers to the application:

private CMenu createG2Menu() {
CMenu menu = new CMenu("G2");
connectionHandler = new ConnectionCommandsImpl(this);
RepresentationConstraints constraints =

new RepresentationConstraints
(RepresentationConstraints.TEXT_AND_ICON,
RepresentationConstraints.LEFT,
RepresentationConstraints.CENTER,
RepresentationConstraints.RIGHT,
RepresentationConstraints.CENTER);

menu.add(connectionHandler, constraints);
return menu;

}

The menu looks like this:

Adding Separators
Often a menu or toolbar consists of logical groupings of commands. To help users
recognize these logical groupings, you can add separators to the command-aware
container. A separator is a horizontal bar in a menu and a vertical gap in a
toolbar.

Alternatively, you can create a structured command, which automatically adds
separators between command groups. For more information, see “Creating
Commands with a Structure” on page 144.

To add a separator to a menu or toolbar:

Call this method on the command-aware container in the location where you
want the separator to appear:

addSeparator()

ConnectionCommandsImpl
Telewindows2 Toolkit Java Developer’s Guide Application Classes 129

Chapter 5 Creating Menus and Toolbars
Example

Adding a Separator to a Menu
This method creates a File menu with two commands, with a horizontal separator
between the commands.

Here is the method that creates the File menu with separators:

private java.awt.Frame frame;
private com.gensym.ntw.TwGateway connection;

private CMenu createFileMenu() {
CMenu menu = new CMenu ("File");
exitHandler = new ExitCommandImpl(frame, connection);
wkspHandler = new WorkspaceCommandsImpl(frame, connection);
menu.add(wkspHandler,

WorkspaceCommandsImpl.GET_KBWORKSPACE);
menu.addSeparator();
menu.add(exitHandler);
return menu;

}

The menu looks like this:

Adding Separators to a Toolbar
This method creates a toolbar with three commands and two separators, where
the handlers are commands. The separators appear between each command.

private ToolBar createToolBar() {
ToolBar tb = new ToolBar();
tb.add(wkspHandler, WorkspaceCommandsImpl.GET_KBWORKSPACE);
tb.addSeparator();
tb.add(connectionHandler);
tb.addSeparator();
tb.add(g2StateHandler);
return tb;

}

Separator
130 Part II UI Controls and Containers

Creating Commands
The toolbar looks like this:

Creating Commands
The AbstractCommand class provides a default implementation of the Command
interface, which implements the command’s behavior and handles event
notification. AbstractCommand also implements KeyableCommand, which provides
access to mnemonics and shortcuts for the command.

You create a command, using AbstractCommand by:

• Defining the command class.

• Implementing the constructor by calling the constructor for the superior class,
providing an array of CommandInformation objects for each command action.

• Defining the action of the command by implementing its actionPerformed
method.

• Delivering command events to command-aware containers by setting
command properties.

• Getting command properties, as needed.

• Localizing the textual descriptions of the command.

The following sections describe these tasks in detail.

For a complete example of creating an abstract command, see “Example” on
page 140.

Defining the Command Class
To define a command:

Create a class that extends:

com.gensym.ui.AbstractCommand

For example, here is the general structure of the class definition for an abstract
command that exits the application:

public class ExitCommandsImpl extends AbstractCommand {
//Code goes here

}

Separator
Telewindows2 Toolkit Java Developer’s Guide Application Classes 131

Chapter 5 Creating Menus and Toolbars
Your command typically also implements some kind of listener so it can set
command properties based on application events.

For more information, see “Delivering Command Events By Setting Properties”
on page 135.

Implementing the Constructor
The constructor for an AbstractCommand subclass is responsible for initializing
the command’s properties. It typically takes as its argument one or more of the
following:

• A connection, such as com.gensym.ntw.TwAccess or a com.gensym.shell.
util.ConnectionManager.

• An application frame, such as a com.gensym.mdi.MDIFrame or a java.awt.
Frame.

• An application, such as a com.gensym.ntw.util.TW2Application or
TW2MDIApplication.

The AbstractCommand constructor takes an array of instances of the following
class, one for each unique action in the command:

com.gensym.ui.CommandInformation

The constructor for a CommandInformation object takes these arguments in this
order:

• String key — The command key, which the resources use as their lookup
key to support localization.

• boolean initialAvailability — The command key’s initial availability.

• String shortResourceName — The short resource file, which the command
key uses to localize its textual description, or null.

• String longResourceName — The long resource file, which the command key
uses to localize its textual description, or null.

• String smallImageName — The name of an image file for representing the
command as a small icon.

• String largeImageName — The name of an image file for representing the
command as a large icon.

• boolean initialState — The initial state of the command, which indicates
whether the command is selected or unselected.

• boolean immediate — Whether or not the command key is executed
immediately, where a value of false causes the command text to include
ellipses (. . .).
132 Part II UI Controls and Containers

Creating Commands
• String mnemonicResourceName — The resource file that the command uses
for translating its mnemonics.

• KeyStroke shortcut — The key sequence that the command uses as an
accelerator.

If the specified resource file or image file is not an absolute path, the
AbstractCommand looks for the file in the same directory as the command's class
file.

Tip A CommandInformation object has another constructor, which allows you to
specify explicitly the short and long descriptions, the small and large icons, and
the mnemonic. You use this constructor when you do not know the description or
icon to display until run time, or if you do not need to translate the mnemonic. If
you use this constructor, you would not specify a resource for the corresponding
description, icon, or mnemonic. See the API documentation for details.

To implement the constructor for an AbstractCommand subclass:

1 For each command key that the AbstractCommand subclass defines in its
constructor, declare a final static variable as a java.lang.String and set it
equal to a lookup key.

The command uses this string as the lookup key into the resource properties
files.

2 In the constructor for the AbstractCommand subclass, call the constructor for
its superior class, passing in as the argument an array of CommandInformation
objects for each command key.

In the following example, CONNECT and DISCONNECT are the command keys, and
OpenConnection and CloseConnection are the lookup keys:

public static final String CONNECT = "OpenConnection";
public static final String DISCONNECT = "CloseConnection";

For information about defining the resource properties files and associated
resources, see “Localizing Command Text and Mnemonics” on page 138.

This code fragment would appear in the constructor for a subclass of
AbstractCommand. It supports two command keys, a short and long resource file
for each key, two small toolbar button icons, a mnemonic, and a shortcut for each
key. The shortcut for the CONNECT key is Ctrl + o, and the shortcut for the
Telewindows2 Toolkit Java Developer’s Guide Application Classes 133

Chapter 5 Creating Menus and Toolbars
DISCONNECT key is Ctrl + d. Call the getKeystroke static method on javax.
KeyStroke to create the keystroke, and call Event.CTRL_MASK to pass in the Ctrl
key as the accelerator.

super (new CommandInformation[]{
new CommandInformation(CONNECT, true,

shortResource, longResource,
"connect.gif", null,
null, null
mnemonicResource,
KeyStroke.getKeyStroke('O',

Event.CTRL_MASK)),
new CommandInformation(DISCONNECT, true,

shortResource, longResource,
"disconnect.gif", null,
null, null,
mnemonicResource,
KeyStroke.getKeyStroke('D',

Event.CTRL_MASK))})

Defining the Action of the Command
An AbstractCommand subclass must implement the actionPerformed abstract
method to define the action of each command key. Here is the basic signature of
this method:

public void actionPerformed(ActionEvent e) {
//Action

}

You get the command key from the ActionEvent.

Once you have the command key for a particular ActionEvent, the
actionPerformed method can test to see which command key the user executed,
then provide the appropriate action for the particular key.

The implementation of the actionPerformed method typically tests to see
whether the command key that gets returned is the correct key.

To define the action of each command key in the command:

1 Get the command key from the ActionEvent argument to the
actionPerformed method of the command, by calling this method on the
event, which returns a string:

getActionCommand()

2 Implement the actionPerformed method, specifying the action for each
command key.
134 Part II UI Controls and Containers

Creating Commands
For example, the following implementation of the actionPerformed method:

• Gets the command key from the ActionEvent argument.

• Throws an exception if the ActionEvent argument does not equal either of the
command keys.

• Calls private methods to handle each action based on the command key.

Here is the implementation of the actionPerformed method for a command with
two command keys:

public void actionPerformed(ActionEvent e) {
String cmdKey = e.getActionCommand();
if (!(cmdKey.equals (OPEN_CONNECTION)) &&

!(cmdKey.equals (CLOSE_CONNECTION)))
throw new IllegalArgumentException

("Unknown Key - " + cmdKey);
if (cmdKey.equals(CONNECT))

handleConnectCommand();
if (cmdKey.equals(DISCONNECT))

handleDisconnectCommand();
}

Delivering Command Events By Setting Properties
An AbstractCommand subclass typically implements some kind of listener so it
can set one or more of its properties when an application event occurs. For
example, a command might listen for changes in the connection status to G2, then
set its availability to true when a connection opens and false when a connection
closes.

When a command sets one of its properties, it notifies listeners of this command
event. Because all command-aware containers implement the CommandListener
interface, they automatically receive notification whenever a command property
changes; thus, they automatically update their representation of the command in
the container.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 135

Chapter 5 Creating Menus and Toolbars
To set command properties and deliver command events:

Call one of the following set methods on a subclass of AbstractCommand to
notify listeners of the following events:

The set methods all take as their first argument a command key, which
determines the key whose property should be set. The methods also take
whatever other arguments are appropriate, such as a boolean, a String, or an
icon.

The event types are final static variables defined on CommandEvent, whose values
are integers.

Examples

Setting the Initial Availability in the Constructor
You specify the initial availability of an abstract command in its constructor. For
example, this code fragment sets the initial availability of the CONNECT and
DISCONNECT command keys of a command to false if the current connection does
not exist.

private com.gensym.ntw.TwGateway connection;

if (connection == null){
setAvailable(CONNECT, false);
setAvailable(DISCONNECT, false);

}

Call this method...
To notify
listeners of this event... Which determines...

setAvailable AVAILABILITY_CHANGED Whether the command is
available or grayed out.

setDescription DESCRIPTION_CHANGED The textual description,
which the command uses
a menu text and tool tips.

setState STATE_CHANGED Whether the command is
active or inactive.

setIcon ICON_CHANGED The iconic description.
136 Part II UI Controls and Containers

Creating Commands
Setting the Availability When an Event Occurs
Your command might implement the com.gensym.shell.util.
ContextChangedListener to receive notification when the current connection
context changes.

The following listener method makes the CONNECT key available and the
DISCONNECT key unavailable when the current connection context changes:

public void currentConnectionChanged(ContextChangedEvent e) {
TwAccess context = e.getConnection();
if (context == null)

setAvailable(CONNECT, true)
else

setAvailable(DISCONNECT, false)
}

Getting Command Properties
An AbstractCommand subclass might need to get the current value of one of its
properties, such as its state or availability. For example, when you define the
action of the command through its actionPerformed method, you might need to
test whether the command key is available before performing its action.

To provide another example, the state of one command key might depend on the
state of another command key, such that selecting one command key causes the
other command key to become unselected.

To get command properties:

Call one of the following methods on a subclass of AbstractCommand:

Call this method... To determine...

isAvailable Whether the command is available
or unavailable, as a boolean.

getDescription The textual description.

getState Whether the command is active or
inactive, as a boolean.

getStructuredKeys The structure of an abstract
structured command.

getIcon The iconic description.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 137

Chapter 5 Creating Menus and Toolbars
Localizing Command Text and Mnemonics
The AbstractCommand class has built-in support for localizing textual descriptions
and mnemonics by providing these arguments in the CommandInformation
constructor:

• String key

• String shortResourceName

• String longResourceName

• String mnemonicResourceName

If the CommandInformation object does not provide the short and long
description, or the mnemonic explicitly in its constructor, the AbstractCommand
subclass uses the command key as the lookup key into the resource files.

The AbstractCommand subclass performs the localization once per key.

For example, this figure shows an application whose menu labels are localized for
the Swedish language:

The basic steps for localizing textual descriptions and mnemonics for commands
are:

• Create a short resource properties file that provides localized text strings for
each lookup key, which menus use as labels.

• Create a long resource properties file that provides additional localized text
strings for each lookup key, which a ToolBar uses as a tool tip.

getMnemonic The mnemonic as a java.lang.
Character.

getShortcut The shortcut as a javax.swing.
KeyStroke

Call this method... To determine...

Localized menu and
menu choice text.
138 Part II UI Controls and Containers

Creating Commands
• Create a mnemonic resource properties file that provides localized characters
for each lookup key, which menus use as mnemonics.

• Create a resource bundle.

The following sections provide examples of each of these steps.

For general information on localization, see Appendix A, “Localization.”

Examples

Creating a Short Resource Properties File
To localize the textual representation of a command, create a short resource
properties file that contains pairs of keys and short descriptions for each
command key. The command uses the short description as its textual
representation.

For example, you might create a short resource properties file named
CommandShortResources.properties in the same directory as the source code
for the AbstractCommand subclass. This file might contain the following keys and
short descriptions for the CONNECT and DISCONNECT command keys:

OpenConnection=Open Connection
CloseConnection=Close Connection

To cause the textual description to contain ellipses (...) to indicate that the
command displays a dialog, specify the immediate argument to the
CommandInformation object as false.

Creating a Long Resource Properties File
To support tool tips for iconic descriptions of a command, create a long resource
properties file that contains pairs of keys and long descriptions for each command
key. A ToolBar use these long descriptions as a tool tip when the cursor lingers
over the iconic representation of each command.

For example, you might create a long resource properties file named
CommandLongResources.properties in the same directory as the source code for
the AbstractCommand subclass. This file might contain the following keys and
long descriptions for the CONNECT and DISCONNECT command keys:

OpenConnection=Opens a new connection to G2 on a host and port
CloseConnection=Closes the selected G2 connection

Creating a Mnemonic Resource Properties File
To support mnemonics for commands, create a mnemonic resource properties file
that contains pairs of keys and a single alpha-numeric character that is the
mnemonic. A menu underlines the first occurrence of the mnemonic in the short
description.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 139

Chapter 5 Creating Menus and Toolbars
To execute the mnemonic, enter Alt, followed by the menu mnemonic, followed
by the command mnemonic. For example, to execute the mnemonic for the G2 >
Open Connection command, you might enter Alt + g + o.

For example, here is a mnemonic resource file for the CONNECT and DISCONNECT
command keys:

OpenConnection=O
CloseConnection=C

To create the mnemonic for the top-level menu, call setMnemonic, a method on
javax.swing.JMenu. For an example, see the com.gensym.shell.Shell class.

Creating a Resource
Create resources for the short and long properties files by calling the getBundle
static method on a Resource, providing a string as its argument, which names the
resource properties file. For example:

private com.gensym.message.Resource shortBundle =
Resource.getBundle("com.gensym.demos.test.CommandShortResources");

private com.gensym.message.Resource longBundle =
Resource.getBundle("com.gensym.demos.test.CommandLongResources");

If the resource is a fully qualified class name, the command looks for the resource
in the same directory as the command class.

Example
This section provides a complete example of creating a command that exits the
application and closes any open connections, if they exist. The command has
these features:

• Defines a single command key, which exits the application.

• Listens for window events and implements specific behavior for the window
closing event.

• Closes any open connections before exiting.

• Localizes menu text, tool tips, and mnemonics by providing short and long
resource properties files and a mnemonics resource properties file.

• Supports textual and iconic representations.

• Supports a mnemonic and shortcut (Alt + z).
140 Part II UI Controls and Containers

Creating Commands
The following sections provide explanations of the code.

import java.awt.Frame;
import java.awt.event.WindowListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.awt.event.ActionEvent;
import com.gensym.core.ExitThread;
import com.gensym.ntw.TwAccess;
import com.gensym.message.Resource;
import com.gensym.message.Trace;
import com.gensym.shell.util.ConnectionManager;
import com.gensym.ui.AbstractCommand;
import com.gensym.ui.CommandInformation;

//Defining the command
public final class ExitCommand extends AbstractCommand {

//Private variables
public static final String EXIT = "Exit";
private static final String shortResource = "CommandShortResource";
private static final String longResource = "CommandLongResource";
private static final String mnemonicResource =

"MnemonicResource";
private Resource i18n = Resource.getBundle

("com.gensym.shell.commands.Errors");
private ConnectionManager connectionMgr = null;
private TwAccess singleConnection = null;
private WindowListener windowClosingAdapter;

//Constructor for single connection application
public ExitCommand(Frame frame, TwAccess connection) {

this(frame, (ConnectionManager)null);
singleConnection = connection;
//Handle window closing event
windowClosingAdapter = new WindowAdapter() {

public void windowClosing(WindowEvent e) {
if (singleConnection != null)

exitApp(singleConnection);
else if (connectionMgr != null)

exitApp(connectionMgr);
else

exitApp();
}

};
frame.addWindowListener(windowClosingAdapter);

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 141

Chapter 5 Creating Menus and Toolbars
//Constructor for multiple connection application
public ExitCommand(Frame frame,

ConnectionManager connectionManager) {
super(new CommandInformation[]{

new CommandInformation(EXIT, true,
shortResource, longResource,
"exit_tw.gif", null, null, true,
mnemonicResource,
KeyStroke.getKeyStroke('Z',

Event.ALT_MASK))});
connectionMgr = connectionManager;

}

//Provide method for setting the connection
public void setConnection(TwAccess connection){

singleConnection = connection;
}

//Implement ActionListener interface method
public void actionPerformed(ActionEvent e){

String cmdKey = e.getActionCommand();
if (cmdKey == null) return;
if (!isAvailable(cmdKey)){

throw new IllegalStateException
(i18n.format("CommandIsUnavailable", cmdKey));

}
if (singleConnection != null)

exitApp(singleConnection);
else if (connectionMgr != null)

exitApp(connectionMgr);
else exitApp();

}

//Close connections and exit in multiple connection applications
private void exitApp(ConnectionManager connectionManager) {

TwAccess[] cxns = connectionManager.getOpenConnections();
for (int i=0; i<cxns.length; i++)

cxns[i].closeConnection();
exitApp();

}

//Close connections and exit in single connection applications
private void exitApp(TwAccess connection) {

connection.closeConnection();
exitApp();

}

//Close connections and exit when no connection exists
private void exitApp() {

System.exit(0);
}

}

142 Part II UI Controls and Containers

Creating Commands
Defining the Command
The ExitCommand class:

• Extends AbstractCommand so it can automatically deliver command events
when the state, availability, description, or icon changes, and so it can support
internationalization and iconic representations.

• Implements java.awt.event.WindowListener so it can listen for window
closing events.

The string "Exit" is the command key into the CommandShortResource.
properties, CommandLongResource.properties, and MnemonicResource.
properties files, which support localization of textual descriptions and
mnemonics. These properties files are located in the same package as the
command class.

Creating the Constructor for a Single Connection Application
For a single connection application, the ExitCommand class needs to know about
the application frame and the G2 connection. This constructor calls the
constructor for a multiple connection application, passing null as the connection.

The constructor for a single connection application initializes a variable for the
connection, creates a WindowAdapter for handling window closing events, as the
next section describes, and adds the command as a WindowListener.

Handling Window Closing Event
The ExitCommand class implements the java.awt.event.WindowListener
interface, which means it is notified of standard windows events, such as when
the window is closing.

The constructor creates a WindowAdapter as an inner class and implements the
windowClosing method, which has the same implementation as the
actionPerformed method.

The command for exiting the application is always available; otherwise, this
method would also set its availability.

Creating the Constructor for a Multiple Connection Application
For a multiple connection application, the ExitCommand class needs to know
about the application frame and the ConnectionManager. The constructor calls
the constructor on its superior class to create the command key for the command,
and it initializes a variable for the ConnectionManager.

Providing a Method for Setting the Connection
The setConnection method provides a method for setting the connection in a
single connection application.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 143

Chapter 5 Creating Menus and Toolbars
Implementing the ActionListener Interface Method
If the command key associated with the action event is not EXIT, the command
throws an exception, indicating that the argument is an illegal type.

The actionPerformed method calls one of three versions of the exitApp method,
depending on the type of connection and whether the connection exists.

Closing All Connections and Exiting
When the user invokes the action of the command, the command calls different
versions of the exitApp method, depending on whether a connection currently
exists, and if so, whether the command was created with a single connection or a
ConnectionManager.

If a connection exists, the exitApp method:

• Closes the current connection.

• Exits the application.

If no current connection exists, the method simply exits the application.

Creating Commands with a Structure
The AbstractStructuredCommand class provides a default implementation of this
interface:

com.gensym.ui.StructuredCommand

AbstractStructuredCommand handles command behavior and event notification,
and provides a set of related actions with one or more of the following features:

• A hierarchical structure.

• A logical grouping.

• Dynamically updating structure.

Command-aware containers represent AbstractStructuredCommands differently,
depending on the type of container. For example, this table describes the results of
adding an AbstractStructuredCommand subclass with different features to a
CMenu:

If you add a command
with this feature... The menu...

Hierarchical structure Represents the command as a
submenu.

Command group Includes a separator between the
groups.
144 Part II UI Controls and Containers

Creating Commands with a Structure
Subclasses of AbstractStructuredCommand notify listeners when the structure of
the command changes, which means command-aware containers automatically
update the representation of the command.

Otherwise, the process of adding an AbstractStructuredCommand subclass to a
command-aware container is identical to that of adding an AbstractCommand
subclass, as described in “Creating Command-Aware Containers” on page 122.

The process for creating a subclass of AbstractStructuredCommand is identical to
that of creating a subclass of AbstractCommand, with these key differences:

In all other ways, creating an AbstractStructuredCommand subclass is identical
to creating an AbstractCommand subclass, described in “Creating Commands” on
page 131.

The following headings describe the differences in creating a command with a
structure compared with creating a simple command.

Defining the Command Class
To define a command with a structure:

Create a class that extends this class:

com.gensym.ui.AbstractStructuredCommand

To... Do this...

Define the command class Extend
AbstractStructuredCommand.

Implement the constructor Call the constructor for the
superior class by providing an
array of
StructuredCommandInformation
objects for each command key in
the structure. Each key can
represent a subcommand, a
command group, or an individual
command.

Deliver structured command
events

Set a property of the structured
command.

Get the structure Get the structure itself or
individual command elements of
the structure.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 145

Chapter 5 Creating Menus and Toolbars
Here is the general structure of the class definition for a command that switches
the current connection:

public class SwitchConnectionCommandImpl
extends AbstractStructuredCommand {
//Command code

}

Implementing the Constructor
The constructor for an AbstractStructuredCommand subclass takes an array of
instances of this class, which initializes the structure:

com.gensym.ui.StructuredCommandInformation

StructuredCommandInformation is the superior class of a hierarchy of objects, all
of which are in the com.gensym.ui package. In the following figure, the
arguments appear below each type of object:

Tip Similar to CommandInformation, SubCommandInformation has another
constructor, which allows you to specify explicitly the short and long
descriptions, the small and large icons, and the mnemonic. See the API
documentation for details.

CommandInformation

StructuredCommandInformation

CommandGroupInformation

SubCommandInformation

(String, CommandInformation[])

(String key,
boolean initialAvailability,
String shortResourceName,
String longResourceName,
String smallImageName,
String largeImageName,
Boolean initialState,
String mnemonicResourceName,
StructuredCommandInformation structure[])

(String)
146 Part II UI Controls and Containers

Creating Commands with a Structure
For information on the arguments to CommandInformation, see “Implementing
the Constructor” on page 132.

You use instances of each of these classes to create different command structures,
as this table describes:

Each command-aware container represents the structured command and
separators appropriately for the type of container in which it appears.

To call the constructor for an AbstractStructuredCommand subclass:

In the constructor for the AbstractStructuredCommand subclass, call the
constructor for its superior class, passing in as the argument an array of
StructuredCommandInformation objects that describe the command
structure.

The first example that follows creates a structured command with two command
groups:

• Cut, Copy, and Paste

• Delete

The following examples show the result of adding the structured command to
various command-aware containers.

Use this type of object... To create this command structure...

SubCommandInformation A top-level action with associated
subactions, which can include one or more
instances of this class:

StructuredCommandInformationObject

CommandGroupInformation A group of related actions separated from
other groups with a separator, which can
include one or more instances of this class:

CommandInformationObject

CommandInformation A single action.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 147

Chapter 5 Creating Menus and Toolbars
Examples

Creating a Subcommand with Two Command Groups
The following example defines an AbstractStructuredCommand subclass called
EditCommands. The command consists of a single SubCommandInformation object,
whose key is EDIT. The SubCommandInformation, in turn, consists of two
CommandGroupInformation objects, whose keys are:

• CutCopyPaste, which consist of three individual CommandInformation
objects, whose keys are:

CUT
COPY
PASTE

• Delete, which consists of a single CommandInformation object, whose key is:

DELETE

Here is a static method that you can call in the constructor for EditCommands to
create the structured command:

private static StructuredCommandInformation[] buildCommandStructure() {

//Build the "cut/copy/paste" group
CommandInformation

cut = new CommandInformation(CUT, true,
shortResource,
longResource,
"cut.gif", null,
null, true, null, null),

copy = new CommandInformation(COPY, true,
shortResource,
longResource,
"copy.gif", null,
null, true, null, null),

paste = new CommandInformation(PASTE, true,
shortResource,
longResource,
"paste.gif", null,
null, true, null, null);

CommandGroupInformation
cutCopyPasteGroupInfo =

new CommandGroupInformation("CutCopyPaste",
new CommandInformation[]
{cut, copy, paste});
148 Part II UI Controls and Containers

Creating Commands with a Structure
//Build the "delete" group
CommandInformation

delete = new CommandInformation(DELETE, true,
shortResource,
longResource,
null, null,
null, true, null, null);

CommandGroupInformation
deleteGroupInfo =

new CommandGroupInformation("Delete",
new CommandInformation[]
{delete});

SubCommandInformation subCommandInfo =
new SubCommandInformation (EDIT, true,

shortResource,
longResource,
null, null,
null, null,
new StructuredCommandInformation[]
{cutCopyPasteGroupInfo,
deleteGroupInfo});

return new StructuredCommandInformation[] {subCommandInfo};
}

//Constructor
public EditCommands() {

super(buildCommandStructure());
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 149

Chapter 5 Creating Menus and Toolbars
Here is a conceptual representation of the structured command:

Adding a Structured Command to a CMenu
Here is how the structured command looks when added to a CMenu:

DELETE

Delete

CUT

COPY

PASTE

CutCopyPaste

SubCommandInformation
EDIT

StructuredCommandInformation

CommandInformation

CommandGroupInformation

StructuredCommandInformation

CommandInformation

CommandGroupInformation

CMenu

separator

CommandGroupInformation

CommandGroupInformation
150 Part II UI Controls and Containers

Creating Commands with a Structure
Adding a Structured Command to a CMenuBar
Here is how this command looks when added to a CMenuBar:

Adding a Structured Command Key to a ToolBar
Here is how this command looks when adding the CutCopyPaste command
group to a ToolBar:

Delivering Structured Command Events by Setting
Properties

In addition to the properties you can set for any subclass of AbstractCommand,
you can set the structure of a subclass of AbstractStructuredCommand.

Setting the structure notifies registered StructuredCommandListeners of the
event by delivering an instance of this event class:

com.gensym.ui.CommandEvent

To set the structure of a structured command and deliver the associated event:

Call this method on a subclass of AbstractStructuredCommand:

setStructuredKeys(StructuredCommandInformation structure[])

CMenuBar

ToolBar
Telewindows2 Toolkit Java Developer’s Guide Application Classes 151

Chapter 5 Creating Menus and Toolbars
Calling this method notifies listeners of the following event, which is a static final
variable defined on CommandEvent, which is an integer:

STRUCTURE_CHANGED

Example

Creating a Subcommand that Updates Dynamically
You might want to create a structured command whose contents update
dynamically, based on the state of the application. To do this, you typically create
a subcommand whose contents is initially empty, then update the command
structure when an application event occurs.

The following example creates a structured command that switches the current
connection dynamically.

Note The command is only relevant in the context of an application that supports
multiple connections to G2 through a com.gensym.shell.util.
ConnectionManager.

The command creates its structure by using a SubCommandInformation object,
whose contents is initially empty.

The command listens for changes in the connection status by using two adapter
classes. Each adapter class implements a single method, which updates the
command’s structure when the listener event occurs. This table describes the
adapter classes, the classes they extend, and the methods they implement:

This adapter class...
Implements
this interface...

And defines this
abstract method...

ContextChangedAdapter ContextChangedListener currentConnectionChanged

G2ConnectionAdapter G2ConnectionListener g2ConnectionClosed
152 Part II UI Controls and Containers

Creating Commands with a Structure
When each of the corresponding events occurs, the abstract method calls the
setStructuredKeys method on the AbstractStructuredCommand subclass,
which updates the list of available connections in the subcommand, as this table
describes:

Here is the structured command whose contents update dynamically:
import java.util.Vector;
import java.util.Hashtable;
import java.awt.Frame;
import java.awt.event.ActionEvent;
import com.gensym.ntw.TwAccess;
import com.gensym.jgi.G2ConnectionListener;
import com.gensym.jgi.G2ConnectionAdapter;
import com.gensym.jgi.G2ConnectionEvent;
import com.gensym.jgi.ConnectionTimedOutException;
import com.gensym.jgi.G2AccessInitiationException;
import com.gensym.jgi.G2AccessException;
import com.gensym.ntw.TwGateway;
import com.gensym.message.Resource;
import com.gensym.shell.util.*;
import com.gensym.ui.AbstractStructuredCommand;
import com.gensym.ui.CommandInformation;
import com.gensym.ui.SubCommandInformation;
import com.gensym.ui.StructuredCommandInformation;

//Abstract structured command definition
public final class ChangeConnectionCommand

extends AbstractStructuredCommand {

//Public varible
public static final String TW_SWITCH_CONNECTION =

"TwSwitchConnection";

//Private variables
private static final String shortResource =

"CommandShortResource";
private static final String longResource = "CommandLongResource";
private Resource i18n = Resource.getBundle("Errors");

When this event occurs... The structured command...

Current connection changes Adds the connection to the
subcommand, selects it as the
current command, and makes the
subcommand available.

Current connection closes Removes the connection from the
subcommand and makes the
subcommand unavailable if no
connection exists.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 153

Chapter 5 Creating Menus and Toolbars
private Resource shortBundle =
Resource.getBundle("CommandShortResource");

private Hashtable connectionTable;
private ConnectionManager connectionMgr;
private G2ConnectionAdapter closingListener;
private TwAccess previousConnection;
private TwAccess currentConnection;
private Vector connectionList;
private ContextChangedListener contextChangedListener;

//Contructor
public ChangeConnectionCommand(ConnectionManager connectionMgr){

//Create empty array of command information objects
super (new CommandInformation[]{});

//Initialize properties
this.connectionMgr = connectionMgr;
currentConnection = connectionMgr.getCurrentConnection();
connectionTable = new Hashtable();
contextChangedListener = new ContextChangedAdapter();
connectionList = new Vector();

//Add listeners to abstract structured command
connectionMgr.addContextChangedListener(contextChangedListener);
closingListener = new G2CloseAdapter();

//Get open connections and names, create hash table,
//and add each as a closing listener
TwAccess[] openConnections = connectionMgr.getOpenConnections();
for (int i=0; i<openConnections.length; i++){

String connectionName = openConnections[i].toShortString();
connectionTable.put(connectionName, openConnections[i]);
openConnections[i].addG2ConnectionListener(closingListener);

 connectionList.addElement(connectionName);
}

//Define command structure
setStructuredKeys(new CommandInformation[]

{createSwitchSubCommand()});

//Set command availability
if (connectionMgr.getCurrentConnection() == null){

setAvailable(TW_SWITCH_CONNECTION, false);
}

}

//Create SubCommandInformation object
private SubCommandInformation createSwitchSubCommand(){

//Create array of CommandInformation objects for connections
CommandInformation[] connections = new

CommandInformation[connectionList.size()];
154 Part II UI Controls and Containers

Creating Commands with a Structure
//Get each connection name from table and make available
for (int i=0; i<connectionList.size(); i++){

String connectionName = (String)connectionList.elementAt(i);
TwAccess connection =

(TwAccess)connectionTable.get(connectionName);
Boolean state = Boolean.FALSE;
if (connection.equals(currentConnection))

state = Boolean.TRUE;

//Create CommandInformation object for each connection
connections[i] = new CommandInformation

(connectionName, true, null, null, null, null, state,
true, connectionName, connectionName, null, null);

}

//Make subcommand available if any connections exists
boolean available = connectionList.size() > 0;

//Return SubCommandInformation object with connections
return new SubCommandInformation(TW_SWITCH_CONNECTION,

available, shortResource,
longResource, null, null,
null, null, connections);

}

//Implement ContextChangedListener to add connections
//to the subcommand when the current connection changes
class ContextChangedAdapter implements ContextChangedListener{

public void currentConnectionChanged(ContextChangedEvent e){
TwAccess newCurrentConnection = e.getConnection();
previousConnection = currentConnection;
currentConnection = newCurrentConnection;
if (previousConnection != null)
setState(previousConnection.toShortString(), Boolean.FALSE);

//If no current connection exists, make command unavailable
if (currentConnection == null){

setAvailable(TW_SWITCH_CONNECTION, false);
}

//Else, create new connection, add to table with name,
//make command available, and add as a closing listener
else{

String connectionName = currentConnection.toShortString();
if (connectionTable.get(connectionName) == null){

setAvailable(TW_SWITCH_CONNECTION, true);
connectionList.addElement(connectionName);
connectionTable.put(connectionName, currentConnection);
currentConnection.addG2ConnectionListener

(closingListener);
Telewindows2 Toolkit Java Developer’s Guide Application Classes 155

Chapter 5 Creating Menus and Toolbars
//Set the structure for the command, adding
//new connection to the CommandInformation objects
setStructuredKeys new CommandInformation[]

{createSwitchSubCommand()});
}

//Make the new connection be the selected connection
setState(connectionName, Boolean.TRUE);
}

}
}

//Implement G2ConnectionAdapter to remove connections
//from the subcommand when a connection closes
class G2CloseAdapter extends G2ConnectionAdapter{

public void g2ConnectionClosed(G2ConnectionEvent e){
TwAccess connection = (TwAccess)e.getSource();
String connectionName = connection.toShortString();

//Remove connection from list and table
connectionList.removeElement(connectionName);
connectionTable.remove(connectionName);

//Update the command structure
setStructuredKeys(new CommandInformation[]

{createSwitchSubCommand()});

//Make subcommand unavailable if no connections exist
if (connectionList.size() == 0){

setAvailable(TW_SWITCH_CONNECTION, false);
}

}
}

156 Part II UI Controls and Containers

Creating Commands with a Structure
Adding a Dynamically Updating Subcommand to a Menu
This example shows the result of adding to a menu a dynamically updating
structured command that displays the current connections:

Getting the Structure
You can get the structure of a structured command or get the individual
StructuredCommandInformation objects from the command structure. The
CommandUtilities class provides a convenience method that lets you get
individual elements from the structure.

