
Telewindows2 Toolkit

Java Developer’s Guide
Components and Core Classes

Version 1.2 Rev. 2

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 22:03:16
Telewindows2 Toolkit Java Developer’s Guide, Components and Core Classes
May 2002

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.
Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright 2002 Gensym Corporation
All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, G2 Real-Time Expert System®, Dynamic Scheduling®, NeurOn-Line®,
ReThink®, and Telewindows® are registered trademarks of Gensym Corporation.
G2 ActiveXLink™, G2 BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™,
G2 Gateway™, G2 GUIDE™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™,
Integrity™, Symcure™, and Optegrity™, are trademarks of Gensym Corporation.
SCOR® is a registered trademark of PTRM.
All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 272-7101 Part Number: DOC069-122

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Components and Core
Classes
Version 3.1 Mode: Working Size: 7x9x11
Contents Summary
Preface xvii

Part I Introduction 1

Chapter 1 Overview of Telewindows2 Toolkit 3

Part II Connecting to G2 23

Chapter 2 Overview of Connectivity 25

Chapter 3 Using ItemRetriever 35

Chapter 4 Using TwConnector 51

Chapter 5 Using Connection Information Objects 61

Chapter 6 Using TwGateway 73

Chapter 7 Establishing a G2 Login Session 101

Chapter 8 Using a Middle-Tier Server 117

Part III Viewing Workspaces 125

Chapter 9 Workspace Views Terms and Concepts 127

Chapter 10 The Workspace View User Interface 133

Chapter 11 Using the Text Editor 147

Chapter 12 Using Workspace View Components 159

Chapter 13 Customizing Popups for Selected Items 181
loper’s Guide Components and Core Classes iii

Contents Summary
Part IV Using Dialogs 201

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs 203

Chapter 15 Using Dialog Components 213

Chapter 16 Launching Custom Item Properties Dialogs 305

Chapter 17 Customizing Automatically Generated Dialogs 321

Chapter 18 Launching General Dialogs 337

Part V Appendixes, Glossary, and Index 349

Appendix A Restricted Remote Procedure Calls 351

Appendix B Compatibility Issues 353

Glossary 357

Index 361
iv Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Components and Core
Classes
Version 3.1 Mode: Working Size: 7x9x11
Contents
Preface xvii

About this Guide xvii

Audience xviii

A Note About the API xviii

Conventions xviii
Typographic xviii
Procedure Signatures xix

Related Documentation xx

Customer Support Services xxiii

Part I Introduction 1

Chapter 1 Overview of Telewindows2 Toolkit 3

Introduction 3
What Can You Do with Telewindows2 Toolkit Components? 4
Who Uses Telewindows2 Toolkit Components? 5
How Do You Work with Telewindows2 Toolkit Components and Core

Classes? 6

Using Telewindows2 Toolkit Components 7
JAR Files 9
Data-Aware Components 9
Change and Update Events 10
Data Type Conversion 12
Workspace View Components 13
Text Editor 13
Internationalization 14
Accessor Methods 14

Using Telewindows2 Toolkit Core Classes 14

Using Java-Based Visual Programming Environments 16

Creating Components from G2 Classes 17

Using Telewindows2 Toolkit Demonstrations for Java 17
loper’s Guide Components and Core Classes v

Contents
Part II Connecting to G2 23

Chapter 2 Overview of Connectivity 25

Introduction 25
Connectivity Components 26
G2 JavaLink Connectivity to G2 26

Understanding the Connectivity Classes 27
Class Hierarchy of Connectivity Classes 28
Class Hierarchy of Connectivity Components 29
Determining the Connectivity Class to Use 30

Choosing a Connection Type 30
Result of Connecting to G2 31
Creating a G2 JavaLink Connection 32
Creating a Telewindows2 Toolkit Connection 33

Using a Middle-Tier Server 34

Chapter 3 Using ItemRetriever 35

Introduction 35

Packages Covered 36
com.gensym.controls 36
com.gensym.jgi 37

Using an ItemRetriever Programmatically 37
Using ItemRetriever Constructors 37
Retrieving an Item 38
Setting ItemRetriever Properties 38
Passing a Connection Information Object to an ItemRetriever 39
Using JavaLink Methods 40
Subscribing to ItemRetriever Events 41
Handling Connection Exceptions 43
Closing a Connection 43
Example 43

ItemRetriever Reference 46
Properties 46
Events and Listeners 48
Methods 49
vi Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Contents
Chapter 4 Using TwConnector 51

Introduction 51

Packages Covered 53
com.gensym.controls 53
com.gensym.jgi 53

TwConnector Reference 54
Properties 54
Events and Listeners 57
Methods 59

Chapter 5 Using Connection Information Objects 61

Introduction 61
The TwConnectionInfo Class Hierarchy 62

Packages Covered 63
com.gensym.jgi 63
com.gensym.ntw 63

Relevant Demos 63

Using Connection Information Objects 63
Creating a Connection Information Object 64
Basic and Advanced Properties 65

Setting Basic Connectivity Properties 65
Setting the Host and Port 65
Specifying a Middle-Tier Server 66

Setting Advanced Connectivity Properties 66
Interrelated and Independent Properties 67
Connection and Interface Classes 67
Changing the Interface Name 68
Sharing a Connection 69
Setting a Permanent Connection 71
Specifying a Logical Name 71
Setting a Remote Procedure Invocation String 71

Chapter 6 Using TwGateway 73

Introduction 73

Packages Covered 74
com.gensym.ntw 74
com.gensym.ntw.util 75
com.gensym.jgi 75

Relevant Demos 75
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes vii

Contents
Chapter 6 Using TwGateway 73

Supporting a Middle-Tier Connection 76

Creating a G2 Connection 76
Opening and Closing a Connection 76
Handling Connection Exceptions 79

Handling Events 79
Subscribing to Connection Events 79
Subscribing to Workspace Show and Hide Events 82
Subscribing to KB Module Events 84
Subscribing to KB Message Events 87

Working with Telewindows2 Toolkit Connections 89
Getting the KB 89
Getting a List of Named Workspaces 90
Getting the Current DialogManager 91
Invoking a User Menu Choice 93
Sending a Message 95
Getting and Setting Attributes of User-Defined Items 96

TwGateway Reference 97
Abstract Methods on TwAccess 98
Static Methods on TwGateway 100
Protected Methods on TwGateway 100

Chapter 7 Establishing a G2 Login Session 101

Introduction 101

Packages Covered 102
com.gensym.ntw 102

Relevant Demos 103

Establishing a Login Session 103
Managing Clients and Security in G2 103
Representing a Login Session in G2 104

Logging in to G2 105
Using Accessor Methods 106
Using LoginRequest Constructors 107
Creating a Login Session to a Non-Secure G2 107
Creating a Login Session to a Secure G2 109
Working with User Modes in a TwGateway Connection 112

Handling Login Exceptions 112

Logging Out From G2 113
Logging Out and Closing the Connection 114
Logging Out and Leaving the Connection Open 114
viii Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Contents
Chapter 8 Using a Middle-Tier Server 117

Introduction 117
Telewindows2 Toolkit Communication Support 118
Prerequisites 118

Packages Covered 118

Relevant Demos 118

Using a Two-Tier Configuration 119
Establishing a Two-Tier Connection 119
When to Use Two-Tier Connections 120

Using a Three-Tier Configuration 120
Establishing a Three-Tier Connection 120
Development Considerations 121
When to Use Three-Tier Connections 122

Setting Up a Three-Tier Configuration 122
Starting an RMI Registry 122
Starting an RMI Server 123
Connecting to G2 Through a Middle Tier 124

Part III Viewing Workspaces 125

Chapter 9 Workspace Views Terms and Concepts 127

Introduction 127

Workspace View Terminology 127

Programming Workspace Views 128

KB Workspaces vs. Workspace Views 129
User’s Perspective 130
Developer’s Perspective 131

Chapter 10 The Workspace View User Interface 133

Introduction 133

Relevant Demos 134

Workspace View Appearance 134

Workspace View Behavior 135
Synchronizing KB Workspaces and Workspace Views 135
Differences Between KB Workspaces and Workspace Views 136

Changing Workspace View Appearance 136
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes ix

Contents
Chapter 10 The Workspace View User Interface (continued)

Changing Objects in a Workspace View 137
Selecting and Deselecting Objects 137
Moving and Reshaping Objects 138

Using Workspace View Item Popup Menus 139
Comparison with Item Popup Menus in KB Workspaces 140
User Menu Choices in Item Popup Menus 140
Interacting with Item Popup Menus 141

Using Workspace View Item Properties Dialogs 141
Attributes Tab 142
Configuration Tab 144
Notes Tab 144

Scaling Workspace Views 144

Unsupported Features of Workspace Views 145

Chapter 11 Using the Text Editor 147

Introduction 147

Using the Telewindows2 Toolkit Text Editor 148
Editing Text 149
Searching for Text 149
Using Grammar Prompts 150
Detecting Syntax Errors 151
Applying Changes 151
Exiting the Editor 151

Entering Native Language Texts 152

Text Editor Shortcuts 153
Keyboard Accelerators 153
The Text Editor Popup Menu 155
Toolbar Buttons 155

Text Editor Menu Reference 156
Session Menu 156
Edit Menu 156
View Menu 157

Chapter 12 Using Workspace View Components 159

Introduction 160

Packages Covered 161

Relevant Demos 161

Creating Workspace Views 162
x Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Contents
Chapter 12 Using Workspace View Components (continued)

Populating Workspace Views 162
Populating a Single Workspace View 162
Populating a Multiple Workspace Display 163
Automatically Populating a Multiple Workspace Panel 164

Removing a KB Workspace from a Workspace View 165

Obtaining KB Workspaces 165
Obtaining a KB Workspace from a Connection 165
Obtaining a KB Workspace(s) from a Workspace View 166
Obtaining the Current KB Workspace from a Multiple Workspace

Display 166
Polling a Multiple Workspace Display for a Named KB Workspace 166

Obtaining a Single Workspace View from a Multiple Workspace View 167

Controlling KB Workspace Visibility 167

Scrolling Workspace Views 168
Adding and Removing Scrollbars 168
Setting Scrolling Increments 169
Incrementally Scrolling a KB Workspace 170

Working with Workspace View Elements 171
Obtaining All Workspace View Elements 171
Obtaining the Workspace Element for an Item 172
Obtaining the Item Associated with a Workspace Element 172

Working with Selections 173
Selecting Workspace View Elements 173
Obtaining Selected Elements 175
Manipulating Selected Elements 175
Handling Selection Events 175

Working with Collections 176

Scaling Workspace Views 176

Workspace View Example 177

Chapter 13 Customizing Popups for Selected Items 181

Introduction 182
SelectionCommandGenerator 183
SelectionCommand 183
MenuChoiceHandler 183

Packages Covered 184

Relevant Demos 184
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xi

Contents
Chapter 13 Customizing Popups for Selected Items (continued)

Displaying a Popup Menu with User Menu Choices Only 185
Example 186

Displaying Custom Commands in a Popup Menu 188
Example 190

Registering Popup Menu Choices for Individual Workspaces 193
Example 194

Invoking System-Defined User Menu Choices Locally in the Client 196
Example 198

Part IV Using Dialogs 201

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs 203

Introduction 203
Terminology 204
Standard Dialogs 205

Item Properties Dialogs 205
Automatically Generated Item Properties Dialogs 206
Customizing Item Properties Dialogs 208
Creating and Registering Custom Dialog Resources and Classes 208
Customizing Automatically Generated Dialogs 209

General Dialogs 209
Using General Dialogs for Event Notification 210

Dialog Resources 210

Chapter 15 Using Dialog Components 213

Introduction 214

Packages Covered 214
com.gensym.controls 215
com.gensym.jcontrols 215
com.gensym.dlgruntime 216
com.gensym.dlgevent 216

Class Hierarchy of the Dialog Components 216
Helper Components 217
Dialog Controls Based on AWT 218
Dialog Controls Based on Swing 219
xii Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Contents
Chapter 15 Using Dialog Components (continued)

Component Support Classes 220
AttributeEditor Interface 220
AttributeHolder Class 220
FieldType and FieldTypeEditor Classes 220
LimitMode and LimitModeEditor Classes 221
SymbolVector and SymbolVectorEditor Classes 221

Using Dialog Components 222
How G2 Gets Data Changes from a Control 223
How a Control Gets G2 Data Updates 223
Using Standard Java Properties 224
Localizing Dialog Component Text 225
Using Standard Java Events and Methods 225

Using G2 Item Components in Dialogs 226
Identifying the Item 227
Fetching the Item 227
Handling Events 228
Example 228

DialogCommand 232

G2Button 235

G2Checkbox 238

G2ComboBox 241

G2DropDownChoice 242

G2Label 248

G2Listbox 252

G2Radiobox 272

G2TextField 277

ItemProxy 290

StructureMUX 300

Chapter 16 Launching Custom Item Properties Dialogs 305

Introduction 305

Packages Covered 307
com.gensym.dlgruntime 307
com.gensym.classes 307

Relevant Demos 307
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xiii

Contents
Chapter 16 Launching Custom Item Properties Dialogs (continued)

Registering Custom Item Properties Dialog Resources 308
Monitoring Client Sessions 308
Declaring the Remote Procedure in G2 309
Calling the Remote Procedure 309
Creating a Procedure that Calls the RPC Across the Interface 315

Registering Custom Item Properties Dialog Classes 316
Creating Dialog Classes for Editing G2 Items 316
Defining a Procedure that Calls the RPC to Register the Dialog

Class 317

Creating Your Own Dialog Manager 318

Chapter 17 Customizing Automatically Generated Dialogs 321

Introduction 321
DeafultGeneratedDialogFactory 322
Dialog Components 324

Registering the Generated Dialog Factory 325

Overriding the Editor for Attributes of a Given Type 325

Localizing Attribute Labels 328

Creating Tabs for Groups of Attributes 330

Adding Buttons to Automatically Generated Dialogs 332

Creating a Dialog with User-Defined Attributes Only 334

Chapter 18 Launching General Dialogs 337

Introduction 337

Relevant Packages 338
com.gensym.dlgruntime 338

Relevant Demos 338

Reviewing the Dialog Runtime Interfaces and Classes 339

Launching General Dialogs from Your Application 340
Creating a Default Dialog Reader and Launcher 341
Creating a Resource from a Dialog Resource File 341
Getting the ItemProxy Components from the Resource 342
Creating the Top-Level Component from the Resource 343
Launching the Dialog 343
Example Code 344
xiv Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Contents
Chapter 18 Launching General Dialogs (continued)

Creating Your Own Types of Dialog Resources 345
When to Create Your Own Dialog Resource 346
Launching a Custom Dialog Resource 347

Part V Appendixes, Glossary, and Index 349

Appendix A Restricted Remote Procedure Calls 351

Appendix B Compatibility Issues 353

Glossary 357

Index 361
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xv

Telewindows2 Toolkit Java Deve

Telewindows2 Toolkit Java Developer’s Guide Components and Core
Classes
Version 3.1 Mode: Working Size: 7x9x11
Preface
Describes this guide and the conventions that it uses.

About this Guide xvii

Audience xviii

A Note About the API xviii

Conventions xviii

Related Documentation xx

Customer Support Services xxiii

About this Guide
This guide describes the Telewindows2 (TW2) Toolkit components and core
classes for creating Java-based, native, client, user interfaces for G2 applications.

The TW2 Toolkit components are packaged in a JAR file, which you can load into
or a JavaBeans-compliant visual programming environment, such as Symantec
Visual Café or Borland J Builder.