To get the structure:

Call this method on a subclass of AbstractStructuredCommand:

getStructuredKeys()

This method returns an array of StructuredCommandInformation objects from
the AbstractStructuredCommand subclass.

To get the element associated with a key in the structure:

1 Create an instance of this class:

com.gensym.ui.CommandUtilities

2 Call this method on CommandUtilities:

getElementForKey(StructuredCommand command, String key)

This method traverses the structure of any implementation of the
StructuredCommand interface, and returns the string associated with the first
command key or SubCommand key that equals the specified string.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 157

Chapter 5 Creating Menus and Toolbars
Implementing the Command Interface
You implement the Command interface to create a command that:

• Handles notification of command events explicitly.

• Provides its own implementation of the Command interface methods.

Otherwise, it is simpler to extend one of the abstract command classes that
provide default implementations of the Command interface, as described in:

• “Creating Commands” on page 131.

• “Creating Commands with a Structure” on page 144.

To create a command that handles its own events and implements its behavior:

1 Create a class that implements this interface:

com.gensym.ui.Command

2 Implement the actionPerformed method to specify the behavior of the
command.

3 Implement a listener to handle event notification explicitly, as needed.

4 Provide implementations for the abstract command methods to:

• Get and set the command properties.

• Add and remove command listeners.

• Return the command text as a string.

Example
The following example shows an implementation of the Command interface that
exits the application. This example provides a comparison with the example
described in “Example” on page 140, which creates an AbstractCommand subclass
for exiting the application.

The command implements the java.beans.PropertyChangeListener to listen
for changes in any of the properties of the command.

The command provides implementations of these abstract methods:

• isAvailable and isImmediate, which set initial values of properties.

• getKeys, getDescription, getIcon, getState, which get properties of the
command.

• addCommandListener and removeCommandListener, which add and remove
command listeners.

• toString, which returns the command text as a string.
158 Part II UI Controls and Containers

Implementing the Command Interface
This command does not handle any command events, thus command-aware
containers are not notified when a command event occurs.

For an example of handling event notification explicitly, see the source code for
this class:

com.gensym.demos.singlecxnsdiapp.ConnectionCommandImpl

Here is the complete code for the ExitCommandImpl:
package com.gensym.demos.singlecxnsdiapp;

import com.gensym.ui.Command;
import com.gensym.ui.CommandListener;
import java.awt.Frame;
import java.awt.Image;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.WindowListener;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;
import com.gensym.message.Resource;
import com.gensym.ntw.TwAccess;

public class ExitCommandImpl implements Command {

//Private variables
private static final String EXIT = "exit";
private static Resource i18nShort = Resource.getBundle

("com.gensym.demos.wksppanel.ShortCommandLabels");
private static Resource i18nLong = Resource.getBundle

("com.gensym.demos.wksppanel.LongCommandLabels");
private static final Class thisClass = ExitCommandImpl.class;
private TwAccess connection = null;

//Constructor
public ExitCommandImpl (Frame frame) {

WindowListener windowClosingAdapter = new WindowAdapter() {
public void windowClosing(WindowEvent e) {

exitApp();
}

};
frame.addWindowListener(windowClosingAdapter);
}

//Method to set the current connection
public void setConnection(TwAccess cxn){

connection = cxn;
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 159

Chapter 5 Creating Menus and Toolbars
//Method for exiting and closing connection
public void exitApp() {

if (connection != null)
connection.closeConnection();
System.exit (0);

}

//Implement ActionListener interface methods
public void actionPerformed(ActionEvent e) {

exitApp();
}

//Implement Command interface methods
public boolean isImmediate(String key){

return true;
}

public boolean isAvailable (String cmdKey) {
return true;

}

public String[] getKeys() {
return new String[] {EXIT};

}

public String getDescription (String cmdKey, String key) {
if (!cmdKey.equals (EXIT))

throw new IllegalArgumentException
("Unsupported key - " + cmdKey);

if (key.equals (Command.SHORT_DESCRIPTION))
return i18nShort.getString (cmdKey);

else
return i18nLong.getString (cmdKey);

}

public Image getIcon (String cmdKey, String key) {
if (!cmdKey.equals (EXIT))
throw new IllegalArgumentException ("Unsupported key - " +

cmdKey);
 if (key.equals (Command.SMALL_ICON))
 return Toolkit.getDefaultToolkit().getImage(getClass().

getResource (cmdKey + "small.gif"));
else

return Toolkit.getDefaultToolkit().
getImage(getClass().getResource (cmdKey + "large.gif"));

}

public Boolean getState(String cmdKey) {
return null;

}

160 Part II UI Controls and Containers

Overriding Mnemonics and Shortcuts for Shell Commands
public void addCommandListener (CommandListener listener) {
// Do nothing.

}

public void removeCommandListener (CommandListener listener) {
// Do nothing.

}

public String toString() {
return "Exit Command";

}
//End Command interface methods

}

Overriding Mnemonics and Shortcuts for Shell
Commands

The commands in the com.gensym.shell.commands package provide default
mnemonics for all command keys, and default shortcuts for certain command
keys. For a list of these defaults, see “Using Menu Command Mnemonics and
Shortcuts” on page 58.

You can override the default mnemonics and shortcuts, or provide additional
shortcuts by creating a KeyInformation object for individual command keys. You
then pass KeyInformation objects to the add method on the command-aware
container that is adding the command.

To override the mnemonics and shortcuts for a shell command:

1 Create a com.gensym.ui.KeyInformation using the following constructor:

(String cmdKey,
boolean useDefaultMnemonic, Character mnemonic,
boolean useDefaultShortcut, KeyStroke shortcut)

For example, to override just the mnemonic for the RESET key for an instance
of ConnectionCommands to be “R”, create a KeyInformation as follows:

KeyInformation keyInfo =
new KeyInformation(RESET, false, new Character('R'),

true, null)

To override just the shortcut, set useDefaultShortcut to false and provide a
javax.swing.KeyStroke. To override both, set both boolean values to false
and provide both a mnemonic and shortcut.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 161

Chapter 5 Creating Menus and Toolbars
2 Pass in an array of KeyInformation objects to the add method of a command-
aware container that is adding the command, using this method:

add(Command cmd, String cmdKey,
RepresentationConstraints constraints,
KeyInformation[] mnemonicAndShortcutOverrides)

For example, this code fragment overrides the mnemonic for the RESET command
key when adding it to a CMenu:

private com.gensym.message.Resource bundle =
Resource.getBundle("com.gensym.shell.Messages")

private CMenu createG2Menu() {
CMenu menu = new CMenu(bundle.getString("G2Menu"));
connectionHandler = new ConnectionCommandsImpl(this);
menu.add(connectionHandler, ConnectionCommandsImpl.CONNECT,

null, new KeyInformation[] {keyInfo});
return menu;

}

162 Part II UI Controls and Containers

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Chapter 6 Creating Palettes
Version 3.1 Mode: Working Size: 7x9x11
6
Creating Palettes
Describes how to create palettes from commands.

Introduction 163

Packages Covered 168

Relevant Demos 169

Creating a Palette of Objects 169

Creating G2 Palettes 179

Creating GFR Palettes 181

Example 182

Introduction
A palette is a container that you use to create objects and place them in some
other container. For example, your application might include a palette of G2
objects, which you place in a workspace view to create a schematic diagram.

A palette consists of palette buttons, which are icons that represent the object you
want to place. To place the object in a container, the end user double-clicks the
button, then clicks anywhere in the container.
163

Chapter 6 Creating Palettes
The com.gensym.wksp.ScalableWorkspaceView component responds
appropriately when the user clicks a palette button, then clicks in a workspace
view by:

• Changing the cursor to indicate that a palette button has been clicked.

• Representing the item in the workspace view by using the icon description of
the palette button.

• Creating an item of the appropriate type when the user clicks a location in the
workspace view after double-clicking a palette button.

These packages provide classes that let you create generic palettes of objects and
palettes of G2 object:

com.gensym.ui.palette

com.gensym.ui

com.gensym.ntw.util

Palettes and Palette Buttons
You create a palette in one of two ways:

• By adding instances of an implementation of the ObjectCreator interface to a
Palette, using versions of the add method, where each key associated with
the ObjectCreator generates a PaletteButton.

• By explicitly adding instances of a PaletteButton to a Palette.

A PaletteButton represents a single item that you can create from a Palette.
The type of item that gets created depends on how you create the PaletteButton,
as follows:

You can add all ObjectCreator keys or individual keys to the Palette, with or
without RepresentationConstraints. You can add separators to the palette.

A Palette responds appropriately to changes in an ObjectCreator through the
ObjectCreatorListener interface.

If you create palette buttons by... Then...

Adding instances of an
implementation of ObjectCreator
to a Palette

The ObjectCreator determines
the type of item the
PaletteButton creates.

Adding instances of a
PaletteButton directly to the
Palette

You specify the object to create
directly in the PaletteButton, or
you create and set the
ObjectFactory, which determines
the type of item to create.
164 Part II UI Controls and Containers

Introduction
For information about creating palettes, see “Creating a Palette of Objects” on
page 169.

Object Creators
An ObjectCreator is an interface for creating instances of classes.
Implementations of the ObjectCreator interface provide a unique key to
represent each item, which is typically a unique class. The ObjectCreator uses an
ObjectFactory to determine the object to create for each key.

An ObjectCreator defines the following properties for the item it represents:

• Availability — Whether the item is available for double-clicking or whether it
is grayed out.

• Description — The textual description that represents the item in the palette.

• Icon — The icon that represents the item in the palette.

A Palette uses the ObjectCreator’s short description as the button’s textual
representation if you add the ObjectCreator with constraints. A Palette uses
the ObjectCreator’s long description when the cursor lingers over the palette
button.

An ObjectCreator delivers an ObjectEvent whenever the availability,
description, or icon of an ObjectCreator key changes. Clients can add themselves
as ObjectCreatorListeners to receive notification when the availability,
description, or icon of an individual key changes.

For information about using ObjectCreators, see “Creating Buttons from an
ObjectCreator” on page 170.

Structured Object Creators
A StructuredObjectCreator is an interface that defines an ObjectCreator with
one or more of the following features:

• A logical groupings of items.

• A hierarchical structure of items.

• A dynamically created group of items.

You can add all StructuredObjectCreator keys or individual keys to the
Palette, with or without RepresentationConstraints. Each group in the
StructuredObjectCreator is separated with a separator.

A StructuredObjectCreator delivers an ObjectEvent whenever the structure of
the StructuredObjectCreator changes. Clients can add themselves as
StructuredObjectCreatorListeners to receive notification when the structure
of an individual key changes.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 165

Chapter 6 Creating Palettes
For information about using StructuredObjectCreators, see “Creating Groups
of Buttons from a StructuredObjectCreator” on page 171.

G2 Palettes and G2 Object Creators
A G2Palette is a subclass of Palette for creating G2 items from a single G2
connection. To create a G2Palette, you:

• Provide a connection and a title string as arguments to the constructor.

• Add instances of a G2ObjectCreator, using versions of the add method,
where each G2ObjectCreator creates a group, a hierarchy, or a dynamically
updating set of PaletteButtons from a single G2 connection.

G2ObjectCreator implements the StructuredObjectCreator interface, which
means it supports individual palette buttons or groups of palette buttons.

G2ObjectCreator provides methods for setting the following properties of the
item representation on a G2Palette:

• Availability

• Structure

A G2ObjectCreator generates an ObjectCreatorEvent when:

• The G2 icon changes.

• The G2 class name changes.

• The G2 class is deleted.

When any of these events occur, the item representation on the G2Palette
becomes unavailable, and the G2ObjectCreator notifies registered
ObjectCreatorListeners.

For information about creating palettes of G2 objects, see “Creating G2 Palettes”
on page 179.

GFR Palettes
Your G2 application might already contain G2 Foundation Resources (GFR)
palettes. You can use the GFRPalette class in the com.gensym.clscupgr.gfr
package to convert your GFR palettes directly into native palettes. To create a
GFRPalette, you:

• Obtain the GFR palette KB workspace from a connection.

• Provide a title, a connection, and the GFR palette workspace as arguments to
the constructor.

For information about creating palettes of G2 objects, see “Creating GFR Palettes”
on page 181.
166 Part II UI Controls and Containers

Introduction
Comparing Palettes to Menus and Toolbars
A Palette is analogous to a CMenu, CMenuBar, CPopupMenu, or ToolBar, and an
ObjectCreator is analogous to a Command as follows:

Similarly, a G2ObjectCreator is analogous to an AbstractStructuredCommand as
follows:

The following table provides a summary of the classes you use to create palettes,
and the classes you use to create menus and toolbars:

You add implementations of a(n)...
To this type of
command-aware container...

ObjectCreator Palette

Command CMenu, CMenuBar,
CPopupMenu, or Toolbar

This class...

Provides a default
implementation of
this interface...

Which specifies
these features...

And handles event
notification of this
listener...

G2ObjectCreator Structured
ObjectCreator

Key, description,
icon, and
availability of the
item
representation

Structured
ObjectCreator
Listener

Abstract
Structured
Command

Structured
Command

Key, description,
icon, availability,
state, and
immediacy

Structured
Command
Listener

Palettes Menus and Toolbars Description

Palette
G2Palette

CMenu
CMenuBar
CPopupMenu
ToolBar

Containers

ObjectCreator
StructuredObjectCreator

Command
StructuredCommand

Interfaces that
receive action
events
Telewindows2 Toolkit Java Developer’s Guide Application Classes 167

Chapter 6 Creating Palettes
For background information on creating menus and toolbars from commands, see
Chapter 5, “Creating Menus and Toolbars” on page 113.

Packages Covered

com.gensym.ntw.util
G2ObjectCreator
G2Palette

com.gensym.ui
Interfaces

ObjectCreator
ObjectCreator2
ObjectCreatorListener
ObjectFactory
RepresentationConstraints
StructuredObjectCreator
StructuredObjectCreatorListener

Classes
ObjectCreatorEvent

G2ObjectCreator AbstractCommand
AbstractStructuredCommand

Default
implementatio
ns of action
event
interfaces

ObjectCreatorEvent
ObjectCreatorListener
StructuredObjectCreatorListener

CommandEvent
CommandListener
StructuredCommandListener

Events and
listeners for
interfaces that
receive action
events

Palettes Menus and Toolbars Description
168 Part II UI Controls and Containers

Relevant Demos
com.gensym.ui.palette
Interfaces

PaletteDropTarget
PaletteListener

Classes
Palette
PaletteButton
PaletteEvent

com.gensym.clscupgr.gfr
GFRPalette

Relevant Demos
This chapter shows the source code for the class located in this directory,
depending on your platform:

Creating a Palette of Objects
To create a palette of objects where each object is represented as a button, you
perform these tasks:

• Create an instance of a Palette.

• Create palette buttons from an ObjectCreator, StructuredObjectCreator,
or PaletteButton.

• Add buttons to the palette by calling versions of the add method.

• Specify the palette behavior and layout.

• Handle Palette and ObjectCreator events.

• Get and set palette properties, as needed.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
palettedemo\PaletteDemo.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
palettedemo/PaletteDemo.java
Telewindows2 Toolkit Java Developer’s Guide Application Classes 169

Chapter 6 Creating Palettes
Creating the Palette
You can create a palette with “Palette” as the default title or with a title string that
you supply.

To create a generic palette with a title:

Create an instance of the com.gensym.ui.palette.Palette class, using this
constructor:

Palette(String name)

Creating Palette Buttons
You can create palette buttons by using:

• ObjectCreator, which creates a PaletteButton for each key, by creating a
java.awt.Image.

• ObjectCreator2, which creates a PaletteButton for each key, by creating a
javax.swing.Icon.

• StructuredObjectCreator, which creates a tree-like structure where each
leaf in the tree is a key and creates a PaletteButton.

• PaletteButton, which creates a palette button directly.

The instructions that follow use ObjectCreator to mean either an ObjectCreator
or an ObjectCreator2.

Creating Buttons from an ObjectCreator
Each key in an ObjectCreator has:

• A short description, which the palette uses to represent the PaletteButton as
text.

• A long description, which the palette uses as a tool tip when the cursor lingers
over the button.

• A small icon and a large icon, which the palette uses to represent the
PaletteButton as an icon.

ObjectCreator defines these final static variables to represent the textual
description and the icon size:

LONG_DESCRIPTION
SHORT_DESCRIPTION
SMALL_ICON
LARGE_ICON
170 Part II UI Controls and Containers

Creating a Palette of Objects
ObjectCreator extends ObjectFactory, which provides a method for creating
the object associated with a particular key. The ObjectCreator creates the object
when the user activates the PaletteButton by double-clicking.

To create one or more palette buttons:

Create a class that implements this interface:

com.gensym.ui.ObjectCreator

The ObjectCreator class must implement these abstract methods:

Creating Groups of Buttons from a StructuredObjectCreator
A StructuredObjectCreator is an interface that defines a tree-like structure of
PaletteButtons. The structure consists of an Object array, where each element in
the array can be:

• A String[], where each array is a logical grouping of items. When added to a
palette, the groups are visually separated by a space.

• An Object[], where each array defines a step in the hierarchy. When added to
a palette, the array creates a subpalette.

Each String is a key that represents an item, where the leaves of the tree are
always strings.

To create a tree-like structure of palette buttons:

Create a class that implements this interface:

com.gensym.ui.StructuredObjectCreator

Method Description

getDescription(String key,
int type)

Returns a textual description for
the item specified by key, where
type is LONG_DESCRIPTION or
SHORT_DESCRIPTION.

getIcon(String key,
int size)

Returns an image of the specified
size for the item specified by key,
where size is SMALL_ICON or
LARGE_ICON.

getKeys() Returns a String array that
represents the keys.

createObject(String key) Returns an object for the item
specified by key.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 171

Chapter 6 Creating Palettes
The StructuredObjectCreator class must implement this abstract method:

Creating Buttons Explicitly
A PaletteButton is a class that creates an individual item when the user double-
clicks the button in a palette. You specify the object to create by using an
ObjectFactory.

To create a palette button explicitly:

1 Create an instance of this class:

com.gensym.ui.palette.PaletteButton

2 Create an instance of this class:

com.gensym.ui.ObjectFactory

3 Call this method on the ObjectFactory to specify the object to create:

createObject(String key)

The key argument is the key associated with the PaletteButton.

4 Create the object by calling this method on the PaletteButton:

createObject()

This method returns the object to create.

Adding Buttons to the Palette
You add buttons to a palette by calling different versions of the add method. You
can add:

• Implementations of the ObjectCreator interface, which creates a
PaletteButton for:

– All command keys.

– Individual command keys.

– All command keys or a single command key with representation
constraints.

• Any graphical element, such as a PaletteButton.

Method Description

getStructuredKeys() Returns an Object[] that defines
the tree-like structure.
172 Part II UI Controls and Containers

Creating a Palette of Objects
When you add an ObjectCreator, the icon of the ObjectCreator is used for the
icon of the palette button. The size of the button is determined by the iconSize
property of the Palette.

If your container includes several logical groupings of buttons, you can add a
separator, as needed. Alternatively, you can add a StructuredObjectCreator,
which creates its own separators.

Adding All Keys of an ObjectCreator
The simplest way to add an ObjectCreator to a Palette is to create palette
buttons for all of its keys.

To add an ObjectCreator with all of its keys to a palette:

Call this version of the add method on a Palette:

add(ObjectCreator objectCreator)

The argument to the add method is an instance of an implementation of the
ObjectCreator interface.

Adding Individual Keys of an ObjectCreator
You can create palette buttons for individual keys of an ObjectCreator.

To add an individual ObjectCreator key to a palette:

Call this version of the add method on a Palette:

add(ObjectCreator objectCreator, String key)

The objectCreator argument is the same as described in “Adding All Keys of an
ObjectCreator” on page 173.

The key argument is a string that represents the palette button to add.

For information on... See...

ObjectCreator “Creating Buttons from an
ObjectCreator” on page 170.

StructuredObjectCreator “Creating Groups of Buttons from
a StructuredObjectCreator” on
page 171.

PaletteButton “Creating Buttons Explicitly” on
page 172.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 173

Chapter 6 Creating Palettes
Adding ObjectCreators with Representation Constraints
You can create palette buttons for all keys or individual keys of an
ObjectCreator, using RepresentationConstraints, which lets you represent
palette buttons as:

• Text only.

• Icon only.

• Text and icon.

If you choose to represent the button as both text and an icon, you can also specify
the vertical and horizontal alignment, and the position of the text relative to the
icon.

To add an ObjectCreator with representation constraints:

1 Create an instance of this class:

com.gensym.ui.RepresentationConstraints

2 Specify the first argument to the constructor as one of the following final static
variables:

ICON_ONLY
TEXT_ONLY
TEXT_AND_ICON

3 If you choose to represent the object that the ObjectCreator creates as both
text and icon, you can specify these additional arguments, in this order, in the
RepresentationConstraints constructor:

• int horizontalAlignment — Horizontal alignment of the text and icon
relative to the palette.

• int verticalAlignment — Vertical alignment of the text and icon
relative to the palette.

• int horizontalTextPosition — Horizontal position of the text relative
to the icon.

• int verticalTextPosition — Vertical position of the text relative to the
icon.

You specify these constraints by using the following final static variables, as
needed:

TOP
BOTTOM
RIGHT
LEFT
CENTER
174 Part II UI Controls and Containers

Creating a Palette of Objects
4 Call either of these versions of the add method on a Palette, depending on
whether you want to add all keys or a single key:

add(ObjectCreator objectCreator,
RepresentationConstraints constraints)

add(ObjectCreator objectCreator,
String key,
RepresentationConstraints constraints)

The objectCreator and key arguments are the same as described in “Adding
Individual Keys of an ObjectCreator” on page 173.

Adding Palette Buttons Directly
Rather than using an ObjectCreator to create palette buttons implicitly, you can
add instances of a PaletteButton directly to a Palette.

To add an individual PaletteButton to a palette:

Call this version of the add method on a Palette, passing a PaletteButton as
the component argument:

add(Component component)

Adding Separators
If your palette includes groups of palette buttons, you can add a fixed space
between those groups.

To add a separator between palette buttons:

Call this version of the add method on a Palette:

addSeparator()

Specifying Palette Behavior and Layout
You can control the following features of a Palette’s behavior and layout:

• The default image that the palette uses for its buttons.

• The default icon size.

• The palette name.

• The orientation of the buttons in the palette.

• Whether the palette uses sticky mode when the user double-clicks a button.

Specifying the Default Image and Icon Size
A Palette uses the default image when the getIcon method of an
ObjectCreator returns null.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 175

Chapter 6 Creating Palettes
To specify the default image:

Call this method on a Palette, providing a java.awt.Image as argument:

setDefaultImage(Image image)

By default, a Palette uses large icons for its palette buttons. The ObjectCreator
interface defines these two final static variables, which are integers, to define icon
size:

SMALL_ICON
LARGE_ICON

To specify the default icon size:

Call this method on a Palette:

setIconSize(int iconSize)

The int argument is one of the variables named above.

Specifying the Orientation of the Palette Buttons
By default, a Palette adds buttons horizontally to a palette. The Palette class
defines these two final static variables, which are integers, to define the
orientation:

HORIZONTAL
VERTICAL

To specify the orientation of the palette buttons:

Call this method on a Palette:

setOrientation(int orientation)

The int argument is one of the variables named above.

Specifying the Behavior when the User Clicks a Palette Button
By default, when the user double-clicks a palette button, the button is released
after the user clicks in a container to drop the item.

You can choose to have your palette use “sticky” mode, where the toggle button
remains pressed until the user explicitly toggles it off.

To specify the behavior when the user clicks a palette button:

Call this method on a Palette:

setStickyMode(boolean mode)
176 Part II UI Controls and Containers

Creating a Palette of Objects
Getting Palette Properties
You can get the properties of a Palette. You can also get a list of all instances of
the Palette class for a given application.

To get the properties of a palette:

Call one of the following methods on a Palette:

getIconSize()
getName()
getOrientation()
isStickyMode()

To get a list of all palettes:

Call this method on any Palette:

getPalettes()

Listening for Palette Events
Clients can implement the following listeners, located in the com.gensym.ui.
palette package, to receive notification of PaletteEvents:

Notifying the Palette when the Drop is Complete or Cancelled
An implementation of the PaletteDropTarget needs to notify the Palette when
the drop is completed or cancelled.

To notify a palette when the drop is complete:

Call this method on a Palette:

dropOccurred()

This method resets the palette after a drop has occurred.

To notify a palette when the drop is cancelled:

Call this method on a Palette:

dropCancelled()

This method cancels the pending drop.

This listener... Implements this method... Which is called when...

PaletteListener paletteCreated(PaletteEvent) A Palette is created.

PaletteDropTarget paletteButtonStateChanged
(PaletteEvent)

A PaletteButton is
toggled either on or off.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 177

Chapter 6 Creating Palettes
Getting the Button that was Toggled
You might need to get the button or key associated with the PaletteButton that
the user toggled.

To get the button that was toggled:

Call this method on ac PaletteEvent:

getButton()

If the PaletteEvent is a result of toggling a PaletteButton, then the palette
button that was toggled is returned; otherwise, null is returned.

To get the key associated with the button that was toggled:

Call this method on the PaletteEvent:

getKey()

If the PaletteEvent is a result of toggling a PaletteButton, then the key
associated with the palette button that was toggled is returned; otherwise, null is
returned.

Listening for ObjectCreator Property Changes
Clients can implement the following listeners, located in the com.gensym.ui
package, to receive notification of an ObjectCreatorEvent:

Testing for Availability
You can test when the item associated with a particular key of an ObjectCreator
is available.

To test whether a palette button is available:

Call this method on an ObjectCreator:

isAvailable(String key)

This listener... Implements this method...

Which is called
when this
property
changes...

ObjectCreatorListener availabilityChanged Availability

descriptionChanged Description

iconChanged Icon

StructuredObjectCreatorListener structuredChanged Structure
178 Part II UI Controls and Containers

Creating G2 Palettes
Getting the Key that Triggered the Event
You can get the key associated with the ObjectCreator that triggered an
ObjectEvent.

To get the key that triggered the event:

Call this method on an ObjectCreatorEvent:

getKey()

Creating G2 Palettes
You create a G2Palette the same way you create a Palette except that you also
provide a connection.

You add palette buttons to the G2Palette the same way you add them to a
Palette except that you must add a G2ObjectCreator.

Creating the Palette
You create a palette of G2 objects for a particular connection to G2, with or
without a title.

To create a palette of G2 objects:

Create an instance of this class:

com.gensym.ntw.util.G2Palette

For example, this code fragment creates a palette with a title:

private com.gensym.ntw.TwGateway connection;

palette = new G2Palette(connection, "Item Palette");

Adding Objects to the Palette
When you add an ObjectCreator to a G2Palette, the palette checks to ensure
that:

• Only instances of a G2ObjectCreator are added.

• The connection argument to the G2Palette and the G2ObjectCreator are the
same.

Otherwise, you add a G2ObjectCreator to a G2Palette in the same way that you
add an ObjectCreator to a Palette.

For details, see “Adding Buttons to the Palette” on page 172.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 179

Chapter 6 Creating Palettes
Creating Palette Buttons from G2 Objects
You create palette buttons for a G2Palette by adding G2ObjectCreators to the
palette. You pass as the argument:

• A connection, which is an implementation of this interface:

com.gensym.ntw.TwAccess

• An Object array that is either:

– A Symbol array, where each symbol represents a G2 class name, which
creates a set of palette buttons.

– An array of Symbol arrays, which creates a group of palette buttons.

G2ObjectCreator uses the G2 class name as both the short and long description
of the item representation. The key is the G2 class name as a string.

G2ObjectCreator obtains the icon for the item representation as follows:

A G2ObjectCreator throws this exception, which is part of G2 JavaLink:

com.gensym.jgi.G2AccessException

To create palette buttons from G2 objects:

Create an instance of this class:

com.gensym.ntw.util.G2ObjectCreator

For example, the following code fragment adds two G2 classes named pump and
tank to a G2Palette:

private G2Palette palette;
private com.gensym.ntw.TwGateway connection;
private static final Symbol PUMP_ = Symbol.intern("PUMP");
private static final Symbol TANK_ = Symbol.intern("TANK");

palette.add(new G2ObjectCreator(connection,
new Symbol[]{PUMP_, TANK_}));

For item representations
whose classes are subclasses of... The icon is...

The G2 entity class The icon description of the G2
class.

The G2 text-box class A standard text image that
represents the text.
180 Part II UI Controls and Containers

Creating GFR Palettes
Creating GFR Palettes
To create a palette of G2 objects from a GFR palette, you provide:

• A title.

• A connection, which is an implementation of this interface:

com.gensym.ntw.TwAccess

• The GFR palette, which is an instance of this class:

com.gensym.classes.KbWorkspace

You can get the GFR palette workspace by calling getUniqueNamedItem on a com.
gensym.jgi.G2Gateway.

To create a palette from a GFR palette:

Create an instance of this class:

com.gensym.clscupgr.GFRPalette

For example, this code fragment gets the GFR palette workspace and passes it in
as an argument to the constructor, along with the connection:

private static final Symbol EXAMPLE_GFR_PALETTE_ =
Symbol.intern("EXAMPLE-GFR-PALETTE");

private GFRPalette gfrPalette;
private com.gensym.ntw.TwGateway connection;

try{

//Create GFRPalette
KbWorkspace wksp = (KbWorkspace)connection.getUniqueNamedItem

(KB_WORKSPACE_, EXAMPLE_GFR_PALETTE_);
gfrPalette = new GFRPalette("GFR Fruit Palette", connection, wksp);

}
catch(G2AccessException e){

e.printStackTrace();
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 181

Chapter 6 Creating Palettes
Example
This example creates two Fruit palettes, which the application launches when you
make a connection to G2. One is an instance of a GFRPalette, and the other is an
instance of a G2Palette:

package com.gensym.demos.palettedemo;

import java.awt.*;
import java.awt.event.ActionEvent;
import com.gensym.shell.util.*;
import com.gensym.shell.commands.*;
import com.gensym.mdi.*;
import com.gensym.ui.*;
import com.gensym.ui.menu.*;
import com.gensym.ui.palette.*;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.TwConnectionListener;
import com.gensym.ntw.TwConnectionAdapter;
import com.gensym.ntw.TwConnectionEvent;
import com.gensym.jgi.G2AccessException;
import com.gensym.util.Symbol;
import com.gensym.ntw.util.G2Palette;
import com.gensym.ntw.util.G2ObjectCreator;
import com.gensym.message.Trace;
import com.gensym.clscupgr.gfr.*;
import com.gensym.classes.KbWorkspace;
import com.gensym.util.symbol.*;

public class PaletteDemo extends TW2Application
implements G2ClassSymbols {

private static final Symbol APPLE_ = Symbol.intern("APPLE");
 private static final Symbol ORANGE_ = Symbol.intern("ORANGE");
 private static final Symbol EXAMPLE_GFR_PALETTE_ =

Symbol.intern("EXAMPLE-GFR-PALETTE");

private MDIFrame frame;
 private TwAccess currentConnection;
 private TwConnectionListener loginListener;
182 Part II UI Controls and Containers

Example
 private WorkspaceCommands wkspHandler;
 private ExitCommands exitHandler;

 //G2Palette variables
private G2Palette palette;
private Dialog fruitPalette;

//GFRPalette variables
private GFRPalette gfrPalette;
private Dialog gfrFruitPalette;

public PaletteDemo(String[] cmdLineArgs){
 super(cmdLineArgs);

 frame = new MDIFrame("Palette Demo");
 setCurrentFrame(frame);

 CMenuBar menubar = new CMenuBar();
 CMenu fileMenu = new CMenu("File");
 fileMenu.add(wkspHandler = new WorkspaceCommands(frame,

currentConnection));
 fileMenu.add(exitHandler = new ExitCommands(frame,

currentConnection));
 menubar.add(fileMenu);
 CMenu g2Menu = new CMenu("G2");
 g2Menu.add(new ConnectionCommands(this));
 menubar.add(g2Menu);
 frame.setDefaultMenuBar(menubar);

 loginListener = new LoginAdapter();
 fruitPalette = new Dialog(frame, "Fruit Palette", false);
 gfrFruitPalette = new Dialog(frame, "Gfr Fruit Palette", false);

 frame.setSize(400, 300);
 frame.setVisible(true);
 }

 public ConnectionManager getConnectionManager(){
 return null;
 }

 public TwAccess getConnection(){
 return currentConnection;
 }
Telewindows2 Toolkit Java Developer’s Guide Application Classes 183

Chapter 6 Creating Palettes
public void setConnection(TwAccess connection){
 if (connection == null)
 setConnection0(connection);
 else{
 if (connection.isLoggedIn())

setConnection0(connection);
 else

connection.addTwConnectionListener(loginListener);
 }
 }

private void setConnection0(TwAccess connection){
if (currentConnection != null)

currentConnection.removeTwConnectionListener(loginListener);
currentConnection = connection;
wkspHandler.setConnection(connection);
exitHandler.setConnection(connection);
if (connection != null){

//Create G2Palette
try{

palette = new G2Palette(connection, "Fruit Palette");
palette.add(new G2ObjectCreator

(connection, new Symbol[]{APPLE_, ORANGE_}));
fruitPalette.add(palette, BorderLayout.CENTER);
fruitPalette.setVisible(true);
fruitPalette.setSize(150, 80);

}
catch(G2AccessException e){

e.printStackTrace();
}
try{

//Create GFRPalette
KbWorkspace wksp =

(KbWorkspace)connection.getUniqueNamedItem
(KB_WORKSPACE_, EXAMPLE_GFR_PALETTE_);

gfrPalette = new GFRPalette("GFR Fruit Palette",
connection, wksp);

gfrPalette.setOrientation(Palette.VERTICAL);
gfrFruitPalette.add(gfrPalette, BorderLayout.CENTER);
gfrFruitPalette.setVisible(true);
gfrFruitPalette.setSize(60, 200);

}
catch(G2AccessException e){

e.printStackTrace();
}

}
}

184 Part II UI Controls and Containers

Example
class LoginAdapter extends TwConnectionAdapter{
 public void loggedIn(TwConnectionEvent event){
 TwAccess connection = (TwAccess)event.getSource();
 setConnection0(connection);
 }

 public void loggedOut(TwConnectionEvent event){
 }
 }

 public static void main(String[] args){
 PaletteDemo demo = new PaletteDemo(args);
 }
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 185

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Chapter 7 Creating Multiple Document Interface Containers
Version 3.1 Mode: Working Size: 7x9x11
7
Creating Multiple Document
Interface Containers
Describes how to create the various components of an MDI application, which
include frames, child documents, and toolbar panels. Describes how to add
documents to a frame, manage open documents, handle event notification, and
create tiling commands for arranging documents in a frame.