If you are working strictly in a visual programming environment, you do not
need to use any of the core classes that this guide documents. For such users,
these core classes are documented to provide background for using the visual
components.

If you are working in a Java development environment, you use the core classes
to perform basic functionality, such as connecting to G2, creating a secure login,
and handling associated events. Depending on the amount of customization you
wish to do, you might also use some of the core classes to customize the way in
which TW2 Toolkit represents and displays G2 KB workspaces, or to create and
launch dialog resources that you create in a visual Java programming
environment.
loper’s Guide Components and Core Classes xvii

Preface
Audience

This guide is written primarily for the UI developer, who creates client user
interfaces for G2 applications. UI developers use and configure TW2 Toolkit and
third-party vendor components in Java. Because the TW2 Toolkit components are
JavaBeans compliant, UI developers can also work in a JavaBeans-compliant
visual programming environment.

Additionally, this guide addresses to some extent the component developer, who
needs to use and extend TW2 Toolkit components and core classes to create
applications that access and manipulate KB data and knowledge.

A Note About the API
The techniques by which Telewindows2 Toolkit implements its capabilities are
subject to change at any time without notice or explanation, and are expected to
change as the toolkit evolves. These techniques, and any changes to them, will not
be described in any documentation.

Therefore, it is essential that you use TW2 Toolkit exclusively through its API as
described here and in the API documentation. Any methods or classes that are not
included in the API are subject to change without notice. Any code that calls
undocumented methods may cease to work in newer versions.

Conventions

Typographic

Convention Examples Description

g2-window, g2-window-1,
gfr-top-level, sys-mod

G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature G2 attribute names

true, 1.234, ok, “Burlington, MA” Attribute values and values
specified or viewed through
dialogs

Main Menu > Start
KB Workspace > New Object
create subworkspace
Start Procedure

G2 menu choices and button labels
xviii Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures
A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

−> transferred-items: g2-list

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save
Properties

GMS and native top-level menu
choices and native popup menu
choices

workspace Glossary terms

c:\Program Files\Gensym\g2 Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xix

Preface
Related Documentation

Telewindows2 Toolkit
Online Files
The following document is available in the following directory, depending on
your platform:

Java Developer’s Guides
The online files are located in this directory, by default, depending on your
platform:

• Telewindows2 Toolkit Release Notes

• Telewindows2 Toolkit Java Developer’s Guide: Components and Core Classes

• Telewindows2 Toolkit Java Developer’s Guide: Application Classes

• Telewindows2 Toolkit Java Demos Guide

• BeanXporter User’s Guide

G2 JavaLink
Online Files
The following document is available in the following directory, depending on
your platform:

NT: %SEQUOIA_HOME%\readme-tw2.html

UNIX: $SEQUOIA_HOME/readme-tw2.html

NT: c:\Program Files\Gensym\g2-6.1\doc\tw2\Java\
docs\guides\

UNIX: /usr/gensym/g2-6.1/doc/tw2/Java/docs/guides/

NT: %JAVALINK_HOME%\readme-javalink.html

UNIX: $JAVALINK_HOME/readme-javalink.html
xx Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Related Documentation
User’s Guides
The online files are located in this directory, depending on your platform:

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

Java Reference Material
• JDK 1.3 documentation set *

• The Java Language Specification (Gosling, Joy, Steele. Addison Wesley) *

• The Java Bean Specification V1.0 *

• *These and other Java documents can be downloaded from Sun
Microsystems’ Java web site at http://www.javasoft.com.

G2 Core Technology
• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual, Volumes I and II

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

NT: c:\Program Files\Gensym\g2-6.1\doc\javalink\
docs\guides\

UNIX: /usr/gensym/g2-6.1/doc/javalink/docs/guides/
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xxi

Preface
G2 Utilities
• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

G2 Diagnostic Assistant
• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Bridges and External Systems
• G2 WebLink User’s Guide

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 OPCLink User’s Guide

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2-ODBC Bridge Release Notes

• G2 Database Bridge User’s Guide
xxii Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Customer Support Services
Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

Access G2 HelpLink at http://www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes xxiii

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part I Introduction
Version 3.1 Mode: Working Size: 7x9x11
Part I
Introduction
Chapter 1 Overview of Telewindows2 Toolkit 3

Presents a brief overview of Telewindows2 Toolkit components and core classes, and describes
how to use them.
1

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Chapter 1 Overview of Telewindows2 Toolkit
Version 3.1 Mode: Working Size: 7x9x11
1
Overview of
Telewindows2 Toolkit
Presents a brief overview of Telewindows2 Toolkit components and core classes,
and describes how to use them.

Introduction 3

Using Telewindows2 Toolkit Components 7

Using Telewindows2 Toolkit Core Classes 14

Using Java-Based Visual Programming Environments 16

Creating Components from G2 Classes 17

Using Telewindows2 Toolkit Demonstrations for Java 17

Introduction
Welcome to Gensym’s Telewindows2 (TW2) Toolkit components and core classes
for Java programmers. The TW2 Toolkit components comprise a set of JavaBeans-
compliant Graphical User Interface (GUI) tools for G2. These components are:

• Modular, reusable, and specifically designed for creating a G2 user interface.

• Not limited to a single environment and can be designed to launch from
within a Web browser, a Windows application, or a Java application.
3

Chapter 1 Overview of Telewindows2 Toolkit
The TW2 Toolkit components documented in this guide consist of:

• Connectivity components for connecting to G2 and establishing a secure
login session, if required.

• Workspace view components for displaying one or more KB workspaces in a
client.

• Data-aware controls for viewing and editing attributes of G2 items through a
dialog, including a text field, a check box, a radio box, a pulldown list, a list
box, and an invisible control for representing G2 structures.

• Dialog command components for controlling dialog actions when, for
example, the user clicks the OK, Apply, or Cancel button.

In addition to these components, this guide documents several core classes:

• Connectivity classes, which are Java classes that underlie the connectivity
components for connecting to G2, providing connection and login
information to the connection, and handling connection and KB events.

• Classes and interfaces for handling dialog resources that you create using
TW2 Toolkit components.

To use advanced features of connectivity components, you need to understand
the connectivity classes. If you are programming in a Java environment, you use
connectivity classes rather than the component equivalents to create a G2
connection.

If you use TW2 Toolkit components to create custom properties dialogs for G2
items, you must register the dialog resource with a dialog manager, from either
G2 or your Java application. If you are programming in a Java environment, you
can also implement your own classes for reading and launching your own types
of dialog resources.

What Can You Do with Telewindows2 Toolkit
Components?

Using TW2 Toolkit components and core classes, you can create a range of G2
client user interfaces to suit your needs. You can implement, for example:

• A small applet to perform simple monitoring tasks through a Web browser,
including displays of important G2 object values in a read-only format.

• A fully functional client application that controls your entire manufacturing
plant.

Developers can combine TW2 Toolkit components and core classes to create a
client application capable of connecting to a G2 process, and obtaining data from
and updating data to a G2 knowledge base (KB). Such a client application can
access and represent virtually all of a KB’s knowledge, including complete views
of KB workspaces capable of displaying graphically complex items, such as trend
4 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Introduction
charts and animated icons. Java programmers can also build their own TW2
Toolkit components.

This document presents the TW2 Toolkit components and core classes available to
a Java programmer, and describes how to use them to create a native client GUI
for G2.

For information on using TW2 Toolkit classes that support building applications
that connect to one or more G2 processes, refer to the Telewindows2 Toolkit Java
Developer’s Guide: Application Classes.

Who Uses Telewindows2 Toolkit Components?
Most developers use TW2 Toolkit to create client user interfaces for G2
applications. This document refers to such users as UI developers and primarily
addresses their needs.

Other developers, referred to as component developers, might not be building a
complete user interface. Instead, these users need to use and extend TW2 Toolkit
components and core classes to create applications that access and manipulate KB
data and knowledge.

UI developers use and configure TW2 Toolkit and third-party vendor
components within any Java programming environment. Because the TW2
Toolkit components are packaged as Java Beans, UI developers can work with
these beans in a JavaBeans-compliant visual programming environment. They
do this by loading JAR files of Java Beans, editing the properties of those beans
through a properties table, and hooking up event triggers from one component to
target methods in another component.

A number of integrated development environments (IDEs), such as Symantec
Visual Café or Borland J Builder, provide visual Java programming environments
within a fully integrated environment for developing Java applications.

This guide does not include examples of working with third-party vendor
components, although it does discuss the requirements for using TW2 Toolkit
components within visual Java programming environments.

The UI developer requires a working knowledge of Java, its JavaBeans
specification capabilities, AWT, Swing, and the Telewindows2 Toolkit API.

This guide is written for Java programmers familiar with software component
design and technology; it does not attempt to describe the theory or purpose of
creating and developing Java Bean components. Numerous well-written
documents already exist to fulfill that requirement. See the Java Sun website at
www.java.sun.com for references. Instead, this guide presents the major TW2
Toolkit components, and other relevant classes and facilities, as a developer needs
to understand them to create G2 client applications.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 5

Chapter 1 Overview of Telewindows2 Toolkit
How Do You Work with Telewindows2 Toolkit
Components and Core Classes?

As a UI developer, you work with Telewindows2 Toolkit components and core
classes in one of two ways:

• By loading the TW2 Toolkit components into a JavaBeans-compliant visual
programming environment and using these and third-party vendor controls
to develop dialog classes and G2 client applications.

• By writing Java programs, in a third-party IDE or in pure Java, that use TW2
Toolkit components and core classes.

You can also use tools provided by G2 JavaLink to create a visual JavaBeans
interface for any G2 system-defined or user-defined class. You can then use these
components in a JavaBeans-compliant visual programming environment, a third-
party IDE, or pure Java.

TW2 Toolkit allows you to launch and view source code for:

• A number of demonstrations that illustrate the use of TW2 Toolkit
components and core classes in applets, in a Web browser, in Java containers,
and in TW2 Toolkit applications.

• The TW2 Toolkit default application shell, which allows you to access a G2 KB
through a native client user interface and edit textual attributes of items by
using a native Text Editor.

While the TW2 Toolkit default application shell uses some TW2 Toolkit
components and core classes, it is primarily an example of using TW2 Toolkit
application classes; thus, it is described fully in the Telewindows2 Toolkit Java
Developer’s Guide: Application Classes.

Because the Text Editor is a feature of editing items on workspace views, it is
described fully in this guide.
6 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Components
Using Telewindows2 Toolkit Components
The classes that comprise the Telewindows2 Toolkit components are organized
into packages. This table categories these classes and packages and provides a
brief description of each class:

Package/Category/Component Description

com.gensym.controls

Connectivity Components

ItemRetriever Connects to G2 and obtains an item.

TwConnector Connects to G2.

com.gensym.controls

Non-Visual Controls

ItemProxy Holds a G2 item for editing or viewing
its data.

StructureMUX An invisible control that represents
attributes that are a type of G2 structure.

com.gensym.jcontrols

Data-Aware Controls

G2Label Supplies a textual descriptor for fields,
headings, or messages.

G2TextField Supplies a user type-in field.

G2Checkbox Turns an option on and off.

G2Radiobox Represents multiple options from which
the user can choose one.

G2ComboBox Presents a list of options in a drop down
list from which a user can choose one.

G2Listbox Represents a single selection from a list
or a collection of multiple values in a
single control.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 7

Chapter 1 Overview of Telewindows2 Toolkit
com.gensym.controls

Dialog Controls

G2Button Propagates an action.

DialogCommand Informs dialog listeners of dialog events
such as applying dialog edits, closing
the dialog, and canceling the dialog.

com.gensym.wksp

Workspace View Components

ScalableWorkspaceView Displays a single KB workspace that is
scalable.

MultipleWorkspaceView Displays any of several KB workspaces.

MultipleWorkspacePanel Displays a multiple workspace view
that has scrollbars.

WorkspaceView Displays a single KB workspace.

Note: This component exists for
backward compatibility for Active X
developers only.

Package/Category/Component Description
8 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Components
JAR Files
The components that TW2 Toolkit supplies are packaged in Java ARchive (JAR)
files. TW2 Toolkit includes these JAR files:

Data-Aware Components
The com.gensym.jcontrols package contains a number of visual controls used
for viewing and editing attributes of G2 items through a dialog. It also contains an
invisible component that lets you represent G2 structures. These components are
called data-aware components, which means they:

• Can perform automatic updates to and from G2.

• Transparently handle G2 data types.

JAR File Description

sequoia.jar All the classes necessary to support TW2 Toolkit
functionality, for example, TwGateway and
ScalableWorkspaceView.

It also contains TW2 Toolkit components for
creating dialogs that communicate with G2
items and KB workspaces, including
connectivity components, data-aware controls,
dialog controls, and workspace view
components.

You load this JAR file into a JavaBeans-
compliant visual programming environment,
such as Symantec Visual Café or Borland
J Builder.

Note: This JAR file contains both AWT and
Swing versions of these components.

coreui.jar Telewindows2 Toolkit UI classes used for
creating applications, including commands,
command-aware containers such as menus,
toolbars, and palettes, MDI application classes,
and dialogs.

ax2jbeans.jar Classes in support of packaging ActiveX
components as Java Beans, using the G2
BeanXporter. You do not load this JAR file.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 9

Chapter 1 Overview of Telewindows2 Toolkit
The com.gensym.jcontrols package provides two categories of data-aware
components:

• Scalar controls, which you use to view and edit “atomic” data types, such as
integers, floats, text, symbols, and truth values:

– G2Label

– G2TextField

– G2Checkbox

– G2RadioBox

– G2ComboBox

– G2ListBox

• Aggregate controls, which you use to edit data structures, such as G2 lists,
sequences, and structures. Because these data types have no simple analog in
the AWT component set, you must use one of the scalar controls to edit
subparts of the data structure. The aggregate controls are:

– G2ListBox — A dialog control for viewing and editing G2 sequence data
types, which holds a collection of like elements in a collection list, which
can grow or shrink, and in which the user can edit the currently selected
element through some other dialog control.

– StructureMUX — An invisible component used for viewing and editing
G2 structure data types, which allow you to route the attributes of a
structure into separate dialog components for editing and viewing.

Note that by specifying a property of the G2ListBox control, you can use it to edit
atomic data types or data structures.

A more accurate, but painfully long name for StructureMUX would be
G2StructureMultiplexerDemultiplexer.

Change and Update Events
You use the data-aware components in conjunction with an ItemProxy to handle
updates to and from G2 by means of two events:

• ObjectChangeEvent — Occurs when a scalar control in a dialog changes. The
ItemProxy component implements ObjectChangeListener, as do the
aggregate controls such as G2ListBox, which means they are notified when
atomic data in a dialog changes.

• ObjectUpdateEvent — Occurs when an item in the G2 server gets updated or
when an aggregate control changes. All scalar and aggregate controls
implement ObjectUpdateListener, which means they receive notification via
an ItemProxy when data in the G2 server gets updated.
10 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Components
Thus, ObjectUpdateEvents and ObjectChangeEvents flow between data-aware
components and the ItemProxy component, as follows:

• An ItemProxy generates ObjectUpdateEvents for downloading changes from
G2 to the data-aware controls.

• An ItemProxy receives ObjectChangeEvents for uploading changes from the
data-aware controls back into G2.

You can explicitly invoke methods on ItemProxy to initiate the upload or
download, or you can rely on event handling or state changes to cause uploading
and downloading to occur automatically.

By connecting these events between a data-aware control and an ItemProxy, you
can create dialogs that change the attributes of G2 items and get updated when
the value of an attribute of a G2 item changes, as this figure illustrates:

When you use data-aware controls to edit data structures, ObjectUpdateEvents
flow from aggregate controls to scalar controls. They are usually initiated when a
dialog is launched or when a dialog receives an update from G2.
ObjectChangeEvents flow in the opposite direction, from scalar controls to
aggregate controls, and they are usually initiated when the end user edits a scalar
control.

capacity
ItemProxy

G2

item

objectChanged

objectUpdated

upload()

download()

G2TextField
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 11

Chapter 1 Overview of Telewindows2 Toolkit
This figure shows how these events flow between a G2TextField and a
G2Listbox used as an aggregate control:

Data Type Conversion
Data-aware components handle data type conversion transparently. For example,
if a G2TextField component represents an item attribute whose value is a G2
float, no special coding is required to convert the text value that a user enters.

Each of the data-aware components includes a fieldType property, whose value
can be any of the following G2 data types:

• symbol

• text

• integer

• float

• truthvalue

• structure

• sequence

Internally, this property is an instance of a com.gensym.controls.FieldType
object, which handles the conversion of the G2 data types that G2 JavaLink
supplies into the data type that the underlying Java component requires.

For example, if your application uses a G2TextField to edit a G2 item attribute
whose value is an integer, the FieldType object translates the integer into a

capacities

ItemProxy

G2

item

upload()

download()

objectChanged

objectUpdated

G2ListboxG2TextField
12 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Components
java.lang.String before calling its setText method. Conversely, after a user
changes the value in the G2TextField, the FieldType object translates the string
that the user entered back into a java.lang.Integer value.

In addition, the G2TextField component provides functionality that checks
whether the user input matches the field type and allows you to specify whether
an empty field should be interpreted as null. The ability to interpret empty text
fields lets you to distinguish between an attribute that “does not exist,” from the
perspective of the G2 compiler, and an attribute whose value is none in the G2
attribute table.

Workspace View Components
While the workspace view components are not data aware in the same sense that
the dialog controls are data aware, they also perform automatic updates to and
from G2. In particular, once a workspace view is displayed in an application shell,
all of its items automatically update G2 of any changes in the client, and G2
automatically updates the items of any changes in the server.

TW2 Toolkit accomplishes this by means of methods that update changes in G2
data into the client UI, and conclude updates from the client UI back into G2.
Your TW2 application can subscribe to these updates through the components in
the com.gensym.controls package.

Text Editor
TW2 Toolkit includes its own text editor, which the ScalableWorkspaceView
component invokes any time you edit a textual attribute of an item in a workspace
view:

Chapter 11, “Using the Text Editor” on page 147 describes the TW2 Toolkit text
editor.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 13

Chapter 1 Overview of Telewindows2 Toolkit
Internationalization
You can localize all text displayed within TW2 Toolkit components, such as
dialog text. TW2 Toolkit supports localization through the use of text key
variables. You store the textual representations of the keys in a resource file,
which you can localize, as necessary.

Accessor Methods
The get and set accessor methods for the TW2 Toolkit components are described
fully in the API documentation and are presented in simple tables in the relevant
chapters throughout this document.

Using Telewindows2 Toolkit Core Classes
In addition to the components, this guide describes the following core classes in
the following categories and packages, for use in Java applications:

Package/Category/Class Description

com.gensym.ntw

Connectivity Classes

TwGateway Allows you to connect a client
application to G2 to gain access to
complete TW2 Toolkit functionality.

TwConnectionInfo Sets the properties that a G2 connection
request requires.

TwConnectionListener When registered as a listener, receives
notification of connection events.

WorkspaceShowingListener When registered as a listener, receives
notification of G2 programmatic show
and hide workspace events.

LoginRequest Sets the properties that a login session to
a G2 connection requires.

com.gensym.ntw

KB Classes

KbModuleListener When registered as a listener, receives
notification of G2 module events.
14 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Core Classes
KbMessageListener When registered as a listener, receives
notification of G2 Message Board and
Operator Logbook message events.

com.gensym.dlgruntime

Dialog Resource Classes

DialogManager Handles the registration of dialog
resources as properties dialogs of G2
items, plus launches and reads those
dialogs.

DefaultDialogReader Reads dialog resources.

DefaultDialogLauncher Launches dialog resources.

DialogReader An interface that you can implement to
read your own type of dialog resources.

DialogLauncher An interface that you can implement to
launch dialog resources in any type of
container.

DialogResource The type of object that you register
using a DialogManager, which takes the
dialog resource, a DialogReader, and a
DialogLauncher.

com.gensym.gcg

Generated Dialog Classes

GeneratedDialogFactory An interface responsible for
automatically generating item
properties dialogs.

DefaultGeneratedDialogFactory A default implementation of the
GeneratedDialogFactory interface.

AttributeLabel The label associated with an item
attribute.

Package/Category/Class Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 15

Chapter 1 Overview of Telewindows2 Toolkit
Using Java-Based Visual Programming
Environments

You can use JavaBeans-compliant visual programming environments to create
custom dialogs for editing the attributes of items in the client. Dialogs that you
create in visual Java programming environments are typically Java classes.

The technique you use for registering custom dialog classes created in a visual
Java programming environment is similar to the technique you use for registering
dialog resources, except that you use a slightly different version of the registration
method. In addition, when creating your Java dialog class, you must implement
particular TW2 Toolkit classes to keep track of the G2 item the dialog is editing.

AttributeInfo An object that encapsulates all the
information you might need about an
attribute, including its name, type,
defining class, whether it is system
defined, and so on.

G2AttributeEditor An object that encapsulates the group
name, label, editor, item, and attribute
name.

G2AttributeGroup A list of all the editors that belong to
that group, plus the group name.

G2ReadOnlyTextArea A JScrollPane used for displaying
complex attributes such as sequences
and structures or attributes with a
grammar or attributes that display
items.

SubDialogLauncher Launches a subdialog for editing an
attribute of an item that is an object.

G2TextArea An implementation of
SubDialogLauncher that launches the
text editor for editing attributes with a
grammar or a properties dialog for
editing the attributes of the subobject.

G2ColorField A com.gensym.jcontrols.
G2TextField whose background is a
color, used for editing color attributes.

Package/Category/Class Description
16 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Creating Components from G2 Classes
Telewindows2 Toolkit has been tested with the following two Java-based IDEs:

• Symantec Visual Café

• Borland J Builder

Creating Components from G2 Classes

Telewindows2 Toolkit through G2 JavaLink supplies a component interface to all
system-defined G2 classes. This means you can call the accessor methods and
class methods on system-defined items from any Java application. To use these
components within a Java-based visual programming environment, you use the
G2 Bean Builder to create a visual Java Bean to represent the item.

You can also create a component interface to any user-defined G2 class. If all you
need is a Java class representation of the item, you can use the G2 Download
Interfaces wizard tool provided with G2 JavaLink. If you need to use the item in a
visual environment, again, you use the G2 Bean Builder to create a visual bean to
represent your item.

Once the component is available, you can call a method on the class to get a
handle on the item. In a pure Java development environment, you cast the result
to the appropriate G2 JavaLink class.

To download data for the instance, you register the item as a listener for item
events. Once the instance is downloaded to the client, getting a value for the item
is a local call on the client. Setting a value requires a remote call to G2, unless you
perform a batch operation. For more information, see the G2 JavaLink User’s Guide.

Components that you create using the G2 Bean Builder define only the class
attributes of the current class; they do not define inherited attributes.

The G2 Bean Builder makes it easier to use Java Beans components that represent
system-defined and user-defined G2 classes in other graphical development
environments. For more information about this tool, see the G2 Bean Builder User’s
Guide.

Using Telewindows2 Toolkit Demonstrations
for Java

Telewindows2 Toolkit includes numerous demonstrations illustrating various
functionality for Java programmers. These demos show how to use Java Beans
components, Java UI components, and Java application classes to build applets
and applications that connect to a G2 server, display workspace views, and
manipulate data.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 17

Chapter 1 Overview of Telewindows2 Toolkit
These demos are located in this directory, depending on your platform:

To run the demos, you must either:

• Place G2 as the first G2 in your PATH environment variable.

• Define the SEQUOIA_G2 environment variable to point to this version of G2.

A number of the demos make use of TW2 Toolkit components exclusively. These
demos are described throughout this guide. Others demos are designed to
illustrate how to use TW2 Toolkit application classes, although some of these
demos also use TW2 Toolkit components.

For details on running these demonstrations, see the Telewindows2 Toolkit Java
Demos Guide.

The table below lists the source code location of each Java demo that uses TW2
Toolkit components and provides a description of each:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos

Java Demos

 Source Code Description

NT:
itemaccessdemo\
ItemAccessDemo.java

UNIX:
itemaccessdemo/
ItemAccessDemo.java

Creates a simple Java frame that
lets you connect to G2 and launch
a Java dialog for getting and
setting an attribute of a user-
defined item in G2.

NT:
internationalizationdemo\
InternationalizationDemo.java

UNIX:
internationalizationdemo/
InternationalizationDemo.java

Shows how to internationalize
dialog text for the
itemaccessdemo.

NT:
listenerdemo\
ListenerDemoApplet.java

UNIX:
listenerdemo/
ListenerDemoApplet.java

Creates an applet that listens for
changes to attribute values of a
user-defined item, and updates
those values in a graphical
display.
18 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Demonstrations for Java
NT:
wkspapplet\WkspApplet.java

UNIX:
wkspapplet/WkspApplet.java

Creates an applet and
corresponding HTML file for
connecting to G2 and displaying
a workspace view in a Web
browser.

NT:
wkspdemo\WorkspaceFrame.java

UNIX:
wkspdemo/WorkspaceFrame.java

Creates a Java application that
displays a workspace view in a
Java frame.

NT:
customdialogs\rundemo.bat

UNIX:
customdialogs/rundemo.sh

Overrides the automatically
generated item properties dialog,
using a custom dialog.

NT:
wkspbeans\rundemo.bat

UNIX:
wkspbeans/rundemo.sh

Shows how to use Java Beans on
a WorkspaceView.

NT:
palettedemo\rundemo.bat

UNIX:
palettedemo/rundemo.sh

Shows how to create a palette of
G2 objects and a native palette
directly from a GFR palette.

NT:
docs\connectivitydemos\
rundemo.bat

UNIX:
docs/connectivitydemos/
rundemo.sh

Loads a G2 application to which
to connect, using a number of
simple Java applications that
demonstrate various aspects of
basic TW2 Toolkit connectivity.

These demos appear in Part II,
“Connecting to G2” of this guide.

NT:
docs\launchdialog\
LaunchDialog.java

UNIX:
docs/launchdialog/
LaunchDialog.java

Shows how to manage dialog
resources in a Java application,
using your own dialog.

These demos appear in
Chapter 18, “Launching
General Dialogs” of this guide.

Java Demos

 Source Code Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 19

Chapter 1 Overview of Telewindows2 Toolkit
NT:
wksppanel\
SimpleWorkspaceApplication.java

UNIX:
wksppanel/
SimpleWorkspaceApplication.java

Creates a TW2 Toolkit UI
application that lets you connect
to a single G2 and display
workspace views within a
multiple workspace panel.

NT:
wksppanel\BrowserApplication.java

UNIX:
wksppanel/BrowserApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a multiple workspace panel
inside a single document frame.

NT:
singlecxnsdiapp\
BrowserApplication.java

UNIX:
singlecxnsdiapp/
BrowserApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a single document frame.

NT:
singlecxnmdiapp\
SingleConnectionApplication.java

UNIX:
singlecxnmdiapp/
SingleConnectionApplication.java

Creates a TW2 Toolkit
application that allows you to
connect to a single G2 and
display workspace views within
a multiple document frame.

NT:
multiplecxnsdiapp\
WorkspaceBrowserApp.java

UNIX:
multiplecxnsdiapp/
WorkspaceBrowserApp.java

Creates a TW2 Toolkit
application that allows you to
connect to multiple G2s and
display workspace views within
a single document frame.

Java Demos

 Source Code Description
20 Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Using Telewindows2 Toolkit Demonstrations for Java
NT:
multiplecxnmdiapp\Shell.java

UNIX:
multiplecxnmdiapp/Shell.java

Creates a TW2 Toolkit
application that allows you to
connect to multiple G2s and
display workspace views within
a multiple document frame.

NT:
classes\com\gensym\shell\
Shell.java

UNIX:
classes/com/gensym/shell/
Shell.java

Shows the source code for
Telewindows2 Toolkit default
application shell.

Java Demos

 Source Code Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 21

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part II Connecting to G2
Version 3.1 Mode: Working Size: 7x9x11
Part II
Connecting to G2
Chapter 2 Overview of Connectivity 25

Presents an overview of the components and core classes you use to connect to G2, the
differences in their functionality, and guidelines for using them.

Chapter 3 Using ItemRetriever 35

Describes how to use an ItemRetriever component to connect to G2 and obtain a single item.

Chapter 4 Using TwConnector 51

Describes how to use the TwConnector component to connect to G2.

Chapter 5 Using Connection Information Objects 61

Describes the use and purpose of the classes of connection information objects that JavaLink
and Telewindows2 Toolkit provide.

Chapter 6 Using TwGateway 73

Describes how to use the TwGateway class to create a connection in a Java application.

Chapter 7 Establishing a G2 Login Session 101

Describes how to establish a login session with G2 after successfully establishing a
connection.

Chapter 8 Using a Middle-Tier Server 117

Provides an overview of the two- and three-tier communication models and describes how to
start, configure, and connect to a middle tier.
23

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 2 Overview of Connectivity
Version 3.1 Mode: Working Size: 7x9x11
2
Overview of
Connectivity
Presents an overview of the components and core classes you use to connect to G2,
the differences in their functionality, and guidelines for using them.

Introduction 25

Understanding the Connectivity Classes 27

Choosing a Connection Type 30

Using a Middle-Tier Server 34

Introduction

Connecting to G2 is essential to any Telewindows2 (TW2) Toolkit client
application. Once complete, this connection enables most of the functionality that
the TW2 Toolkit components provide.

A G2 server can support multiple clients, both classic Telewindows and
Telewindows2 Toolkit. Both a G2 server and a TW2 Toolkit client are capable of
initiating a connection.

All of the Telewindows2 Toolkit connectivity classes described in this guide
create and manage one connection to a single G2 process.

To create a TW2 Toolkit application capable of creating and handling connections
to multiple G2 processes, use the com.gensym.shell.util.ConnectionManager
class, which is described in detail in Chapter 9, “Creating Telewindows2 Toolkit
Applications” the Telewindows2 Toolkit Java Developer’s Guide: Application Classes.
25

Chapter 2 Overview of Connectivity
Connectivity Components

TW2 Toolkit supplies two JavaBeans-compliant components for connecting to a
G2 server from within a visual programming environment:

• ItemRetriever

• TwConnector

Developers writing Java applications in a non-visual programming environment
can use the com.gensym.ntw.TwGateway class to make a G2 connection.

Before connecting a client to G2, you should consider these issues:

• Which connectivity class to use.

• Which type of connection to make.

• Whether to use a middle-tier server.

As part of connecting to G2 and specifying the properties of that connection, TW2
Toolkit components use a TwConnectionInfo object, described in Chapter 5,
“Using Connection Information Objects” on page 61.

To gain access to Telewindows2 Toolkit functionality after making a connection
to G2, the application must log in to G2, using a LoginRequest object, as
presented in Chapter 7, “Establishing a G2 Login Session” on page 101.