Introduction 188

Packages Covered 192

Relevant Demos 193

Creating and Managing MDI Frames 193

Creating an MDI Toolbar Panel 197

Creating and Managing MDI Documents 199

Using Tiling Commands to Arrange Documents 202

Listening for MDI Events 204

Creating MDI Document Types 206
187

Chapter 7 Creating Multiple Document Interface Containers
Introduction
The com.gensym.mdi package provides the following containers, managers,
events, and listeners, which you can use to create a multiple document interface
(MDI) application:

• MDIFrame — A multiple document interface frame for displaying subclasses of
MDIDocument.

• MDIDocument — A child frame of an MDIFrame in which you display views of
the G2 server’s data.

• MDIManager — A class that manages multiple documents in an MDIFrame and
handles event notification.

• MDIEvent and MDIListener — An event that gets delivered when an
MDIManager adds a document to an MDIFrame, and a listener for those events.

• MDIToolBarPanel— A container for displaying one or more toolbars in an
MDIFrame.

For information on creating MDI applications that provide support for connecting
to G2, see “TW2MDIApplication” on page 232.

MDIFrame
An MDIFrame is a javax.swing.JFrame that provides methods for getting and
setting the:

• Default menu bar.

• Default MDIToolBarPanel.

• Default Window menu.

• MDIManager for the frame.
188 Part II UI Controls and Containers

Introduction
You can create an MDIFrame with or without a title, default menu bar, default
toolbar panel, and default Window menu.

Here is the default MDIFrame for the Telewindows2 (TW2) Toolkit default
application shell before a connection has been made:

For details, see:

• “Creating the Frame” on page 193.

• Chapter 5, “Creating Menus and Toolbars” on page 113.

• “Creating an MDI Toolbar Panel” on page 197.

• javax.swing.JFrame

Standard buttons for
minimizing, maximizing, and
closing the window.

MDIFrame

Gensym logo

Default
menu bar

Default
MDIToolBarPanel

Title bar
Telewindows2 Toolkit Java Developer’s Guide Application Classes 189

Chapter 7 Creating Multiple Document Interface Containers
MDIDocument
An MDIDocument is a child frame of an MDIFrame in which you display views into
your G2 application’s data. MDIDocument is an abstract class that you must extend
to create your own MDIDocument type. Your MDI application can use one or more
MDIDocument types to display different types of data.

An MDIDocument is a javax.swing.JInternalFrame that lets you create a child
document with one or more of the following features:

• A title.

• A context-specific menu bar.

• A context-specific MDIToolBarPanel, which is located below the menu bar.

• A Window menu, which the MDIManager maintains.

• Standard buttons for minimizing, maximizing, resizing, and closing the
document window.

The context-specific menu bar and toolbar panel get swapped in when the child
document gains focus.
190 Part II UI Controls and Containers

Introduction
Here is the TW2 Toolkit shell when a child document has focus, where the
context-specific toolbar is the same as for the default frame:

For details, see:

• “Adding Documents to the Frame” on page 199.

• “Creating MDI Document Types” on page 206.

• javax.swing.JInternalFrame.

MDIManager
An MDIFrame uses an MDIManager to add instances of MDIDocuments to the frame
and to manage those documents. The MDIManager is responsible for:

• Maintaining a list of currently open documents.

• Maintaining the active document and the next document.

Context-specific
menu bar.

Standard buttons for minimizing,
maximizing, and closing the
document window.

MDIDocument

Title bar.

Gensym logo.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 191

Chapter 7 Creating Multiple Document Interface Containers
• Adding new documents to the frame, and determining the default size and
location of those documents.

• Providing a built-in command for arranging documents vertically,
horizontally, or in a cascade.

• Swapping context-specific menu bars for specific MDIDocument types.

• Handling event notification by generating an MDIEvent when an MDIDocument
gets added to the frame.

The MDIManager implements the MDITilingConstants interface and returns
commands for arranging documents in the frame.

Packages Covered

com.gensym.mdi
Interfaces

MDIListener
MDITilingConstants

Classes
MDIEvent
MDIFrame
MDIManager
MDIToolBarPanel

For more information on... See...

Getting the MDIManager and
MDIFrame

• “Getting the Manager” on
page 196.

• “Getting the Frame” on
page 196.

Managing documents • “Getting Active and Open
Documents” on page 200.

• “Activating Documents” on
page 202.

Event notification “Listening for MDI Events” on
page 204.

Using tiling commands “Using Tiling Commands to
Arrange Documents” on page 202.
192 Part II UI Controls and Containers

Relevant Demos
Relevant Demos
The following demos create and manipulate TW2 Toolkit MDI containers:

• singlecxnmdiapp

• multiplecxnmdiapp

The demos are located in this directory, depending on your platform:

Creating and Managing MDI Frames
You can create an MDI application by creating an instance of this class:

com.gensym.mdi.MDIFrame

Every MDIFrame has an associated manager, which is an instance of this class:

com.gensym.mdi.MDIManager

You get the MDIManager from the MDIFrame.

Creating the Frame
When you create an MDIFrame, you provide:

• A text string for the frame’s title, which you can localize.

• A default menu bar.

• A Window menu for displaying all open documents.

• A default MDIToolBarPanel.

The following examples use resources to localize text. For more information on
using resources, see Appendix A, “Localization.”

Creating an MDIFrame with a Title
When you create an MDIFrame with just a title, you are responsible for setting the
default menu bar and toolbar by calling methods on the MDIFrame.

For information on setting the default menu bar and toolbar panel, see “Setting
the Default UI Controls of the Frame” on page 195.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
Telewindows2 Toolkit Java Developer’s Guide Application Classes 193

Chapter 7 Creating Multiple Document Interface Containers
To create an MDIFrame with a title:

Call the MDIFrame constructor with a text string:
MDIFrame(String title)

For example, this code fragment creates an application frame named Workspace
Browser:

MDIFrame appFrame = new MDIFrame("Workspace Browser")

Localizing the Title Bar Text of the MDIFrame
You can provide a localized text string as the title by creating a resource and
providing a key.

To localize the title bar of an MDIFrame:

Call the MDIFrame constructor with a localized text string as its argument.

To do this, you can call getString on a Resource, providing the key as its
argument.

For example, this code fragment creates an application frame whose title is the
localized text string associated with the Title key located in the i18nUI resource
properties file:

private com.gensym.message.Resource i18nUI;

MDIFrame appFrame =
new MDIFrame(i18nUI.getString("Title"));

Creating an MDIFrame with a Default Menu Bar and Toolbar Panel
You can provide a default menu bar and a default MDIToolBarPanel in the
constructor for the MDIFrame. The MDIFrame displays the default menu bar and
toolbar panel when no MDIDocument has focus.

If you provide a default menu bar and toolbar panel when you create the frame,
you must also provide the menu in which the frame displays the list of currently
open documents, which is typically the Window menu. If your application does
not provide a Window menu, pass null for that argument.

When you create an MDIFrame by using this constructor, you must also set the
default menu bar and tool bar panel, as described in “Setting the Default UI
Controls of the Frame” on page 195.

For information on creating a menu bar, see “Creating Command-Aware
Containers” on page 122.

For information on creating a toolbar panel, see “Creating an MDI Toolbar Panel”
on page 197.
194 Part II UI Controls and Containers

Creating and Managing MDI Frames
To create an MDIFrame with a default menu bar and toolbar panel:

Call this MDIFrame constructor:

MDIFrame(String title,
JMenuBar mb,
JMenu windowMenu,
MDIToolBarPanel tb)

For example, the following code fragment creates an MDIFrame with a localized
title, a default menu bar, a Window menu, and a default toolbar panel:

private com.gensym.ui.menu.CMenuBar defaultMenuBar;
private com.gensym.ui.menu.CMenu windowMenu;
private com.gensym.ui.toolbar.ToolBar defaultToolBar;
private com.gensym.message.Resource i18nUI;

MDIFrame appFrame =
new MDIFrame(i18nUI.getString("Title"),

defaultMenuBar, windowMenu, defaultToolBar);

Setting the Default UI Controls of the Frame
If you create an MDIFrame by specifying a default menu bar, a default toolbar
panel, and a default Window menu in the constructor, you must set these UI
controls to be the default controls for the frame.

You typically set the default UI controls in the application’s constructor.

To set the default menu bar:

Call this method on an MDIFrame:

setDefaultMenuBar(JMenuBar defaultMenuBar)

To set the default menu bar and Window menu:

Call this method on an MDIFrame:

setDefaultMenuBar(JMenuBar defaultMenuBar,
JMenu windowMenu)

To set the default toolbar panel:

Call this method on an MDIFrame:

setDefaultToolBarPanel(MDIToolBarPanel defaultToolBarPanel)
Telewindows2 Toolkit Java Developer’s Guide Application Classes 195

Chapter 7 Creating Multiple Document Interface Containers
Example

Setting the Default Menu Bar and Toolbar Panel
The following method might appear in the constructor of your application to set
the default menu bar and toolbar panel for the MDIFrame.

Each set method takes as its argument an instance of the appropriate type of UI
control. The set methods create these instances dynamically by calling a user-
defined create method, which creates each control.

private com.gensym.mdi.MDIFrame frame;

private void createUiComponents() {
JMenuBar menubar = createMenuBar();
MDIToolBarPanel toolbarPanel = createToolbarPanel();
frame.setDefaultMenuBar(menuBar);
frame.setDefaultToolBarPanel(toolbarPanel);

}

Getting the Manager
You can call methods on the MDIManager to perform a number of tasks, including:

• Adding documents to the MDIFrame.

• Adding clients as an MDIListener.

To get the MDIManager from the MDIFrame:

Call getManager on an MDIFrame.

For examples of calling methods on an MDIManager, see “Creating and Managing
MDI Documents” on page 199.

Getting the Frame
You can get the MDIFrame from the MDIManager, although typically, you have
access to the MDIFrame when you create it.

To get the MDIFrame from the MDIManager:

Call getFrame on an MDIManager.
196 Part II UI Controls and Containers

Creating an MDI Toolbar Panel
Creating an MDI Toolbar Panel
An MDIToolBarPanel can contain one or more toolbars, where each toolbar can
have one of more toolbar buttons.

To create a toolbar panel in an MDIFrame:

1 Create an instance of this class to create the panel:

com.gensym.mdi.MDIToolBarPanel

2 Create one or more instances of this class to create individual toolbars:

com.gensym.ui.toolbar.ToolBar

3 Add each toolbar to the toolbar panel by calling the add method on the panel,
providing a toolbar as its argument.

Example
Creating an MDIToolbarPanel with Two Toolbars
The following example performs these tasks:

• Creates an instance of an MDIToolBarPanel.

• Creates an instance of a ToolBar.

• Adds toolbar buttons and separators to the toolbar.

• Creates another instance of a ToolBar.

• Adds instances of a com.gensym.shell.util.HostPortPanel and com.
gensym.shell.util.UserModelPanel to the second toolbar.

• Adds the second toolbar to the toolbar panel.

• Returns the toolbar panel.

In the example, G2AccessException is in the com.gensym.jgi package, which is
part of G2 JavaLink. See the API documentation for details.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 197

Chapter 7 Creating Multiple Document Interface Containers
This figure shows the toolbar panel and its toolbars:

private MDIToolBarPanel createToolBarPanel() {
MDIToolBarPanel panel = new MDIToolBarPanel();
ToolBar tb = new ToolBar();
addWorkspaceCommandsToolBarButtons(tb);
tb.addSeparator();
addConnectionCommandsToolBarButtons(tb);
tb.addSeparator();
addG2StateCommandsToolBarButtons(tb);
panel.add(tb);
ToolBar tb2 = new ToolBar ();
try {

tb2.add (new HostPortPanel(connectionManager));
tb2.add (javax.swing.Box.createGlue());

} catch (G2AccessException e) {
e.printStackTrace();

}
try {

tb2.add (new UserModePanel(connectionManager, true));
} catch (G2AccessException e) {

e.printStackTrace();
}
panel.add(tb2);
return panel;

}

For information about how to add toolbar buttons to toolbars, see “Creating
Command-Aware Containers” on page 122.

Second
com.gensym.ui.toolbar.ToolBar

com.gensym.mdi.MDIToolBarPanel

First
com.gensym.ui.toolbar.ToolBar
198 Part II UI Controls and Containers

Creating and Managing MDI Documents
Creating and Managing MDI Documents
Once you have created an MDIFrame, you call methods on its MDIManager to
perform these tasks:

• Add MDIDocuments to the frame.

• Get the currently active document.

• Get a list of all open documents.

• Get a count of all open documents.

• Activate the next document in the array of open documents.

Adding Documents to the Frame
You add documents to the frame by creating an instance of a subclass of
MDIDocument and calling a version of the add method on an MDIManager.

For information on getting the MDIManager from the MDIFrame, see “Getting the
Manager” on page 196.

When you add a document to the frame, you can provide the dimensions and
location of the new document, or you can use the default, which adds documents
to the frame by arranging them in a cascade.

For information on overriding the default way in which the manager adds
documents to the frame, see “Arranging New Documents” on page 203.

To add an MDIDocument to an MDIFrame:

1 Create an instance of a subclass of this class:

com.gensym.mdi.MDIDocument

2 Call addDocument on the MDIManager, providing an MDIDocument subclass as
its first argument and, optionally, the following arguments or set of
arguments:

• An instance of a java.awt.Dimension object, which specifies the
dimensions of the document.

• The length and width of the document, and the x-offset and y-offset of the
top-left corner of the document from the top-left corner of the frame, all
expressed as integers.

The document gets added to the MDIFrame according to the dimension or offsets
you specify.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 199

Chapter 7 Creating Multiple Document Interface Containers
Examples
The following examples gets the current frame from the application by calling a
method on com.gensym.core.UiApplication, which is part of G2 JavaLink.

The examples use these variables:

private com.gensym.ntw.TwGateway twConnection;
private com.gensym.classes.KbWorkspace kbWorkspace;

Adding an MDIDocument to an MDIFrame
This code fragment adds a SingleCxnMDIWorkspaceDocument, which is a subclass
of MDIDocument, to an MDIFrame:

SingleCxnMDIWorkspaceDocument wkspDoc =
new SingleCxnMDIWorkspaceDocument(twConnection, kbWorkspace);

MDIFrame frame = (MDIFrame)UiApplication.getCurrentFrame();
MDIManager manager = frame.getManager();
manager.addDocument(wkspDoc);

Adding an MDIDocument of a Given Dimension to an MDIFrame
The following code fragment adds a SingleCxnMDIWorkspaceDocument of a given
dimension to the MDIFrame associated with a com.gensym.core.UiApplication.

The example gets the java.awt.Dimension object by calling getPreferredSize
on MDIDocument, which is a javax.swing.JComponent.

SingleCxnMDIWorkspaceDocument wkspDoc =
new SingleCxnMDIWorkspaceDocument(twConnection, kbWorkspace);

MDIFrame frame = (MDIFrame)UiApplication.getCurrentFrame();
MDIManager manager = frame.getManager();
manager.addDocument(wkspDoc, wkspDoc.getPreferredSize());

Getting Active and Open Documents
The MDIManager provides methods for getting:

• The document that currently has focus, which is called the active document.

• The list of all open documents.

• The count of all open documents.

To get the currently active document:

Call this method on an MDIManager:

getActiveDocument()
200 Part II UI Controls and Containers

Creating and Managing MDI Documents
To get a list of open documents:

Call this method on an MDIManager:

getDocuments()

To get the count of all open documents:

Call this method on an MDIManager:

getDocumentCount()

Example

Getting All Open Documents and Getting the Active Document
The following example shows a constructor for a command that prints the current
workspace. To do this, the command calls these methods on an MDIManager:

• getDocuments

• getActiveDocument

The constructor provides a single command key for printing the workspace view
associated with the currently active document. The constructor is responsible for
making the command key available based on whether a workspace document is
in focus. It does this by adding the command as a java.beans.
PropertyChangedListener so it receives notification when the currently active
workspace document gains or looses focus.

To get the open documents and the currently active document, the method
performs these tasks:

• Calls getManager on an MDIFrame to get the MDIManager.

• Calls getDocuments on the MDIManager to get an array of all instances of
MDIDocument in the frame.

• Calls getActiveDocument on the MDIManager to get the currently active
document.

For information on the arguments to CommandInformation and general
information on creating commands, see “Creating Commands” on page 131.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 201

Chapter 7 Creating Multiple Document Interface Containers
Here is the constructor for a command that prints the current document:

private MDIFrame frame;

public PrintWorkspaceCommand(MDIFrame parentFrame){
super(new CommandInformation[]{

new CommandInformation(PRINT_WORKSPACE, true,
shortResource, longResource,
null, null, null, false)});

if (parentFrame != null){
frame = parentFrame;
frame.getManager().addMDIListener(this);
MDIDocument[] docs = frame.getManager().getDocuments();
for (int i=0; i<docs.length; i++){

if (docs[i] instanceof WorkspaceDocument)
docs[i].addPropertyChangeListener(this);

}
MDIDocument activeDoc = frame.getManager().

getActiveDocument();
setAvailable(PRINT_WORKSPACE,

(activeDoc instanceof WorkspaceDocument));
}

}

Activating Documents
You can activate the next document in the array of currently open documents to
cycle through the available documents, making each successive document gain
focus.

To make the next document become the active document:

Call this method on an MDIManager:

activateNextDocument()

Using Tiling Commands to Arrange Documents
The MDIManager provides a standard tiling command for arranging
MDIDocuments, which consists of these three actions:

• Cascade

• Tile Horizontally

• Tile Vertically
202 Part II UI Controls and Containers

Using Tiling Commands to Arrange Documents
Getting the Default Tiling Commands
To get the default tiling commands, call a method on the MDIManager, then add
the return value of the method to a command-aware container, such as a menu or
toolbar.

For information on adding commands to command-aware containers, see
“Creating Command-Aware Containers” on page 122.

To use the default tiling commands:

Call this method on an MDIManager:

getTilingCommand()

For example, the following method creates a Window menu by adding tiling
commands to a com.gensym.ui.menu.CMenu:

private MDIFrame frame;

private static CMenu createWindowMenu(){
windowMenu = new CMenu("Window");
windowMenu.add(frame.getManager().getTilingCommand());
return windowMenu;

}

Arranging New Documents
By default, the MDIManager adds new documents to an MDIFrame in a cascade.

You can choose to arrange new MDIDocuments vertically or horizontally by calling
a method on the MDIManager. You pass as the argument one of the static final
variables that this interface provides, which MDIManager implements:

com.gensym.mdi.MDITilingConstants

The interface provides the following three static final variables, which are
integers:

TILE_CASCADE
TILE_HORIZONTALLY
TILE_VERTICALLY

To customize the default arrangement when adding new documents to a frame:

Call this method on an MDIManager and provide one of the static final
variables that the MDITilingConstants interface defines:

arrange(int arrangementCode)

For example, this method arranges new MDIDocuments vertically:

frame.getManager().arrange(TILE_VERTICALLY);
Telewindows2 Toolkit Java Developer’s Guide Application Classes 203

Chapter 7 Creating Multiple Document Interface Containers
Listening for MDI Events
You can add and remove clients as MDIListeners to receive notification when an
MDIDocument gets added to an MDIFrame. The MDIListener interface defines the
documentAdded method to determine the behavior of the client when a document
gets added.

The MDIManager delivers an MDIEvent to registered listeners whenever it adds an
MDIDocument to an MDIFrame.

You call getDocument on the MDIEvent to get the document that was added.

To listen for MDIEvents:

1 Create a class that implements this interface:

com.gensym.mdi.MDIListener

2 Add and remove clients as listeners by calling the appropriate methods on:

com.gensym.mdi.MDIManager

Example
Suppose you wanted to define a command that prints a workspace. The
command would implement the MDIListener interface so it receives notification
when a document gets added to the frame. The command would then set a com.
gensym.wksp.ScalableWorkspaceView component into the document when it
gets added.

The command would also implement the java.beans.
PropertyChangedListener so it can make the command unavailable when the
workspace document loses focus.

For information on the arguments to CommandInformation and general
information on creating commands, see “Creating Commands” on page 131.

Implementing the MDIListener
Here is a class definition for PrintWorkspaceCommand, which listens for
MDIEvents and PropertyChangedEvents:

public final class PrintWorkspaceCommand
extends AbstractCommand
implements MDIListener, PropertyChangeListener {
//Additional code

}

204 Part II UI Controls and Containers

Listening for MDI Events
Adding a Client as an MDIListener
Here is the constructor for the command, which adds itself as a listener for
MDIEvents:

private MDIFrame frame;

public PrintWorkspaceCommand(MDIFrame parentFrame){
super(new CommandInformation[]{

new CommandInformation(PRINT_WORKSPACE, true,
shortResource, longResource,
null, null, null, false)});

if (parentFrame != null){
frame = parentFrame;
frame.getManager().addMDIListener(this);
//Additional code

}
//Additional code

}

Implementing the Behavior of the MDIListener
The following method provides the implementation of the documentAdded
listener method for MDIListener, which performs these tasks:

• Gets the MDIDocument from the MDIEvent by calling getDocument.

• Tests to determine the type of MDIDocument that was added.

• Casts the type of the document that gets added to be a com.gensym.shell.
util.WorkspaceDocument, which is a subclass of MDIDocument.

• Adds itself as a PropertyChangedListener.

• Sets the workspace view of the workspace document by calling a private
method called setWorkspaceView, which takes an instance of a com.gensym.
wksp.WorkspaceView.

public void documentAdded(MDIEvent event) {
MDIDocument document = (MDIDocument)event.getDocument();
if (document instanceof SingleCxnMDIWorkspaceDocument) {

SingleCxnMDIWorkspaceDocument wkspDoc =
(SingleCxnMDIWorkspaceDocument)document;

wkspDoc.addPropertyChangeListener(this);
setWorkspaceView(wkspDoc.getWorkspaceView());

}
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 205

Chapter 7 Creating Multiple Document Interface Containers
Creating MDI Document Types
The com.gensym.shell.util package provides two MDIDocument types that you
can use in your application, depending on your needs:

• TW2Document — A generic MDIDocument associated with a connection to G2 to
which you can add any view into the G2 server’s data.

• WorkspaceDocument — A TW2Document that displays a com.gensym.wksp.
ScalableWorkspaceView component to which you can add a context-specific
menu bar.

For information on these document types, see Chapter 8, “Using Telewindows2
Toolkit MDI Documents” on page 207.

If neither of these MDIDocument types meets your needs, you can create a custom
MDIDocument type. MDIDocument types can contain any view into your G2 server’s
data.

To create an MDIDocument type:

Subclass this abstract class:

com.gensym.mdi.MDIDocument
206 Part II UI Controls and Containers

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part II UI Controls and Containers
Chapter 8 Using Telewindows2 Toolkit MDI Documents
Version 3.1 Mode: Working Size: 7x9x11
8
Using Telewindows2
Toolkit MDI Documents
Describes the various MDI document types that you can use and extend to create
documents that display workspace views and other views into your G2 server’s
data. Describes the associated factories that you can use and extend to generate
different types of workspace documents.

Introduction 207

Packages Covered 208

Relevant Demos 208

Using MDI Document Types 209

Using Workspace Document Factories 211

Example 213

Introduction
The com.gensym.shell.util package provides two MDIDocument types, which
you can use to display views into the G2 server’s data:

• TW2Document — A subclass of MDIDocument that displays a view into the G2
server’s data, for example, an object manager or a module editor.

• WorkspaceDocument— A subclass of TW2Document that displays a com.
gensym.wksp.ScalableWorkspaceView component and provides its own
context-specific menu bar and MDIToolBarPanel.

An MDIDocument that displays a workspace view is called a workspace document.
207

Chapter 8 Using Telewindows2 Toolkit MDI Documents
The com.gensym.shell.util package also provides a factory for generating your
own types of workspace documents, and a default implementation of that factory:

• WorkspaceDocumentFactory — An interface that you implement to generate
your own type of workspace document. You create your own type of
workspace document to provide a context-specific menu bar and toolbar
panel.

• DefaultWorkspaceDocumentFactoryImpl — A default implementation of the
WorkspaceDocumentFactory interface that generates an instance of a
WorkspaceDocument.

A factory that generates any type of WorkspaceDocument is called a workspace
document factory.

Packages Covered

com.gensym.shell.util
Interfaces

WorkspaceDocumentFactory

Classes
DefaultWorkspaceDocumentFactoryImpl
TW2Document
WorkspaceDocument

Relevant Demos
The demo in the following directory, depending on your platform, creates an
MDI document type and factory:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
singlecxnmdiapp

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
singlecxnmdiapp
208 Part II UI Controls and Containers

Using MDI Document Types
Using MDI Document Types
This section shows the inheritance structure for the MDIDocument types and
describes the features, behaviors, and methods of each document type. It then
describes how to create MDIDocument types that display views of G2 server data.

Class Hierarchy of MDIDocument Types
This figure shows the class hierarchy of the MDIDocument types in the com.
gensym.shell.util package:

For information on MDIDocument, see “Creating and Managing MDI Documents”
on page 199.

TW2Document
Features
TW2Document provides these features:

• A constructor that takes a connection as its argument.

• A constructor that takes a connection, a menu bar, a Window menu, and a
MDIToolBarPanel as its arguments.

Behavior
TW2Document has this behavior:

• Uses the default menu bar and toolbar panel from the MDIFrame, if not
provided in the constructor.

• Closes the document when the connection closes.

• If the document has an associated com.gensym.shell.util.
ConnectionManager, makes the document inactive when the connection
switches.

WorkspaceDocument

TW2Document

com.gensym.mdi.MDIDocument
Telewindows2 Toolkit Java Developer’s Guide Application Classes 209

Chapter 8 Using Telewindows2 Toolkit MDI Documents
Methods
TW2Document supports these methods:

• getConnection — Gets the current connection in an application that supports
single connections to G2.

• getConnectionManager — Gets the com.gensym.shell.util.
ConnectionManager in an application that supports multiple connections
to G2.

WorkspaceDocument
Features
WorkspaceDocument provides these features:

• A constructor that creates a workspace document with scroll bars, given a
connection and a KB workspace.

• A constructor that creates a workspace document with scroll bars, given a
connection, a KB workspace, a menu bar, a Window menu, and an
MDIToolBarPanel as its arguments.

Behavior
WorkspaceDocument closes the document when the KB workspace is deleted
in G2.

Creating MDI Documents that Display Views into the
G2 Server’s Data

You can create different MDIDocument types to display:

• Any view into the G2 server’s data.

• A workspace view with a context-specific menu bar and MDIToolBarPanel.

• A workspace view that uses the default menu bar and MDIToolBarPanel of
the MDIFrame.
210 Part II UI Controls and Containers

Using Workspace Document Factories
To create an MDIDocument that displays a view into the G2 server’s data:

1 Extend one of these classes, depending on the view you want the document to
display:

2 Call one of the various constructors for the superior class to create an
MDIDocument type, with one or more of the following features:

• A context-specific menu bar.

• A context-specific MDIToolBarPanel.

• A Window menu.

3 Build the context-sensitive menu bar, as needed.

For details, see “Creating Command-Aware Containers” on page 122.

4 Build the context-specific MDIToolBarPanel, as needed.

For details, see “Creating an MDI Toolbar Panel” on page 197.

To create an MDIDocument that uses the default menu bar and toolbar panel:

Create an instance of this class:

com.gensym.shell.util.WorkspaceDocument

Using Workspace Document Factories
Typically, your application needs to create its own type of WorkspaceDocument to
provide a context-specific menu bar and toolbar panel that are applicable to your
application. You use a factory to generate the desired type of workspace
document. Each class that creates an instance of any type of WorkspaceDocument
is responsible for calling a method that sets the workspace document factory. You
call this method once for each class that creates a workspace document.

To view... Extend...

Any type of G2
server data

com.gensym.shell.util.TW2Document

KB workspaces com.gensym.shell.util.WorkspaceDocument
Telewindows2 Toolkit Java Developer’s Guide Application Classes 211

Chapter 8 Using Telewindows2 Toolkit MDI Documents
This table determines when you need to create a workspace document factory:

To generate workspace documents, using a factory:

1 Create a class that implements this interface:

com.gensym.shell.util.WorkspaceDocumentFactory

2 Define a method on this class that returns an instance of a subclass of
WorkspaceDocument.

Typically, this method is called createWorkspaceDocument.

3 For each class that generates a type of WorkspaceDocument, create a method
that takes as its argument an instance of your implementation of
WorkspaceDocumentFactory and sets the current factory to this argument.

Typically, this method is called setWorkspaceDocumentFactory.

4 In the constructor for the application:

a Create an instance of your implementation of
WorkspaceDocumentFactory.

b For each class that generates a workspace document, call the method that
sets the current factory, passing your implementation of
WorkspaceDocumentFactory as the argument.

You should only call this method once for each class that generates a
workspace document.

To generate... You...

A WorkspaceDocument that
uses the default menu bar
and MDIToolBarPanel of
the MDIFrame

Do not need to create a workspace
document factory; the application uses a
DefaultWorkspaceDocumentFactoryImpl.

A WorkspaceDocument
subclass that defines a
context-specific menu bar
and MDIToolBarPanel

Must implement the
WorkspaceDocumentFactory interface.
212 Part II UI Controls and Containers

Example
Example
This example creates a subclass of WorkspaceDocument called
SingleCxnMdiWorkspaceDocument, which provides a context-specific menu bar
for a single connection MDI application.

The workspace document looks like this when displayed in the MDIFrame:

The workspace document:

• Extends WorkspaceDocument.

• Initializes the WorkspaceDocumentFactory.

• Calls the constructor for the superior class, which:

– Creates a context-specific menu bar.

– Uses the default MDIToolBarPanel of the MDIFrame, which it gets from the
com.gensym.core.UiApplication.

• Creates a context-specific menu bar and associated menus.

Context-specific menu
bar

SingleCxnMdiWorkspaceDocument
Telewindows2 Toolkit Java Developer’s Guide Application Classes 213

Chapter 8 Using Telewindows2 Toolkit MDI Documents
Creating a Custom Workspace Document
Here is the custom workspace document class:

public class SingleCxnMdiWorkspaceDocument extends WorkspaceDocument {

//Private variables
private static Resource i18nUI =

Resource.getBundle("com.gensym.demos.singlecxnmdiapp.Messages");
private static MDIFrame frame =

(MDIFrame)MDIApplication.getCurrentFrame();
private static CMenuBar menuBar = createMenuBar();
private static CMenu windowMenu;
private static TwAccess currentConnection;
private static boolean alreadySetupConnectionCmds = false;

//Create a SingleCxnMdiWorkspaceDocument for the specified
//connection and workspace
public SingleCxnMdiWorkspaceDocument(TwAccess connection,

KbWorkspace wksp)
throws G2AccessException{

//Call constructor for superior class
super(connection, wksp, menuBar, windowMenu,

frame.getDefaultToolBarPanel());

//Initialize current connection
currentConnection = connection;

}

//Create context-specific menu bar
private static CMenuBar createMenuBar(){

menuBar = new CMenuBar();
menuBar.add(createFileMenu());
menuBar.add(createItemMenu());
menuBar.add(createViewMenu());
menuBar.add(createG2Menu());
menuBar.add(createWindowMenu());
menuBar.add(createHelpMenu());
return menuBar;

}

//Create File menu
private static CMenu createFileMenu() {

//File menu
}

//Create Item menu
private static CMenu createItemMenu(){

//Item menu
}

214 Part II UI Controls and Containers

Example
//Create View menu
private static CMenu createViewMenu(){

//View menu
}

//Create G2 menu
private static CMenu createG2Menu() {

//G2 menu
}

//Create Window menu
private static CMenu createWindowMenu(){

//Window menu
}

//Create Help menu
private static CMenu createHelpMenu() {

//Help menu
}

}

Implementing a Workspace Document Factory
This class implements a WorkspaceDocumentFactory by implementing a
createWorkspaceDocument method, which returns an instance of a
SingleCxnMdiWorkspaceDocument, a subclass of WorkspaceDocument:

public class SingleCxnMdiWorkspaceDocumentFactoryImpl
implements WorkspaceDocumentFactory {
public WorkspaceDocument createWorkspaceDocument

(TwAccess connection, KbWorkspace workspace) {
return new SingleCxnMdiWorkspaceDocument(connection,

workspace);
}

}

Setting the Workspace Document Factory
In this example, the WorkspaceCommandsImpl class generates a workspace
document when the user gets a KB workspace. Thus, it must:

• Define a method that sets the current workspace document factory.

• Set the workspace document factory in the application’s constructor.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 215

Chapter 8 Using Telewindows2 Toolkit MDI Documents
Here is the definition of the setWorkspaceDocumentFactory method on the
WorkspaceCommandImpl class:

private WorkspaceDocumentFactory factory =
new DefaultWorkspaceDocumentFactoryImpl();

private boolean wkspDocFactorySet = false;
private com.gensym.message.Resource i18n =

Resource.getBundle("Errors");

public void setWorkspaceDocumentFactory (WorkspaceDocumentFactory
factory){

if (wkspDocFactorySet)
throw new Error (i18n.getString

("WorkspaceDocumentFactoryAlreadyDefined"));
else{

this.factory = factory;
wkspDocFactorySet = true;
}

}

Here is the method that the application’s constructor calls to set the workspace
document factory for an instance of WorkspaceCommandsImpl:

private void registerWorkspaceDocumentFactory() {
singleCxnMdiWkspDocFactory =

new SingleCxnMdiWorkspaceDocumentFactoryImpl();
if (wkspHandler != null)

((WorkspaceCommandsImpl)wkspHandler).
setWorkspaceDocumentFactory(singleCxnMdiWkspDocFactory);

}

216 Part II UI Controls and Containers

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Version 3.1 Mode: Working Size: 7x9x11
Part III
Application Classes
Chapter 9 Creating Telewindows2 Toolkit Applications 219

Describes the application classes you can extend to create generic UI applications, SDI
applications, and MDI applications, and describes the required and optional features of each.
Describes how to create single and multiple connection applications, and how to implement
the abstract methods that manage connections. Describes how to implement the specific
features of SDI and MDI applications.

Chapter 10 Using Shell Dialogs and UI Controls 259

Describes how to use the shell dialogs and UI controls, and provides a reference for each class.

Chapter 11 Using Shell Commands 271

Describes commands that you use in an application shell to perform common tasks, such as
connecting to G2, starting and pausing G2, getting named KB workspaces, and interacting
with items on KB workspaces.

Chapter 12 Understanding the Telewindows2 Toolkit Shell 301

Describes the implementation of the Telewindows2 Toolkit default application shell for Java,
which is an example of a multiple connection MDI application.
217

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Chapter 9 Creating Telewindows2 Toolkit Applications
Version 3.1 Mode: Working Size: 7x9x11
9
Creating Telewindows2
Toolkit Applications
Describes the application classes you can extend to create generic UI applications,
SDI applications, and MDI applications, and describes the required and optional
features of each. Describes how to create single and multiple connection
applications, and how to implement the abstract methods that manage
connections. Describes how to implement the specific features of SDI and MDI
applications.

Introduction 219

Packages Covered 222

Relevant Demos 223

Determining Which Application Foundation Class to Extend 223

Application Foundation Classes 227

Creating Telewindows2 Toolkit Applications 233

Creating and Managing Connections to G2 236

Creating Single Document Interface Applications 247

Creating Multiple Document Interface Applications 251

Introduction
Telewindows2 (TW2) Toolkit provides a number of classes that you can extend to
help you build G2 client applications. These classes manage application frames
and connections through their API, and allow users to view and manipulate
G2 data.
219

Chapter 9 Creating Telewindows2 Toolkit Applications
Before you begin developing your TW2 Toolkit application, answer the following
questions to determine the type of application you should create:

• Will the end user run the application through a user interface?

• Will the user interface support a way of making a connection to G2?

• Will the application provide a single document window or multiple
document windows?

• Will the application support single or multiple connections to G2?

By answering these basic questions about your application, you can determine
which class you should extend to create your application, and which class you
should use to create and manage connections.

UI Applications
Most G2 client applications provide a user interface to support interacting with
G2 items on workspaces. In its simplest form, a G2 client application provides an
application frame with a visual representation of G2 data, typically a workspace
view. However, the application frame can provide other views into the G2
server’s data, as well.

G2 JavaLink supports these two classes for creating TW2 Toolkit applications:

• GensymApplication — Provides support for creating a generic G2 client
application.

• UiApplication — Provides support for creating a generic G2 client
application with a user interface, which manages the application frame
through its API.

Because the TW2 Toolkit classes for creating applications inherit from these
classes, this chapter explains both of these classes.

SDI and MDI Applications
Depending on your application, you might need to support multiple documents
within the application window, or you might need to support only a single
document. For example:

• Most modern word processors and spreadsheets support multiple document
windows, which contain text documents or spreadsheets, respectively.

• Most Web browsers and some paint programs support a single document
window, which contains a single Web page or graphic, respectively.
220 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Introduction
The com.gensym.shell.util package provides two classes that you can extend
to create each of these types of applications:

• TW2Application — Provides support for creating a single document interface
(SDI) application, which manages single and multiple connections to G2.

• TW2MDIApplication — Provides support for creating a multiple document
interface (MDI) application, which manages single and multiple connections
to G2.

Because both of these classes inherit from UiApplication, they also provide
support for managing the application frame through their API.

The com.gensym.shell.util package also provides the following classes for
creating and managing multiple connections to G2:

• ConnectionManager — Creates and manages multiple connections to the G2
server through the client.

• ContextChangeListener — Handles the events associated with multiple
connections to G2.

Organization of this Chapter
The following table describes where to go in this chapter for information on
creating Telewindows2 (TW2) Toolkit applications:

For information on... See...

Answering the questions that help
you determine the type of
application you will create

“Determining Which Application
Foundation Class to Extend” on
page 223.

The features, behavior, and key
methods of the classes you use for
creating applications

“Application Foundation Classes”
on page 227.

The required and optional features
of TW2 Toolkit SDI or MDI
applications

“Creating Telewindows2 Toolkit
Applications” on page 233.

Creating and managing multiple
connections to G2

“Creating and Managing
Connections to G2” on page 236.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 221

Chapter 9 Creating Telewindows2 Toolkit Applications
Packages Covered

com.gensym.shell.util
Interfaces

ContextChangedListener

Classes
ConnectionManager
ContextChangedEvent
TW2Application
TW2MDIApplication
TW2MDIWorkspaceShowingAdapter
TW2WorkspaceShowingAdapter

com.gensym.mdi
MDIApplication

com.gensym.core
GensymApplication
UiApplication

Specific features of TW2 Toolkit
SDI applications

“Creating Single Document
Interface Applications” on
page 247.

Specific features of TW2 Toolkit
MDI applications

“Creating Multiple Document
Interface Applications” on
page 251.

For information on... See...
222 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Relevant Demos
Relevant Demos
The following demos show examples of creating TW2 Toolkit applications:

• wksppanel

• singlecxnsdiapp

• singlecxnmdiapp

• multiplecxnsdiapp

• multiplecxnmdiapp

The demos are located in this directory, depending on your platform:

Determining Which Application Foundation
Class to Extend

Telewindows2 Toolkit provides a number of application foundation classes,
which are classes upon which you can build G2 client applications. To build an
application, you extend the class that provides the features you need and
implement its abstract methods.

To determine which application foundation class to extend, answer the questions
in the following headings.

Will the Application Have a User Interface?
You can create a G2 client application that interacts with the server through its
data or through a user interface. To create a G2 client application, extend one of
the following application foundation classes:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/

To create an application that... Extend this class...

Interacts with the G2 server through
its data

com.gensym.core.GensymApplication

Interacts with the G2 server through a
user interface

com.gensym.ntw.util.UiApplication
Telewindows2 Toolkit Java Developer’s Guide Application Classes 223

Chapter 9 Creating Telewindows2 Toolkit Applications
A G2 client application that interacts with the server through a user interface is
called a UI application. The UI application is responsible for managing the
application frame and its connections to G2.

Will the Application Support Connecting to G2
Through the UI?

If you are creating a UI application, you need to determine whether you want to
manage connections to G2 as part of the application, or whether you want the
application to handle those connections for you.

The com.gensym.shell.util package provides two application foundation
classes that you can extend to provide built-in support for handling connections
to G2:

For general information on creating applications that manage connections to G2,
see “Creating Telewindows2 Toolkit Applications” on page 233.

Will the Application Provide a Single or Multiple
Document Frame?

You can create one of these two types of applications, both of which manage
connections to G2 through their API:

• Single document interface (SDI) application, which contains a single frame
in which to display and manipulate G2 data.

• Multiple document interface (MDI) application, which contains multiple
child frames, or documents, for displaying and manipulating G2 data.

To create an application that... Extend this class...

Handles its own connections to G2 com.gensym.core.UiApplication

Provides built-in support for
managing connections to G2

com.gensym.shell.util.
TW2Application

or

com.gensym.shell.util.
TW2MDIApplication
224 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Determining Which Application Foundation Class to Extend
To create these types of applications, extend one of the following application
foundation classes:

For specific information on creating each type of applications, see:

• “Creating Single Document Interface Applications” on page 247.

• “Creating Multiple Document Interface Applications” on page 251.

To create this type of application... Extend this class...

SDI application that handles
connections to G2

com.gensym.shell.util.TW2Application

MDI application that handle
connections to G2

com.gensym.shell.util.
TW2MDIApplication
Telewindows2 Toolkit Java Developer’s Guide Application Classes 225

Chapter 9 Creating Telewindows2 Toolkit Applications
Decision Tree to Determine Which Class to Extend
Use the following decision tree to determine which application foundation class
you should extend:

Will the app.
provide multiple

child documents?

Extend
UiApplication

Yes

Yes

YesNo

No

No

Will the app.
interact with the G2

server through a
UI?

Should the app. manage
connections to G2
through its API?

Extend
GensymApplication

Extend
TW2Application

Extend
TW2MDIApplication
226 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Application Foundation Classes
Application Foundation Classes
The following diagram shows the inheritance structure of an SDI or MDI
application that you might create:

The following sections explain the features, behavior, and key methods of each of
these classes.

UiApplication

TW2Application

your MDI Application

GensymApplication

MDIApplication

TW2MDIApplicationyour SDI Application

Class that you are most
likely to extend.

Parses and handles command-line arguments that are
the root of any G2 client application.

Parses command-line arguments that determine the
title and geometry of the frame.

Provides a place holder for creating MDI applications.

Parses command-line arguments for connecting to G2
and making a secure login.

com.gensym.core

com.gensym.core

com.gensym.mdicom.gensym.shell.util

com.gensym.shell.util

Parses command-line arguments for connecting to G2
and making a secure login.

2

3 4

5

1

1

2

3

4

5

Telewindows2 Toolkit Java Developer’s Guide Application Classes 227

Chapter 9 Creating Telewindows2 Toolkit Applications
GensymApplication
Features
GensymApplication is a G2 JavaLink class, which all G2 client applications
should extend, either directly or through one of its subclasses. This class provides
a generic G2 client application that interacts with the G2 server through its data.

Behavior
GensymApplication provides this behavior:

• Parses and handles these command-line arguments, which deal with
internationalization and debugging:

-language language-code
-country country-code
-variant variant-code
-development

By specifying these command-line arguments, you override the value
returned by calling getDefault() on a java.util.Locale. For details, see
java.util.Locale.

• Initializes the application by parsing the .com.gensym.properties file.

• Initializes system properties that need to be set for some classes to function,
including paths to the URLStreamHandlers and ContentHandlers.

Note Unlike the subclasses of GensymApplication, which just parse their command-
line arguments, GensymApplication both parses and handles its command-line
arguments as part of the application.

Argument Description

language-code Lowercase two-letter ISO-639
code.

country-code Uppercase two-letter ISO-3166
code.

variant-code Vendor- and browser-specific
code.
228 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Application Foundation Classes
Methods
GensymApplication supports these two static methods:

• initialize(String commandLine[]) — Parses and handles command-line
arguments, which the GensymApplication constructor calls, and which any
application can call as a static method to parse command line arguments if it
does not extend GensymApplication.

• getApplication() — Returns a handle to your application, which any
application can call as a static method, assuming the application has been
created.

UiApplication
Features
UiApplication creates a generic application that interacts visually with G2
through some kind of user interface.

UiApplication extends GensymApplication.

Behavior
UiApplication parses these command-line arguments that deal with the
application frame:

-title title
-geometry widthXheight[+x+y][-x-y]

Argument Description

title The title of the application’s window
as a java.lang.String.

widthXheight[+x+y][-x-y] The width and height in pixels of the
application window, separated by
an “x”, with optional x and y offsets.
Positive values represent offsets
from the top-left corner, and
negative values represent offsets
from the bottom-right corner.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 229

Chapter 9 Creating Telewindows2 Toolkit Applications
Methods
UiApplication provides a number of useful methods, including:

• setCurrentFrame(Frame frame) — Sets the current frame to any java.awt.
Frame.

• getCurrentFrame() — Returns the frame that setCurrentFrame sets.

• getTitleInformation() — Returns the value of the -title command-line
argument as a java.lang.String.

• getGeometryInformation() — Returns the value of the -geometry
command-line argument as a java.lang.String.

• parseBounds(String optn) — Parses the widthXheight argument of the
-geometry command-line argument, given as a java.lang.String, and
returns a java.awt.Rectangle.

• setBoundsForFrame(Frame frame, String geometry) — Sets the
dimensions of the java.awt.Frame, using the geometry argument, which is
the return value of the getGeometryInformation method.

• initialize(String commandLine[]) — Parses and handles command-line
arguments, which the UiApplication constructor calls, and which any
application can also call statically to parse command-line arguments.

TW2Application
Features
TW2Application creates an SDI application that manages:

• A single application frame.

• Single and multiple connections to G2.

TW2Application extends UIApplication.

For details on using this class, see “Creating Single Document Interface
Applications” on page 247.

Behavior
TW2Application parses command-line arguments that deal with:

• Connecting to G2:

-url url-location
-host host-name
-port port-number
230 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Application Foundation Classes
• Logging on to a secure G2:

-userName login-name
-userMode user-mode
-password password

Methods
TW2Application provides a number of useful methods, including:

• getConnection() — Returns the com.gensym.ntw.TwAccess that is the
current connection in an application that connects to a single G2.

• setConnection(TwAccess connection) — Specifies the behavior of an
application that connects to a single G2 when it connects.

• getConnectionManager() — Returns the com.gensym.shell.util.
ConnectionManager for an application that supports multiple connections to
G2.

• getG2ConnectionInformation() — Returns a com.gensym.ntw.
TwConnectionInfo that contains the host, port, and URL obtained from
parsing the command line. You can pass the TwConnectionInfo as the
argument to the com.gensym.ntw.TwGateway.openConnection static method
to connect to G2.

Command-Line Argument Description

url-location A URL to a middle tier when running TW2
Toolkit in 3-tier mode. For more
information, see Chapter 8 “Using a Middle-
Tier Server” in the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core
Classes.

host-name The name of a computer on which the G2
server is running, as a java.lang.String.

port-number The port on which the G2 server is running,
as a java.lang.String.

login-name The login name of a user on the network, as
a java.lang.String.

user-mode The name of an existing G2 user mode, as a
java.lang.String.

password The user’s password for logging on to a
secure G2, as a java.lang.String.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 231

Chapter 9 Creating Telewindows2 Toolkit Applications
For details, see Chapter 5 “Using Connection Information Objects” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

• getLoginRequest() — Returns a com.gensym.ntw.LoginRequest that
contains the user name, user mode, and password obtained from parsing the
command line. You can pass the LoginRequest as the argument to the login
method on a TwGateway to make a secure login to G2.

For details, see Chapter 7 “Establishing a Login Session” in the Telewindows2
Toolkit Java Developer’s Guide: Components and Core Classes.

• initialize(String commandLine[]) — Parses and handles command-line
arguments, which the TW2Application constructor calls, but which any
application can also call statically.

MDIApplication
MDIApplication extends UiApplication. Currently, the MDIApplication class
defines no methods and is simply a place-holder for creating generic multiple
document interface applications.

TW2MDIApplication
Features
TW2MDIApplication creates a MDI application that manages:

• An MDIFrame.

• Single and multiple connections to G2.

TW2MDIApplication extends MDIApplication.

For details on using this class, see “Creating Multiple Document Interface
Applications” on page 251.

Behavior
TW2MDIApplication parses command-line arguments that deal with:

• Connecting to G2:

-url url-location
-host host-name
-port port-number

• Logging into a secure G2:

-userName login-name
-userMode user-mode
-password password
232 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Telewindows2 Toolkit Applications
For a description of these command line arguments, see “TW2Application” on
page 230.

Methods
TW2MDIApplication supports the same methods that TW2Application supports.
For details, see “TW2Application” on page 230.

Summary of Application Foundation Class Features
This table summarizes the features your application supports when you extend
each of the application foundation classes:

Creating Telewindows2 Toolkit Applications
This section provides a summary of the required and optional features of
subclasses of TW2Application and TW2MDIApplication.

The specific steps required to implement each feature are described in these
sections:

• “Creating Single Document Interface Applications” on page 247.

• “Creating Multiple Document Interface Applications” on page 251.

• “Creating and Managing Connections to G2” on page 236.

The summary sections that follow provide specific references within each of these
sections for details on implementing each feature.

Required Features of SDI and MDI Applications
Subclasses of TW2Application and TW2MDIApplication must implement the
following required features. The implementation of these features depends on the
type of application.

Application
Foundation Class SDI MDI

Single
Connection

Multiple
Connection

Visible
Frame

GensymApplication

UiApplication

TW2Application

MDIApplication

TW2MDIApplication
Telewindows2 Toolkit Java Developer’s Guide Application Classes 233

Chapter 9 Creating Telewindows2 Toolkit Applications
Creating and Managing the Application Frame
Subclasses of TW2Application and TW2MDIApplication are responsible for:

• Creating the frame.

• Setting the current frame by calling setFrame on the application.

• Making the frame visible.

• Adding UI controls to the frame, for example, menus and toolbars.

For information on adding UI controls to an application frame, see Chapter 5,
“Creating Menus and Toolbars” on page 113.

Creating and Managing Connections to G2
Subclasses of TW2Application and TW2MDIApplication are responsible for
creating and managing connections to G2.

To create and manage connections, use the following classes:

For information on creating and managing single and multiple connections, see
“Creating and Managing Connections to G2” on page 236.

To create and manage... See...

SDI application frames “Creating and Setting the Frame in
an SDI Application” on page 249.

MDI application frames “Creating and Setting the Frame in
an MDI Application” on page 252.

To... Use this class...

Create single connections to G2 com.gensym.ntw.TwGateway

Create and manage multiple
connections to G2

com.gensym.shell.util.
ConnectionManager
234 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Telewindows2 Toolkit Applications
Implementing Abstract Methods
Subclasses of TW2Application and TW2MDIApplication must implement the
following abstract methods:

• getConnection — Gets the connection in an application that supports single
connections to G2.

• getConnectionManager — Gets the ConnectionManager in an application that
supports multiple connections to G2.

• setConnection — Determines the behavior of an application that supports
single connections to G2 when the connection opens or closes.

The implementation of these methods depends on whether your application
supports single or multiple connections.

For details, see “Implementing Abstract Methods to Manage Connections” on
page 244.

Optional Features of SDI and MDI Applications
Subclasses of TW2Application and TW2MDIApplication typically implement a
number of optional features, whose implementation is the same for either type of
application. These features include:

• Parsing and handling command line arguments that provide the application
frame and connection information.

• Implementing event listeners.

• Setting the look and feel of the Java UI classes.

• Localizing application text.

For examples of these optional features, see the Chapter 12, “Understanding the
Telewindows2 Toolkit Shell,”

Optional Feature Specific to SDI and MDI
Applications

Subclasses of TW2Application and TW2MDIApplication can be listeners for
programmatic show and hide KB workspace events in G2 by using adapter
classes in the com.gensym.shell.util package. The implement of this optional
feature depends on the type of application.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 235

Chapter 9 Creating Telewindows2 Toolkit Applications
Creating and Managing Connections to G2
The most fundamental feature of any G2 client application is its connections to
G2, for it is through the G2 connection that the client has access to all G2 server
data.

Depending on the type of connection you want to support, your application uses
different connection classes to create and manage G2 connections, and listen for
connection events.

To determine which connection and listener classes your application should use,
you need to answer the question in the following heading.

Will the Application Support Single or Multiple
Connections to G2?

Regardless of whether you are extending TW2Application or
TW2MDIApplication, you can create one of the following types of applications:

• Single connection application, which is an application that connects to a
single G2 server.

• Multiple connection application, which is an application that allows multiple
connections to different G2 servers.

The following sections describe how to create and manage multiple connections
to G2 by using a ConnectionManager, which includes:

• Creating a connection manager.

• Opening connections.

For information on
implementing this feature in... See...

SDI applications “Listening for Programmatic Show
and Hide KB Workspace Events in
SDI Applications” on page 250.

MDI applications • “Listening for Programmatic
Show and Hide KB Workspace
Events in an MDI Application”
on page 254.

• “Registering Workspace
Document Factories” on
page 255.
236 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating and Managing Connections to G2
• Getting connection and login information.

• Getting and setting the current connection.

• Listening for changes in the current connection context.

• Implementing abstract methods that manage connections.

If your application only needs to create connection to a single G2, use a com.
gensym.ntw.TwGateway. For details, see Chapter 6 “Using TwGateway” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

Creating a ConnectionManager
The ConnectionManager is responsible for:

• Opening connections.

• Keeping track of the current connection.

• Setting a new connection to be the current connection.

• Maintaining a list of all open connections.

• Notifying registered ContextChangedListeners when the current connection
context changes.

Because so many features of a multiple connection application depend on the G2
connection, you typically create a ConnectionManager in the application’s
constructor.

To create a ConnectionManager:

Create a single instance of this class in the constructor for your application:

com.gensym.shell.util.ConnectionManager

For example:

ConnectionManager connectionMgr = new ConnectionManager()

Opening a Connection through a
ConnectionManager

When you open a connection through a ConnectionManager, the manager:

• Opens the connection.

• Sets the new connection to be the current connection.

• Notifies registered listeners of ContextChangedEvents.

• Handles exceptions, if the connection fails.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 237

Chapter 9 Creating Telewindows2 Toolkit Applications
To open a connection through a ConnectionManager:

Call one of the following methods on ConnectionManager:

• openConnection(String url, String host, String port), where the
arguments are all instances of a java.lang.String.

• openConnection(TwConnectionInfo connectionInfo), where
connectionInfo is an instance of a com.gensym.ntw.TwConnectionInfo.

Both methods return an implementation of this interface, such as a TwGateway:

com.gensym.ntw.TwAccess

For details on these core classes, see these chapters in theTelewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes:

• Chapter 5, “Using Connection Information Objects.”

• Chapter 6, “Using TwGateway.”

Getting Connection and Login Information
Subclasses of TW2Application and TW2MDIApplication support methods for
parsing the following information from the command line:

• Connection information, which you can pass as the argument to the
openConnection method on a ConnectionManager to open a connection.

• Login information, which you can pass as the argument to the login method
on an implementation of com.gensym.ntw.TwAccess, such as TwGateway, to
log on to a secure G2.

To get connection information from the command line:

Call this method on a subclass of TW2Application or TW2MDIApplication:

getG2ConnectionInformation()

This method returns an instance of this class, which holds the value of the -host,
-port, and -url command-line arguments:

com.gensym.ntw.TwConnectionInfo

For information on this core class, see Chapter 5, “Using Connection Information
Objects” in the Telewindows2 Toolkit Java Developer’s Guide: Components and Core
Classes.

To get login request from the command line:

Call this method on a subclass of TW2Application or TW2MDIApplication:

getLoginRequest()
238 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating and Managing Connections to G2
This method returns an instance of this class, which holds the value of the
-userName, -userMode, and -password command-line arguments:

com.gensym.ntw.LoginRequest

For information on this core class, see Chapter 7, “Establishing a Login Session” in
the Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

Example

Using Command-Line Arguments to Open a G2 Connection
Subclasses of TW2Application or TW2MDIApplication supports command-line
arguments for specifying the host, port, and URL, which your application can use
to make a connection to G2.

Your application can also provide other command-line arguments for connecting
to G2. For example, you might define a single command-line argument to take the
host and port of the G2 to which to connect, for example, -g2 localhost 1111.
You would use this command-line argument to create the same
TwConnectionInfo that the getG2ConnectionInformation method returns.

For example, this code fragment might appear in the main method of a subclass of
TW2Application or TW2MDIApplication that supports multiple connections to
G2, where application is your application. The code opens a connection to a
secure G2 by parsing command-line arguments:

try {
ConnectionManager connectionMgr =

application.getConnectionManager();
TwConnectionInfo connectionInfo =

getG2ConnectionInformation();
if (connectionInfo != null) {

TwAccess cxn = connectionMgr.
openConnection(connectionInfo);

LoginRequest loginRequest = getLoginRequest();
if (loginRequest != null){

if (cxn != null)
cxn.login(loginRequest);

}
}

}

catch (G2AccessException e) {
e.printStackTrace();

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 239

Chapter 9 Creating Telewindows2 Toolkit Applications
Getting and Setting the Current Connection
You get the current connection from a ConnectionManager for numerous reasons,
including to:

• Make a login request to a secure G2.

• Get and set the user mode.

• Get and set the G2 run state.

• Close the current connection.

• Get unique named items from G2, such as a named workspace or a named
item.

• Make RPC calls.

• Set the availability of a command based on the existence of a connection.

• Get the com.gensym.util.ClassManager, which manages G2 class definitions
on the client.

• Get the com.gensym.dlgruntime.DialogManager, which manages G2 item
properties dialogs in the client.

You can also get a list of all open connections from a ConnectionManager.

As mentioned earlier, when you open a connection through a
ConnectionManager, the manager sets the connection as the current connection
automatically. Thus, the only time you need to set the current connection is in a
single connection application, which must switch the current connection
explicitly.

Getting the Current Connection

To get the current connection:

Call this method on a ConnectionManager:

getCurrentConnection()

This method typically returns an implementation of this interface, such as a
TwGateway:

com.gensym.ntw.TwAccess

For information on this core class, see Chapter 6, “Using TwGateway” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.
240 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating and Managing Connections to G2
For example, to make a login request, you must first get the current connection
from the ConnectionManager:

LoginRequest loginRequest = getLoginRequest();
if (loginRequest != null){

TwAccess cxn = connectionMgr.getCurrentConnection();
if (cxn != null)

cxn.login(loginRequest);
}

Getting a List of Open Connections
You typically need to get a list of open connections before you exit the application
so you can explicitly close each open connection.

To get a list of all open connections:

Call this method on a ConnectionManager:

getCurrentConnections()

This method returns an array of objects, each of which is an implementation of
this interface, typically a TwGateway:

com.gensym.ntw.TwAccess

For information on this core class, see Chapter 6, “Using TwGateway” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

For example, this method exits a multiple connection application by getting, then
closing each element in the array of open connections:

private void exitApp(ConnectionManager connectionManager) {
TwAccess[] cxns = connectionManager.getOpenConnections();
for (int i=0; i<cxns.length; i++)

cxns[i].closeConnection();
System.exit(0);

}

Setting the Current Connection
When you open a connection through a ConnectionManager, the manager
automatically sets the open connection to be the current connection. Thus, when
you open a new connection, you do not need to be concerned with setting the
current connection.

However, if your application supports switching the connection, for example,
through a dialog, you must set the current connection to the selected connection
explicitly.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 241

Chapter 9 Creating Telewindows2 Toolkit Applications
To set the current connection:

Call this method on a ConnectionManager:

setCurrentConnection(TwAccess connection)

The argument to the method is an instance of a class that implements this
interface, typically a TwGateway:

com.gensym.ntw.TwAccess

For information on this core class, see Chapter 6, “Using TwGateway” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

For example, the following code fragment gets the selected connection for the
current command key from connectionTable. This table maps connection names
to open connections. The code then sets the current connection to the selected
connection.

private java.util.HashTable connectionTable;

TwAccess connection =
(TwAccess)connectionTable.get(cmdKey);
if (connection != null){

connectionMgr.setCurrentConnection(connection);

Listening for Changes in the Current Connection
Context

Various classes in your application might need to be notified when the current
connection context changes, that is, when a new connection becomes the current
connection, as maintained by the ConnectionManager.

For example, a command that makes an RPC call to G2 should only be available if
a current connection exists.

The ConnectionManager delivers a ContextChangedEvent to all registered
ContextChangedListeners by calling their currentConnectionChanged method
when the current connection context changes.

If the last connection in the list of open connections closes, the event still occurs,
but the current connection is null.

You get the current connection by calling getConnection on the
ContextChangedEvent.
242 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating and Managing Connections to G2
To listen for changes in the current connection context:

1 Implement this interface:

com.gensym.shell.util.ContextChangedListener

2 Register the class that needs to receive notification of ContextChangedEvents
as a ContextChangedListener by calling the appropriate add method on a
ConnectionManager.

For example, this code fragment would appear in the constructor of a class that
implements the ContextChangedListener interface:

private ConnectionManager connectionMgr;

connectionMgr.addContextChangedListener(this);

Example

Creating a Command that Listens for ContextChangedEvents
The following code fragments implements a command that displays a named
workspace. The command:

• Implements the ContextChangedListener interface.

• Adds itself as a listener.

• Implements the currentConnectionChanged abstract method to set the
command’s availability when the current connection context changes.

For information on the arguments to CommandInformation and general
information on creating commands, see “Creating Commands” on page 131.

This code fragment shows the definition of the class that implements the
ContextChangedListener interface:

public ViewCommands extends AbstractCommand
implements ContextChangedListener {
//Additional code

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 243

Chapter 9 Creating Telewindows2 Toolkit Applications
Here is the constructor for the command, which adds itself as a
ContextChangedListener:

public ViewCommands(MDIFrame frame,
ConnectionManager connectionManager) {

super(new CommandInformation[]{
new CommandInformation(SCHEMATIC, true,

shortResource, longResource,
null, null, null, false)}),

this.frame = frame;
this.connectionMgr = connectionManager;
connectionMgr.addContextChangedListener(this);

}

The following method implements the abstract method of the
ContextChangedListener interface. You call getConnection on the
ContextChangedEvent argument to get the current connection. The method
makes the command unavailable when no current connection exists.

public void currentConnectionChanged(ContextChangedEvent e){
TwAccess context = e.getConnection();
boolean available = true;
if (context == null)

available = false;
setAvailable(SCHEMATIC, available);

}

Implementing Abstract Methods to Manage
Connections

Subclasses of TW2Application and TW2MDIApplication require that you
implement three abstract methods that allow the application to manage single
and multiple connections:

• getConnection() — Gets the current connection in single connection
applications.

• getConnectionManager() — Gets the ConnectionManager in multiple
connection applications.

• setConnection(connection) — Specifies the behavior of single connection
applications when the current connection is set.
244 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating and Managing Connections to G2
The implementation of these abstract methods depends on the type of
application, as this table describes:

Note Although you must implement the setConnection abstract method in a multiple
connection application, it should not return anything.

Implementing the Get Methods in a Single Connection Application
The following examples show implementations of getConnection and
getConnectionManager for single connection applications:

private TwAccess connection;

public TwAccess getConnection() {
return connection;

}

public ConnectionManager getConnectionManager() {
return null;

}

Implementing the Get Methods in a Multiple Connection Application
The following examples show implementations of getConnection and
getConnectionManager for multiple connection applications:

private ConnectionManager connectionManager;

public ConnectionManager getConnectionManager() {
return connectionManager;

}

public TwAccess getConnection () {
return null;

}

Single Connection
Applications

Multiple Connection
Applications

getConnection Returns the current
connection

Returns null

getConnectionManager Returns null Returns the
ConnectionManager

setConnection Implements the
behavior when a
connection opens or
closes

Empty implementation
Telewindows2 Toolkit Java Developer’s Guide Application Classes 245

Chapter 9 Creating Telewindows2 Toolkit Applications
Setting the Connection
The setConnection method is an abstract method that your single connection
TW2Application or TW2MDIApplication must implement to track the current
connection. When a connection opens or closes, the application needs to handle
certain events, which it typically does in the setConnection method. The
setConnection method also determines the connection that the getConnection
method returns.

For example, you might define the setConnection method to update the
connection and user mode in the toolbar when the connection changes.

The following implementation of the setConnection method performs these
tasks:

• Tests to see if a connection exists.

• If a connection exists:

– Adds a com.gensym.wksp.MultipleWorkspacePanel as a com.gensym.
ntw.WorkspaceShowingListener.

For details on these classes, see these chapters in the Telewindows2 Toolkit
Java Developer’s Guide: Components and Core Classes:

– Chapter 13, “Using Workspace View Components.”

– Chapter 6, “Using TwGateway.”

– Updates the connection and user mode in the com.gensym.shell.util.
HostPortPanel and UserModePanel.

For details on these classes, see Chapter 10, “Using Shell Dialogs and UI
Controls” on page 259.

• If no connection exists:

– Removes all workspaces.

– Removes the listener from the com.gensym.ntw.TwGateway.

– Updates the connection and user mode in the toolbar panel.

• Sets the new connection as the current connection.

• Notifies listeners that the connection has been updated.

Here is an implementation of the setConnection method:
private MultipleWorkspacePanel multiWkspPanel;
private HostPortPanel hostPortPanel;
private UserModePanel userModePanel;
private TwAccess connection;

public void setConnection (TwAccess newCxn) {
boolean connected = (newCxn != null);
246 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Single Document Interface Applications
//If a connection exists
if (connected) {

try {
newCxn.addWorkspaceShowingListener (multiWkspPanel);
hostPortPanel.setConnection(null);
userModePanel.setConnection(null);

} catch (G2AccessException e) {
new WarningDialog (null, "Error Setting Connection",

true, e.toString (), null).setVisible (true);
e.printStackTrace();

}

//If a connection does not exist
} else {

try {
KbWorkspace[] showingWorkspaces =

multiWkspPanel.getWorkspaces ();
for (int i=0; i<showingWorkspaces.length; i++)

multiWkspPanel.removeWorkspace (showingWorkspaces[i]);
Rectangle frameRect = getCurrentFrame().getBounds ();
connection.removeWorkspaceShowingListener (multiWkspPanel);
hostPortPanel.setConnection ((TwConnection)newCxn);
userModePanel.setConnection ((TwConnection)newCxn);

} catch (G2AccessException e) {
new WarningDialog (null, "Error Disconnecting

Connection", true, gae.toString (), null).
setVisible (true);

e.printStackTrace();
}

}
}

Creating Single Document Interface
Applications

An SDI application contains a single frame that displays a view into the G2
server’s data, typically a workspace view.