This chapter supplies background information about the connection options that
TW2 Toolkit includes, presents the connectivity components and core classes, and
describes the issues to consider before connecting to G2.

Remaining chapters in this part describe:

• Creating a connection, using connectivity components.

• Using connection information objects.

• Creating a connection in a pure Java application.

• Logging in to G2.

• Information about using a middle-tier server.

G2 JavaLink Connectivity to G2

G2 JavaLink supplies the underlying substrate for all of the TW2 Toolkit
connectivity to and communication with G2. Much of the G2 JavaLink
functionality relies on the G2 attribute access facility, which provides access to
almost all G2 item attributes and properties, and generally serves as a doorway
into the G2 world. Through attribute access, previously inaccessible G2 class and
data structures are available.
26 Part II Connecting to G2

Understanding the Connectivity Classes
G2 includes a set of internal and interrelated system procedures, referred to as the
G2 application programmer’s interface (API), that provide access to G2 data and
actions. The G2 API permits client applications to subscribe to the state of
attributes programmatically, rather than having to create “whenever” rules for
every item that a client application wishes to monitor. This subscription API
allows G2 JavaLink to create remote replications of G2 items, called stubs, that
remain synchronized, without polling G2.

Further, G2 JavaLink encapsulates G2 Gateway to present G2 knowledge and
data from a Java Beans perspective. Through a G2 JavaLink connection, each G2
item becomes a Java class, with of a set of properties, events, and methods, rather
than a piece of data accessible only through a set of API calls. G2 JavaLink
supplies full type mapping between the G2 data types and Java types, as
presented in “Data Type Conversion” on page 12.

By default, G2 JavaLink supplies persistent connections; once G2 JavaLink
establishes a G2 connection, that connection remains active regardless of the KB
run state. The KB can be paused, reset, or restarted, but the G2 JavaLink
connection remains intact.

Understanding the Connectivity Classes
For the UI developer, Telewindows2 Toolkit supplies three classes to connect a
Java client to G2. Collectively, this document refers to the following classes as
connectivity classes:

• ItemRetriever component

• TwConnector component

• TwGateway class

Each of these classes creates a connection to a single G2 process.

Because TW2 Toolkit relies on the connectivity functionality that G2 JavaLink
classes supply, you should become familiar with the relevant packages of both
products:

Please refer to the API documentation for specific details of these packages and
their classes and methods.

Package Product

com.gensym.jgi G2 JavaLink

com.gensym.ntw Telewindows2 Toolkit
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 27

Chapter 2 Overview of Connectivity
Class Hierarchy of Connectivity Classes
The G2 JavaLink com.gensym.jgi package includes two interfaces related to
connectivity:

• G2Access — Supplies the outbound methods for accessing a G2 connection to
make RPC calls or get an item.

• G2Callbacks — You do not need to be concerned with this interface.

The G2Connection interface extends these two interfaces, and the G2Gateway class
implements G2Connection, providing methods for creating a connection.

Telewindows2 Toolkit extends G2 JavaLink functionality through its comparable
connectivity interfaces:

• TwAccess — A subclass of G2Access.

• TwCallbacks — A subclass of G2Callbacks.

TwGateway implements TwConnection, which extends these two interfaces.

This diagram illustrates the connectivity class hierarchy:

JavaLink com.gensym.jgi Classes

G2Access

G2Callbacks

G2Connection G2Gateway

TwAccess

TwCallbacks

TwConnection TwGateway

Interface

Class

Telewindows2 Toolkit
com.gensym.ntw Classes

Extends
Implements
28 Part II Connecting to G2

Understanding the Connectivity Classes
Class Hierarchy of Connectivity Components
The com.gensym.jgi package includes G2Connector, a component wrapper
around the G2Gateway class. TW2 Toolkit provides two connectivity components
that are based on the G2Connector component:

• ItemRetriever — An aggregate of the G2 JavaLink G2Connector component,
which uses the getOrMakeConnection method of a com.gensym.jgi.
G2Gateway to connect to G2.

• TwConnector — A wrapper for the TwGateway class, which uses the
TwGateway.openConnection static method to connect to G2.

This diagram illustrates the connectivity class hierarchy:

JavaLink com.gensym.jgi Classes

G2Connector

Telewindows2 Toolkit
com.gensym.controls Classes

TwConnector

Class

ItemRetriever

Extends
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 29

Chapter 2 Overview of Connectivity
Determining the Connectivity Class to Use

In most cases, the development environment and the runtime requirements
determine which connectivity class to use in your application, as this table
describes:

Choosing a Connection Type
Once you choose a connectivity class, you can then decide which connection type
to create.

By default, any application that uses the TW2 Toolkit connectivity classes
automatically creates a Telewindows2 Toolkit connection type. However, since
TW2 Toolkit connectivity classes extend G2 JavaLink classes, your client has
access to all of the G2 JavaLink capabilities, including the ability to create a G2
JavaLink connection type through a TW2 Toolkit client.

Use... To develop in... For an application...

An ItemRetriever
component

A JavaBeans-
compliant visual
programming
environment

Requiring basic
connectivity to G2 to
obtain a single item at
a time, including a
workspace view
capable of holding
multiple items.

A TwConnector
component

A JavaBeans-
compliant visual
programming
environment

Requiring full TW2
Toolkit functionality.

The TwGateway class An integrated
development
environment (IDE) or
pure Java
development
environment

Requiring full TW2
Toolkit functionality.

For information on... See...

ItemRetriever Chapter 3, “Using ItemRetriever.”

TwConnector Chapter 4, “Using TwConnector.”

TwGateway Chapter 6, “Using TwGateway.”
30 Part II Connecting to G2

Choosing a Connection Type
Compared with a Telewindows2 Toolkit connection type, a G2 JavaLink
connection offers less functionality, as this table summarizes:

Typically, applications that do not need to display a workspace view can use a G2
JavaLink connection type, while those requiring these capabilities should create a
Telewindows2 Toolkit connection type.

All of the connectivity classes support both types of connection. Information
about setting the connection type is presented in “Connection and Interface
Classes” on page 67.

Result of Connecting to G2
When a TW2 Toolkit client connects to G2, these two operations occur:

• The connection method returns an instance of a connection class to the client.

• G2 creates an instance of an interface class in the G2 server KB that
communicates with the client.

Functionality G2 JavaLink TW2 Toolkit

RPC calls

Data-aware objects

Middle-tier server support

Shares connections by default

Forces new connection by default

Get unique named item

Obtain list of available
workspaces

Display workspace views

Displays text editor for editing
grammatical item properties

Log in to G2

Get and set user mode

Subscribe to KB events

Requires floating TW license
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 31

Chapter 2 Overview of Connectivity
Together, the connection class object that the client returns and the interface class
item that G2 creates determine the connection type, as follows:

Creating a G2 JavaLink Connection
A Telewindows2 Toolkit application can create G2 JavaLink connections by
calling a version of this methods on a com.gensym.jgi.G2Gateway:

getOrMakeConnection

A G2 JavaLink connection provides basic component access to items and the
ability to subscribe to item changes. Connecting to G2 through G2 JavaLink
precludes the use of the workspace views and other functionality specific to TW2
Toolkit. Thus, when connected to G2 through G2 JavaLink, you can specify the
class of an item to retrieve, such as kb-workspace, and provide the name of the
item. However, your application will be unable to display a workspace view,
because this functionality is available only through a Telewindows2 Toolkit
connection with a login session.

Shared Connections
By default, G2 JavaLink connections are shared, which means other connection
requests to the same host and port use an existing connection, if one exists. For
detailed information about shared connections, see “Sharing a Connection” on
page 69.

Interface Class
For each G2 JavaLink client connection, G2 automatically creates an instance of a
gsi-interface object. The interface object further defines the type of connection,
because it contains knowledge about the connection. However, by design, the
interface object omits any login information.

This type of
connection...

Returns an instance of
this class in the client...

And creates an instance of
this class in the G2 server...

G2 JavaLink com.gensym.jgi.G2Gateway gsi-interface

Telewindows2 Toolkit com.gensym.ntw.TwGateway ui-client-interface
32 Part II Connecting to G2

Choosing a Connection Type
Creating a Telewindows2 Toolkit Connection
A client application creates a Telewindows2 Toolkit connection by calling a
version of this static methods on a com.gensym.ntw.TwGateway:

openConnection

Shared Connections
By default, Telewindows2 Toolkit connections are not shared. When a connection
is not shared, connection requests to the host and port of an existing connection
always force a new connection. To change this property, see “Sharing a
Connection” on page 69.

Interface Class
For each TW2 Toolkit client connection, G2 automatically creates an instance of a
ui-client-interface object. This assumes you are connecting using a two-tier
connection whereby you provide a host and port only. For more information on
creating a two-tier connection, see Chapter 5, “Using Connection Information
Objects” on page 61. For information on connecting using a three-tier connection,
see “Using a Middle-Tier Server” on page 34.

Login Requirements
Once a TW2 Toolkit client has created a connection, it must subsequently call the
login method on a TwGateway, which causes G2 to create an instance of a
ui-client-session. Once you have established a successful login and a ui-client-
session exists, you have access to full TW2 Toolkit functionality through the
connection.

Without establishing a login session, a client can connect to G2 by using the
TwGateway.openConnection static method, but it will be unable to create a
workspace view.

For more information about logging in to either a secure or non-secure G2, see
Chapter 7, “Establishing a G2 Login Session” on page 101.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 33

Chapter 2 Overview of Connectivity
Using a Middle-Tier Server
When your application connects to a G2 process, it can optionally use a middle-
tier server that uses Java Remote Method Invocation (RMI). By default,
Telewindows2 Toolkit uses a two-tier connection configuration, in which all
communication occurs directly between the client and G2 through the use of
messages and remote procedure calls (RPCs).

All of the Telewindows2 Toolkit connectivity classes support the use of a
middle-tier.

Using a middle-tier server is described in more detail in Chapter 8, “Using a
Middle-Tier Server” on page 117.
34 Part II Connecting to G2

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 3 Using ItemRetriever
Version 3.1 Mode: Working Size: 7x9x11
3
Using ItemRetriever
Describes how to use an ItemRetriever component to connect to G2 and obtain a
single item.

Introduction 35

Packages Covered 36

Using an ItemRetriever Programmatically 37

ItemRetriever Reference 46

Introduction

The ItemRetriever component connects to G2 and lets your application:

• Create either a G2 JavaLink or Telewindows2 Toolkit connection type.

• Support two- and three-tier connections.

• Obtain a single, named, G2 item.

Normally you use an ItemRetriever with an ItemProxy component while
developing a custom item properties dialog in a JavaBeans-compliant visual
programming environment. You can use an ItemRetriever to connect to G2 and
retrieve the item so you can test such a dialog without first having to register it
with G2, as described in Chapter 16, “Launching Custom Item Properties
Dialogs” on page 305.

Because you use an ItemRetriever component only during development, the
component does not provide a method for closing the connection.
35

Chapter 3 Using ItemRetriever
The ItemRetriever component uses:

• A default set of connectivity properties, which you can set explicitly through
the properties dialog or by using accessor methods.

• Default login information for use with a non-secure G2, which you can set
explicitly to log in to a secure G2.

This chapter describes how to use an ItemRetriever component and includes
these sections:

• Using an ItemRetriever component in a Java programming environment.

• Reference information for the ItemRetriever component’s properties, events,
and methods.

To connect to G2 and retrieve an item in a non-visual programming environment,
use these methods on a com.gensym.jgi.G2Gateway:

• getOrMakeConnection

• getUniqueNamedItem

See the G2 JavaLink API documentation for details.

This chapter describes how to set basic connectivity properties only. For
information on setting advanced connectivity properties, see:

• Chapter 5, “Using Connection Information Objects.”

• Chapter 7, “Establishing a G2 Login Session.”

Packages Covered

The ItemRetriever component is part of the com.gensym.controls package. Its
connectivity, however, derives from capabilities in the G2 JavaLink com.gensym.
jgi package.

Thus, this chapter describes certain classes in the jgi package, along with the
connectivity-related interfaces and classes in the com.gensym.controls package.

com.gensym.controls
Interfaces

ItemRetrievalListener

Classes
ItemRetrievalEvent
ItemRetriever
36 Part II Connecting to G2

Using an ItemRetriever Programmatically
com.gensym.jgi
Exceptions

ConnectionTimedOutException
G2AccessInitiationException
G2AccessException

Using an ItemRetriever Programmatically

For Java applications that need to get a G2 item, most developers will typically
use the TwGateway.openConnection method to make a connection, then call the
JavaLink method G2Gateway.getUniqueNamedItem to retrieve an item. However,
for developers who wish to use an ItemRetriever, this section describes the use
of this component within a Java application or applet to retrieve an item.

Using ItemRetriever Constructors
The ItemRetriever component has two constructors.

To use the default constructor:

ItemRetriever ()

The default constructor creates the component with all of its properties set to
their default values. You must then use accessor methods to set each property
value.

To specify properties in the constructor:

ItemRetriever
(G2ConnectionInfo connectionInfo,
String itemClassName,
String itemName)

Argument Description

connectionInfo A G2ConnectionInfo object in which you
can set any number of connectivity
properties, as described in Chapter 5,
“Using Connection Information Objects” on
page 61.

itemClassName The G2 class of the item to retrieve. The
default is ITEM.

itemName The name of the item to retrieve. The default
is null.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 37

Chapter 3 Using ItemRetriever
Retrieving an Item
The ItemRetriever component creates a connection to G2 whenever a call is
made to its retrieveItem method. If necessary, it also calls the login method on
the connection object, as Chapter 7, “Establishing a G2 Login Session” on
page 101 describes.

Internally, the component establishes a connection by using the JavaLink
G2Gateway.getOrMakeConnection method, which takes as its argument an
instance of a G2ConnectionInfo, described in Chapter 5, “Using Connection
Information Objects” on page 61.

The ItemRetriever uses the JavaLink G2Gateway.getUniqueNamedItem method
to obtain an item from G2.

Once you have set the connection and item information, you can retrieve the item.

You cast the retrieved item to its particular class so you can reference properties
and methods of the returned class directly.

When you retrieve an item from a connection, you need to handle this exception:

com.gensym.jgi.G2AccessException

To retrieve an item:

ItemRetriever.retrieveItem()

The following sections show how to set ItemRetriever properties and show
examples of retrieving an item, using each constructor.

Setting ItemRetriever Properties

When using an ItemRetriever in a Java application, you must always set the
itemName property.

Although the default class name for the component is ITEM, which represents all
public G2 classes, we recommend that you always set the itemClassName
property explicitly to prevent retrieving the wrong item.

Unless you are making a connection to the default host localhost on port 1111,
you must also set connectivity properties.

To do this, you can use the default constructor, then set the relevant information
by using accessor methods.

If you do not set any connectivity properties, the ItemRetriever uses a
G2ConnectionInfo object with default values to connect to G2. Each time you use
an accessor method to set any connectivity properties, the ItemRetriever creates
a new G2ConnectionInfo object to use the next time the ItemRetriever.
retrieveItem method is called.
38 Part II Connecting to G2

Using an ItemRetriever Programmatically
To use the default ItemRetriever constructor and set its properties:

//Retrieve an item using default constructor
 public static void getWorkspace1 () {
 //Create retriever
 retriever = new ItemRetriever();
 //Set class and item information
 retriever.setItemClassName("KB-WORKSPACE");
 retriever.setItemName("WKSP-1");
 retriever.setHost("localhost");
 retriever.setPort("1112");
 try {

//Retrieve item and cast result
 kbWorkspace = (KbWorkspace)retriever.retrieveItem();

//Handle exceptions
 } catch (Exception e) {
 }
 }

Passing a Connection Information Object to an
ItemRetriever

If the connection information is known at compile time, you can also pass an
instance of a TwConnectionInfo as an argument to the ItemRetriever
constructor. The connection information object contains the required connection
information.