For example, your SDI application might display a single KB workspace by
adding a com.gensym.wskp.ScalableWorkspaceView component to the frame.
Alternatively, your application could add one of the multiple workspace view
components to support switching between multiple KB workspaces from within a
single application frame.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 247

Chapter 9 Creating Telewindows2 Toolkit Applications
For information on workspace view components, see Part III “Viewing
Workspaces” in the Telewindows2 Toolkit Java Developer’s Guide: Components and
Core Classes.

This section summarizes how to implement the:

• Required features of an SDI application.

• Optional features specific to SDI applications.

For information on additional optional features, see “Optional Features of SDI
and MDI Applications” on page 235.

For demonstrations that illustrate SDI applications, see the source code for these
classes:

com.gensym.demos.wksppanel.BrowserApplication

com.gensym.demos.singlecxnsdiapp.BrowsesrApplication

com.gensym.demos.multiplecxnsdiapp.WorkspaceBrowserApp

The following steps summarize how to implement an SDI application and
provide references to other sections for details.

To implement an SDI application:

1 Create an application that extends this application foundation class:

com.gensym.shell.util.TW2Application

2 Create and set the application frame, and make it visible.

For details, see “Creating and Setting the Frame in an SDI Application” on
page 249.

3 Create and manage single or multiple connections to G2.

For details, see “Creating and Managing Connections to G2” on page 236.

4 Implement these abstract methods on TW2Application:

getConnection()
getConnectionManager()
setConnection()

For details, see “Implementing Abstract Methods to Manage Connections” on
page 244.

5 Make the application be a listener for WorkspaceShowingEvents, as needed.

For details, see “Listening for Programmatic Show and Hide KB Workspace
Events in SDI Applications” on page 250.
248 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Single Document Interface Applications
Creating and Setting the Frame in an SDI
Application

To create the frame of an SDI application, you typically create an instance of one
of these classes:

• java.awt.Frame

• javax.swing.JFrame

Once you create the frame, you set it as the current frame, then get the frame and
make it visible.

TW2Application inherits from UiApplication the methods that support getting
and setting the current frame. For details, see “UiApplication” on page 229.

To create and set the application frame:

1 In the application’s constructor, call the constructor for the superior class,
passing the command-line arguments as its arguments.

2 To parse the title from the command line, call this method:

getTitleInformation()

3 Create an instance of the frame.

4 Call this method on the application to set the frame as the current frame:

setCurrentFrame(Frame frame)

For example, this constructor for a subclass of TW2Application creates an
instance of a javax.swing.JFrame, passing the title from the command line as its
argument:

public SDIApplication (String[] cmdLineArgs) {
super (cmdLineArgs);
JFrame jf;
String title = getTitleInformation ();
setCurrentFrame (jf = new JFrame

(title != null ? title : "SDI Application"));
}

To make the frame visible:

1 In the main method, create an instance of your application class.

2 Get the current frame from the application by calling this method:

getCurrentFrame()

3 Make the frame visible by calling this method on the frame:

setVisible(true)
Telewindows2 Toolkit Java Developer’s Guide Application Classes 249

Chapter 9 Creating Telewindows2 Toolkit Applications
For example, this code fragment show the part of the main method that gets the
current frame from the application and makes it visible:

public static void main (String[] args) {
SDIApplication app = new SDIApplication (args);
app.getCurrentFrame().setVisible (true);

// Additional code

}

Listening for Programmatic Show and Hide KB
Workspace Events in SDI Applications

Your application can listen for programmatic show and hide KB workspace
events in G2 by implementing the com.gensym.ntw.WorkspaceShowingListener
interface. This interface provides abstract methods that determine the behavior of
registered listeners when G2 programmatically shows or hides a KB workspace.

For details, see Chapter 6, “Using TwGateway” in the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes.

TW2 Toolkit provides the following adapter class as a default implementation of
WorkspaceShowingListener for SDI applications:

com.gensym.shell.util.TW2WorkspaceShowingAdapter

This adapter class performs these tasks when the SDI application receives
notification of a WorkspaceShowingEvent:

For information on workspace views, see Part III “Viewing Workspaces” in the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

When G2 programmatically... Your SDI application...

Shows a KB workspace Adds a com.gensym.wksp.
ScalableWorkspaceView to the
application frame.

Hides a KB workspace Removes a com.gensym.wksp.
ScalableWorkspaceView from the
application frame.
250 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Multiple Document Interface Applications
TW2WorkspaceShowingAdapter provides two constructors, which take different
arguments, depending on whether the SDI application supports single or
multiple connections to G2:

To add and remove workspace views based on WorkspaceShowingEvents:

In the main method for your SDI application, create an instance of this
adapter, using the constructor that supports your type of connection:

com.gensym.shell.util.TW2WorkspaceShowingAdapter

For example, the following code fragment appears in the main method of a single
connection SDI application that listens for WorkspaceShowingEvents. The
constructor takes a single connection as its argument, which it obtains from the
application.

private TWApplication app;
private TwAccess connection;

TW2WorkspaceShowingAdapter wkspShowingListener =
new TW2WorkspaceShowingAdapter(app.connection);

Creating Multiple Document Interface
Applications

An MDI application contains an MDIFrame which consists of one or more
MDIDocuments, each of which contains a workspace view, or some other view into
the G2 server’s data.

This section summarizes how to implement the:

• Required features of an MDI application.

• Optional features specific to MDI applications.

For information on additional optional features, see “Optional Features of SDI
and MDI Applications” on page 235.

For information on the containers you can use to create MDI applications, see
Chapter 7, “Creating Multiple Document Interface Containers” on page 187.

Use this constructor... To support...

TW2WorkspaceShowingAdapter(TwAccess connection) Single connections

TW2WorkspaceShowingAdapter
(ConnectionManager connectionManager)

Multiple connections
Telewindows2 Toolkit Java Developer’s Guide Application Classes 251

Chapter 9 Creating Telewindows2 Toolkit Applications
For demonstrations that illustrate MDI applications, see the source code for these
classes:
• com.gensym.demos.singlecxnmdiapp.SingleConnectionApplication

• com.gensym.demos.multiplecxnmdiapp.Shell

• com.gensym.shell.Shell

For a complete code walk-through of the Shell.java source code, see Chapter 12,
“Understanding the Telewindows2 Toolkit Shell” on page 301.

The following steps summarize how to implement an MDI application and
provide references to other sections for details.

To create an MDI application:

1 Create an application that extends this application foundation class:

com.gensym.shell.util.TW2MDIApplication

2 Create and set the application frame, and make it visible.

For details, see “Creating and Setting the Frame in an MDI Application” on
page 252.

3 Create and manage single or multiple connections to G2.

For details, see “Creating and Managing Connections to G2” on page 236.

4 Implement these abstract methods on TW2MDIApplication:

getConnection()
getConnectionManager()
setConnection()

For details, see “Implementing Abstract Methods to Manage Connections” on
page 244.

5 Make the application be a listener for WorkspaceShowingEvents, as needed.

For details, see “Listening for Programmatic Show and Hide KB Workspace
Events in an MDI Application” on page 254.

6 Register implementations of the WorkspaceDocumentFactory interface.

For details, see “Registering Workspace Document Factories” on page 255.

Creating and Setting the Frame in an MDI
Application

You create the application frame by creating an instance of this class:

com.gensym.mdi.MDIFrame

For details on this class, see “Creating and Managing MDI Frames” on page 193.
252 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Multiple Document Interface Applications
Once you create the frame, you set it as the current frame, then get the frame and
make it visible.

TW2MDIApplication inherits from UiApplication the methods that support
getting and setting the current frame. For details, see “UiApplication” on
page 229.

To create and set the application frame:

1 In the application’s constructor, call the constructor for the superior class,
passing the command-line arguments as its argument.

2 To parse the title from the command line, call this method:

getTitleInformation()

3 Create an instance of an MDIFrame.

4 Call this method on the application to set the MDIFrame as the current frame:

setCurrentFrame(Frame frame)

For example, these code fragments appear in the constructor for a subclass of
TW2MDIApplication to create an instance of an MDIFrame and set it as the current
frame. The frame uses a localized text string for its title.

private com.gensym.message.Resource i18nUI;

MDIFrame mdiFrame = createFrame(i18nUI.getString("MDIAppTitle"));
setCurrentFrame(mdiFrame);

To make the frame visible:

1 In the main method, create an instance of your application class.

2 Get the current frame from the application by calling this method:

getCurrentFrame()

3 Make the frame visible by calling this method on the frame:

setVisible(true)

For example, this code fragment shows the part of the main method that gets the
current frame from the application and makes it visible:

public static void main (String[] args) {
MDIApplication app = new MDIApplication (args);
app.getCurrentFrame().setVisible (true);

// Additional code
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 253

Chapter 9 Creating Telewindows2 Toolkit Applications
Listening for Programmatic Show and Hide KB
Workspace Events in an MDI Application

Your application can listen for programmatic show and hide KB workspace
events in G2 by implementing the com.gensym.ntw.WorkspaceShowingListener
interface. This interface provides abstract methods that determine the listener’s
behavior when G2 programmatically shows or hides a workspace.

For details, see Chapter 6, “Using TwGateway” in the Telewindows2 Toolkit Java
Developer’s Guide: Components and Core Classes.

TW2 Toolkit provides the following adapter class as a default implementation of
WorkspaceShowingListener for MDI applications:

com.gensym.shell.util.TW2MDIWorkspaceShowingAdapter

This adapter class performs these tasks when the MDI application receives
notification of a WorkspaceShowingEvent:

By default, the adapter uses a com.gensym.shell.util.
DefaultWorkspaceDocumentFactoryImpl to generate a WorkspaceDocument
whenever G2 programmatically shows a KB workspace. If your MDI application
needs to create instances of a WorkspaceDocument subclass in which to display a
workspace view, you must also register the factory used to generate the
workspace document, as described in “Registering Workspace Document
Factories” on page 255.

For details on workspace views, workspace documents, and workspace
document factories, see:

• Part III “Viewing Workspaces” in the Telewindows2 Toolkit Java Developer’s
Guide: Components and Core Classes.

• Chapter 8, “Using Telewindows2 Toolkit MDI Documents” on page 207.

When G2 programmatically... The MDI application...

Shows a KB workspace Adds a com.gensym.wksp.
ScalableWorkspaceView to a com.
gensym.shell.util.
WorkspaceDocument and displays
the document in the frame.

Hides a KB workspace Removes a com.gensym.shell.
util.WorkspaceDocument with its
com.gensym.wksp.
ScalableWorkspaceView from the
frame.
254 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Multiple Document Interface Applications
TW2MDIWorkspaceShowingAdapter provides two constructors, which take
different arguments, depending on whether the MDI application supports single
or multiple connections to G2:

To add and remove WorkspaceDocuments based on WorkspaceShowingEvents:

In the main method for your MDI application, create an instance of this class,
using the constructor that supports your type of connection:

com.gensym.shell.util.TW2MDIWorkspaceShowingAdapter

For example, this code fragment appears in the main method of a multiple
connection MDI application that listens for WorkspaceShowingEvents. The
constructor takes a ConnectionManager as its argument, which it obtains from the
application.

private Tw2MDIApplication app;
private ConnectionManager connectionManager;

TW2MDIWorkspaceShowingAdapter wkspShowingListener =
new TW2MDIWorkspaceShowingAdapter(app.connectionManager);

Registering Workspace Document Factories
Your MDI application typically creates instances of a com.gensym.shell.util.
WorkspaceDocument. For example, the com.gensym.shell.Shell class uses a
com.gensym.shell.commands.WorkspaceCommands to create workspace
documents when the user chooses a named workspace. Similarly, the Shell class
uses a com.gensym.shell.util.TW2MDIWorkspaceShowingAdapter class to create
workspace documents when G2 programmatically shows a KB workspace.

For information on these classes, see:

• “Listening for Programmatic Show and Hide KB Workspace Events in an MDI
Application” on page 254.

• “WorkspaceCommands” on page 293.

• Chapter 12, “Understanding the Telewindows2 Toolkit Shell” on page 301.

By default, WorkspaceCommands and TW2MDIWorkspaceShowingAdapter use a
com.gensym.shell.util.DefaultWorkspaceFactoryImpl to generate instances
of the WorkspaceDocument class whenever they create a workspace document. As
described in “WorkspaceDocument” on page 210, a WorkspaceDocument uses the
default menu bar and toolbar of the TW2MDIApplication.

Use this constructor... To support...

TW2MDIWorkspaceShowingAdapter(TwAccess connection) Single connections

TW2MDIWorkspaceShowingAdapter
(ConnectionManager connectionManager)

Multiple connections
Telewindows2 Toolkit Java Developer’s Guide Application Classes 255

Chapter 9 Creating Telewindows2 Toolkit Applications
If you want your application to provide context-sensitive menu bars and/or
toolbars when a workspace document gains focus, you must create a custom
WorkspaceDocument class and implement a WorkspaceDocumentFactory to
generate instances of your custom workspace document. For details on how to do
this, see:

• “Creating a Custom Workspace Document” on page 214.

• “Using Workspace Document Factories” on page 211.

Each class in your application that creates a workspace document needs to
register your implementation of WorkspaceDocumentFactory to generate
instances of your WorkspaceDocument type, rather than instances of a
WorkspaceDocument.

Typically, you register the workspace document factory for a class in the
application’s constructor or main method to ensure the factory is set before the
class creates any workspace documents.

To register the WorkspaceDocumentFactory with a class:

1 Create an instance of an implementation of WorkspaceDocumentFactory,
which the class uses to generate WorkspaceDocument types.

2 In the class that generates workspace documents, call the method that sets its
workspace document factory.

You may only call the method that sets the workspace document factory once for
the class that requires it.

For example, the WorkspaceCommands class defines a method called
setWorkspaceDocumentFactory, which sets the factory that the command uses
for generating workspace documents.

Here is the method that the Shell class calls in its constructor to register the com.
gensym.shell.ShellWorkspaceDocumentFactoryImpl for an instance of
WorkspaceCommands:

private WorkspaceCommands wkspHandler;

private void registerWorkspaceDocumentFactory() {
ShellWorkspaceDocumentFactoryImpl shellWkspDocFactory =

new ShellWorkspaceDocumentFactoryImpl();
if (wkspHandler != null)

((WorkspaceCommands)wkspHandler).
setWorkspaceDocumentFactory(shellWkspDocFactory);

}

256 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Creating Multiple Document Interface Applications
Similarly, the following code in the Shell class registers the workspace document
factory for the TW2MDIWorkspaceShowingAdapter. The line of code that registers
the factory appears in the main method.

private ConnectionManager connectionManager;
private TW2MDIWorkspaceShowingAdapter workspaceShowingListener = null;
private Shell application = new Shell(cmdLineArgs);

//Create adapter
workspaceShowingListener = new TW2MDIWorkspaceShowingAdapter

(application.connectionManager);

//Register factory
workspaceShowingListener.setWorkspaceDocumentFactory

(application.shellWkspDocFactory);
Telewindows2 Toolkit Java Developer’s Guide Application Classes 257

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Chapter 10 Using Shell Dialogs and UI Controls
Version 3.1 Mode: Working Size: 7x9x11
10
Using Shell Dialogs
and UI Controls
Describes how to use the shell dialogs and UI controls, and provides a reference for
each class.

Introduction 259

Packages Covered 260

Relevant Demos 260

HostPortPanel 261

LoginDialog 263

UserModePanel 267

Introduction
The com.gensym.shell.dialogs and com.gensym.shell.util packages provide
two categories of classes, which you can use in your application:

• Shell dialogs — Standard dialogs for logging into G2.

• Shell UI controls — UI controls that display and let you switch the host and
port of the current connection, and the current G2 user mode.

Each reference section in this chapter provides:

• A sample dialog or UI control.

• A general description of the dialog or UI control and any special behavior.
259

Chapter 10 Using Shell Dialogs and UI Controls
• The constructor or constructors, and the unique arguments to the public
constructor.

• Example.

LoginDialog is a subclass of StandardDialog, which means it behaves like all
standard dialogs, as described in Chapter 4, “Using Standard Dialogs” on
page 71.

For a description of the common arguments to all standard dialog classes, see
“Common Arguments to Standard Dialog Constructors” on page 76.

Packages Covered

com.gensym.shell.dialogs
LoginDialog

com.gensym.shell.util
HostPortPanel
UserModePanel

Relevant Demos
The following demos show examples of shell dialogs and UI controls:

• singlecxnsdiapp

• singlecxnmdiapp

• multiplecxnmdiapp

The demos are located in this directory, depending on your platform:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
260 Part III Application Classes

HostPortPanel
HostPortPanel

Description
HostPortPanel provides a UI control that displays the currently open connection,
which uses the host name and port number.

The constructor you use depends on whether the user is allowed to edit the user
mode, and whether your application allows multiple connections to G2.

You embed this UI control in a toolbar or dialog to provide a user interface for
displaying the current connection in a single or multiple connection application.
You can also use this control in multiple connection applications to switch the G2
connection.

Constructor
HostPortPanel provides three constructors:

JLabel

JComboBox

Use this constructor... To create a dialog that...

HostPortPanel() Displays the host and port of the current
connection as static text in a javax.
swing.JLabel. Use this constructor in
single connection applications where the
user is not allowed to switch connections.

HostPortPanel
(TwConnection connection)

Displays the host and port of the current
connection in a javax.swing.JComboBox.
Use this constructor in single connection
applications when the user is allowed to
switch connections.

HostPortPanel
(ConnectionManager connectionMgr)

Displays the host and port of the current
connection, as well as a list of all open
connections, in a javax.swing.
JComboBox. Use this constructor in
multiple connection applications when the
user is allowed to switch connections.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 261

Chapter 10 Using Shell Dialogs and UI Controls
Example
This example creates a com.gensym.mdi.MDIToolBarPanel that includes a
HostPortPanel in a com.gensym.ui.toolbar.ToolBar. The example shows how
to add the HostPortPanel to a multiple connection application, which allows the
user to switch the current connection.

Here is the method that creates the toolbar panel, where the constructor for the
HostPortPanel appears in bold:

private ConnectionManager connectionManager;

private MDIToolBarPanel createToolBarPanel() {

//Create toolbar panel
MDIToolBarPanel panel = new MDIToolBarPanel();

//Create toolbar
ToolBar tb = new ToolBar ();
try {

//Add HostPortPanel
tb.add (new HostPortPanel(connectionManager));
tb.add (javax.swing.Box.createGlue());

} catch (G2AccessException e) {
e.printStackTrace();

}

//Add toolbar to panel
panel.add(tb);

//Return panel
return panel;

}

For more information on... See...

Creating toolbar panels “Creating an MDI Toolbar Panel”
on page 197.

Adding buttons and panels to
toolbars

“Adding All Command Keys” on
page 124.
262 Part III Application Classes

LoginDialog
LoginDialog

Description
LoginDialog provides a tabbed dialog for connecting to G2 and logging on to a
secure G2. It provides these two tab pages, both of which are editable, by default:

• Connection, for specifying the host, port, and URL.

• Security, for specifying the user name, user mode, and password.

To specify which tab pages are editable or read-only:

Call this method:

setEditableTabPages(int tabPages, boolean isEditable)

Use one of the following variables to specify the tabPages argument:

CONNECTION_TAB_PAGE
SECURITY_TAB_PAGE

Use one of the following variables to specify the isEditable argument:

CONNECTION_AND_SECURITY_TAB_PAGES
NO_TAB_PAGES

A boolean value of true indicates that the specified tab pages are editable; a
value of false indicates that the tab pages are read-only.

To specify which tab page is selected by default:

selectTabPage(int tabPage)
Telewindows2 Toolkit Java Developer’s Guide Application Classes 263

Chapter 10 Using Shell Dialogs and UI Controls
You can call methods on a LoginDialog to get and set connection and login
information, which the dialog uses to update information on the tab pages, as this
table describes:

For information on these core classes, see these chapters in the Telewindows2
Toolkit Java Developer’s Guide: Components and Core Classes:

• Chapter 5, “Using Connection Information Objects.”

• Chapter 7, “Establishing a G2 Login Session.”

Constructor
The LoginDialog constructor takes as its only arguments the common arguments
to all standard dialogs.

For a description of the common arguments to all standard dialog classes, see
“Common Arguments to Standard Dialog Constructors” on page 76.

Example
The handleOpenConnectionCommand method launches a LoginDialog to open a
connection to a secure G2. The method sets the default value of the host, port, and
URL by calling setConnectionInformation. It sets the default value of the user
name, user mode, and password by calling setLoginRequest. The set methods
take instance of a com.gensym.ntw.TwConnectionInfo and a com.gensym.ntw.
LoginRequest, respectively, as arguments.

The dialog provides a localized text string as the dialog title. For details on using
resource properties files, see Appendix A, “Localization” on page 331.

Here is the method that opens a connection by getting connection and login
information from the LoginDialog:

TwConnectionInfo previousConnectionInfo =
new TwConnectionInfo(brokerURL, hostName, portNumber);

LoginRequest previousLoginRequest =
new LoginRequest(userMode_, userName_, password_);

private com.gensym.message.Resource i18nUI = Resource.getBundle
("com.gensym.demos.singlecxnmdiapp.UiLabels");

private com.gensym.shell.util.TW2Application application;

Call these methods...
To get and set
these objects...

Which the dialog uses to
update information on...

getConnectionInformation
setConnectionInformation

com.gensym.ntw.
TwConnectionInfo

The Connection tab page.

getLoginRequest
setLoginRequest

com.gensym.ntw.
LoginRequest

The Security tab page.
264 Part III Application Classes

LoginDialog
private void handleOpenConnection() {

//Create LoginDialog
 if (loginDialog == null) {
 LoginDialog loginDialog = new LoginDialog

(null, i18nUI.getString("OpenConnectionDialogTitle"),
true, this);

 }

//Set host, port, and URL
loginDialog.setConnectionInformation(previousConnectionInfo);

//Set user name, user mode, and password
loginDialog.setLoginRequest(previousLoginRequest);

//Specify that Security tab page is read-only
loginDialog.setEditableTabPages(LoginDialog.SECURITY_TAB_PAGE,

false);

//Select Connection tab, by default
loginDialog.selectTabPage(LoginDialog.CONNECTION_TAB_PAGE);

//Launch dialog
 loginDialog.setVisible(true);
 }

The openConnectionDialogDismissed method implements the behavior of a
StandardDialogClient that listens for the action event associated with closing
the LoginDialog. The method takes a LoginDialog as its argument. It gets the
value of the host and port text fields by calling getConnectionInformation on
the dialog. It uses these values to open a connection, through a com.gensym.ntw.
TwGateway.

For information on implementing a StandardDialogClient, see “Listening for
Dialog Events” on page 77.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 265

Chapter 10 Using Shell Dialogs and UI Controls
private void openConnectionDialogDismissed(LoginDialog dlg) {
TwConnectionInfo newConnectionInfo =

dlg.getConnectionInformation();

try {
String host = newConnectionInfo.getHost();
String port = newConnectionInfo.getPort();
TwAccess unloggedInConnection = TwGateway.openConnection(host,

port);
previousConnectionInfo = newConnectionInfo;
// The following call will fail if the G2 is secure.
unloggedInConnection.login();
TW2Application application =

(TW2Application)GensymApplication.getApplication();
}
catch (G2AccessException e) {

e.printStackTrace();
}
dlg.setVisible(false);
}

The dialogDismissed method simply calls the openConnectionDialogDismissed
method to implement the behavior of the standard dialog client.

public void dialogDismissed(StandardDialog dlg, int code) {
if (dlg.wasCancelled()) return;
openConnectionDialogDismissed((LoginDialog)dlg);

}

266 Part III Application Classes

UserModePanel
UserModePanel

Description
UserModePanel provides a javax.swing.JComboBox that displays the user mode
of the current connection. Depending on how you construct the panel, the user
can switch the user mode:

• First, by entering a new value in the text area,

• Then, by choosing the user mode from the list of available modes.

Note The UI control initializes with the current G2 user mode; it does not initialize with
all available user modes.

The constructor you use depends on whether the user is allowed to edit the user
mode and whether your application allows multiple connections to G2.

You embed this control in a toolbar or dialog to provide a user interface for
displaying or switching the user mode of the current connection.

Constructor
UserModePanel provides three constructors:

Use this constructor... To create a dialog that...

UserModePanel() Displays the user mode of the current
connection as static text. Use this
constructor when the user is not allowed
to edit the user mode.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 267

Chapter 10 Using Shell Dialogs and UI Controls
Example
This example creates a com.gensym.mdi.MDIToolBarPanel that includes a
UserModePanel in a com.gensym.ui.toolbar.ToolBar. The example shows how
to add the UserModePanel to a multiple connection application, which allows the
user to switch the current user mode.

UserModePanel
(TwConnection connection,
boolean allowUserModeAddition)

Displays the user mode of the current
connection and provides a list of
previously entered user modes from
which to choose. Use this constructor in
single connection applications. Use the
boolean argument to specify whether or
not the user can enter a new value in the
combo box.

UserModePanel
(ConnectionManager connectionMgr,
boolean allowUserModeAddition)

Displays the user mode of the current
connection and provides a list of
previously entered user modes from
which to choose. Use this constructor in
multiple connection applications. Use the
boolean argument to specify whether or
not the user can enter a new value in the
combo box.

Use this constructor... To create a dialog that...

For more information on... See...

Creating toolbar panels “Creating an MDI Toolbar Panel”
on page 197.

Adding buttons and panels to
toolbars

“Adding All Command Keys” on
page 124.
268 Part III Application Classes

UserModePanel
Here is the method that creates the toolbar panel, where the constructor for the
UserModePanel appears in bold:

private ConnectionManager connectionManager;

private MDIToolBarPanel createToolBarPanel() {

//Create a toolbar panel
MDIToolBarPanel panel = new MDIToolBarPanel();

//Create toolbar
ToolBar tb = new ToolBar ();
try {

//Add UserModePanel with type-in capability
tb.add (new UserModePanel(connectionManager, true));

} catch (G2AccessException e) {
e.printStackTrace();

}

//Add toolbar to panel
panel.add(tb);

//Return panel
return panel;

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 269

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Chapter 11 Using Shell Commands
Version 3.1 Mode: Working Size: 7x9x11
11
Using Shell Commands
Describes commands that you use in an application shell to perform common
tasks, such as connecting to G2, starting and pausing G2, getting named KB
workspaces, and interacting with items on KB workspaces.

Introduction 272

Packages Covered 275

Relevant Demos 275

ConnectionCommands 276

CreationCommands 278

EditCommands 279

ExitCommands 281

G2StateCommands and CondensedG2StateCommands 283

HelpCommands 286

ItemCommands 287

SwitchConnectionCommand 290

TraceCommands 291

WorkspaceCommands 293

WorkspaceInstanceCommands 296

ZoomCommands 299
271

Chapter 11 Using Shell Commands
Introduction
The com.gensym.shell.commands package provides a number of built-in
commands, called shell commands, which you can use directly in your
application to perform standard interactions with G2. The Telewindows2 (TW2)
Toolkit Java application shell uses all of these commands in its default and
context-sensitive menu bars and toolbars.

This table describes and gives a page reference for each command:

Class Description See

ConnectionCommands Connects to and
disconnects from G2.

page 276

SwitchConnectionCommand Switches the G2 connection
in an application that
supports multiple
connections.

page 290

G2StateCommands and
CondensedG2StateCommands

Changes the G2 run state. page 283

EditCommands Provides standard
cut/copy/paste commands
for editing items on a KB
workspace.

page 279

ItemCommands Performs standard G2
operations on items on a
KB workspace, such as, lift
to top, drop to bottom,
enable, disable, and delete.

page 287

WorkspaceCommands Creates a new KB
workspace and gets a
named KB workspace.

page 293

WorkspaceInstanceCommands Performs operations on a
KB workspace, such as
editing its properties,
selecting all items, and
printing.

page 296

ZoomCommands Scales a workspace view in
or out, by a percentage, or
to fit the workspace view.

page 299
272 Part III Application Classes

Introduction
To use a shell command in your application, add the command to a command-
aware container, as described in “Creating Command-Aware Containers” on
page 122.

Each reference section in this chapter provides:

• A general description of the command and any special behavior.

• The available command keys, their behavior, and their iconic representation.

• The constructors for each command.

• The command availability in applications that support single connections and
multiple connections, where relevant.

Command Keys
Each command defines a final static variable for each command key, for example,
TW_CONNECT.

You refer to this key when you add individual command keys to a command-
aware container.

You also use the command key as a key into a resource properties file to localize
command text.

Constructors
You use different versions of the constructor, depending on the type of
application and whether your application supports single or multiple connections
to G2.

Many commands provide two constructors, which take one or more of the
following types of arguments:

• A frame:

– java.awt.Frame

– com.gensym.mdi.MDIFrame

ExitCommands Exits the application. page 281

HelpCommands Displays a help dialog. page 286

TraceCommands Customizes how the
application handles tracing
and exceptions.

page 291

Class Description See
Telewindows2 Toolkit Java Developer’s Guide Application Classes 273

Chapter 11 Using Shell Commands
• A single document interface (SDI) or multiple document interface (MDI)
application:

– com.gensym.shell.util.TW2Application

– com.gensym.shell.util.TW2MDIApplication

• A connection or connection manager:

– An implementation of com.gensym.ntw.TwAccess, such as TwGateway

– com.gensym.shell.util.ConnectionManager

For example, ConnectionCommands provides two versions of its constructor for
use with either SDI or MDI applications, respectively:

• ConnectionCommands(TW2Application app)

• ConnectionCommands(TW2MDIApplication app)

Similarly, ExitCommands provides two versions of its constructor for use with any
application frame, and a single connection or multiple connection application,
respectively:

• ExitCommands(Frame frame, TwAccess connection)

• ExitCommands(Frame frame, ConnectionManager connectionManager)

Availability
Some commands are always available, whereas others become available or
unavailable when certain events occur, such as when the connection context of a

For information on using... See...

java.awt.Frame “UiApplication” on page 229.

TW2Application “Creating Single Document
Interface Applications” on
page 247.

TW2MDIApplication “Creating Multiple Document
Interface Applications” on
page 251.

TwGateway “Will the Application Support
Single or Multiple Connections to
G2?” on page 236.

ConnectionManager “Creating and Managing
Connections to G2” on page 236.
274 Part III Application Classes

Packages Covered
multiple connection application changes. The description of each command
defines when it becomes available and unavailable.

For more information about command availability, see “Delivering Command
Events By Setting Properties” on page 135.

Packages Covered

com.gensym.shell.commands
CondensedG2StateCommands
ConnectionCommands
CreationCommands
EditCommands
ExitCommands
G2StateCommands
HelpCommands
ItemCommands
SwitchConnectionCommand
TraceCommands
WorkspaceCommands
WorkspaceInstanceCommands
ZoomCommands

Note G2StateCommand and CondensedG2StateCommand are documented together under
G2StateCommand.

Relevant Demos
The following demos show examples of shell commands:

• singlecxnmdiapp

• multiplecxnmdiapp

• multiplecxnsdiapp

The demos are located in this directory, depending on your platform:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
Telewindows2 Toolkit Java Developer’s Guide Application Classes 275

Chapter 11 Using Shell Commands
ConnectionCommands
ConnectionCommands provides command keys for connecting to and
disconnecting from G2.

You can use ConnectionCommands in both single and multiple connection
applications.

Note Multiple connection applications must use a com.gensym.shell.util.
ConnectionManager to maintain open connections to G2.

Command Keys
ConnectionCommands provides two command keys and icons:

This command key... Performs this action...
And defines
this icon...

TW_CONNECT Displays a dialog for
specifying the host, port, and
URL of a G2 to which to
connect, as well as the user
name, user mode, and
password to log on to a
secure G2.

Click OK in the dialog to
connect to G2, using the
specified connection and
login information.

TW_DISCONNECT Displays a dialog with a list
of open G2 connections.

Choose a connection and
click OK to close the selected
connection.
276 Part III Application Classes

ConnectionCommands
Constructors
You can use ConnectionCommands in both SDI and MDI applications by using the
appropriate version of its constructor:

Availability
The command keys have this availability in single connection applications:

The command keys have this availability in multiple connection applications:

If you are creating a... Use this version of the constructor...

Single document interface
application

ConnectionCommands(TW2Application app)

Multiple document interface
application

ConnectionCommands(TW2MDIApplication app)

This command key... Is available when... Is unavailable when...

TW_CONNECT The current connection is
null.

The current connection is
not null.

TW_DISCONNECT The current connection is
not null.

The current connection is
null.

This command key... Is available when... Is unavailable when...

TW_CONNECT Always. Never.

TW_DISCONNECT At least one connection
exists.

No connection exists.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 277

Chapter 11 Using Shell Commands
CreationCommands
CreationCommands provides command keys for creating items on a KB
workspace.

You can use ConnectionCommands in both single and multiple connection
applications.

Command Keys
CreationCommands provides two command keys and no icons:

Constructors
You can use CreationCommands in any type of user-interface application by using
this constructor:

CreationCommands()

Availability
The command keys have this availability:

This command key... Performs this action...

NEW_ITEM Displays a palette of items, which
you can drag and drop onto a
workspace view. To edit the items
on the palette, right-click the
palette and choose Edit Classes,
then add system-defined and/or
user-defined classes to the palette.

NEW_BEAN Creates a G2 bean on a KB
workspace.

Note: This feature is currently not
supported.

This command key... Is available when... Is unavailable when...