The next example illustrates how to do this, while specifying the GSI-INTERFACE
class as the item to retrieve.

For information on creating a connection information object, see Chapter 5,
“Using Connection Information Objects” on page 61.

To use the ItemRetriever constructor with a G2ConnectionInfo object:

//Retrieve an item, using connection info object
 public static void getWorkspace2 () {
 //Create a connection info object
 TwConnectionInfo connectionInfo = new TwConnectionInfo

("localhost", "1112");
 //Create retriever
 retriever = new ItemRetriever(connectionInfo, "KB-WORKSPACE",

"WKSP-2");
 try {

//Retrieve item and cast result
 kbWorkspace = (KbWorkspace)retriever.retrieveItem();

//Handle exceptions
 } catch (Exception e) {
 }
 }
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 39

Chapter 3 Using ItemRetriever
Using JavaLink Methods

ItemRetriever uses two JavaLink methods to create the connection and retriever
the item.

Using getOrMakeConnection
The ItemRetriever uses this static method on com.gensym.jgi.G2Gateway to
make a G2 connection:

getOrMakeConnection
(G2ConnectionInfoObject info)
−> G2Connection connectionType

ConnectionTimedOutException
G2AccessInitiationException

Argument Description

info A G2ConnectionInfo consisting of the
properties you specify. If you do not specify
properties, uses all default values.

Return Description

connectionType An implementation of the G2Connection
interface. Depending on the type of
connection being made, this is either a
G2Gateway or a TwGateway.

Exception Description

ConnectionTimedOutException A new connection was not initiated
within the default timeout period.

G2AccessInitiationException An error occurred during the connection
attempt.
40 Part II Connecting to G2

Using an ItemRetriever Programmatically
Using getUniqueNamed Item
The ItemRetriever uses this method on com.gensym.jgi.G2Gateway to retrieve
an item from G2:

getUniqueNamedItem
(Symbol itemClass,
Symbol itemName)
-> Item returnedItem

G2AccessException

This method returns a handle to the named item in G2. To obtain the initial values
of the item, as well as notification of item events, such as when the item is
modified or deleted, your application must call the JavaLink com.gensym.
classes.Item.addItemListener method. See the JavaLink API documentation
for details.

Subscribing to ItemRetriever Events
The ItemRetriever notifies registered listeners of these events:

Argument Description

itemClass A symbol naming the G2 class of the item to
retrieve.

itemName A symbol naming the item to retrieve.

Return Description

returnedItem The retrieved item, which is an instance of a
com.gensym.classes.Item.

Exception Description

G2AccessException An error occurred during
communication or no such item exists.

Event Description

itemRetrieved The item was retrieved successfully.

itemRetrievalFailed A G2AccessException occurred when
attempting to retrieve the item.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 41

Chapter 3 Using ItemRetriever
Because the ItemRetriever component does not attempt a G2 connection until
the ItemRetriever.retreiveItem method is called, you must subscribe to
ItemRetriever events before retrieving the item by adding the ItemRetriever as
an ItemRetrievalListener.

The original example added the listener after the item was retrieved. Moving this
before the code that retrieves the item causes a compile error: this not defined.

To subscribe to ItemRetriever events:

private static ItemRetriever retriever;
private static KbWorkspace kbWorkspace;

//Create retriever
retriever = new ItemRetriever();

//Add retriever as a listener
retriever.addItemRetrievalListener(this);

Components that Implement the ItemRetrievalListener Interface
Two TW2 Toolkit components implement the ItemRetrievalListener interface:

• com.gensym.wksp.WorkspaceView

• com.gensym.controls.ItemProxy

If your application needs to listen for item retrieval events, you must implement
the ItemRetrievalListener in your own listener class.

Informing an ItemRetrievalListener of Events
If you create a class that subscribes to ItemRetriever events as an
ItemRetrievalListener, your class is informed the first time the ItemRetriever
retrieves an item. If the ItemRetriever has already retrieved its item, your class is
informed of the event when it subscribes as a listener.

A component can be informed more than once of the same item being retrieved,
because of the way in which an ItemRetriever component generates events. The
ItemRetriever:

• Generates an event each time it retrieves an item from G2.

• Retrieves an item each time a component property changes and each time its
retrieveItem method is called.
42 Part II Connecting to G2

Using an ItemRetriever Programmatically
As an example, this sequence of events can cause an ItemRetrievalListener to
be informed twice about the same item being retrieved:

1 An application App creates an ItemRetriever component and calls its
retrieveItem method to get an item. The item named Foo is returned.

2 ItemRetrievalListener Bar subscribes to ItemRetriever events. Because
Foo has already been retrieved, Bar receives an itemRetrieved event
immediately.

3 The itemClassName property of the ItemRetriever component is changed
from ITEM to KB-WORKSPACE.

4 The next call to the retrieveItem method detects that a component property
has changed and retrieves Foo again.

5 Listener Bar receives a second itemRetrieved event.

Conversely, the ItemRetriever component does not retrieve the same item more
than once unless changes to its properties have been made. Calling the
retrieveItem method multiple times without changing existing component
properties neither gets the item, nor generates itemRetrieved events.

Handling Connection Exceptions
The ItemRetriever component can generate any of the TwGateway exceptions,
described in “Handling Connection Exceptions” on page 79.

In addition, it can generate an exception when retrieving an item, as described in
“Retrieving an Item” on page 38.

Within an IDE, no formal technique exists for handling exceptions. By default, if
an exception occurs during a connection attempt from ItemRetriever, an
exception message is printed on the command window. If you want to handle
exceptions in a different way, you can create custom hookups that add exception
handling code. For an example of using custom hookups, see “Using G2 Item
Components in Dialogs” on page 226.

Closing a Connection
When a successful connection is made to G2 to retrieve an item, that connection
remains open. Currently, no method exists for closing a connection that you make
by using an ItemRetriever.

Example
This example retrieves two KB workspace items, using two ItemRetriever
components. The first retriever uses the default constructor and sets the
connection properties explicitly, and the second retriever uses a
TwConnectionInfo object.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 43

Chapter 3 Using ItemRetriever
import com.gensym.controls.ItemRetriever;
import com.gensym.ntw.TwConnectionInfo;
import com.gensym.classes.KbWorkspace;

public class MyItemRetriever {
 private static ItemRetriever retriever;
 private static KbWorkspace kbWorkspace;
 private static TwConnectionInfo connectionInfo;

 //Retrieve an item using default constructor
 public static void getWorkspace1 () {
 //Create retriever
 retriever = new ItemRetriever();
 //Set class and item information
 retriever.setItemClassName("KB-WORKSPACE");
 retriever.setItemName("WKSP-1");
 retriever.setHost("localhost");
 retriever.setPort("1112");
 try {
 kbWorkspace = (KbWorkspace)retriever.retrieveItem();
 System.out.println(kbWorkspace);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 //Retrieve an item, using connection info object
 public static void getWorkspace2 () {
 //Create a connection info object
 TwConnectionInfo connectionInfo = new TwConnectionInfo

("localhost", "1112");
 //Create retriever
 retriever = new ItemRetriever(connectionInfo, "KB-WORKSPACE",

"WKSP-2");
44 Part II Connecting to G2

Using an ItemRetriever Programmatically
 try {
 //Retrieve item and cast result
 kbWorkspace = (KbWorkspace)retriever.retrieveItem();
 System.out.println(kbWorkspace);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // MAIN
 public static void main(String[] args){
 System.out.println("Got to main!");
 getWorkspace1();
 getWorkspace2();
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1112:

Got to main!
com.gensym.classes.KbWorkspaceImpl@1ed9b0(KB-WORKSPACE, # = 3v0, ok)
com.gensym.classes.KbWorkspaceImpl@1f0778(KB-WORKSPACE, # = 3v0, ok)
End of Main!

Note Because ItemRetriever does not provide a method for closing the connection,
this example generates an error in the G2 Operator Logbook when it finished.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 45

Chapter 3 Using ItemRetriever
ItemRetriever Reference
The ItemRetriever is an invisible component in a dialog, though it uses this
representation within a visual programming environment:

Properties

These are the properties and associated accessor methods of an ItemRetriever
component:

com.gensym.controls.ItemRetriever

Property
Get Property
Set Property Type Description

brokerURL

getBrokerURL

setBrokerURL

String The URL of a middle-tier
server. This field is required
only for connections to G2
that use a middle-tier server.

Default = null

connectionClassName

getConnectionClassName

setConnectionClassName

String The name of the connection
class on which this
connection is made.

Default = com.gensym.ntw.
TwGateway

connectionInfo

getConnectionInfo

setConnectionInfo

G2ConnectionInfo The com.gensym.jgi.
G2ConnectionInfo object
that the ItemRetriever will
use the next time it retrieves
an item.

gsiInterfaceClassName

getGsiInterfaceClassName

setGsiInterfaceCkassName

String The name of the GSI Interface
class in G2 that holds the
connection information.

Default =
UI-CLIENT-INTERFACE
46 Part II Connecting to G2

ItemRetriever Reference
host

getHostName

setHostName

String The name of the host on
which G2 is running.

Default = localhost

itemClassName

getItemClassName

setItemClassName

String The name of the G2 class for
which the ItemRetriever is
seeking information.

Default = ITEM

itemName

getItemName

setItemName

String The name of the item that the
ItemRetriever is to retrieve.

Default = null

port

getPort

setPort

String The port number to which
G2 is listening.

Default = 1111

userMode

getUserMode

setUserMode

String The G2 user mode of the
user. The default value of
null logs in to G2 in
Administrator mode.

Default = null

userName

getUserName

setUserName

String The G2 user name. The
default value of null logs in
to G2 as the currently logged
in G2 user.

Default = null

For information on... See...

Using advanced connectivity
properties

Chapter 5, “Using Connection
Information Objects.”

Connecting to a secure G2 Chapter 7, “Establishing a G2
Login Session.”

Connecting to G2 through a
middle-tier server

Chapter 8, “” on page 117.

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 47

Chapter 3 Using ItemRetriever
Events and Listeners
Components can register as a listener to receive notification of these
ItemRetriever events:

Listener (Package)
Registration Methods
Events Description

ItemRetrievalListener (com.gensym.controls)

addItemRetrievalListener
removeItemRetrievalListener

itemRetrieved Dispatched when the specified item
was retrieved from G2.

itemRetrievalFailed Dispatched when the component
was unable to retrieve the specified
item.
48 Part II Connecting to G2

ItemRetriever Reference
Methods
These are the methods of an ItemRetriever component, other than its accessor
methods:

Method Description

retrieveItem Calls G2 synchronously to connect
to G2, using the current
information in the
G2ConnectionInfo object, and
retrieves the unique named item.

setUserPassword While no property exists for
editing the user password in a
visual programming environment,
you can set the user password
programmatically by using an
accessor method.

For security reasons, no accessor
method exists for getting the user
password.

The setUserPassword method
only works if the connection is to a
com.gensym.ntw.TwAccess.

toString Overrides the Object class
toString method for providing a
description of the object.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 49

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 4 Using TwConnector
Version 3.1 Mode: Working Size: 7x9x11
4
Using TwConnector
Describes how to use the TwConnector component to connect to G2.

Introduction 51

Packages Covered 53

TwConnector Reference 54

Introduction
The TwConnector component incorporates the functionality of the com.gensym.
ntw.TwGateway class in a Java Bean for use within a JavaBeans-compliant visual
programming environment, where it is not possible to call the TwGateway.
openConnection static method.

The TwConnector component inherits its definition from com.gensym.jgi.
G2Connector, which means your client application can:

• Connect to a single G2 process at a time.

• Send data to and receive data from a G2 process.

• Support 2- and 3-tier connections.

• Make RPC calls.

• Subscribe to G2 state events.

In addition, TwConnector lets your application perform these tasks:

• Establish a login session with G2.

• Get and set user modes.
51

Chapter 4 Using TwConnector
• Get user menu choices.

• View workspaces.

• Subscribe to workspace show and hide events and KB events.

By default, a TwConnector creates a Telewindows2 (TW2) Toolkit connection
type, which is an unshared connection. This means that each time you launch a
dialog that contains a TwConnector component, the component creates a new
connection to G2.

Note When creating dialogs that use a TwConnector, you should always close the
connection when the dialog closes, unless the dialog provides an explicit way to
close the connection; otherwise, you might run out of TW2 Toolkit licenses for
connecting to G2. Alternatively, during development, you can create a shared
connection, as described in “Sharing a Connection” on page 69.

In addition to creating a connection, a Twconnector uses default login
information to log in to a non-secure G2. You can set the login information
explicitly through the properties dialog or by using accessor methods to log in to
a secure G2.

This chapter shows you how to use the TwConnector component to connect to G2
and includes these sections:

• Packages covered.

• Reference information for the TwConnector component’s properties, events,
and methods.

This chapter describes how to set basic connectivity properties only. For
information on setting advanced connectivity properties, see:

• Chapter 5, “Using Connection Information Objects” on page 61.

• Chapter 7, “Establishing a G2 Login Session” on page 101.

The TwConnector component is part of the com.gensym.controls package.
However, because it is a Java Beans version of the TwGateway class, which
supplies all of its connectivity functionality, the advanced features of the
TwConnector component are described fully in Chapter 6, “Using TwGateway”
on page 73.

This chapter does not include a section on using the TwConnector component
programmatically, because no benefit exists in doing so. While developers can, of
course, use this component outside of a visual programming environment within
an integrated development environment (IDE) or pure Java development
environment, we recommend that you instead use the TwGateway class to connect
to G2.
52 Part II Connecting to G2

Packages Covered
Packages Covered

com.gensym.controls
TWConnector

com.gensym.jgi
Exceptions

ConnectionTimedOutException
G2AccessInitiationException
G2AccessException
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 53

Chapter 4 Using TwConnector
TwConnector Reference
The TwConnector component is a visual component that uses this representation
in a visual Java programming environment:

If you use the TwConnector component without specifying host and port
properties, an attempt is made to connect to host localhost at port 1111.

Properties
These are the properties and associated accessor methods of a TwConnector
component:

com.gensym.controls.TwConnector

Property
Get Property
Set Property Type Description

brokerURL

getBrokerURL

setBrokerURL

String The URL of a middle-tier server.
This field is required only for
connections to G2 that are using a
middle-tier server.

Default = null

connectionClassName

getConnectionClassName

setConnectionClassName

String The name of the connection class
on which this connection is made.

Default =
com.gensym.ntw.TwGateway

forceNew

getForceNew

setForceNew

boolean Specifies whether a connection is
created each time the
openConnection method is called.

Default = false

gsiInterfaceClassName

getGsiInterfaceClassName

setGsiInterfaceClassName

String The class of interface object that G2
creates in the KB to represent a
client connection.

Default = UI-CLIENT-INTERFACE
54 Part II Connecting to G2

TwConnector Reference
gsiInterfaceName

getGsiInterfaceName

setGsiInterfaceName

String The name of the interface instance
that G2 creates in the KB to
represent this connection.

Default =
TW-CONNECTOR-BEAN-INTERFACE

host

getHost

setHost

String The name of the host on which G2
is running.

Default = localhost

logicalName

getLogicalName

setLogicalName

String A logical name for a shared G2
connection. Once the connection
exists, other TwConnector
components can refer to the logical
name to share that connection.

Default = null

permanent

isPermanent

setPermanent

Boolean Specifies whether the connection is
permanent when you reset G2.

Default = true

port

getPort

setPort

String The port number to which G2 is
listening.

Default = 1111

remoteProcessInitString

getRemoteProcessInitString

setRemoteProcessInitString

String The string to pass during a
connection attempt.

sharable

isShared

setShared

boolean Specifies whether the connection
can be shared.

Default = false

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 55

Chapter 4 Using TwConnector
userMode

getUserMode

setUserMode

String The G2 user mode of the logged in
user. The default value of null
logs in to G2 in Administrator
mode.

Default = null

userName

getUserName

setUserName

String The user name of the logged in
user. The default value of null
logs in to G2 as the currently
logged in G2 user.

Default = null

For information on... See...

Using advanced connectivity
properties

Chapter 5, “Using Connection
Information Objects” on page 61.

Connecting to a secure G2 Chapter 7, “Establishing a G2
Login Session” on page 101.

Connecting to G2 through a
middle-tier server

Chapter 8, “Using a
Middle-Tier Server” on page 117.

Property
Get Property
Set Property Type Description
56 Part II Connecting to G2

TwConnector Reference
Events and Listeners
Components can receive notification of the following TwConnector events, which
the following listeners implement:

Listener (Package)
Registration Methods
Events Description

G2ConnectionListener (com.gensym.jgi)

addG2ConnectionListener
removeG2ConnectionListener

g2IsPaused Dispatched when the G2 process has
been paused.

g2IsResumed Dispatched when the G2 process has
been resumed.

g2IsReset Dispatched when the G2 process has
been reset.

g2IsStarted Dispatched when the G2 process has
been started.

g2ConnectionClosed Dispatched when the current
connection has been closed.

g2ConnectionInitialized Dispatched when the connection
attempt has been initialized
successfully.

g2MessageReceived Dispatched when a message has
been received from G2.

communicationError Dispatched when an error occurred
during communication between the
TwConnector component and the G2
process.

readBlockage Dispatched when an attempt to read
data from G2 failed.

writeBlockage Dispatched when an attempt to
write data to G2 failed.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 57

Chapter 4 Using TwConnector
For details on using these events, as well as information on subscribing to KB
module and message events, see “Handling Events” on page 79.

TwConnectionListener (com.gensym.ntw)

addTwConnectionListener
removeTwConnectionListener

loggedIn Dispatched when the user has
logged into G2.

loggedOut Dispatched when the user has
logged out of G2.

userModeChanged Dispatched when the current user
has changed the user mode.

WorkspaceShowingListener (com.gensym.ntw)

addWorkspaceShowingListener
removeWorkspaceShowingListener

showWorkspace Dispatched when G2 has
programmatically shown a
workspace.

hideWorkspace Dispatched when G2 has
programmatically hidden a
workspace.

Listener (Package)
Registration Methods
Events Description
58 Part II Connecting to G2

TwConnector Reference
Methods
These are the methods of a TwConnector component, other than its accessor
methods:

For details on using these methods, see “Working with Telewindows2 Toolkit
Connections” on page 89.

Method Description

createConnection Creates a connection to G2, using
the current set of connectivity
properties, then logs on to G2,
using specified login properties.

createItem Creates an item given a class
name as a symbol.

getDialogManager Returns the com.gensym.
dlgruntime.DialogManager for
the current connection.

getKb Gets the KB object associated with
this connection.

getNamedWorkspaces Returns a sequence of named KB
workspace from G2.

getUserMenuChoice Gets a user menu choice from the
current KB.

setUserPassword While no property exists for
editing the user password in a
visual programming
environment, you can set the user
password programmatically by
using an accessor method.

For security reasons, no accessor
method exists for getting the user
password.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 59

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 5 Using Connection Information Objects
Version 3.1 Mode: Working Size: 7x9x11
5
Using Connection
Information Objects
Describes the use and purpose of the classes of connection information objects that
JavaLink and Telewindows2 Toolkit provide.

Introduction 61

Packages Covered 63

Relevant Demos 63

Using Connection Information Objects 63

Setting Basic Connectivity Properties 65

Setting Advanced Connectivity Properties 66

Introduction

The Telewindows2 (TW2) Toolkit connectivity components call one of two
methods internally to connect to G2. Calls to both methods consist of a single
argument that is a type of G2ConnectionInfo object:

This
component... Calls this method... On this class...

Which takes
this argument...

ItemRetriever getOrMakeConnection G2Gateway G2ConnectionInfo

TwConnector openConnection TwGateway TwConnectionInfo
61

Chapter 5 Using Connection Information Objects
To connect to G2 programmatically, you can call the following static method on
com.gensym.ntw.TwGateway:

openConnection(TwConnectionInfo info)

This chapter describes the use of connection information objects and the
properties they specify, presenting information about setting connection
properties that generally applies to all of the connectivity classes.

If you are using one of the connectivity components in a JavaBeans-compliant
visual programming environment, the component takes care of creating the
connection information argument for you when you specify the properties of the
component.

The term connection information object refers to both the G2ConnectionInfo
and TwConnectionInfo object classes, unless noted otherwise. Examples
throughout this chapter use mostly a TwConnectionInfo object.

The TwConnectionInfo Class Hierarchy
The two classes of connection information objects are:

• com.gensym.jgi.G2ConnectionInfo

• com.gensym.ntw.TwConnectionInfo

The TwConnectionInfo class extends the G2 JavaLink G2ConnectionInfo class:

JavaLink com.gensym.jgi Class

G2ConnectionInfo

Telewindows2 Toolkit
com.gensym.ntw Class

TwConnectionInfo

Class

Extends
62 Part II Connecting to G2

Packages Covered
Packages Covered

com.gensym.jgi
G2ConnectionInfo

com.gensym.ntw
TwConnectionInfo

Relevant Demos

The Telewindows2 Toolkit wkspapplet demo uses a TwConnectionInfo to:

• Connect to G2 through either a two- or three-tier connection.

• Create a sharable connection.

• Set the connection information for an ItemRetriever component.

The demo is located in this directory, depending on your platform:

Using Connection Information Objects
A connection information object sets the properties that a G2 connection request
requires. While you can specify one or more properties of a such an object to set
the connection, no requirement exists to do so. Making a connection with any of
the following methods implicitly constructs an instance of a G2ConnectionInfo
object with all of its properties set to their default values:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
wkspapplet\WkspApplet.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
wkspapplet/WkspApplet.java

Class Method

G2Gateway getOrMakeConnection
(String host, String port)

G2Gateway getOrMakeConnection
(String brokerURL, String host, String port)

TwGateway openConnection
(String brokerURL, String host, String port)
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 63

Chapter 5 Using Connection Information Objects
When using either the ItemRetriever or TwConnector components, you can set
the connectivity properties through a properties dialog in a visual Java
programming environment. Alternatively, all of the connectivity classes include
accessor methods to get and set the connection information object properties.

For examples of how to specify the basic properties required to create a
connection, see “Using an ItemRetriever Programmatically” on page 37.

Regardless of the way in which an application gets and sets the connectivity
properties, a connection information object always exists when a TW2 Toolkit
client creates a connection to a G2 server.

Connection information objects are immutable, meaning you cannot set any of
their properties once an instance has been created.

Creating a Connection Information Object
Both connection information object classes include constructors to specify
between two and twelve available properties. The G2ConnectionInfo class
includes a complete suite of constructors for every available permutation,
whereas the TwConnectionInfo class does not.

Using a constructor with no arguments creates a connection information object
with default values for every property.

For a complete description of the constructor methods, refer to the G2 JavaLink
and Telewindows2 Toolkit API documentation for com.gensym.jgi.
G2ConnectionInfo and com.gensym.ntw.TwConnectionInfo, respectively.
64 Part II Connecting to G2

Setting Basic Connectivity Properties
Basic and Advanced Properties
The following sections describe the following basic and advanced properties of a
connection information object:

Setting Basic Connectivity Properties
Basic properties are those that most likely require setting in any client application.
You can specify the basic properties in all of the class constructors, except those
with no arguments.

Setting the Host and Port
The hostName and port properties let you specify the host and port to which your
application will connect. The default values for these properties are localhost
and 1111, respectively.

A TwConnectionInfo constructor exists specifically to set only the host and port
properties.

To create a TwConnectionInfo object with host and port properties:
//Create a connection info object
TwConnectionInfo connectionInfo = new TwConnectionInfo

("myhost", "1114");

Basic Property Type Advanced Property Type

brokerURL String connectionClassName String

hostName String forceNew boolean

port String gsiInterfaceClassName String

interfaceName String

isPerm Boolean

logicalName String

connectionClassName String

rpis String

sharable boolean
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 65

Chapter 5 Using Connection Information Objects
Specifying a Middle-Tier Server
The brokerURL property lets you connect to G2 through a middle-tier server. The
default value of this property is null.

For a complete discussion of connecting this way, see Chapter 8, “Using a
Middle-Tier Server” on page 117.

You can use a TwConnectionInfo constructor that lets your application connect to
G2 through a middle-tier server, specifying the server machine and name as a
string with this format:

//machine/ServerName

The following example creates a new TwConnectionInfo object that connects to
G2 through a middle tier.

To create a TwConnectionInfo object that uses a middle tier:
//Create a connection info object with brokerURL:
TwConnectionInfo connectionInfo = new TwConnectionInfo

("//mynode/demoserver", "myhost", "1114");

Setting Advanced Connectivity Properties

This section describes the advanced properties of connection information objects
and the results you can expect from changing their default values.

Properties are classified as advanced because, in many cases, applications do not
need to change them, and not all constructors support setting them. Further,
changing some of the advanced properties can affect fundamental behavior of
your application.

Argument Description

//machine The name of the machine on which the RMI
registry has been started.

/ServerName The name assigned to the server when it
was started.
66 Part II Connecting to G2

Setting Advanced Connectivity Properties
Interrelated and Independent Properties
These advanced properties are interrelated:

The level of interrelatedness differs for these properties. For the
connectionClassName or gsiInterfaceClassName, changing one property
without changing the other produces unpredictable results. For the forceNew and
sharable properties, changing one without changing the other does not make
sense. For the logicalName, forceNew, and sharable properties, changing one
without changing the other does not have the intended effect.

These properties work independently of others:

• interfaceName

• isPerm

• rpis

The following sections describe the advanced properties.

Connection and Interface Classes
The connectionClassName property specifies the connection class that is returned
to the calling method upon a successful connection to G2. For TW2 Toolkit
connection types, the default is com.gensym.ntw.TwGateway. All of the TW2
Toolkit connectivity components return this connection class, thus creating a TW2
Toolkit connection type, by default. The TwGateway class returns an
implementation of the com.gensym.ntw.TwAccess interface upon successful
connection to G2.

The gsiInterfaceClassName property specifies the interface class that G2 creates
in the KB for a TW2 Toolkit client. All of the TW2 Toolkit connectivity classes
cause G2 to create an instance of the ui-client-interface class.

While it is possible to change these properties when creating TW2 Toolkit
connection types, we do not recommend it. In particular, the
connectionClassName property must be com.gensym.ntw.TwGateway when
creating TW2 Toolkit connection types by calling the openConnection static
method on TwGateway. Similarly, when creating G2 JavaLink connection types by

If you change this property... Then also change this property...

connectionClassName gsiInterfaceClassName

forceNew sharable

logicalName forceNew
sharable
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 67

Chapter 5 Using Connection Information Objects
calling getOrMakeConnection on a com.gensym.jgi.G2Gateway, the
connectionClassName property must be com.gensym.jgi.G2Gateway.

Instead, to create a G2 JavaLink connection type, create a com.gensym.jgi.
G2ConnectionInfo, using the default values for these properties, and pass this
object to the getOrMakeConnection method of a com.gensym.jgi.G2Gateway.

The section “Choosing a Connection Type” on page 30 explains the two available
connection types and the functionality that each provides.

Thus, the only time that you would edit the connection and interface classes of a
connection information object is if you have done either of the following, which is
rare:

• Provided your own implementation of either the TwAccess or G2Access
interfaces.

• Subclassed either gsi-interface or ui-client-session.

To create a G2 JavaLink connection type:
//Create a G2 JavaLink connection type
G2ConnectionInfo connectionInfo = new G2ConnectionInfo

(null, "myhost", "1114")

This constructor uses the following default values for the connection and interface
class properties:

Note The string value of the gsiInterfaceClassName property must always be
uppercase, as must all class and attribute name specifications that you enter are
arguments to TW2 Toolkit classes, unless an item name has been explicitly
created in lowercase, using escape characters in G2.

Changing the Interface Name
The interfaceName property sets the name of the ui-client-interface instance that
G2 creates at the time a TW2 Toolkit client makes a successful connection. By
default, the TwConnector component creates an instance named tw-connector-
bean-interface, and calls to the TwGateway.openConnection static method create
instances named no-name.

If you want the interface item in G2 to have a particular name, other than the
default, set this value as part of the constructor.

Property Value

connectionClassName com.gensym.jgi.G2Gateway

gsiInterfaceClassName GSI-INTERFACE
68 Part II Connecting to G2

Setting Advanced Connectivity Properties
Sharing a Connection
The sharable property indicates whether the connection to G2 can be shared with
other components. For Telewindows2 Toolkit connection types, the default for
this property is false, which means connections are not shared. Contrast this
with G2 JavaLink connection types, which are shared, by default.

When a connection is not shared, subsequent connection requests to the same host
and port of the unshared connection cannot use the existing connection. This
means that each client connects to G2 under a separate login session and is
assumed to require full control over the connection.

The forceNew property specifies that each time a component attempts to connect
to G2, a new connection is made, even if a connection already exists with the
current connection information and even if that connection is specified as
sharable. For TW2 Toolkit connections, the default of this property is true, which
means that each TW2 Toolkit client always creates a new connection, regardless
of the value of the sharable property. Contrast this with G2 JavaLink connection
types, which do not force a new connection, by default.

Using a Shared Connection
Shared connections are useful in situations where applications:

• Do not require continuous access to G2, such as agents, which simply need to
connect to G2 to obtain data, then continue processing.

• Adhere to some agreement about when and how to close a connection.

As mentioned above, G2 JavaLink connections are shared, which means they do
not force a new connection to G2. Thus, multiple calls to the
getOrMakeConnection method on a G2Gateway have access to the same
connection, if one exists.

A shared connection might be applicable for a TW2 Toolkit application that
connects to G2 with a single TwConnector component, then uses multiple
ItemRetriever components to retrieve items. In such an application, the client
could establish a shared connection through the TwConnector. Once a connection
to G2 existed, each ItemRetriever whose host, port, and URL settings match
those of the existing connection would share that connection.

Internally, the ItemRetriever calls the getOrMakeConnection method on a
G2Gateway to create a connection. Each time the ItemRetriever attempts to
retrieve an item, TW2 Toolkit compares all of the information contained in the
connection information object that is passed to the calling method to see if its
values match those of an existing G2Gateway object. If the values match, G2
JavaLink returns the connection object to the calling method. If no exact match
exists between the connection information object passed to the method and the
existing connection, G2 JavaLink establishes a new connection to G2.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 69

Chapter 5 Using Connection Information Objects
When a client application creates a G2 connection, that application can close the
connection at any time. If the connection is shared, other components requesting
an identical G2 connection will share the existing connection and, in doing so, will
also gain control over its existence. When one component closes a shared
connection, all others sharing that connection are disconnected, too.