NEW_ITEM A workspace view is
selected.

A workspace view is not
currently selected.

NEW_BEAN A workspace view is
selected.

A workspace view is not
currently selected.
278 Part III Application Classes

EditCommands
EditCommands
EditCommands provides command keys for standard cut/copy/paste actions for
interacting with G2 items on KB workspaces.

Note You can paste the cut or copied item into workspace views from the same
connection only; you cannot paste the item into a workspace view from a different
connection or another TW2 Toolkit application.

The commands apply to the selected items in the current workspace view. To
change the current workspace view programmatically, call the command’s
setWorkspaceView method.

Command Keys
EditCommands provides three command keys:

This command key... Performs this action... And defines this icon...

COPY_SELECTION Copies the currently
selected item to the
clipboard.

CUT_SELECTION Places the currently
selected items in the
clipboard buffer.

PASTE_SELECTION Transfers the clipboard
buffer to the current
workspace view.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 279

Chapter 11 Using Shell Commands
Constructors
You can use EditCommands in SDI or MDI applications. If you are creating an MDI
application, you typically add this command to a context-sensitive menu bar
associated with a subclass of com.gensym.shell.util.WorkspaceDocument. The
command provides two constructors:

For information on creating context-sensitive menu bars and workspace
documents, see Chapter 8, “Using Telewindows2 Toolkit MDI Documents” on
page 207.

Availability
The command keys have this availability:

If you are creating a... Use this version of constructor...

Single document interface
application

EditCommands()

Multiple document interface
application

EditCommands(MDIFrame parentFrame)

This command key... Is available when... Is unavailable when...

CUT_SELECTION An item is selected. No item is selected.

COPY_SELECTION An item is selected. No item is selected.

PASTE_SELECTION An item is on the
clipboard for the current
connection.

No item is on the
clipboard.
280 Part III Application Classes

ExitCommands
ExitCommands
ExitCommands provides a single command key for exiting the application. The
command closes all open connections before exiting.

You can use this command in both single and multiple connection applications.
You maintain the current connection differently depending on the type of
connection:

Command Keys
ExitCommands provides a single command key and icon:

Constructors
You can use ExitCommands in both single and multiple connection applications,
by using the appropriate version of the constructor:

In applications that support... Do this...

Single connections You must update the command with
the current connection by calling the
setConnection method on
ExitCommands.

Multiple connections The com.gensym.shell.util.
ConnectionManager takes care of
maintaining the current connection for
you.

This command key... Performs this action...
And defines
this icon...

EXIT Closes any open G2
connections and exits the
application.

If you are creating a... Use this version of the constructor...

Single connection
application

ExitCommands(Frame frame, TwAccess connection)

Multiple connection
application

ExitCommands(Frame frame,
ConnectionManager connectionManager)
Telewindows2 Toolkit Java Developer’s Guide Application Classes 281

Chapter 11 Using Shell Commands
Note In a single connection application, if the connection is not known at the time at
which the command is created, you can pass null as the argument to the
constructor. To update the command with the connection information when it is
available, call setConnection on the ExitCommands instance.

Availability
The command key has this availability:

This command key... Is available... Is unavailable...

EXIT Always. Never.
282 Part III Application Classes

G2StateCommands and CondensedG2StateCommands
G2StateCommands and
CondensedG2StateCommands

G2StateCommands provides command keys for starting, pausing, resuming,
resetting, and restarting G2 from the client. You can choose between two versions
of this command:

All G2 run state changes affect the current connection.

You can use this command in both single and multiple connection applications.
You maintain the current connection differently depending on the type of
connection:

Use this command... If you want to provide...

G2StateCommands Separate command keys for
starting, pausing, resuming,
restarting, and resetting G2.

CondensedG2StateCommands A single command key for
starting, pausing, and resuming,
which switches to the appropriate
command key, depending on the
context.

In applications that support... Do this...

Single connections You are responsible for updating the
command with the current connection
by calling the setConnection method
on G2StateCommands.

Multiple connections The com.gensym.shell.util.
ConnectionManager takes care of
maintaining the current connection for
you.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 283

Chapter 11 Using Shell Commands
Command Keys
G2StateCommands provides five command keys and icons:

CondensedG2StateCommands provides three command keys:

This command key... Performs this action...
And defines
this icon...

PAUSE Pauses G2 when running.

RESET Resets G2.

RESTART Restarts G2.

RESUME Resumes G2 when paused.

START Starts G2 when reset.

This command key... Performs this action...
And defines
these icons...

START_PAUSE_OR_
RESUME

Starts G2 when reset, pauses G2
when running, or resumes G2
when paused.

RESET Resets G2.

RESTART Restarts G2.
284 Part III Application Classes

G2StateCommands and CondensedG2StateCommands
Constructors
You can use G2StateCommands and CondensedG2StateCommands in both single
and multiple connection applications by using the appropriate version of the
constructor:

Note In a single connection application, if the connection is not known at the time at
which the command is created, you can pass null as the argument to the
constructor. To update the command with the connection information when it is
available, call setConnection on the G2StateCommands or
CondensedG2StateCommands instance.

Availability
The command's availability reflects the current state of the G2 server that
corresponds to the current connection.

If you are creating a... Use this version of each constructor...

Single connection
application

G2StateCommands(TwAccess connection)

CondensedG2StateCommands(TwAccess connection)

Multiple connection
application

G2StateCommands
(ConnectionManager connectionManager)

CondensedG2StateCommands
(ConnectionManager connectionManager)
Telewindows2 Toolkit Java Developer’s Guide Application Classes 285

Chapter 11 Using Shell Commands
HelpCommands
HelpCommands provides a single command key that displays information about
the TW2 Toolkit default application shell in a dialog. The command launches an
instance of a com.gensym.dlg.AboutDialog.

Note This command launches an About dialog with text specific to the TW2 Toolkit
default application shell, which you cannot edit. To create an About dialog for
your application, create and launch an instance of an AboutDialog, as described
in AboutDialog on page 95.

Command Keys
HelpCommands provides a single command key and no icon:

Constructors
You can use HelpCommands in any type of user-interface application by calling its
constructor:

HelpCommands(Frame frame)

The constructor takes any subclass of java.awt.Frame as its argument, including
any of the TW2 application foundation classes provided in the com.gensym.
shell.util package.

Availability
The command key has this availability:

This command key... Performs this action...

ABOUT Displays the About dialog for the
TW2 Toolkit default application
shell, which contains help text
within a scrollable text region.

This command key... Is available... Is unavailable...

ABOUT Always. Never.
286 Part III Application Classes

ItemCommands
ItemCommands
ItemCommands provides numerous command keys that correspond to the G2
system-defined user menu choices for items on a KB workspace.

The commands apply to the items in the current workspace view. To change the
current workspace view programmatically, call the setWorkspaceView method
on the command.

Command Keys
ItemCommands provides the following command keys:

Command Key Action Icon

DELETE_SELECTION Permanently deletes the selected
item(s) in the current workspace
view.

DISABLE_SELECTION Disables the selected item(s).

DROP_SELECTION_TO_BOTTOM Drops the selected item(s) to the
bottom of the drawing order.

EDIT_ITEM_TEXT Launches the native text editor for
editing the text attribute of the
selected item(s).

ENABLE_SELECTION Enables the selected item(s).
Telewindows2 Toolkit Java Developer’s Guide Application Classes 287

Chapter 11 Using Shell Commands
Constructors
You can use ItemCommands in SDI or MDI applications. If you are creating an MDI
application, you typically add this command to a context-sensitive menu bar
associated with a subclass of com.gensym.shell.util.WorkspaceDocument. The
command provides two constructors:

For information on creating context-sensitive menu bars and workspace
documents, see Chapter 8, “Using Telewindows2 Toolkit MDI Documents” on
page 207.

ITEM_PROPERTIES Displays the item properties dialog
for the selected item(s).

LIFT_SELECTION_TO_TOP Lifts the selected item(s) to the top
of the drawing order.

Command Key Action Icon

If you are creating a... Use this version of constructor...

Single document interface
application

ItemCommands()

Multiple document interface
application

ItemCommands(MDIFrame parentFrame)
288 Part III Application Classes

ItemCommands
Availability
The command keys have this availability:

This command key... Is available when... Is unavailable when...

DELETE_SELECTION At least one item is
selected.

No item is selected.

ENABLE_SELECTION All selected items are
disabled.

A selected item(s) is(are)
enabled.

DISABLE_SELECTION All selected items are
enabled.

A selected item(s) is(are)
disabled.

DROP_SELECTION_TO_BOTTOM At least one item is
selected.

No item is selected.

LIFT_SELECTION_TO_TOP A single item is
selected.

No item is selected.

EDIT_ITEM_TEXT The selected item has a
text attribute.

The selected item has no
text attribute.

ITEM_PROPERTIES A single item is
selected.

No item is selected.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 289

Chapter 11 Using Shell Commands
SwitchConnectionCommand
SwitchConnectionCommand provides a command key that switches between open
G2 connections in a multiple connection application.

As new connections are opened, the command keeps track of the open
connections and presents them to the user in a cascading submenu.

This command is only applicable in multiple connection applications. The
application is responsible for maintaining open G2 connections through a com.
gensym.shell.util.ConnectionManager.

Command Keys
SwitchConnectionCommand provides a single command key and no icon:

Constructors
Because you can only switch connections in a multiple connection application,
SwitchConnectionCommand provides a single constructor, which takes a
ConnectionManager as its argument:

SwitchConnectionCommand(ConnectionManager connectionMgr)

Availability
The command key has this availability:

This command key... Performs this action...

TW_SWITCH_CONNECTION Displays a cascading submenu
with a list of all open G2
connections. The submenu
updates dynamically when a new
connection is opened or an existing
connection is closed.

To switch the current connection,
select a connection from the
submenu.

This command key... Is available when... Is unavailable when...

TW_SWITCH_CONNECTION A connection exists. No connection exists.
290 Part III Application Classes

TraceCommands
TraceCommands
TraceCommands provides a subcommand that launches a dialog for customizing
the trace level and configuring exception handling. The command also provides
command keys for enabling and disabling different levels of tracing.

Command Keys
TraceCommands provides four command keys and no icons:

For information about tracing and debugging, see the G2 JavaLink User’s Guide.

Constructors
You can use TraceCommands in any type of user-interface application by using this
constructor:

TraceCommands(Frame frame)

Availability
The command keys have this availability:

This command key... Performs this action...

CUSTOMIZE Displays a dialog for setting the
trace keys, trace level, and trace
messages.

EXCEPTIONS Enables or disables application-
level exception printing.

GLOBAL Enables or disables all tracing.

TRACE Displays a cascading submenu
that includes the EXCEPTIONS,
GLOBAL, and CUSTOMIZE command
keys.

This command key... Is available... Is unavailable...

CUSTOMIZE Always. Never.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 291

Chapter 11 Using Shell Commands
EXCEPTIONS Always. Never.

GLOBAL Always. Never.

TRACE Always. Never.

This command key... Is available... Is unavailable...
292 Part III Application Classes

WorkspaceCommands
WorkspaceCommands
WorkspaceCommands provides command keys for getting a named KB workspace
and creating a new KB workspace.

The command adds a workspace view to the appropriate container, depending on
the type of application, as this table describes:

To add the workspace view to a subclass of WorkspaceDocument:

• Call the setWorkspaceDocumentFactory method on the command.

• Provide an implementation of com.gensym.shell.util.
WorkspaceDocumentFactory as the argument to the set method.

For information on creating workspace document types and using workspace
document factories, see Chapter 8, “Using Telewindows2 Toolkit
MDI Documents” on page 207.

You can use this command in both single and multiple connection applications.
You maintain the current connection differently depending on the type of
connection:

If you are creating a... The command does this...

Single document
interface application

Adds the workspace view to the center of
the current application frame.

Multiple document
interface application

Uses a com.gensym.shell.util.
DefaultWorkspaceDocumentFactoryImpl to
create a com.gensym.shell.util.
WorkspaceDocument, and adds the
workspace view to the workspace
document.

In applications that support... Do this...

Single connections You are responsible for updating the
command with the current connection
by calling the setConnection method
on WorkspaceCommands.

Multiple connections The com.gensym.shell.util.
ConnectionManager takes care of
maintaining the current connection for
you.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 293

Chapter 11 Using Shell Commands
Command Keys
WorkspaceCommands provides two command keys and icons:

Constructors
You can use WorkspaceCommands in both single and multiple connection
application, by using the appropriate version of the constructor:

Note In a single connection application, if the connection is not known at the time at
which the command is created, you can pass null as the argument to the
constructor. To update the command with the connection information when it is
available, call setConnection on the WorkspaceCommands instance.

This command key... Performs this action...
And defines
this icon...

GET_WORKSPACE Displays a com.gensym.dlg.
SelectionDialog with a
scrolling list of all named KB
workspaces.

Select a KB workspace and click
OK to download the selected
workspace and display it in the
appropriate container,
depending on the type of
application.

NEW_WORKSPACE Creates an unnamed KB
workspace and adds it to a
workspace document, according
to the registered workspace
document factory.

If you are creating a... Use this version of the constructor...

Single connection
application

WorkspaceCommands(Frame frame, TwAccess connection)

Multiple connection
application

WorkspaceCommands(Frame frame,
ConnectionManager connectionMgr)
294 Part III Application Classes

WorkspaceCommands
Availability
The command keys have this availability:

This command key... Is available when... Is unavailable when...

GET_WORKSPACE The current connection is
not null.

The current connection is
null.

NEW_WORKSPACE The current connection is
not null.

The current connection is
null.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 295

Chapter 11 Using Shell Commands
WorkspaceInstanceCommands
WorkspaceInstanceCommands provides command keys for the G2 system-defined
menu choices for KB workspaces, such as printing, shrink wrapping, deleting,
and displaying the properties dialog.

All the actions of the command apply to the current workspace view. To change
the current workspace view programmatically, call the setWorkspaceView
method on the command.

Command Keys
WorkspaceInstanceCommands provides the following command keys and icons:

This command key... Performs this action...
And defines
this icon...

DELETE_WORKSPACE Deletes the selected KB workspace.

DISABLE_WORKSPACE Disables the selected KB
workspace.

ENABLE_WORKSPACE Enables the selected KB
workspace.

PRINT_WORKSPACE Displays a standard dialog for
specifying the print destination,
page range, copies, and properties
for printing the selected KB
workspace.

Click OK to send the selected KB
workspace to the specified
destination.

SELECT_ALL_WORKSPACE_ITEMS Selects all items on the selected KB
workspace.
296 Part III Application Classes

WorkspaceInstanceCommands
Constructors
You can use WorkspaceInstanceCommands in SDI or MDI applications. If you are
creating an MDI application, you typically add this command to a context-
sensitive menu bar associated with a subclass of com.gensym.shell.util.
WorkspaceDocument. The command provides two constructors:

For information on creating context-sensitive menu bars and workspace
documents, see Chapter 8, “Using Telewindows2 Toolkit MDI Documents” on
page 207.

Availability
The command keys have this availability:

SHRINK_WRAP_WORKSPACE Shrink wraps the selected KB
workspace.

WORKSPACE_PROPERTIES Displays the properties dialog for
the selected KB workspace.

This command key... Performs this action...
And defines
this icon...

If you are creating a... Use this version of constructor...

Single document interface
application

WorkspaceInstanceCommands()

Multiple document interface
application

WorkspaceInstanceCommands
(MDIFrame parentFrame)

This command key... Is available when... Is unavailable when...

PRINT_WORKSPACE A workspace document
has focus.

No workspace
document has focus.

DELETE_WORKSPACE A workspace document
has focus.

No workspace
document has focus.

DISABLE_WORKSPACE The workspace is
enabled.

The workspace is
disabled.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 297

Chapter 11 Using Shell Commands
ENABLE_WORKSPACE The workspace is
disabled.

The workspace is
enabled.

SELECT_ALL_WORKSPACE_ITEMS A workspace document
has focus.

No workspace
document has focus.

SHRINK_WRAP_WORKSPACE A workspace document
has focus.

No workspace
document has focus.

WORKSPACE_PROPERTIES A workspace document
has focus.

No workspace
document has focus.

This command key... Is available when... Is unavailable when...
298 Part III Application Classes

ZoomCommands
ZoomCommands
ZoomCommands provides command keys for setting the zoom scale of the current
workspace view, zooming in, and zooming out.

All the actions of the command apply to the current workspace view. To change
the current workspace view programmatically, call the setWorkspaceView
method on the command.

Command Keys
ZoomCommands provides the following command keys and icons:

This command key... Performs this action...
And defines
this icon...

ZOOM Launches a Zoom dialog for
choosing from one of a number of
standard zoom scales or entering a
specific percentage to zoom.

ZOOM_IN Scales the workspace to 1.2 times
its current size, by default.

ZOOM_OUT Scales the workspace to .8 times its
current size, by default.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 299

Chapter 11 Using Shell Commands
Constructors
You can use ZoomCommands in any UI application, with or without default values:

Availability
The command keys have this availability:

If you wish to use... Use this version of constructor...

A default zoomInAmount of 1.2
and a default zoomOutAmount
of 0.8.

ZoomCommands(Frame frame)

Your own zoom amounts ZoomCommands(Frame frame,
double[] values, String[] labels,
boolean includeZoomToFit,
boolean includeZoomPercent,
double zoomInAmount,
double zoomOutAmount)

This command key... Is available when... Is unavailable when...

ZOOM A workspace document
has focus.

No workspace
document has focus.

ZOOM_IN A workspace document
has focus.

No workspace
document has focus.

ZOOM_OUT A workspace document
has focus.

No workspace
document has focus.
300 Part III Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Chapter 12 Understanding the Telewindows2 Toolkit Shell
Version 3.1 Mode: Working Size: 7x9x11
12
Understanding the
Telewindows2 Toolkit Shell
Describes the implementation of the Telewindows2 Toolkit default application
shell for Java, which is an example of a multiple connection MDI application.

Introduction 302

Telewindows2 Toolkit Default Application Shell Features 302

The Shell Class 303

Constructor and Constructor Method 314

TW2MDIApplication Methods 315

Application Frame and UI Components 316

Menus and Toolbars 318

Register WorkspaceDocumentFactory 321

ContextChangedListener Method 321

Status Bar Method 322

Main Method 322

ShellWorkspaceDocument and ShellWorkspaceDocumentFactory 325
301

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Introduction
Telewindows2 (TW2) Toolkit includes a default application shell that you can use
as an example of the kind of G2 client application you can build in Java. This shell
is referred to as the TW2 Toolkit shell, or just the shell.

The TW2 Toolkit shell exists to illustrate how a UI developer might create a client
user interface for interacting with G2. The TW2 Toolkit shell is an example of a
multiple connection, multiple document interface (MDI) application; however,
the techniques it uses are applicable for building any type of G2 client application.

In addition, you can use the shell as a simple user interface for connecting to
multiple G2 servers, viewing KB workspaces, editing the attributes of items
through item properties dialogs, and controlling the G2 run state.

For a walk-through of the TW2 Toolkit shell user interface, see Chapter 2,
“Guided Tour of the Telewindows2 Toolkit Shell” on page 33.

Telewindows2 Toolkit Default Application Shell
Features

The Telewindows2 Toolkit shell provides these features, which the referenced
sections describe in detail:

This feature... Is described in detail in...

A Telewindows2 Toolkit MDI
application capable of displaying and
manipulating multiple workspaces
views

“Creating Multiple Document Interface
Applications” on page 251.

A context changed listener, which
updates the status bar when the context
changes

“Listening for Changes in the Current
Connection Context” on page 242.

A default menu bar that supports
built-in commands for connecting to
multiple G2 servers, changing the G2
run mode, and getting KB workspaces

• “Creating Command-Aware
Containers” on page 122.

• Chapter 11, “Using Shell
Commands” on page 271.
302 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
The Shell Class
The TW2 Toolkit shell:

• Extends com.gensym.shell.util.TW2MDIApplication, which means it is a
multiple document interface application.

• Implements com.gensym.shell.util.ContextChangedListener, which
means it listens for changes in the connection context, as maintained by the
com.gensym.shell.util.ConnectionManager.

A default toolbar panel with several
commonly used commands and UI
controls

• “Creating Command-Aware
Containers” on page 122.

• Chapter 10, “Using Shell Dialogs
and UI Controls” on page 259.

• Chapter 11, “Using Shell
Commands” on page 271.

Multiple connections to G2 through a
ConnectionManager

“Creating and Managing Connections to
G2” on page 236.

A custom workspace document that
provides a context-specific menu bar,
and an associated workspace document
factory that generates the custom
workspace document

Chapter 8, “Using Telewindows2
Toolkit MDI Documents” on page 207.

Localized text Appendix A, “Localization.”

This feature... Is described in detail in...
Telewindows2 Toolkit Java Developer’s Guide Application Classes 303

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Inheritance Structure
The following figure shows the inheritance structure of the Shell class and the
package location of each of its superior classes.

For information on these application foundation classes, see “Application
Foundation Classes” on page 227.

Source Code
This section shows the complete Shell source code with comments.

The source code is located in this file in your TW2 Toolkit product directory:

MDIApplication

UIApplication

ContextChangedListener

GensymApplication

Shell

Class

Interface

Implements

Extends

TW2MDIApplication

com.gensym.util (G2 JavaLink)

com.gensym.ntw.util

com.gensym.mdi

com.gensym.shell.util

com.gensym.shell.util

com.gensym.shell

NT: %SEQUOIA_HOME%\classes\com\gensym\shell\Shell.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/shell/Shell.java
304 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
See the sections that follow for explanations of each major feature.
package com.gensym.shell;

import java.awt.Image;
import java.awt.Toolkit;
import com.gensym.jgi.G2AccessException;
import com.gensym.message.Resource;
import com.gensym.message.Trace;
import com.gensym.mdi.MDIFrame;
import com.gensym.mdi.MDIManager;
import com.gensym.mdi.MDIDocument;
import com.gensym.mdi.MDIStatusBar;
import com.gensym.mdi.MDIToolBarPanel;
import com.gensym.ntw.LoginRequest;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.TwConnectionAdapter;
import com.gensym.ntw.TwConnectionEvent;
import com.gensym.ntw.TwConnectionInfo;
import com.gensym.shell.commands.*;
import com.gensym.shell.util.*;
import com.gensym.ui.RepresentationConstraints;
import com.gensym.ui.menu.CMenu;
import com.gensym.ui.menu.CMenuBar;
import com.gensym.ui.toolbar.ToolBar;
import com.gensym.util.Symbol;
import javax.swing.SwingConstants;
import javax.swing.UIManager;

public class Shell extends TW2MDIApplication
implements ContextChangedListener {

//******************
// Private Variables
//******************

//G2 Menu System variable
private static final Symbol GMS_ = Symbol.intern ("GMS");

//Resource variable to support localization
private static Resource i18nUI =

Resource.getBundle("com.gensym.shell.Messages");

//Application frame variable
private MDIFrame frame = null;

//Variable for creating and managing multiple connections
private ConnectionManager connectionManager;
Telewindows2 Toolkit Java Developer’s Guide Application Classes 305

Chapter 12 Understanding the Telewindows2 Toolkit Shell
//UI container variables
private MDIStatusBar statusBar;
private MDIToolBarPanel toolBarPanel;
private CMenuBar menuBar;
private RepresentationConstraints menuConstraints =

new RepresentationConstraints
(RepresentationConstraints.TEXT_AND_ICON,
SwingConstants.LEFT,
SwingConstants.CENTER,
SwingConstants.RIGHT,
SwingConstants.CENTER);

//User mode variable
private Symbol userMode;

//Exception listener and handler for login failures
//from command line arguments
private ShellModeListener modeListener = new ShellModeListener();
private TW2LoginFailureHandler loginFailureHandler;

//Command variables that the shell adds to its UI containers
ConnectionCommands connectionHandler;
SwitchConnectionCommand switchConnectionHandler;
CondensedG2StateCommands g2StateHandler;
ExitCommands exitHandler;
HelpCommands helpHandler;
TraceCommands traceHandler;
WorkspaceCommands wkspHandler;

//Variable responsible for creating the correct subclass of
//WorkspaceDocument in which to display workspace views
private WorkspaceDocumentFactory shellWkspDocFactory;

//***********************************
// Constructor and Constructor Method
//***********************************

public Shell (String[] cmdLineArgs) {

//Parse the command line arguments
super(cmdLineArgs);

//Create the Shell container
createShell();

private void createShell() {

//Create the MDIFrame
frame = createFrame(i18nUI.getString("ShellTitle"));

//Set the current frame
setCurrentFrame(frame);

//Create the ConnectionManager
connectionManager = new ConnectionManager();
306 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
//Add ConnectionManager as listener for ContextChangedEvents
connectionManager.addContextChangedListener(this);

//Create the UI components
cseateUiComponents();

//Register workspace document factory
registerWorkspaceDocumentFactory();

//Set up login failure handler
loginFailureHandler = new ShellLoginFailureHandler();

}

//**************************
// TW2MDIApplication Methods
//**************************

//getConnectionManager returns ConnectionManager
//in multiple connection applications
public ConnectionManager getConnectionManager(){

return connectionManager;
}

//getConnection returns null in multiple connection applications
public TwAccess getConnection(){

return null;
}

//setConnection has no implementation in multiple
//connection applications
public void setConnection(TwAccess connection){}

//************************************
// Application Frame and UI Components
//************************************

//Create the UI components
protected void createUiComponents() {

frame.setStatusBar(statusBar = createStatusBar());
frame.setDefaultMenuBar(menuBar = createMenuBar());
frame.setDefaultToolBarPanel(toolBarPanel =

createToolBarPanel());
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 307

Chapter 12 Understanding the Telewindows2 Toolkit Shell
//Create the MDI frame
private MDIFrame createFrame(String title) {

//Create the MDI frame
MDIFrame frame = new MDIFrame(title);

//Set the logo to be the Gensym logo
Image image = Toolkit.getDefaultToolkit().

getImage(this.getClass().getResource("gensym_logo.gif"));
if (image != null)

frame.setIconImage(image);

return frame;
}

//Create the menu bar
protected CMenuBar createMenuBar() {

CMenuBar mb = new CMenuBar();

// Create the FILE menu
mb.add(createFileMenu());

// Create the G2 menu
mb.add(createG2Menu());

// Create the HELP menu
mb.add(createHelpMenu());

return mb;
 }

//Create the toolbar panel
protected MDIToolBarPanel createToolBarPanel() {

//Create the toolbar panel
MDIToolBarPanel panel = new MDIToolBarPanel();

//Create the first toolbar, which contains buttons
ToolBar tb = new ToolBar();

//Add buttons and separators to the first toolbar
tb.add(workspaceHandler, WorkspaceCommands.GET_KBWORKSPACE);
tb.addSeparator();
tb.add(connectionHandler);
tb.addSeparator();
tb.add(g2StateHandler);

//Add the first toolbar to the toolbar panel
panel.add(tb);

//Create a second toolbar
ToolBar tb2 = new ToolBar();
308 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
//Add a HostPortPanel for switching the connection
try {

tb2.add(new HostPortPanel(connectionManager));
tb2.add(javax.swing.Box.createGlue());

} catch(G2AccessException ex) {
Trace.exception (ex);

}

//Add a UserModePanel for switching the user mode
try {

tb2.add(new UserModePanel(connectionManager, true));
} catch(G2AccessException ex) {
Trace.exception (ex);
}

//Add the second toolbar to the toolbar panel
panel.add(tb2);

//Return the toolbar panel
return panel;

}

//Create the status bar
protected MDIStatusBar createStatusBar() {

MDIStatusBar sb = new MDIStatusBar();
return sb;

}

//*******************
// Menus and Toolbars
//*******************

//Create File menu
private CMenu createFileMenu() {

//Create instance of a pulldown menu and get the
//menu bar text from the short resource bundle
CMenu menu = new CMenu (i18nUI.getString("ShellFileMenu"));

//Create instances of commands and add to
//menu with constraints, add separators
wkspHandler = new WorkspaceCommands(frame,

connectionManager);
menu.add(wkspHandler, WorkspaceCommands.GET_KBWORKSPACE,

menuConstraints);
exitHandler = new ExitCommands(frame, connectionManager);
menu.addSeparator();
menu.add(exitHandler, menuConstraints);

//Return menu
return menu;

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 309

Chapter 12 Understanding the Telewindows2 Toolkit Shell
//Create G2 menu
protected CMenu createG2Menu() {

CMenu menu = new CMenu(i18nUI.getString("ShellG2Menu"));
switchConnectionHandler = new

SwitchConnectionCommand(connectionManager);
menu.add(switchConnectionHandler);
connectionHandler = new ConnectionCommands(this);
menu.add(connectionHandler, menuConstraints);
g2StateHandler = new

CondensedG2StateCommands(connectionManager);
menu.addSeparator();
menu.add(g2StateHandler, menuConstraints);
return menu;

}

//Create Help menu
private CMenu createHelpMenu() {

CMenu menu = new
CMenu(i18nUI.getString("ShellHelpMenu"));

helpHandler = new HelpCommands(frame);
menu.add(helpHandler);
traceHandler = new TraceCommands(frame);
menu.addSeparator();
menu.add(traceHandler);
return menu;

}

//*************************
// WorkspaceDocumentFactory
//*************************

//Register WorkspaceDocumentFactory with workspace handler
private void registerWorkspaceDocumentFactory() {

shellWkspDocFactory =
new ShellWorkspaceDocumentFactoryImpl();

if (wkspHandler != null)
((WorkspaceCommands)wkspHandler).

setWorkspaceDocumentFactory(shellWkspDocFactory);
}

//******************************
// ContextChangedListener Method
//******************************

public void currentConnectionChanged(ContextChangedEvent e) {

//Get current connection from ContextChangedEvent
TwAccess connection = e.getConnection();

//Set status bar status to null if no connection
if (connection == null)

setStatusBarStatus (i18nUI.getString("ShellNoConnection"),
null);
310 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
//Set status bar status to current connection and
//user mode if connection exist
else {

if (e.isConnectionNew())
connection.addTwConnectionListener (new modeListener());

if (connection.isLoggedIn()) {
try {

userMode = connection.getUserMode();
setStatusBarStatus(connection.toShortString(),

userMode);
} catch (G2AccessException ex) {
Trace.exception(ex);
}

//Set status bar to null if not logged in
} else {

setStatusBarStatus(connection.toShortString(), null);
}

}
}

//******************
// Status Bar Method
//******************

private void setStatusBarStatus(String connection, Symbol mode) {
String status = connection;
if (mode != null)

status = status + " " + mode.toString().toLowerCase();
statusBar.setStatus(status);

}

class ShellModeListener extends TwConnectionAdapter {
public void loggedIn (TwConnectionEvent e) {

userMode = e.getUserMode ();
TwAccess connection = (TwAccess) e.getSource ();
setStatusBarStatus(connection.toShortString(), userMode);

}

public void userModeChanged (TwConnectionEvent e) {
userMode = e.getUserMode ();
TwAccess connection = (TwAccess) e.getSource ();
TwAccess currentCxn = connectionManager.getCurrentConnection();
if (connection != null && currentCxn != null &&

connection == currentCxn) {
setStatusBarStatus(connection.toShortString(), userMode);

}
}

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 311

Chapter 12 Understanding the Telewindows2 Toolkit Shell
//************
// Main Method
//************

public static void main(String[] cmdLineArgs) {

//Set the look and feel of Swing classes
try {

UIManager.setLookAndFeel
(UIManager.getSystemLookAndFeelClassName());

}
catch (Exception ex) {

throw new com.gensym.util.UnexpectedException(ex);
}

//Create an instance of the class
Shell application = new Shell(cmdLineArgs);

//Handle command line arguments for UiApplication
String title = getTitleInformation();
if (title != null)

application.frame.setTitle(title);

String geometry = getGeometryInformation();
if (geometry != null)

setBoundsForFrame(application.frame, geometry);

//Open a connection, using command line arguments
TwAccess unloggedInConnection = null;
TW2MDIWorkspaceShowingAdapter workspaceShowingListener = null;

try {

//Get ConnectionManager from application
ConnectionManager connectionMgr =

application.getConnectionManager();

//Get TwConnectionInfo from application
TwConnectionInfo connectionInfo = getG2ConnectionInformation();

//Create a WorkspaceShowingListener to respond to programmatic
//show and hide actions in G2
workspaceShowingListener = new TW2MDIWorkspaceShowingAdapter

(application.connectionManager);

if (connectionInfo != null) {
//Set connection information in ConnectionCommands
application.connectionHandler.

setPreviousConnectionInformation(connectionInfo);
312 Telewindows2 Toolkit Java Developer’s Guide Application Classes

The Shell Class
//Open a connection and make a LoginRequest
connectionMgr.openConnection(connectionInfo);
LoginRequest loginRequest = getLoginRequest();
if (loginRequest != null){

//Set login information in the ConnectionCommands
application.connectionHandler.

setPreviousLoginRequest(loginRequest);
unloggedInConnection =

connectionMgr.getCurrentConnection();
if (unloggedInConnection != null)

unloggedInConnection.login(loginRequest);
}

}

//Register the WorkspaceDocumentFactory for the
//WorkspaceShowingListener
workspaceShowingListener.

setWorkspaceDocumentFactory(application.shellWkspDocFactory);
 }

//Handle exceptions
catch (G2AccessException gae) {

Trace.exception (gae);
application.loginFailureHandler.

handleLoginFailureException(gae, unloggedInConnection);
 }

//Make the frame visible
application.frame.setVisible(true);

}

}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 313

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Constructor and Constructor Method
The Shell constructor and the createShell method perform these tasks:

• Parses the command-line arguments.

The constructor calls the constructor for its superior class, which parses
command-line arguments, and calls the createShell method, which
performs the actual tasks of the constructor.

By calling super(cmdLineArgs), the constructor lets:

– TW2MDIApplication parse these command-line arguments:

-url, -host, -port

– UIApplication parse these command-line arguments:

-title, -geometry

– GensymApplication parse and handle these command line arguments:

-language, -country, -variant

For the details of how the Shell class handles command-line arguments, see
“Main Method” on page 322.