Creating a Shared Telewindows2 Toolkit Connection
If your application requires a shared connection, you must change both the
sharable and the forceNew properties.

To create a shared TW2 Toolkit connection type:

Create a TwConnectionInfo and set these properties:

For example, this code example uses a constructor that lets you change both of
these properties:

//Create a shared connection
TwConnectionInfo connectionInfo = new TwConnectionInfo

(null, "myhost", "1114", false, true);

Understanding How These Properties Interact
Because you must set two properties to determine whether a connection is shared,
situations can arise in which the sharable and forceNew properties seem to
conflict. For example, you might make a connection request to an existing
connection whose sharable property is true, using a connection information
object that specifies its forceNew property as true. In this case, the connection
request forces a new connection, regardless of the existence of the sharable
connection with the same connection information. Similarly, you might make a
connection request to an existing connection whose sharable property is false,
using a connection information object that specifies its forceNew property as
false. In this case, the connection request creates a new connection, regardless of
the specified connection information. Thus, when setting these properties
explicitly, keep in mind that:

• forceNew = true always overrides sharable = true.

• sharable = false always overrides forceNew = false.

Property Value

forceNew false

sharable true
70 Part II Connecting to G2

Setting Advanced Connectivity Properties
Setting a Permanent Connection
The permanent property specifies that the connection survives a G2 reset. The
default is true for both Telewindows2 Toolkit and G2 JavaLink connection types.

When the permanent property is set to Boolean.TRUE, if the KB is reset, G2:

• Keeps the client connection open.

• Keeps the ui-client-interface or gsi-interface instances.

Setting this property to Boolean.FALSE causes G2 to break the connection and
delete the interface object during a KB reset.

Note This property maps to the G2 Gateway gsi_initiate_connection API function
keep_connection argument, described in the G2 Gateway Bridge Developer’s Guide.

Specifying a Logical Name
The logicalName property specifies an alias for a shared connection to G2. To use
this feature, specify the logicalName, host, and port properties in one
TwConnector, then specify the same logicalName for any other TwConnector.

Once a connection to the specified host and port exists, any additional
TwConnector components uses the existing connection, ignoring their own host
and port properties.

The use of logical names only works if the connection to the specified host and
port is shared, as described in “Sharing a Connection” on page 69.

Setting a Remote Procedure Invocation String
The rpis property lets you specify a remote procedure initialization string.

The default value is null.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 71

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 6 Using TwGateway
Version 3.1 Mode: Working Size: 7x9x11
6
Using TwGateway
Describes how to use the TwGateway class to create a connection in a Java
application.

Introduction 73

Packages Covered 74

Relevant Demos 75

Supporting a Middle-Tier Connection 76

Creating a G2 Connection 76

Handling Events 79

Working with Telewindows2 Toolkit Connections 89

TwGateway Reference 97

Introduction
You use the TwGateway class for connecting a client application to G2 to gain
access to Telewindows2 (TW2) Toolkit functionality. The TwGateway class
includes a three versions of this static method for connecting to G2:

TwGateway.openConnection

The TwGateway class inherits its definition from com.gensym.jgi.G2Gateway,
which means your client application can:

• Connect to a single G2 process at a time.

• Send data to and receive data from a G2 process.
73

Chapter 6 Using TwGateway
• Support 2- and 3-tier connections.

• Make RPC calls.

• Subscribe to G2 state events.

In addition, TwGateway lets your application perform these tasks:

• Establish a login session with G2.

• Get and set user modes.

• Get user menu choices.

• View workspaces.

• Subscribe to workspace show and hide events and KB events.

This chapter presents information about using the TwGateway class to connect to
G2 and accomplish many TW2 Toolkit tasks. The chapter includes these major
sections:

• Packages covered.

• Creating a connection.

• Handling connection events and working with the connection.

• Reference information for the TwGateway class’s methods.

Packages Covered

com.gensym.ntw
Interfaces

TwAccess
TwCallbacks
TwConnection
TwConnectionListener
WorkspaceShowingListener

Classes
TwConnectionAdapter
TwConnectionEvent
TwGateway
WorkspaceShowingEvent
74 Part II Connecting to G2

Relevant Demos
com.gensym.ntw.util
Interfaces

KbMessageListener
KbModuleListener

Classes
KbEvent
KbModuleAdapter
NtwEventMulticaster

com.gensym.jgi
Exceptions

G2AccessException
ConnectionTimedOutException
G2CommunicationException

Relevant Demos
The TW2 Toolkit ItemAccessDemo illustrates a simple use of the TwGateway class
to connect to G2 to obtain an item. The demo is located in this directory,
depending on your platform:

In addition, the Java applications that this chapter uses are available online in this
directory, depending on your platform:

The filenames correspond to the class names in each example in this chapter.

To run these demos, you must load this KB file into G2, depending on your
platform:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
itemaccessdemo\ItemAccessDemo.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
itemaccessdemo/ItemAccessDemo.java

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\docs\
connectivitydemos*.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/docs/
connectivitydemos/*.java
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 75

Chapter 6 Using TwGateway
Supporting a Middle-Tier Connection
Before establishing a connection to G2, you can set up and use a middle-tier
server. For information about how to do this, see Chapter 8, “Using a
Middle-Tier Server” on page 117.

Creating a G2 Connection
When you create a connection to G2, using the TwGateway.openConnection static
method, the method returns a connection object. The class of the returned object is
a TwAccess, which is an interface.

To create a single G2 connection, you must:

• Open the connection to G2.

• Log in to G2.

• Handle exceptions.

Your application might also need to get or set the current user mode. For
information about how to do this, see “Working with User Modes in a
TwGateway Connection” on page 112.

The following sections explain these steps in detail and provide examples.

Opening and Closing a Connection
You can call any of these static methods on a TwGateway to open a connection:

• openConnection(String host, String port)

• openConnection(String brokerURL, String host, String port)

• openConnection(TwConnectionInfo info)

Typically, when opening a G2 connection, you declare a private variable that
holds the connection to be a TwAccess. If the methods you are calling on the
returned connection are not defined by TwAccess, you must declare the variable
to be a TwGateway and cast the result of the openConnection call to a TwGateway.

To create a connection, you must also log in to G2 by calling the login on the
returned connection. Logging in is required regardless of whether you are

NT: %SEQUOIA_HOME%\kbs\
connectivity-demos.kb

UNIX: $SEQUOIA_HOME/kbs/
connectivity-demos.kb
76 Part II Connecting to G2

Creating a G2 Connection
connecting to a non-secure or secure G2. For more information about login
sessions, including how to establish a login to a secure G2, see Chapter 7,
“Establishing a G2 Login Session” on page 101.

To log out and close a connection, you call this G2 JavaLink method on a
G2Gateway:

closeConnection

You can also log out and leave the connection open by calling the logout method
on a TwGateway. To do this, you must declare the connection variable to be a type
of G2Gateway and cast the return value of the openConnection method to a
G2Gateway, because logout is defined on TwGateway, not TwAccess. For more
information, see “Logging Out From G2” on page 113.

The following code fragments open a connection to a particular host and port,
then log out and close the connection. For information on creating a connection
information object as the argument to the openConnection method, see Chapter 5,
“Using Connection Information Objects” on page 61.

To open a connection to G2:

//Declare connection variable
private static myConnection = TwAccess;

//Call static method on TwGateway to open connection
myConnection = TwGateway.openConnection("myhost", "1234");

//log in to G2
myConnection.login();

To close a connection:

//Declare connection variable
private static myConnection = TwAccess;

//Call static method on TwGateway to open connection
myConnection = TwGateway.openConnection("myhost","1234");

//log in to G2
myConnection.login();

//Close connection
myConnection.closeConnection();
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 77

Chapter 6 Using TwGateway
The following example defines a connection class and the runMyConnection
method, which creates a connection, logs in to G2, sends a message to the G2
Message Board, and handles exceptions. The closeConnection method logs out
and closes the connection. The example prints messages to the command window
to verify the code.

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.jgi.G2AccessException;
import com.gensym.jgi.ConnectionTimedOutException;
import com.gensym.jgi.G2CommunicationException;

public class MyConnection {
 private static TwAccess myConnection;

 //Create a connection
 public static void runMyConnection () {
 try{
 //Establish a connection to G2
 myConnection = TwGateway.openConnection("localhost", "1111");
 myConnection.login();
 System.out.println("Connected to G2!");
 myConnection.returnMessage("Connected to G2!");
 } catch (G2AccessException e){
 e.printStackTrace();
 System.exit (-1);
 }
 }

 // MAIN
 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 myConnection.closeConnection();
 System.out.println("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Connected to G2!
Connection closed!
End of Main!
78 Part II Connecting to G2

Handling Events
Handling Connection Exceptions
Using the TwGateway.openConnection static method to connect to G2 can
generate these exceptions:

All of the connection exceptions are generated by G2Gateway. For more
information, refer to the G2 JavaLink API documentation for the com.gensym.jgi
package.

Handling Events
Once a connection to G2 exists, you can subscribe to the following connection and
KB events:

Subscribing to Connection Events
You subscribe to connection events by adding a TwGateway as a com.gensym.ntw.
TwConnectionListener or using a TwConnectionAdapter.

Both the G2Gateway and TwGateway classes generate connection events.

Exception Description

G2AccessException An error occurred during the
connection attempt.

ConnectionTimedOutException An error occurred during the
connection initialization phase of
connecting to G2.

G2CommunicationException Signals that a G2 communication
problem has occurred.

To subscribe to... Call this method...
On an implementation of
this interface...

Connection events addTwConnectionListener com.gensym.ntw.TwAccess

Programmatic show
and hide workspace
events

addWorkspaceShowingListener com.gensym.ntw.TwAccess

KB module events addKbModuleListener com.gensym.classes.Kb

KB message events addKbMessageListener com.gensym.classes.Kb
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 79

Chapter 6 Using TwGateway
These are the events about which you can receive notification through the
addTwConnectionListener subscription method:

The following code fragments show the basic steps for subscribing to connection
events.

To subscribe to connection events:

//Declare connection variable
private static TwAccess myConnection;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Add connection as a listener for connection events
myConnection.addTwConnectionListener(this);

This example adds the application as a listener for connection events in the
constructor and prints a message to the command window when the user logs in.
The main method opens the connection, calls the constructor, which adds the
application as a listener, logs in, then closes the connection.

Note The g2ConnectionClosed event serves as notification for both closing the
connection and logging out; thus, the loggedOut event is generated only when
you explicitly log out without closing the connection.

Event G2Gateway TwGateway

communicationError

g2ConnectionClosed

g2ConnectionInitialized

g2IsPaused

g2IsResumed

g2IsReset

g2IsRestarted

g2MessageReceived

loggedIn

loggedOut

readBlockage

userModeChanged

writeBlocakge
80 Part II Connecting to G2

Handling Events
package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.TwConnectionListener;
import com.gensym.ntw.TwConnectionEvent;
import com.gensym.jgi.G2CommunicationErrorEvent;
import com.gensym.jgi.G2ConnectionEvent;

public class MyConnectionListener implements TwConnectionListener {
 private static TwAccess myConnection;

 public MyConnectionListener () {
 //Add connection as a listener for connection events
 myConnection.addTwConnectionListener(this);
 System.out.println ("Added as listener!");
 }

 public static void openConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void loginConnection () {
 try{
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 //TwConnectionListener Methods
 public void loggedIn (TwConnectionEvent e){
 System.out.println ("Logged in event detected!");
 }

 public void loggedOut (TwConnectionEvent e) {}
 public void userModeChanged (TwConnectionEvent e) {}

 //G2ConnectionListener Methods
 public void communicationError(G2CommunicationErrorEvent e){}
 public void g2ConnectionClosed(G2ConnectionEvent e) {
 System.out.println ("Connection closed!");
 }
 public void g2ConnectionInitialized(G2ConnectionEvent e) {}
 public void g2IsPaused(G2ConnectionEvent e) {}
 public void g2IsReset(G2ConnectionEvent e) {}
 public void g2IsResumed(G2ConnectionEvent e) {}
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 81

Chapter 6 Using TwGateway
 public void g2IsStarted(G2ConnectionEvent e) {}
 public void g2MessageReceived(G2ConnectionEvent e) {}
 public void readBlockage(G2ConnectionEvent e) {}
 public void writeBlockage(G2ConnectionEvent e) {}

 public static void main(String[] args){
 System.out.println("Got to main!");
 openConnection();
 MyConnectionListener app = new MyConnectionListener();
 loginConnection();
 myConnection.closeConnection();
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Added as listener!
Logged in event detected!
Connection closed!
End of Main!

Subscribing to Workspace Show and Hide Events
When G2 programmatically shows or hides a KB workspace, the connection
generates an event. You can subscribe to these events by adding a TwGateway as a
com.gensym.ntw.WorkspaceShowingListener. Only TwGateway connections
generate these events.

These are the events about which you can receive notification through the
addWorkspaceShowingListener subscription method:

• hideWorkspace

• showWorkspace

To subscribe to programmatic workspace show and hide events:

//Declare connection variable
private static TwAccess myConnection;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Add connection as a listener for workspace showing events
myConnection.addTwConnectionListener(this);
82 Part II Connecting to G2

Handling Events
This example makes RPC calls to two user-defined G2 procedures named
show-wksp and hide-wksp, which show and hide a named workspace in the
connectivity.kb. The main method opens the connection, calls the constructor,
which adds the application as a listener for workspace showing events, then calls
each method that makes an RPC call to show and hide the workspace. The main
method must wait before closing the connection in order to detect the show and
hide workspace events.

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.WorkspaceShowingListener;
import com.gensym.ntw.WorkspaceShowingEvent;
import com.gensym.util.Symbol;
import com.gensym.classes.Object;

public class MyWorkspaceShowingListener implements
WorkspaceShowingListener {
 private static TwAccess myConnection;
 private static Symbol SHOW_WKSP_ = Symbol.intern("SHOW-WKSP");
 private static Symbol HIDE_WKSP_ = Symbol.intern("HIDE-WKSP");
 private static Object[] args = new Object[]{};

 public MyWorkspaceShowingListener() {
 try{
 //Add connection as a workspace showing listener
 myConnection.addWorkspaceShowingListener(this);
 System.out.println ("Added as listener!");
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void showWksp () {
 try {
 myConnection.callRPC(SHOW_WKSP_, args);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 83

Chapter 6 Using TwGateway
 public static void hideWksp () {
 try {
 myConnection.callRPC(HIDE_WKSP_, args);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 //WorkspaceShowingListener methods
 public void hideWorkspace (WorkspaceShowingEvent e){
 System.out.println ("Workspace hidden!");
 }
 public void showWorkspace (WorkspaceShowingEvent e){
 System.out.println ("Workspace shown!");
 }

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 MyWorkspaceShowingListener app = new MyWorkspaceShowingListener();
 try {
 showWksp();
 hideWksp();
 Thread.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Added as listener!
Workspace shown!
Workspace hidden!
Connection closed!
End of Main!