• Creates the MDIFrame.

The constructor is responsible for creating the MDIFrame and getting its title
from the message resource bundle.

For details, see “Application Frame and UI Components” on page 316.

• Sets the current frame.

The constructor sets the current frame of the UiApplication to make it
available to other features of the application via the getCurrentFrame
method.

For more information, see “Creating and Setting the Frame in an MDI
Application” on page 252.

• Creates the ConnectionManager.

Because the TW2 Toolkit shell supports multiple G2 connections, the
constructor creates a ConnectionManager for creating and managing open
connections.

For an explanation of how the TW2 Toolkit shell creates and manages
connections, see “Main Method” on page 322.
314 Telewindows2 Toolkit Java Developer’s Guide Application Classes

TW2MDIApplication Methods
• Adds the ConnectionManager as a ContextChangedListener.

By adding the ConnectionManager as a listener for ContextChangedEvents,
the manager gets notified when the connection context changes. The
application updates the status bar when the context changes.

For an explanation of the ContextChangedListener method, see
“ContextChangedListener Method” on page 321.

For an explanation of the method that updates the status bar when the context
changes, see “Create the Status Bar” on page 317.

• Creates the UI components.

The constructor is responsible for creating the user interface components that
the application uses. The TW2 Toolkit shell creates a menu bar, toolbar, and
status bar.

For details, see “Application Frame and UI Components” on page 316.

• Registers the WorkspaceDocumentFactory with WorkspaceCommands.

The constructor is responsible for creating and setting the
WorkspaceDocumentFactory, which determines the type of workspace
document to create when displaying workspace views in a workspace
document.

For details, see “Register WorkspaceDocumentFactory” on page 321.

• Sets up login failure handler.

Creates an instance of a ShellLoginFailureHandler, which encapsulates login
error handling for the TW2 Toolkit shell.

For details, see the source code for this class:

com.gensym.shell.ShellLoginFailureHandler

TW2MDIApplication Methods
Because the TW2 Toolkit shell extends TW2MDIApplication, it must implement
these abstract methods for getting the ConnectionManager and the connection:

• getConnectionManager — Returns the com.gensym.shell.util.
ConnectionManager, because Shell is a multiple connection application.

• getConnection — Returns null, because Shell is a multiple connection
application.

• setConnection — Has no implementation because the TW2 Toolkit shell
manages connections through a ConnectionManager.

For more information, see “Implementing Abstract Methods to Manage
Connections” on page 244.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 315

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Application Frame and UI Components
The constructor through the private createShell method calls these two private
methods:

• createFrame — Creates an instance of a com.gensym.mdi.MDIFrame by
calling the createFrame method, passing a localized text string as the title.

• createUiComponents — Creates these UI components:

– Menu bar

– Toolbar

– Status bar

To create default UI components as part of the application frame, the TW2 Toolkit
shell calls set methods on the MDIFrame for each type of UI component. The
methods create a default menu bar, a default toolbar, and a status bar. The shell
displays the default menu bar and toolbar when no document has focus. The shell
updates the status bar when the connection context changes.

Each set method takes an instance of the associated UI component as its
argument. The set methods create these UI components by calling create
methods for each type of container, which the application defines.

The following sections describe the implementation of each create method.

Create the Menu Bar
The MDIFrame has a single default menu bar, which is an instance of a com.
gensym.ui.menu.CMenuBar.

The createMenuBar method:

• Creates an instance of a CMenuBar.

• Calls the add method on the menu bar to add each pulldown menu.

• Returns the menu bar.

The add method takes an instance of a CMenu as its argument, which is the
pulldown menu associated with the top-level menu choice on the menu bar.

Each add method dynamically creates the pulldown menus by calling a create
method for each pulldown menu, which the application defines.

For a description of one these create methods, see “Create File, G2, and Help
Menu” on page 318.
316 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Application Frame and UI Components
Create the Toolbar Panel
The MDIFrame is associated with a single default toolbar panel, which is an
instance of a com.gensym.mdi.MDIToolBarPanel.

The toolbar panel, in turn, contains two toolbars, which are instances of a com.
gensym.ui.toolbar.ToolBar.

The TW2 Toolkit shell’s toolbar panel consists of these two toolbars:

• A toolbar of icons that let you connection to and disconnect from G2, change
the G2 run state, and get a named KB workspace.

• A toolbar of choice boxes that let you switch between multiple connections
and switch the G2 user mode.

The createToolBarPanel method performs these tasks:

• Adds the two toolbars to the toolbar panel by calling the add method on the
MDIToolBarPanel.

• Calls an add method for each set of toolbar buttons, which is a method that the
application defines to create an instance of the command that contains the
toolbar buttons.

• Calls the add method directly on the ToolBar to add the two choice boxes.

• Adds separators to a toolbar by calling the addSeparator method on the
ToolBar.

• Returns the toolbar panel.

For a description of these add methods, see “Create Toolbar” on page 319.

Create the Status Bar
The MDIFrame has a status bar, which is an instance of a com.gensym.mdi.
MDIStatusBar.

The application updates the current connection and user mode of the status bar
when the current connection context changes by being a
ContextChangedListener.

For information on the implementation of the ContextChangedListener method
that updates the status bar, see “ContextChangedListener Method” on page 321.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 317

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Menus and Toolbars
The TW2 Toolkit shell supports two command-aware containers to which it adds
commands:

• A menu bar, which consist of three default menus:

– File

– G2

– Help

• A toolbar panel

For information on creating menus and toolbars, see “Creating Command-Aware
Containers” on page 122.

Create File, G2, and Help Menu
The method that creates the menu bar, createMenuBar, calls three create
methods, which create instances of each pulldown menu and consist of
commands located in the com.gensym.shell.commands package:

• createFileMenu — Consists of these commands:

– WorkspaceCommands, which defines the Get Workspace and New
Workspace commands.

– ExitCommands, which defines the Exit command.

• createG2Menu — Consists of these commands:

– SwitchConnectionCommand, which defines the Switch Connection
command.

– ConnectionCommands, which defines the Open Connection and Close
Connection commands.

– CondensedG2StateCommands, which defines the Start/Pause/Resume,
Reset, and Restart commands.

• createHelpMenu — Consists of these commands:

– HelpCommands, which defines the About command.

– TraceCommands, which defines the Customize, Exceptions, Global, and
Trace commands.
318 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Menus and Toolbars
Each command consists of one or more command keys. For example, the G2
pulldown menu looks like this:

For information on these commands, see Chapter 11, “Using Shell Commands”
on page 271.

Each pulldown menu’s create method performs these tasks:

• Creates an instance of a com.gensym.ui.menu.CMenu, passing a localized text
string as the menu label.

• Creates an instance of each command as a handler.

• Adds the handler to the pulldown menu by calling the menu’s add method.

• Adds separators to the pulldown menu, using its addSeparator method.

• Returns the pulldown menu.

Create Toolbar
The method that creates the toolbar panel, createToolBarPanel, creates two
toolbars:

• The first toolbar consists of toolbar buttons.

• The second toolbar consists of UI controls for viewing and changing the
current connection and G2 user mode.

The first toolbar calls various private add methods to create toolbar buttons from
shell commands.

The second toolbar calls the add method directly on the toolbar to add the UI
controls.

To see the method that adds the toolbar to the panel, see “Create the Toolbar
Panel” on page 317.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 319

Chapter 12 Understanding the Telewindows2 Toolkit Shell
First Toolbar
The first toolbar calls the following methods to create instances of commands in
the com.gensym.shell.commands package, where each command consists of
several command keys:

• addWorkspaceCommandsToolBarButtons — Creates an instance of
WorkspaceCommands.

• addConnectionCommandsToolBarButtons — Creates an instance of
ConnectionCommands.

• addG2StateCommandsToolBarButtons — Creates an instance of
CondensedG2StateCommands.

The methods each take an instance of a com.gensym.ui.toolbar.ToolBar as their
argument, which the method that creates the toolbar panel provides.

Each toolbar button’s add method performs these tasks:

• Creates an instance of each command as a handler.

• Adds the handler to the toolbar by calling the toolbar’s add method.

For example, the addConnectionCommandsToolBarButtons method adds toolbar
buttons for the command keys specified in ConnectionCommands.
ConnectionCommands takes as its argument an instance of a com.gensym.shell.
util.ConnectionManager, which is created elsewhere in the application.

The resulting toolbar looks like this:

For information on these commands, see Chapter 11, “Using Shell Commands”
on page 271.

Second Toolbar
The second toolbar calls the add method directly on the Toolbar to add instances
of these UI controls, both in the com.gensym.shell.util package:

• UserModePanel — Lets the user switch the G2 user mode of the current
connection.

• HostPortPanel — Lets the user switch the current connection.

The resulting toolbar looks like this:

For information on these UI controls, see Chapter 10, “Using Shell Dialogs and UI
Controls” on page 259.
320 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Register WorkspaceDocumentFactory
Register WorkspaceDocumentFactory
The constructor for the Shell class is responsible for registering the com.gensym.
shell.util.WorkspaceDocumentFactory with the instance of com.gensym.
shell.commands.WorkspaceCommands to specify the type of workspace document
the command creates when the user chooses Get Workspace or New Workspace.

To do this, the constructor calls the private registerWorkspaceDocumentFactory
method, which performs these tasks:

• Creates an instance of a ShellWorkspaceDocumentFactoryImpl, which the
application uses to create workspace documents.

• Sets the ShellWorkspaceDocumentFactoryImpl for the WorkspaceCommand
handler.

For information on setting the WorkspaceDocumentFactory for the
TW2MDIWorkspaceShowingAdapter, see “Main Method” on page 322.

For an explanation of the workspace document factory and associated workspace
document, see “ShellWorkspaceDocument and
ShellWorkspaceDocumentFactory” on page 325.

ContextChangedListener Method
Because the Shell class supports multiple connection through a com.gensym.
shell.util.ConnectionManager, it implements the com.gensym.shell.util.
ContextChangedListener interface. The Shell constructor adds itself as a listener
so it receives notification of changes in the current connection context as
maintained by the ConnectionManager.

For details, see “Constructor and Constructor Method” on page 314.

By implementing this interface, the Shell receives notification from the
ConnectionManager whenever the current connection closes or whenever a new
connection becomes the current connection. When the current connection context
changes, the ConnectionManager invokes the listener’s
currentConnectionChanged method, which performs these tasks:

• Checks to see if the TW2 Toolkit client is still connected to a G2 session.

• If no connection exists, calls the setStatusBarStatus method, passing in:

– A key for the connection, which the application looks up in the short
resource properties file at run time to determine the string to display.

– null for the user mode.

• If a connection exists, adds the connection as a listener for TwConnectionEvents
and calls the setStatusBarStatus method, passing the current connection
and user mode as the arguments.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 321

Chapter 12 Understanding the Telewindows2 Toolkit Shell
For a description of the setStatusBarStatus method, see “Create the Status Bar”
on page 317.

For information on ContextChangedListener, see “Listening for Changes in the
Current Connection Context” on page 242.

Status Bar Method
The setStatusBarStatus private method updates the status bar with the current
connection and user mode. It does this by creating an inner class,
TwModeListener, which extends com.gensym.ntw.TwConnectionAdapter, an
adapter class for com.gensym.ntw.TwConnectionListener.

TwModeListener implements these two methods:

• loggedIn — Sets the status of the status bar to the current status when the
user logs on to a G2 connection.

• userModeChanged — Gets the current user mode from the
TwConnectionEvent when the user changes the user mode.

The methods convert the user mode and connection to a string, and displays them
in the status bar by calling setStatus.

Main Method
The body of the main method for the Shell class performs these tasks:

• Sets the look and feel of Swing classes.

Because the TW2 Toolkit shell is built on top of Java Swing components, you
can choose to set the look and feel of these swing classes to reflect the
look-and-feel of your operating system.

• Creates an instance of the Shell class.

The main method is responsible for creating an instance of the class.

• Handles command line arguments for UiApplication.

The main method is responsible for handling the -title and -geometry
command-line arguments, which the com.gensym.core.UiApplication
parses from the command line.

For more information, see “UiApplication” on page 229.
322 Telewindows2 Toolkit Java Developer’s Guide Application Classes

Main Method
• Handles command-line arguments for TW2MDIApplication to makes a
connection through a ConnectionManager.

The TW2 Toolkit shell supports creating multiple connections to a secure G2
by handling the -host, -port, and -brokerUrl command-line arguments, and
the -userName, -userMode, and -password command-line arguments. The
shell uses these command-line arguments to make a secure G2 connection by
performing these tasks in it main method:

– Creates a ConnectionManager by calling getConnectionManager on com.
gensym.shell.util.TW2MDIApplication.

– Gets the connection information from the command line by calling
getG2ConnectionInformation on TW2MDIApplication.

– Sets the default connection information for the com.gensym.shell.
dialogs.LoginDialog, which com.gensym.shell.commands.
ConnectionCommands launches when the user connects to G2.

– Creates a connection by calling openConnection on the com.gensym.
shell.util.ConnectionManager, passing in the com.gensym.ntw.
TwConnectionInfo as argument.

– Creates a com.gensym.ntw.LoginRequest by calling getLoginRequest on
TW2MDIApplication.

– If the LoginRequest succeeds, sets the default login information in the
LoginDialog, which ConnectionCommands launches when the user creates a
connection.

– Makes a login request by calling login on ConnectionManager, passing in
a LoginRequest.

For more information, see “TW2MDIApplication” on page 232.

• Creates a WorkspaceShowingListener.

The main method creates an instance of a com.gensym.shell.util.
TW2MDIWorkspaceShowingAdapter so the application is notified when G2
programmatically shows or hides KB workspaces.

For more information, see “Listening for Programmatic Show and Hide KB
Workspace Events in an MDI Application” on page 254.

• Registers the default WorkspaceDocumentFactory for programmatic KB
workspace showing events in G2.

The application is responsible for determining the type of workspace
document the TW2MDIWorkspaceShowingAdapter uses when it creates a
workspace document based on programmatic show KB workspace events in
G2. To do this, it uses a ShellWorkspaceDocumentFactoryImpl, which creates
a ShellWorkspaceDocument. Calling the setWorkspaceDocumentFactory
method on the adapter sets the workspace document factory so the adapter
Telewindows2 Toolkit Java Developer’s Guide Application Classes 323

Chapter 12 Understanding the Telewindows2 Toolkit Shell
generates instances of ShellWorkspaceDocument, instead of
WorkspaceDocument.

The TW2 Toolkit shell constructor creates an instance of the workspace
document factory when it sets the workspace document factory for
WorkspaceCommands.

For the method that creates the workspace document factory, see “Register
WorkspaceDocumentFactory” on page 321.

For more information about the workspace document and associated factory,
see “ShellWorkspaceDocument and ShellWorkspaceDocumentFactory” on
page 325.

• Handles exceptions.

The ConnectionManager methods that creates a connection and logs on to a
secure G2 throw these exceptions:

– openConnection throws ConnectionTimedOutException,
G2AccessInitiationException, and G2AccessException, all in the com.
gensym.jgi package, which is part of G2 JavaLink.

– login throws G2AccessException.

If an exception occur, the application creates an error dialog, providing
localized title and message text.

For information on formatting and localizing message text, see Appendix A,
“Localization.”

• Makes the frame visible.

Finally, the main method makes the application frame visible.

For more information, see “Creating and Setting the Frame in an MDI
Application” on page 252.
324 Telewindows2 Toolkit Java Developer’s Guide Application Classes

ShellWorkspaceDocument and ShellWorkspaceDocumentFactory
ShellWorkspaceDocument and
ShellWorkspaceDocumentFactory

The default application shell provides its own MDIDocument type and associated
WorkspaceDocumentFactory, as follows:

For more information, see:

• “Using MDI Document Types” on page 209.

• “Using Workspace Document Factories” on page 211.

ShellWorkspaceDocument
ShellWorkspaceDocument provides these features:

• A constructor that creates a workspace document, given a connection and
KB workspace.

• A context-specific menu bar that is the same as the default menu bar for the
MDIFrame of the Shell class, with the addition of these menus:

– Edit menu

– Item menu

– Workspace menu

– Window menu

• A toolbar panel that is the default toolbar panel of the MDIFrame.

• A title that appends the connection information to the name passed in as an
argument when the workspace document is created.

The following sections show the relevant sections of the source code. To see the
complete source code, see the source code for this class:

com.gensym.shell.ShellWorkspaceDocument

Class Description

ShellWorkspaceDocument A subclass of com.gensym.shell.util.
WorkspaceDocument that provides a
context-specific menu bar for interacting
with workspace views.

ShellWorkspaceDocumentFactoryImpl An implementation of the com.gensym.
shell.util.WorkspaceDocumentFactory
interface that generates instances of a
ShellWorkspaceDocument.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 325

Chapter 12 Understanding the Telewindows2 Toolkit Shell
Constructor
Here is the constructor:

public ShellWorkspaceDocument(TwAccess connection, KbWorkspace wksp){
super(connection, wksp, menuBar, windowMenu,

frame.getDefaultToolBarPanel());
}

Menu Bar
This method generates the menu bar, where each create method that gets added
returns an instance of a CMenu:

private static CMenuBar menuBar = createMenuBar();

private static CMenuBar createMenuBar(){
menuBar = new CMenuBar();
CMenu fileMenu = createFileMenu();
menuBar.add(fileMenu);
menuBar.add(createEditMenu());
menuBar.add(createItemMenu());
menuBar.add(createWorkspaceMenu());
menuBar.add(createG2Menu());
menuBar.add(createWindowMenu());
menuBar.add(createHelpMenu());
return menuBar;

}

Window Menu
This method generates the Window menu, providing a localized text string for
the menu label:

private static CMenu createWindowMenu(){
CMenu windowMenu = new CMenu(i18nUI.getString("ShellWindowMenu"));
windowMenu.add(frame.getManager().getTilingCommand());
return windowMenu;

}

Title
This method overrides the setTitle method in the superior class:

public void setTitle(String name){
super.setTitle(name+" ("+getConnection().toShortString()+")");

}

326 Telewindows2 Toolkit Java Developer’s Guide Application Classes

ShellWorkspaceDocument and ShellWorkspaceDocumentFactory
ShellWorkspaceDocumentFactory
Here is the complete source code for the ShellWorkspaceDocumentFactoryImpl
that generates a ShellWorkspaceDocumentFactory:

package com.gensym.shell;

import com.gensym.shell.util.WorkspaceDocumentFactory;
import com.gensym.shell.util.WorkspaceDocument;
import com.gensym.ntw.TwAccess;
import com.gensym.classes.KbWorkspace;

public class ShellWorkspaceDocumentFactoryImpl
implements WorkspaceDocumentFactory{
public WorkspaceDocument createWorkspaceDocument

(TwAccess connection, KbWorkspace workspace){
return new ShellWorkspaceDocument(connection, workspace);

}
}

Telewindows2 Toolkit Java Developer’s Guide Application Classes 327

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part IV Appendices
Version 3.1 Mode: Working Size: 7x9x11
Part IV
Appendices
Appendix A Localization 331

Appendix B Deploying Your Application 333
329

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part IV Appendices
Appendix A Localization
Version 3.1 Mode: Working Size: 7x9x11
A
Localization
The examples in this guide use standard Java techniques for localizing
applications. G2 JavaLink, the foundation upon which Telewindows2 Toolkit is
built, supports localization by providing these classes:

• com.gensym.core.GensymApplication — Parses and handles these
command line arguments that support localization:

-language
-country
-variant

• com.gensym.message.Resource — A helper class that extends java.util.
ResourceBundle, which supports formatting of message text and debugging
of resource bundles.

This guide shows examples of localizing the following application text:

• Textual descriptions of commands.

• Application titles.

• Dialog text and titles.

• Error and message text.

Resources associated with commands typically use variables named
shortResource and longResource, while resources associated with other text
typically use variables whose name includes i18n. You initialize a resource by
calling getBundle on the Resource, providing a fully qualified class name as a
string, for example:

Resource i18nUI = Resource.getBundle("com.gensym.shell.Messages")

To localize a text string, you call getString on a Resource.

For information on... See...

GensymApplication GensymApplication

com.gensym.message.Resource G2 JavaLink API
331

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part III Application Classes
Appendix B Deploying Your Application
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 21:10:54
 B
Deploying Your
Application
Telewindows2 Toolkit only requires the Java Development Kit (JDK) to run in a
development environment; it does not require the JDK to run in a deployment
environment. Deploying a TW2 Toolkit application requires only the Java
Runtime Environment (JRE), which you can redistribute.

Additionally, deployment does not require the .com.gensym.properties file.

At runtime, TW2 Toolkit can sometimes need to generate new Java classes if a
class it needs is not on the client’s disk. If you want TW2 Toolkit to save the
classes created to disk, set the com.gensym.class.user.repository system
property before connecting to G2. One way to do this is in the Java command line.
The syntax is:

java -D<propertyName>=<DirPath> <class> <arguments>

where:

<propertyName> is com.gensym.class.user.repository

<DirPath> is the root directory location to which JavaLink should export user-
defined classes.

For example, on NT:
java -Dcom.gensym.class.user.repository=c:\Program Files\gensym\
g2-6.1\javalink\classes com.gensym.shell.Shell
-host localhost -port 1111

Note The location specified for the com.gensym.class.user.repository must be
included in your CLASSPATH.
333

Appendix B Deploying Your Application
Required Library Files
TW2 Toolkit deployment requires these JAR files:

TW2 Toolkit deployment requires these dynamic link libraries:

The JAR files must be on the client machine and specified in the CLASSPATH of the
VM, by adding them to the CLASSPATH environment variable.

If an application is running in 3-tier mode:

• The middle tier requires the JAR files and the dynamic link libraries.

• The third tier client requires the JAR files.

To ensure that the VM is able to load the dynamic link libraries when running in
either default (2-tier) mode or the middle tier of 3-tier mode, do one of the
following:

• Set this system property to point to the location of the libraries:

java.library.path

• Specify the location of the libraries in the appropriate environment variable:

JAR file Product

coreui.jar
sequoia.jar

From Telewindows2 Toolkit

classtools.jar
core.jar
javalink.jar

From G2 JavaLink

Platform DLL

Intel JgiInterface.dll

Sparcsol libJgiInterface.so

Platform Environment Variable

Intel PATH

Sparcsol LD_LIBRARY_PATH
334 Part III Application Classes

Appendix B Deploying Your Application
Required Files for Beans Created with BeanXporter
Using the BeanXporter, you can convert Microsoft ActiveX components into Java
Beans. Beans created with BeanXporter require these files:

• ax2jbeans.jar

• JavaContainer.dll
Telewindows2 Toolkit Java Developer’s Guide Application Classes 335

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part V Glossary and Index
Version 3.1 Mode: Working Size: 7x9x11
Part V
Glossary and Index
Glossary

Index 345
337

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part V Glossary and Index
Version 3.1 Mode: Working Size: 7x9x11
Glossary
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A
abstract command: A default implementation of the com.gensym.ui.Command
interface, which supports these features:

• Notifies listeners of command events, such as changes in the state or
availability of the command.

• Supports get and set methods for command properties.

• Supports localization of textual descriptions.

See also command and structured command.

application foundation class: A class upon which you can build any type of G2
client application, using Telewindows2 Toolkit. To create a G2 client application,
you extend the application foundation class that meets your requirements and
implement its abstract methods. See also UI application, single document interface
(SDI) application, multiple document interface (MDI) application, graphical UI
classes, and shell class.

C
client: An application that runs on any platform and interacts through a network
connection to view and manipulate data in a server. Telewindows2 Toolkit
applications are client applications for connecting to a G2 server. See view data,
manipulate data, and server.

command code: An integer that determines which dialog button the user has
clicked. When implementing a StandardDialogClient, you might need to test
the command code to determine the behavior of a standard dialog when it is
dismissed. See standard dialog.

command: An action that the end user can perform through a user interface. A
command is separate from the user interface that represents it. You represent
commands in command-aware containers such as menus and toolbars.
Commands notify listeners when one of its properties, such as state or
availability, is set. See command-aware container. See also abstract command.

command key: A string that represents a single action of a command. A
command may perform one or more actions by providing multiple command
keys in its constructor. You specify command keys in a command information
object, which you provide in the command’s constructor. See abstract command.
339

Glossary
command-aware container: A UI container that knows how to add a command,
using a version of the add method. Command-aware containers represent
commands appropriately depending on the type of container and whether the
add method specifies representation constraints. Telewindows2 Toolkit supports
menus and toolbars as command-aware containers. Command-aware containers
are listeners for command events. See command.

custom dialog: An application-specific dialog you create by:

• Extending one of the standard dialog classes to customize the buttons, icon, or
behavior of the dialog.

• Extending the superior class of all standard dialogs to customize the elements
that appear in the dialog.

• Using Telewindows2 Toolkit dialog components in a Java programming
environment to override automatically generated item properties dialogs and
create any other type of dialog.

See standard dialog and properties dialog.

G
G2 JavaLink: The underlying technology that enables Telewindows2 Toolkit
components to access and manipulate data in a G2 server, and to represent G2
items as components in a native, client application. For information on G2
JavaLink, see the G2 JavaLink User’s Guide.

graphical user interface (UI) class: A class that provides a UI container or
support for standard UI actions. Telewindows2 Toolkit provides a variety of
graphical UI classes, including: commands and structured commands, menus and
toolbars, standard informational and input dialogs, and multiple document
interface frames and child documents. See also application foundation class and
shell class.

I
informational dialog: A standard dialog that provides information to the user,
such as errors, warnings, messages, questions, or help. Most informational
dialogs have an icon and a single button for dismissing the dialog. See standard
dialog. See also input dialog.

input dialog: A standard dialog that accepts input from the user, such as a dialog
with text fields or a dialog with a list of items from which the user can select one
or more items. Input dialogs provide OK and Cancel buttons, by default. See
standard dialog. See also informational dialog.
340 Part V Glossary and Index

Glossary
J
Java Abstract Windowing Toolkit (AWT) and Java Foundation Classes (JFC):
Java packages that provide the superior classes upon which the Telewindows2
Toolkit graphical user interface classes are built. See graphical UI classes.

Java application developer: A Java developer who builds applications in a pure
Java programming environment. See also Java AWT and JFC, and Java
programming.

Java programming: When developing Telewindows2 Toolkit applications, you
need to be familiar with these aspects of Java programming:

• Properties, events, and methods of classes and interfaces.

• The Java 1.1. event model.

• Internationalization.

• Java AWT and Java Swing classes.

See Java application developer, and Java AWT and JFC.

For information on Java programming, see www.java.sun.com or any Java
reference.

M
manipulate data: To modify data in the G2 server through a native, client user
interface. See also view data.

modal dialog: A dialog that the user must dismiss before performing any other
action in the application. See also standard dialog.

multiple connection application: An application that allows multiple
connections to different G2 servers. You use a ConnectionManager to create and
manage multiple connections. See also single connection application.

multiple document interface (MDI) application: An application that contains
multiple child frames, or documents, for displaying and manipulating G2 data.
Telewindows2 Toolkit provides an application foundation class that you can
extend for creating MDI applications that manage connections to G2. See also
SDI application.

N
native: Conforms to the “look-and-feel” of the window system on which the UI
application is running. Telewindows2 Toolkit applications are native
applications. See client and server.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 341

Glossary
P
properties dialog: The dialog associated with an item in a workspace view, which
corresponds to the G2 attribute table. You display the properties dialog of an item
from its popup menu. By default, workspace views generate item properties
dialogs automatically; however, you can create custom item properties dialogs by
using Telewindows2 Toolkit components. See workspace view and custom dialog.

S
separator: A horizontal bar in a menu and a vertical gap in a toolbar, which you
can add explicitly or by creating a structured command. See command-aware
container and structured command.

server: A running G2 executable, which is the source of all data that users view
and manipulate through a native, client user interface. In a Telewindows2 Toolkit
application, G2 is the server. See view data, manipulate data, and client.

shell: See TW2 Toolkit default application shell.

shell class: A class that defines the Telewindows2 Toolkit default application
shell. The source code for shell classes is available for you to use as an example of
the kind of application you can build. See TW2 Toolkit default application shell.

shell command: A class that supports common interactions with G2, such as
creating a connection, changing the G2 run state, and creating and getting a KB
workspace.

shell dialog: A standard dialog that supports common interactions with G2 from
a client application, such as logging on to G2, and configuring message and error
tracing. See also shell UI control, standard dialog, and custom dialog.

shell UI control: A UI control that provides support for common UI interactions
with a G2 server, such as displaying and switching the host, port, and user mode
of the current connection. See also shell dialog.

single connection application: An application that connects to a single G2 server.
You use a com.gensym.ntw.TwGateway to create single connections. See also
multiple connection application.

single document interface (SDI) application: An application that contains a
single frame in which to display and manipulate G2 data, typically through a
workspace view. See also MDI application.

standard dialog: A dialog class that you create to provide informational dialogs
and dialogs that accept user input. Standard dialogs provide standard buttons
and icons appropriate to the particular type of dialog, which you can customize.
See informational dialog and input dialog. See also custom dialog.

structured command: A set of related actions with a hierarchical structure and/or
a particular grouping, such as might appear in a menu with a cascading submenu.
342 Part V Glossary and Index

Glossary
The contents of a structured command can update dynamically. See also
command.

syntax-guided text editor: The text editor that appears when you edit an attribute
of an item in a workspace view that requires G2 syntax. You launch the text editor
from an item properties dialog. See properties dialog.

T
Telewindows2 (TW2) Toolkit component: A Java Beans component that provide
the basic support for connecting to a G2 server, displaying and manipulating data
through a workspace view, handling the associated events, and representing G2
attribute values. For information on Telewindows2 Toolkit components, see the
Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes.

Telewindows2 (TW2) Toolkit default application shell: A Telewindows2
Toolkit application for making multiple connections to G2, and displaying and
manipulating G2 data through a workspace view. You can use this shell as an
example of the kind of G2 client application you can build by using
Telewindows2 Toolkit, and as a simple user interface for running G2 applications
from a client. See also shell class.

U
user interface (UI) application: A visual application for interacting with a G2
server through a client. If you are creating a UI application, the application is
responsible for creating and maintaining the application frame, as well as creating
and managing G2 connections.

user interface (UI) development: The general technique of constructing a user
interface by adding Java components to containers and arranging those
components by using layout managers. Java programmers who are building G2
client applications should be familiar with UI design techniques. See UI.

user interface (UI): Any kind of visual application that allows users, which
includes end users or developers, to interact with data through user interface
containers such as commands, menus, toolbars, and dialogs. Telewindows2
Toolkit allows you to create client UI applications for viewing and manipulating
data in a G2 server. See also graphical UI classes and UI development.

V
view data: To display a visual representation of any type of G2 data, such as a
workspace view, item properties dialog, or custom dialog. See also manipulate
data.
Telewindows2 Toolkit Java Developer’s Guide Application Classes 343

Glossary
W
workspace document: A type of Telewindows2 Toolkit document that contains a
workspace view for use in MDI applications. A workspace document provides its
own context-sensitive menu bar, which the application automatically swaps in
when the document gains focus.

workspace document factory: A factory that generates any type of workspace
document. See workspace document.

workspace view: A Telewindows2 Toolkit component that provides a client
representation of a KB workspace. Telewindows2 Toolkit applications typically
display workspace views within an application frame or child document of an
MDI application. See workspace document.
344 Part V Glossary and Index

Telewindows2 Toolkit Java Developer’s Guide Application Classes

Telewindows2 Toolkit Java Developer’s Guide Application Classes
Part V Glossary and Index
Version 3.1 Mode: Working Size: 7x9x11
Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
AboutDialog class 95
abstract commands

See also commands
See also structured commands
defined 117

abstract methods
implementing to manage connections 244

AbstractCommand class
See also abstract commands
extending 131

AbstractStructuredCommand class
See also abstract commands
extending 145

action events
listening for, in standard dialogs 77

activating
MDI documents 202

adapters
TW2MDIWorkspaceShowingAdapter class 254
TW2WorkspaceShowingAdapter class 250

adding
commands

individual keys of 126
to command-aware containers 124
with representation constraints 127

MDI documents to MDI frames 199
separators to menus and toolbars 129
structured commands to command-aware

containers 150
application foundation classes

feature summary of 233
GensymApplication 228
inheritance structure for 226
MDIApplication 232
overview of 191
TW2Application 230
TW2MDIApplication 232
UiApplication 229

applications
See also Gensym applications
See also MDI applications
applications (continued)
See also multiple connection applications
See also SDI applications
See also single connection applications
See also UI applications
classes for building

decision tree 226
determining which to extend 223
overview of 9

commands for exiting 281
creating TW2 Toolkit 233
frames

See frames
implementing abstract method of 244
packages for 222
questions to ask when creating

will the application have a user
interface? 223

will the application provide a single or
multiple document frame? 224

will the application support
connecting to G2? 224

will the application support single or
multiple connections to G2? 236

registering workspace document factories
with 255

using commands in 118
arranging

MDI documents
new 203
using tiling commands 199

attribute displays
editing 49

attributes
editing

through attribute displays 49
through properties dialogs 44

availability
command

example of setting initial 136
example of setting when an event

occurs 137
345

Index
availability (continued)
of commands

setting 136
of palette buttons 178
of shell commands 274

B
buttons

dialog
customizing 86
determining which one the user

clicks 78
example of customizing 90
localizing 80

palette
creating from G2 objects 180
creating from objects 170

C
class hierarchies

of application foundation classes 226
of MDIDocument types 209
of standard dialogs 76

classes
See adapters
See application foundation classes
See commands
See events
See individual class listings
See listeners

clients, standard dialog
defined 73

cloning
KB workspaces 54

closing
dialogs 78
TW2 Toolkit shell 36

CMenu class
creating 123

com.gensym.core package 222
com.gensym.dlg package 75
com.gensym.mdi package

MDI applications 222
MDI containers 192

com.gensym.ntw.util package 168, 169
.com.gensym.properties file 228
com.gensym.shell.commands package 275
346
com.gensym.shell.dialogs package 260
com.gensym.shell.util package

MDI documents 208
standard dialogs 260
TW2 Toolkit

applications 222
com.gensym.ui package 168

commands 121
object creators 168

com.gensym.ui.menu package 121
com.gensym.ui.menu.awt package 121
com.gensym.ui.palette package 169
com.gensym.ui.toolbar package 122
command codes

implementing CommandConstants interface
for 87

command events
delivering 135

Command interface
example of implementing 158
implementing 158

command keys
adding individual, to command-aware

containers 126
defined 273
examples

adding individual to a ToolBar 126
command-aware containers

adding
commands to 124
structured commands to 150

creating instances of 123
defined 115
examples

adding a dynamically updating
subcommand to a CMenu 157

adding a subcommand to a CMenu 150
adding a subcommand to a
CMenuBar 151

adding a subcommand to a
ToolBar 150

adding commands to a CMenu 124
CommandConstants interface

implementing for command codes 87
CommandGroupInformation class

creating structured commands, using 147
CommandInformation class

creating structured commands, using 147
Part V Glossary and Index

Index
command-line arguments
example of open a connection, using 239
for application frame 229
for debugging and tracing 228
for internationalization 228
provided by

GensymApplication 228
TW2Application 230
TW2MDIApplication 232
UiApplication 229

running the shell, using 34
CommandListener interface

listening for command events
in applications, using 118
using 114

commands
See also command events
See also shell commands
abstract, defined 117
adding

individual command keys to
command-aware containers 126

to command-aware containers 124
to menus and toolbars 122
with representation constraints 127

availability of
setting 136

creating
using AbstractCommand class 131
using AbstractStructuredCommand

class 144
using Command interface 158

defined 114
defining

action of 134
constructor for 132

delivering command events, using 135
examples

adding command keys to a
toolbar 126

adding to command-aware
containers 124

adding with representation
constraints 128

creating, using AbstractCommand
class 140

creating, using
AbstractStructuredCommand
class 148
Telewindows2 Toolkit Java Developer’s Guide Application C
commands (continued)
examples (continued)

implementing Command interface 158
localizing text and tool tips 139
setting availability when an event

occurs 137
setting initial availability of 136

for changing the scale of workspace
views 299

for connecting to G2 276
for controlling G2 run state 283
for creating items 278
for cutting, copying, and pasting items on

workspaces 279
for displaying help 286
for editing items 287
for exiting the application 281
for getting and creating workspace

views 293
for interacting with workspace views 296
for switching multiple connections 290
for tracing applications 291
implementing

constructors for abstract 132
using Command interface 158

introduction to 114
localizing

mnemonics of 138
text of 138
tool tips of 138

overview of 10
packages for 121
properties of

getting 137
setting 135

structured, defined 116
tiling

getting default 203
using to arrange MDI documents 199

using in applications 118
CommandUtilities class

getting elements from structured
commands, using 157

components
See also UI controls
See also workspace views
in Shell class 316

CondensedG2StateCommands class 283
lasses 347

Index
connecting to G2
See also connections
See also connection managers
commands for 276
from the TW2 Toolkit shell 38
multiple, from TW2 Toolkit shell 56

connection managers
See also connections
creating 237
implementing abstract method for

getting 245
opening connections through 237

ConnectionCommands class 276
ConnectionManager class

creating 237
opening connections through 237

connections
See also connection managers
commands for switching between

multiple 290
creating and managing 236
determining whether applications

support 224
examples

creating a command that listens for
ContextChangedEvents 243

opening, using command-line
arguments 239

getting
connection information 238
current 240
login request 238
multiple 245
open 241
single 245

implementing abstract methods that
manage 244

listening for context changes in
current 242

overview of 24
setting

current 240
single 246

constraints
See representation constraints

constructors
for abstract commands 132
for abstract structured commands 146
for Shell class 314
348
constructors (continued)
for shell commands 273
for standard dialogs 76

containers
See command-aware containers
See MDI containers
See UI containers

ContextChangedListener interface
implementing in Shell class 321
listening to connection changes,

using 242
controls

customizing dialog 89
conventions xvii
copying

command for 279
-country command-line argument

description of 228
CPopupMenu class

creating 123
creating

applications
MDI 251
SDI 247

commands 131
connection managers 237
connections to G2 236
frames

in MDI applications 252
in SDI applications 249
MDI 193

items, commands for 278
MDI

containers 187
document types 206
documents 199
frames 193
toolbar panels 197

menu bars 131
menus 113
palettes 163
standard dialogs 81
structured commands 144
toolbars 113
TW2 Toolkit

applications 233
documents 210

workspace views, using commands 293
CreationCommands class 278
Part V Glossary and Index

Index
current connections
See connections, current

customer support services xxii
customizing

commands 158
dialogs

buttons and icons in 86
controls of 89
introduction to 85
launch and dismiss behavior of 89

documents
MDI 206
TW2 Toolkit 210

example of creating a custom
Command implementation 158
InputDialog with custom buttons 90
WorkspaceDocument with context-

specific menu bar 213
WorkspaceDocumentFactory 215

cutting
command for 279

D
debugging

commands for 291
decision tree

for determining which application
foundation class to extend 226

determining
application foundation class to

extend 223
dialog button the user clicks 78

-development command-line argument
description of 228

dialogs
See also shell dialogs
See also standard dialogs
custom

standard 74
types of 47

localizing text of 79
dismissing dialogs

customizing behavior when 89
how to 78
Telewindows2 Toolkit Java Developer’s Guide Application C
displaying
popup menus for items 43
workspace views

in TW2 Toolkit shell 40
multiple, for different G2

connections 57
documentation

related xix
documents

See MDI documents
See Telewindows2 Toolkit, documents
See workspace documents

E
EditCommands class 279
editing items

commands for 287
KB workspace properties 51
properties of 44

error messages
localizing 80

ErrorDialog class 97
events

command 135
connection context changed 242
dialog 77
examples

See listeners, examples
MDI container 204
programmatic workspace show and hide

MDI applications 254
SDI applications 250

examples
adding

a dynamically updating subcommand
to a CMenu 157

a subcommand to a CMenu 150
a subcommand to a CMenuBar 151
a subcommand to a ToolBar 151
a WorkspaceDocument of a given

dimension to an MDIFrame 200
a WorkspaceDocument to an
MDIFrame 200

commands to a CMenu 124
commands with representation

constraints to a CMenu 128
individual command keys to a
ToolBar 126
lasses 349

Index
examples (continued)
adding (continued)

menus to a MenuBar 125
separators to a CMenu 130
separators to a ToolBar 130

creating
a command that listens for
ContextChangedEvents 243

a subcommand that updates
dynamically 152

a subcommand with command
groups 148

an AbstractCommand that exits the
application 140

an MDIToolBarPanel with two
toolbars 197

resources and resource properties files
for internationalization 139

creating a custom
InputDialog with custom buttons 90
WorkspaceDocument with context-

specific menu bar 213
getting open and active MDI

documents 201
implementing

a command as an MDIListener 204
a WorkspaeDocumentFactory 215
the Command interface 158

launching
a SelectionDialog that gets a named

workspace 83
an InputDialog that connects to G2 81

localizing
command text and tool tips 139
dialog text 80

opening a connection, using command-
line arguments 239

setting
a JMenuBar and MDIToolBarPanel in an
MDIFrame 196

command availability when an event
occurs 137

initial command availability 136
ExitCommands class 281
exiting

TW2 Toolkit shell 36
exiting applications

commands for 281
350
extending application foundation classes
decision tree for determining 226
determining which one to use 223

F
factories

See workspace document factories
File menu

in Shell class 318
frames

See also MDI frames
creating

in MDI applications 252
in SDI applications 249
MDI 193

in Shell class 316
localizing title bar text of 194
setting

in MDI applications 252
in SDI applications 249

G
G2

connecting to
from the TW2 Toolkit shell 38
multiple, from TW2 Toolkit shell 56

run state
commands for controlling 283
condensed commands for

controlling 283
controlling from TW2 Toolkit shell 42

G2 Foundation Resources (GFR) palettes
creating palettes from 181

G2 JavaLink 8
G2 menu

in Shell class 318
G2ObjectCreator class

creating palette buttons from G2 objects,
using 180

G2Palette class
creating palettes, using 179

G2StateCommands class 283
Gensym applications

defined 220
overview of 228
Part V Glossary and Index

Index
GensymApplication class
creating non-UI applications, using 223
description of 228

-geometry command-line argument
of UiApplication 229

getting
command

properties 137
connection managers

implementing abstract methods
for 245

connections
current 240
implementing abstract method

for 245
open 241

default tiling commands 203
dialog results 78
MDI documents

active 200
open 200

MDIFrame from MDIManager 196
MDIManager from MDIFrame 196
workspace views

commands for 293
in TW2 Toolkit shell 41

GFRPalette class
creating palettes, using 181

H
help

commands for displaying 286
Help menu

in Shell class 318
HelpCommands class 286
-host command-line argument

of TW2Application 230
of TW2MDIApplication 232

HostPortPanel class 261

I
icons

customizing in dialogs 86
implementing

abstract methods that manage
connections 244

Command interface 158
Telewindows2 Toolkit Java Developer’s Guide Application C
implementing (continued)
constructors

for abstract commands 132
for abstract structured

commands 146
StandardDialogClient interface 77

InputDialog class 99
interacting

with items in workspace views 43
with workspace views in TW2 shell 51

interfaces
See listeners

internationalization
examples

creating a long resource properties
file 139

creating a resource 140
creating a short resource properties

file 139
item configurations

how TW2 Toolkit shell uses 47
ItemCommands class 287
items

commands for editing 287
creating new 52
diaplaying popup menus for 43
editing properties of 44
interacting with

from popup menu 48
in workspace views 43

moving 50
resizing 50
selecting 50

J
Java Beans

TW2 Toolkit components 8
Java requirements

for using TW2 Toolkit application
components 8

K
KB workspaces

See also workspace views
cloning 54
lasses 351

Index
KB workspaces (continued)
commands for

getting and creating 293
interacting with 296

creating new items on 52
editing properties of 51
interacting with 51
listening for programmatic show and hide

events
in MDI applications 254
in SDI applications 250

printing 56
shrink wrapping 54

KeyableCommand interface 131
keys, command

defined 273

L
-language command-line argument

description of 228
launching

standard dialogs 81
launching dialogs

customizing behavior when 89
how to 81

layout
of standard dialogs 74

listeners
See also adapters
See also events
CommandListener interface 114
ContextChangedListener interface 242
examples

creating a command that listens for
ContextChangedEvents 243

creating a command that listens for
MDIEvents 204

for action events in dialogs 77
for command events 118
for connection context events 242
for MDI events 204
for object creator events 178
for palette events 177
for programmatic show and hide KB

workspace events
in MDI applications 254
in SDI applications 250

in Shell class 321
352
listeners (continued)
MDIListener interface 204
StructureCommandListener interface 117
WorkspaceShowingListener interface

adapter class for MDI
applications 254

adapter class for SDI applications 250
localizing

See also internationalization
applications 331
command text 138
dialog text 79
examples of localizing dialog text 80
mnemonics 138
title bar of frame 194
tool tips 138

login requests
getting 238

LoginDialog class 263

M
main method

of Shell class 322
managing

connections to G2 236
MDI document 199
MDI frames 193

MDI applications
creating

frames in 252
using application foundation

classes 251
defined 220
listening for programmatic show and hide

workspace events in 254
optional features of

general 235
specific 235

overview of 22
required features of 233
setting frames in 252

MDI containers
See also MDI documents
See also MDI frames
See also MDI managers
creating 187
introduction to 188
Part V Glossary and Index

Index
MDI containers (continued)
listening for events in 204
packages for 192

MDI documents
activating 202
adding to MDI frames 199
arranging

new 203
using tiling commands 199

creating 199
examples

adding a WorkspaceDocument of a given
dimension to an MDIFrame 200

adding a WorkspaceDocument to an
MDIFrame 200

getting open and active 201
getting

active 200
open 200

introduction to 207
managing 199
packages for 208
TW2 Toolkit

overview of 16
using 207

MDI frames
adding MDI documents to 199
creating 193
examples

adding a WorkspaceDocument of a given
dimension to 200

adding a WorkspaceDocument to 200
setting a JMenuBar and
MDIToolBarPanel in 196

managing 193
MDI toolbar panels

creating
in MDI containers 197
in Shell class 317

examples
adding two ToolBars to 197
setting in an MDIFrame 196

setting default 195
MDIApplication class

description of 232
MDIDocument class

creating and managing in MDI
frames 199

introduction to 190
Telewindows2 Toolkit Java Developer’s Guide Application C
MDIDocument class (continued)
types of

class hierarchy 209
creating 206

MDIEvent class
notifying listeners when MDI documents

get added, using 204
MDIFrame class

creating and managing 193
getting

from MDIManager 196
MDIManager from 196

introduction to 188
MDIListener interface

listening for MDI events, using 204
MDIManager class

getting
from MDIFrame 196
MDIFrame from 196

introduction to 191
managing MDI documents, using 193

MDITilingConstants class
arranging MDI documents, using 203

menu bars
creating

general 123
in Shell class 316

example of adding CMenus to 125
setting default 195

menus
See also menu bars
See also popup menus
adding

commands to 122
separators to 129

creating
in Shell class 318
using commands 122

example of adding separators to 130
in Shell class 318
introduction to 114
overview of 10
packages for 121

MessageDialog class 102
messages

localizing 80
methods, abstract

for managing connections in TW2 Toolkit
applications 244
lasses 353

Index
mnemonics
for menu bar commands in TW2 Toolkit

shell 58
localizing 138
overriding for shell commands 161

-mode command-line argument
of TW2Application 231
of TW2MDIApplication 232

moving items
on workspace views 50

multiple connection applications
creating and managing 236

O
object creators

creating palette buttons from 170
G2

creating palette buttons from 180
introduction to 166

getting the key that triggered the
event 179

introduction to 165
listening for property changes of 178
packages for 168
structured

creating palette button groups
from 170

introduction to 165
testing for availability of 178

ObjectCreator class
creating palette buttons from 170

ObjectCreator2 class
creating palette buttons from 170

ObjectCreatorListener interface
listening for object creator events,

using 178
opening

connections
example of, using command-line

arguments 239
through ConnectionManager 237

dialogs 81
overview

of application foundation classes 191
of commands 10
of connections 24
of MDI applications 22
of MDI containers 15
354
overview (continued)
of MDI managers 15
of menus 10
of palettes 13
of SDI applications 19
of shell commands 26
of shell dialogs 25
of toolbars 10
of TW2 Toolkit

application classes 9
Java application shell 27
MDI documents 16

of UI controls 25

P
packages

com.gensym.core 222
com.gensym.dlg 75
com.gensym.mdi

applications 222
MDI containers 192

com.gensym.ntw.util 168, 169
com.gensym.shell.commands 275
com.gensym.shell.dialogs 260
com.gensym.shell.util

applications 222
TW2 Toolkit documents 208
UI components 260

com.gensym.ui 168
commands 121
object creators 168

com.gensym.ui.menu 121
com.gensym.ui.menu.awt 121
com.gensym.ui.palette 169
com.gensym.ui.toolbar 122
for creating applications 222
for creating commands 121
for creating menus 121
for creating palettes 168
for creating shell dialogs 260
for creating standard dialogs 75
for creating toolbars 121
for creating UI components 75
for creating UI controls 260
for using MDI containers 192
for using MDI documents 208
for using shell commands 275
overview of 5
Part V Glossary and Index

Index
palette buttons
adding

all keys of ObjectCreator 173
directly, using PaletteButton 175
individual keys of ObjectCreator 173
ObjectCreator with representation

constraints 174
Palette class

creating 170
PaletteButton class

creating palette buttons, using 172
PaletteDropTarget interface

listening for palette events, using 177
PaletteListener interface

listening for palette events, using 177
palettes

adding buttons to 172
buttons

creating explicitly 172
creating from object creators 170
introduction to 164

comparing to menus and toolbars 167
creating

G2 179
generic 169
GFR 181

G2
adding objects to 179
creating palette buttons from G2

objects 180
introduction to 166

getting
button that was toggled 178
properties of 177

GFR 166
introduction to 163
item

creating items from 52
editing 52

listening
for ObjectCreator property

changes 178
for palette events 177

notifying palette when drop is complete or
cancelled 177

overview of 13
packages for 168
Telewindows2 Toolkit Java Developer’s Guide Application C
palettes (continued)
specifying

behavior of 175
default image and image size of

buttons 175
layout of 175
orientation of 176
sticky mode behavior of 176

-password command-line argument
of TW2Application 231
of TW2MDIApplication 232

pasting
command for 279

popup menus
displaying for items 43
interacting with items, using 48

-port command-line argument
of TW2Application 230
of TW2MDIApplication 232

printing
KB workspaces 56

prompts, dialog
localizing 80

properties
of commands

getting 137
setting 135

of items
editing 44

property files
mnemonic 139
parsing 228
resource

long 139
short 139

Q
QuestionDialog class 104

R
registering

workspace document factories with
applications 255

representation constraints
adding commands, using 127
adding ObjectCreators to palettes

with 174
lasses 355

Index
representation constraints (continued)
defined 116
example of adding commands, using 128

requirements
See Telewindows2 Toolkit, requirements

resizing items
on workspace views 50

resource properties files
example of creating long 139
example of creating short 139

resources
example of localizing command text,

using 140
road maps

for building specific applications 68
MDI containers 67
menus and toolbars 65
palettes 66
standard dialogs 64
TW2 Toolkit applications 68
using 62

run state
G2

commands for controlling 283
condensed commands for

controlling 283
controlling from TW2 Toolkit shell 42

running Telewindows2 Toolkit
demo 37
Java application 34
shell 34

S
scaling

workspace views 54
SDI applications

creating
frames in 249
using application foundation

classes 247
defined 220
listening for programmatic show and hide

workspace events in 250
optional features of

general 235
specific 235

overview of 19
356
SDI applications (continued)
required features of 233
setting frames in 249

selecting items
on workspace views 50

SelectionDialog class 106
separators

adding to menus and toolbars
by creating structured commands 144
explicitly 129

adding to palettes
by creating structured object

creators 171
explicitly 175

examples
adding to a menu 130
adding to a toolbar 130

SEQUOIA_G2 environment variable 30
setting

command
availability 136
properties 135

current connection, in single connection
applications 240

frames
in MDI applications 252
in SDI applications 249

Shell class
application frame 316
constructor 314
ContextChangedListener method 321
description of 303
features of 302
File, G2, and Help menus 318
inheritance structure of 304
introduction to 302
main method 322
MDI toolbar panel 317
menu bar 316
menus and toolbars 318
registering

WorkspaceDocumentFactory with
workspace handler 321

source code 304
status bar 317
status bar method 322
toolbar 319
TW2MDIApplication methods 315
Part V Glossary and Index

Index
Shell class (continued)
UI components 316
WorkspaceDocumentFactory 321

shell commands
availability of 274
classes

CondensedG2StateCommands 283
ConnectionCommands 276
CreationCommands 278
EditCommands 279
ExitCommands 281
G2StateCommands 283
HelpCommands 286
ItemCommands 287
SwitchConnectionCommand 290
TraceCommands 291
WorkspaceInstanceCommands 296
ZoomCommands 299

constructors for 273
introduction to 272
overriding mnemonics for 161
overriding shortcuts for 161
overview of 26
packages for 275

shell dialogs
introduction to 259
overview of 25
packages for 260

ShellWorkspaceDocument class 325
description of 325

ShellWorkspaceDocumentFactoryImpl class 325
shortcuts

for menu commands in the TW2 Toolkit
shell 58

overriding for shell commands 161
shrink wrapping

KB workspaces 54
single connection applications

creating and managing 236
source code

for Shell class 304
standard dialog clients

defined 73
examples

See standard dialogs, examples
Telewindows2 Toolkit Java Developer’s Guide Application C
standard dialogs
buttons

customizing 86
determining which one the user

clicks 78
classes 72
common arguments to constructors of 76
creating 81
customizing

button alignment 88
button labels 87
buttons and icons 86
by calling protected constructor 86
command codes 87
controls 89
icons 87
launch and dismiss behavior 89
options for 85
using command and standard dialog

constants 87
examples

creating a custom InputDialog with
custom buttons 90

launching a SelectionDialog that gets
a named workspace 83

launching an InputDialog that
connects to G2 81

getting results from 78
inheritance structure for 76
introduction to 71
launching 81
layout of 74
listening for action events in 77
packages for 75
reference 94
using 75

StandardDialog class
customizing 85
using 75

StandardDialogClient interface
implementing to listen for action

events 77
status bars

creating in Shell class 317
method for creating, in Shell class 322

structured commands
adding to command-aware

containers 150
creating 145
lasses 357

Index
structured commands (continued)
defined 116
delivering command events 151
examples

adding a dynamically updating
subcommand to a CMenu 157

adding a subcommand to a CMenu 150
adding a subcommand to a
CMenuBar 151

adding subcommand to a ToolBar 151
creating a subcommand that updates

dynamically 152
creating a subcommand with

command groups 148
getting elements from 157
getting the structure 157
implementing constructors for 146
setting the structure 151

StructuredCommandListener interface
listening for structured command events,

using 117
StructuredObjectCreator class

creating palette button groups from 171
StructuredObjectCreatorListener interface

listening for structured object creator
events, using 178

SubCommandInformation class
creating structured commands, using 147

SwitchConnectionCommand class 290

T
Telewindows2 Toolkit

applications
classes for building 9
creating 233

demo, running 37
documents

creating custom 210
Java application shell

closing 36
connecting to G2 from 38
connecting to multiple G2s from 56
controlling G2 run state from 42
displaying workspace views in 40
exiting 36
getting started with 36
guided tour of 33
358
Java application shell (continued)
interacting with workspace views

in 51
introduction to 33
item configurations 47
mnemonics and shortcuts for 58
overview of 27
running 34
source code for 301
user modes 47

Java Beans components 8
MDI documents

overview of 16
using 207

packages overview 5
requirements

G2 JavaLink 8
Java 8
TW2 Toolkit components 8

supporting features 8
using this guide

See road maps
text fields, dialog

localizing 80
tiling commands

getting default 203
using to arrange MDI documents 199

title bars
localizing text of 194

-title command-line argument
of UiApplication 229

tool tips
example of localizing 139
localizing 138

ToolBar class
creating 123

toolbar panels
See MDI toolbar panels

toolbars
adding

commands to 122
separators to 129

creating
in Shell class 319
using commands 122

examples
adding separators to 130
adding two to MDIToolBarPanel 197
Part V Glossary and Index

Index
toolbars (continued)
introduction to 114
overview of 10
packages for 121

TraceCommands class 291
tracing

commands for 291
TW2 Toolkit

demonstrations for Java 30
TW2Application class

creating
applications that manage connections,

using 224
SDI applications, using 225

description of 230
extending 248

TW2Document class
description of 209
extending 210

TW2MDIApplication class
creating

applications that manage connections,
using 224

MDI applications, using 225
defining abstract methods for, in Shell

class 315
description of 232
extending 252

TW2MDIWorkspaceShowingAdapter class
listening for programmatic show and hide

workspace events, using 254
TW2WorkspaceShowingAdapter class

listening for programmatic show and hide
workspace events, using 250, 251

U
UI applications

defined 220
overview of 18

UI components
in Shell class 316

UI controls
example of setting a JMenuBar and

MDIToolBarPanel in an MDIFrame 196
introduction to 259
overview of 25
packages for 260
using 259
Telewindows2 Toolkit Java Developer’s Guide Application C
UiApplication class
creating visual applications, using 223
description of 229

-url command-line argument
of TW2Application 230
of TW2MDIApplication 232

user modes
how TW2 Toolkit shell uses 47

UserModePanel class 267
-userName command-line argument

of TW2Application 231
of TW2MDIApplication 232

V
-variant command-line argument

description of 228

W
WarningDialog class 109
workspace document factories

example of implementing 215
registering with applications 255
using 211

workspace documents
examples

adding a WorkspaceDocument of a given
dimension to an MDIFrame 200

adding a WorkspaceDocument to an
MDIFrame 200

customizing context-specific menu
bar 213

generating, using a custom
WorkspaceDocumentFactory 215

generating, using factories 211
workspace views

See also KB workspaces
command for changing the scale of 299
displaying

in TW2 Toolkit shell 40
multiple, for different G2

connections 57
getting, in TW2 Toolkit shell 41
interacting with items in 43
scaling 54

WorkspaceCommands class
reference 293
lasses 359

Index
WorkspaceDocument class
description of 210
example of customizing context-specific

menu bar 213
extending 210

WorkspaceDocumentFactory interface
in Shell class 321

WorkspaceInstanceCommands class 296
workspaces

See KB workspaces
WorkspaceShowingListener interface

listening for programmatic show and hide
KB workspace events

in MDI applications 254
in SDI applications 250

Z
ZoomCommands class 299
360
 Part V Glossary and Index

	Telewindows2 Toolkit Java Developer’s Guide Application Classes
	Contents Summary
	Contents
	Preface
	Using this Guide
	Audience
	A Note About the API
	Conventions
	Typographic
	Procedure Signatures

	Related Documentation
	Customer Support Services

	Introduction
	Overview
	Introduction
	Packages
	Package Categories
	Package Dependencies

	Supporting Features
	Java Requirements
	Telewindows2 Toolkit Application Classes
	Standard Dialogs
	Menus and Toolbars
	Palettes
	Multiple Document Interface Containers
	Telewindows2 Toolkit MDI Documents
	Application Foundation Classes
	Generic UI Applications
	Single Document Interface Applications
	Multiple Document Interface Applications
	Connections to G2

	Shell Dialogs and UI Controls
	Shell Commands
	Telewindows2 Toolkit Default Application Shell
	Using Telewindows2 Toolkit Demonstrations for Java

	Guided Tour of the Telewindows2 Toolkit Shell
	Introduction
	Running the Telewindows2 Toolkit Shell
	Running the Shell as a Java Program
	Telewindows2 Toolkit Shell Features
	Exiting the Shell

	Running the Telewindows2 Toolkit Demo
	Running the Demo Manually
	Connecting to G2 from the Client
	Running the Demo from a File

	Displaying Workspace Views in the Client
	Getting a Workspace View

	Controlling the G2 Run State from the Client
	Interacting with Items in Workspace Views
	Displaying the Popup Menu for an Item
	Editing Item Properties
	Item Configurations and User Modes
	Custom Dialogs
	Interacting with an Item from its Popup Menu
	Editing Attribute Displays and Layout
	Selecting, Moving, and Resizing Items

	Interacting with Workspace Views
	Editing KB Workspace Properties
	Creating New Items on a KB Workspace
	Cloning a KB Workspace
	Shrink Wrapping a KB Workspace
	Scaling a Workspace View
	Printing a KB Workspace

	Connecting to Multiple G2 Applications from the Client
	Displaying Multiple Workspace Views for Different G2 Connections

	Using Menu Command Mnemonics and Shortcuts
	Exiting the Telewindows2 Toolkit Demo

	Road Maps to Using�This�Guide
	Introduction
	Road Maps

	UI Controls and�Containers
	Using Standard�Dialogs
	Introduction
	Summary of Standard Dialog Classes
	Standard Dialog Clients
	Dialog Layout
	Custom Dialogs

	Packages Covered
	com.gensym.dlg

	Relevant Demos
	Using Standard Dialogs
	Inheritance Structure of the Standard Dialog Classes
	Common Arguments to Standard Dialog Constructors
	Listening for Dialog Events
	Localizing Dialog Text
	Creating and Launching Standard Dialogs

	Customizing Dialogs
	Customizing Dialog Buttons and Icons
	Customizing Dialog Behavior When it is Launched or Dismissed
	Customizing Dialog Controls
	Example

	Standard Dialogs Reference
	AboutDialog
	ErrorDialog
	InputDialog
	MessageDialog
	QuestionDialog
	SelectionDialog
	WarningDialog

	Creating Menus and�Toolbars
	Introduction
	Commands
	Command-Aware Containers
	Representation Constraints
	Structured Commands
	Abstract Commands
	Using Commands in Applications

	Packages Covered
	com.gensym.ui
	com.gensym.ui.menu
	com.gensym.ui.menu.awt
	com.gensym.ui.toolbar

	Relevant Demos
	Creating Command-Aware Containers
	Creating an Instance of a Command-Aware Container
	Adding All Command Keys
	Adding Individual Command Keys
	Adding Commands with Representation Constraints
	Adding Separators

	Creating Commands
	Defining the Command Class
	Implementing the Constructor
	Defining the Action of the Command
	Delivering Command Events By Setting Properties
	Getting Command Properties
	Localizing Command Text and Mnemonics
	Example

	Creating Commands with a Structure
	Defining the Command Class
	Implementing the Constructor
	Delivering Structured Command Events by Setting Properties
	Getting the Structure

	Implementing the Command Interface
	Example

	Overriding Mnemonics and Shortcuts for Shell Commands

	Creating Palettes
	Introduction
	Palettes and Palette Buttons
	Object Creators
	Structured Object Creators
	G2 Palettes and G2 Object Creators
	GFR Palettes
	Comparing Palettes to Menus and Toolbars

	Packages Covered
	com.gensym.ntw.util
	com.gensym.ui
	com.gensym.ui.palette
	com.gensym.clscupgr.gfr

	Relevant Demos
	Creating a Palette of Objects
	Creating the Palette
	Creating Palette Buttons
	Adding Buttons to the Palette
	Specifying Palette Behavior and Layout
	Getting Palette Properties
	Listening for Palette Events
	Listening for ObjectCreator Property Changes

	Creating G2 Palettes
	Creating the Palette
	Adding Objects to the Palette
	Creating Palette Buttons from G2 Objects

	Creating GFR Palettes
	Example

	Creating Multiple Document Interface Containers
	Introduction
	MDIFrame
	MDIDocument
	MDIManager

	Packages Covered
	com.gensym.mdi

	Relevant Demos
	Creating and Managing MDI Frames
	Creating the Frame
	Setting the Default UI Controls of the Frame
	Getting the Manager
	Getting the Frame

	Creating an MDI Toolbar Panel
	Example

	Creating and Managing MDI Documents
	Adding Documents to the Frame
	Getting Active and Open Documents
	Activating Documents

	Using Tiling Commands to Arrange Documents
	Getting the Default Tiling Commands
	Arranging New Documents

	Listening for MDI Events
	Example

	Creating MDI Document Types

	Using Telewindows2 Toolkit MDI�Documents
	Introduction
	Packages Covered
	com.gensym.shell.util

	Relevant Demos
	Using MDI Document Types
	Class Hierarchy of MDIDocument Types
	TW2Document
	WorkspaceDocument
	Creating MDI Documents that Display Views into the G2 Server’s Data

	Using Workspace Document Factories
	Example
	Creating a Custom Workspace Document
	Implementing a Workspace Document Factory
	Setting the Workspace Document Factory

	Application Classes
	Creating Telewindows2 Toolkit Applications
	Introduction
	UI Applications
	SDI and MDI Applications
	Organization of this Chapter

	Packages Covered
	com.gensym.shell.util
	com.gensym.mdi
	com.gensym.core

	Relevant Demos
	Determining Which Application Foundation Class to Extend
	Will the Application Have a User Interface?
	Will the Application Support Connecting to G2 Through the UI?
	Will the Application Provide a Single or Multiple Document Frame?
	�Decision Tree to Determine Which Class to Extend

	Application Foundation Classes
	GensymApplication
	UiApplication
	TW2Application
	MDIApplication
	TW2MDIApplication
	Summary of Application Foundation Class Features

	Creating Telewindows2 Toolkit Applications
	Required Features of SDI and MDI Applications
	Optional Features of SDI and MDI Applications
	Optional Feature Specific to SDI and MDI Applications

	Creating and Managing Connections to G2
	Will the Application Support Single or Multiple Connections to G2?
	Creating a ConnectionManager
	Opening a Connection through a ConnectionManager
	Getting Connection and Login Information
	Getting and Setting the Current Connection
	Listening for Changes in the Current Connection Context
	Implementing Abstract Methods to Manage Connections

	Creating Single Document Interface Applications
	Creating and Setting the Frame in an SDI Application
	Listening for Programmatic Show and Hide KB Workspace Events in SDI Applications

	Creating Multiple Document Interface Applications
	Creating and Setting the Frame in an MDI Application
	Listening for Programmatic Show and Hide KB Workspace Events in an MDI Application
	Registering Workspace Document Factories

	Using Shell Dialogs and�UI Controls
	Introduction
	Packages Covered
	com.gensym.shell.dialogs
	com.gensym.shell.util

	Relevant Demos
	HostPortPanel
	LoginDialog
	UserModePanel

	Using Shell Commands
	Introduction
	Command Keys
	Constructors
	Availability

	Packages Covered
	com.gensym.shell.commands

	Relevant Demos
	ConnectionCommands
	CreationCommands
	EditCommands
	ExitCommands
	G2StateCommands and CondensedG2StateCommands
	HelpCommands
	ItemCommands
	SwitchConnectionCommand
	TraceCommands
	WorkspaceCommands
	WorkspaceInstanceCommands
	ZoomCommands

	Understanding the Telewindows2 Toolkit Shell
	Introduction
	Telewindows2 Toolkit Default Application Shell Features
	The Shell Class
	Inheritance Structure
	Source Code

	Constructor and Constructor Method
	TW2MDIApplication Methods
	Application Frame and UI Components
	Create the Menu Bar
	Create the Toolbar Panel
	Create the Status Bar

	Menus and Toolbars
	Create File, G2, and Help Menu
	Create Toolbar

	Register WorkspaceDocumentFactory
	ContextChangedListener Method
	Status Bar Method
	Main Method
	ShellWorkspaceDocument and ShellWorkspaceDocumentFactory
	ShellWorkspaceDocument
	ShellWorkspaceDocumentFactory

	Appendices
	Localization
	Deploying Your Application
	Required Library Files
	Required Files for Beans Created with BeanXporter

	Glossary and Index
	Glossary
	A
	C
	G
	I
	J
	M
	N
	P
	S
	T
	U
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