Subscribing to KB Module Events
G2 JavaLink provides the com.gensym.classes.Kb interface to represent a G2 KB.
The KB generates various module events to which you can subscribe by adding
the downloaded Kb item as a com.gensym.ntw.util.KbModuleListener or by
using a KbModuleAdapter. You get the KB by calling the getKb method on a
TwGateway.
84 Part II Connecting to G2

Handling Events
These are the events about which you can receive notification through the
addKbModuleListener subscription method:

• kbCleared

• moduleCreated

• moduleDeleted

• moduleDependencyChanged

• moduleNameChanged

• receivedInitialModules

• topLevelWorkspaceAdded

• topLevelWorkspaceDeleted

To subscribe to KB module events:

//Declare connection and KB variables
private static TwAccess myConnection;
private static Kb myKb;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Get KB from connection
Kb myKb = myConnection.getKb();

//Add KB as a listener for module events
myKb.addKbModuleListener(this)

The following example adds the application as a listener for KB module events in
the constructor and prints a message to the command window when the listener
is initially added.

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.classes.Kb;
import com.gensym.ntw.util.KbModuleListener;
import com.gensym.ntw.util.KbEvent;

public class MyKbModuleListener implements KbModuleListener {
 private static TwAccess myConnection;

 //Variable for KB
 private static Kb myKb;

 private MyKbModuleListener () {
 //Get KB associated with connection
 Kb myKb = myConnection.getKb();
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 85

Chapter 6 Using TwGateway
 try {
 //Add KB as a listener for module events
 myKb.addKbModuleListener(this);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 //KbModuleListener Methods

 public void receivedInitialModules(KbEvent e) {
 //Invoked when KbModuleListener added
 System.out.println ("Received initial modules!");
 }

 public void kbCleared (KbEvent e) {}
 public void moduleCreated(KbEvent e) {}
 public void moduleDeleted(KbEvent e) {}
 public void moduleDependencyChanged(KbEvent e) {}
 public void moduleNameChanged(KbEvent e) {}
 public void topLevelWorkspaceAdded(KbEvent e) {}
 public void topLevelWorkspaceDeleted(KbEvent e) {}

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 MyKbModuleListener app = new MyKbModuleListener();
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Received initial modules!
Connection closed!
End of Main!
86 Part II Connecting to G2

Handling Events
Subscribing to KB Message Events
Implementations of the G2 JavaLink com.gensym.classes.Kb interface generate
events when the G2 KB generates an Operator Logbook or Message Board
message. You can subscribe to these events by adding the downloaded Kb item as
a com.gensym.ntw.util.KbMessageListener. You get the KB by calling the
getKb method on a TwGateway.

These are the events about which you can receive notification through the
addKbMessageListener subscription method:

• kbMessageAdded

• kbMessageDeleted

• receivedInitialContents

To subscribe to KB message events:

//Declare connection and KB variables
private static TwAccess myConnection;
private static Kb myKb;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Get KB from connection
Kb myKb = myConnection.getKb();

//Add KB as a listener for module events
myKb.addKbMMessageistener(this)

The following example adds the application as a listener for KB message events in
the constructor and prints a message to the command window when the listener
is initially added.

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.classes.Kb;
import com.gensym.ntw.util.KbMessageListener;
import com.gensym.ntw.util.KbEvent;

public class MyKbMessageListener implements KbMessageListener {
 private static TwAccess myConnection;

 //Variable for KB
 private static Kb myKb;

 private MyKbMessageListener () {
 //Get KB associated with connection
 Kb myKb = myConnection.getKb();
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 87

Chapter 6 Using TwGateway
 try {
 //Add KB as a listener for module events
 myKb.addKbMessageListener(this);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 //KbMessageListener Methods

 public void receivedInitialContents(KbEvent e) {
 //Invoked when KbMessageListener added
 System.out.println ("Received initial contents!");
 }

 public void kbMessageAdded (KbEvent e) {}
 public void kbMessageDeleted (KbEvent e) {}

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 MyKbMessageListener app = new MyKbMessageListener();
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Received initial contents!
Connection closed!
End of Main!
88 Part II Connecting to G2

Working with Telewindows2 Toolkit Connections
Working with Telewindows2 Toolkit
Connections

Once your application creates a Telewindows2 Toolkit connection and establishes
a login session with the G2 process, you can perform numerous tasks available
through that connection. The G2 JavaLink and TW2 Toolkit API documentation
presents all the methods you can call. This section describes how to perform the
following common tasks:

• Getting the KB.

• Getting a list of named workspaces.

• Getting the DialogManager associated with the connection.

• Getting and invoking user menu choices.

• Sending a message to G2.

• Getting and setting attributes of user-defined items.

As mentioned earlier, the TwGateway.openConnection static method returns a
TwAccess. If the methods you are calling on the returned connection are defined
on TwAccess, then you do not need to cast the result to an instance of a
TwGateway. However, if the methods calls are on TwGateway only, then you must
cast the connection object to TwGateway.

Getting the KB
To receive notification of KB module and message events, you must first get the
com.gensym.classes.Kb associated with the connection. For information on
subscribing to these events, see “Subscribing to KB Module Events” on page 84
and “Subscribing to KB Message Events” on page 87.

To get the KB associated with a connection:
//Declare connection and KB variables
private static TwAccess myConnection;
private static Kb myKb;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Get KB from connection
Kb myKb = myConnection.getKb();
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 89

Chapter 6 Using TwGateway
Getting a List of Named Workspaces
You can use a current connection to obtain a list of named KB workspaces. The
returned value is a com.gensym.util.Sequence.

When you get a list of named workspaces from a connection, you need to handle
this exception:

com.gensym.jgi.G2AccessException

To get a list of workspaces:
//Declare connection and workspace variables
private static TwAccess myConnection;
private static Sequence workspaces;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Get named workspaces from connection
workspaces = myConnection.getNamedWorkspaces();

For example, this example prints the current named workspaces to the command
window:

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.util.Sequence;
import com.gensym.jgi.G2AccessException;

public class MyWorkspaces {
 private static TwAccess myConnection;

 //Variable for workspaces
 private static Sequence workspaces;

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }
90 Part II Connecting to G2

Working with Telewindows2 Toolkit Connections
public static void getNamedWorkspaces() {
 try {
 //Get named workspaces from connection
 workspaces = myConnection.getNamedWorkspaces();
 System.out.println (workspaces);
 } catch (G2AccessException e){
 e.printStackTrace();
 }
 }

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 getNamedWorkspaces();
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111 with the
connectivity-demos.kb loaded:

Got to main!
[WKSP-1, WKSP-2, INVOKE-USER-MENU-CHOICE, WORKSPACE-SHOWING-LISTENER]
Connection closed!
End of Main!

Getting the Current DialogManager
Every TW2 Toolkit connection has an associated com.gensym.dlgruntime.
DialogManager, which is responsible for managing all the item properties dialogs
in the KB.

The connection might also have an associated com.gensym.dlgruntime.
DialogManagerFactory, which you can implement to generate subclasses of
DialogManager for managing different types of dialog resources.

To get the DialogManagerFactory, you must cast the connection to a TwGateway
because getDialogManagerFactory is not defined on TwAccess.

For more information about DialogManager and DialogManagerFactory, see
Chapter 16, “Launching Custom Item Properties Dialogs” on page 305.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 91

Chapter 6 Using TwGateway
To obtain the current DialogManager:
//Declare connection and DialogManager variables
private static TwAccess myConnection;
private static DialogManager dialogManager;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Get DialogManager
dialogManager = myConnection.getDialogManager();

For example, this example prints the current DialogManager to the command
window:

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.dlgruntime.DialogManager;

public class MyDialogManager {
 private static TwAccess myConnection;

 //Variable for DialogManager
 private static DialogManager dialogManager;

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void getDialogManager () {
 //Get DialogManager
 dialogManager = myConnection.getDialogManager();
 System.out.println (dialogManager);
 }

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 getDialogManager ();
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

92 Part II Connecting to G2

Working with Telewindows2 Toolkit Connections
Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
com.gensym.dlgruntime.DialogManager@191e74
Connection closed!
End of Main!

Invoking a User Menu Choice
You can get a user menu choice associated with a particular class from the current
connection. Once you have a handle on the user menu choice, you can call the
invoke method on a com.gensym.classes.UserMenuChoice to invoke the user
menu choice across the connection.

When you get a user menu choice from a connection, you must handle this
exception:

com.gensym.jgi.G2AccessException

To get a user menu choice:

1 Create an upper-case symbol to represent the class name of the user menu
choice.

To do this, we recommend that you create a private static final variable
that is a com.gensym.util.Symbol, then call the intern method on the
Symbol to convert the G2 class name as an upper-case string to a symbol. For
example:

private static final Symbol PLANET_ = Symbol.intern("PLANET");

2 Create an upper-case symbol to represent the label of the user menu choice.

For example:

private static final Symbol COMPUTE_ORBIT_ =

Symbol.intern("COMPUTE-ORBIT");

3 Establish a connection to G2 and make a login request.

4 Call this method on the connection to get the user menu choice:

getUserMenuChoice(Symbol label, Symbol applicableClass)
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 93

Chapter 6 Using TwGateway
For example, this example gets and invokes the user menu choice named
compute-orbit on the planet class:

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.classes.UserMenuChoice;
import com.gensym.util.Symbol;
import com.gensym.classes.Item;

public class MyUserMenuChoice {
 private static TwAccess myConnection;

 //Variable for UserMenuChoice
 private static UserMenuChoice userMenuChoice;

 //Variable for user menu choice label
 private static final Symbol COMPUTE_ORBIT_ =

Symbol.intern("COMPUTE-ORBIT");

 //Variable for user menu choice applicable class
 private static final Symbol PLANET_ = Symbol.intern("PLANET");

 //Variable for Planet item as a symbol
 private static final Symbol MY_PLANET_ = Symbol.intern("MY-PLANET");

 //Variable for Planet item
 private static Item myPlanet;

 public static void runMyConnection () {
 try{
 myConnection = TwGateway.openConnection ("localhost", "1111");
 myConnection.login();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void runUserMenuChoice () {
 try{
 //Get UserMenuChoice
 userMenuChoice = myConnection.getUserMenuChoice(COMPUTE_ORBIT_,

PLANET_);
 System.out.println ("Got user menu choice!");

 //Get Planet item
 myPlanet = myConnection.getUniqueNamedItem(PLANET_, MY_PLANET_);
 System.out.println ("Got unique named item!");
94 Part II Connecting to G2

Working with Telewindows2 Toolkit Connections
//Invoke user menu choice on item
 userMenuChoice.invoke(myPlanet);
 System.out.println ("Invoked user menu choice!");

 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 runUserMenuChoice();
 myConnection.closeConnection();
 System.out.println ("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111:

Got to main!
Got user menu choice!
Got unique named item!
Invoked user menu choice!
Connection closed!
End of Main!

Sending a Message

You can send messages to the G2 Message Board across a connection by calling
the returnMessage method on a com.gensym.jgi.G2Gateway.

To receive messages, you register as a KbMessageListener, as described in
“Subscribing to KB Message Events” on page 87.

To send a message to the G2 Message Board:
//Declare connection variable
private static TwAccess myConnection;

//Open connection
myConnection = TwGateway.openConnection ("myhost", "1234");

//Send message
myConnection.returnMessage("Connected to G2!");

For a complete example, see “Opening and Closing a Connection” on page 76.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 95

Chapter 6 Using TwGateway
Getting and Setting Attributes of User-Defined Items
You can use the G2 JavaLink Download Interfaces wizard to generate a Java class
representation of any G2 item. When you download interfaces, G2 JavaLink
generates two classes:

• An interface that defines accessor methods for getting and setting all
attributes of the class, plus methods for all the G2 methods defined for the
class.

• An implementation of the downloaded interface that represents the instance.

Once you have downloaded interfaces, you can get a handle on the instance, and
use the accessor methods to get and set attributes of the item. To do this, you
establish a connection and call this method on a com.gensym.jgi.G2Gateway:

getUniqueNamedItem (Symbol itmClass, Symbol itmName)

To download interfaces, you run DownloadInterfaces from the bin directory of
your G2 JavaLink product directory. If you are running G2 JavaLink on an NT
platform, you can also run Download Interfaces from the Start menu. For details,
see the G2 DownloadInterfaces User’s Guide.

To get and set attributes of a user-defined G2 item:

1 Download interfaces for the item whose attributes you wish to get or set.

2 Import the downloaded interface into your application.

3 Create an upper-case symbol to represent the class name of the downloaded
interface.

To do this, we recommend that you create a private static final variable
that is a com.gensym.util.Symbol, then call the intern method on the
Symbol to convert the G2 class name as an upper-case string to a symbol. For
example:

private static final Symbol PLANET_ = Symbol.intern("PLANET");

4 Establish a connection to G2.

Note that in this example, it is not necessary to log in to G2 because you are
only getting and setting attributes of an item; you are not displaying the item
in a workspace view.

5 Call the getUniqueNamedItem method on a G2Gateway to get the item from the
connection, providing as arguments the class name and the item name as
symbols.

6 Cast the result of the unique named item to the appropriate downloaded
interface to make its accessor methods available.

7 Call the accessor methods on the result of the cast to get and set attribute
values of the item.
96 Part II Connecting to G2

TwGateway Reference
The following example shows how code fragments for getting and setting values
for the number-of-moons attribute of a user-defined planet class. To do this, you
must first download interfaces for this class. For the location of the complete
demo, see “Relevant Demos” on page 75.

//Import downloaded interface
import com.gensym.demos.democlasses.Planet;

//Connection variable
private static TwAccess myConnection;

//Variable for downloaded interface
private Planet planet;

//Variable for item name
private Symbol planetName_;

//Variable for class name
private static final Symbol PLANET_ = Symbol.intern("PLANET");

//Establish connection and make login request
myConnection = TwGateway.openConnection("localhost", "1111");
myConnection.login();

//Obtain a stub for the G2 instance
Object result = myConnection.getUniqueNamedItem(PLANET_, planetName_);

//Cast stub to appropriate interface
planet = (Planet)result;

//Use accessor method on interface to get attribute value
int numberOfMoons = planet.getNumberOfMoons();

//Use accessor method on interface to set attribute value
planet.setNumberOfMoons(numberOfMoons);

TwGateway Reference
TwGateway extends com.gensym.jgi.G2Gateway. Refer to the G2 JavaLink API
documentation for that class for additional methods.

Because the TwGateway.openConnection static method returns a com.gensym.
ntw.TwAccess, and TwGateway implements TwAccess through the TwConnection
interface, this section separates the TwGateway methods into:

• The abstract methods on TwAccess, all of which TwGateway implements.

• The static methods on TwGateway.

For a diagram of the class hierarchy of TwGateway, see “Class Hierarchy of
Connectivity Classes” on page 28.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 97

Chapter 6 Using TwGateway
Abstract Methods on TwAccess
These are the abstract methods, including accessor methods, on TwAccess, which
TwGateway implements:

Method Description

login Creates a login session to G2,
using default login information,
unless the method is called with a
com.gensym.ntw.LoginRequest
object. See “Logging in to G2” on
page 105.

logout Logs out a currently logged in
user and leaves the connection
open. See “Logging Out From
G2” on page 113.

addTwConnectionListener
removeTwConnectionListener

Adds or removes a com.gensym.
ntw.TwConnectionListener that
is informed when the user logs in,
logs out, or changes the user
mode.

addWorkspaceShowingListener
removeWorkspaceShowingListener

Adds or removes a com.gensym.
ntw.WorkspaceShowingListener
that is informed when G2
programmatic shows or hides a
KB workspace.

getDialogManager
setDialogManager

Gets or sets the com.gensym.
dlgruntime.DialogManager for
the current connection. See
Chapter 16, “Launching Custom
Item Properties Dialogs” on
page 305.

getKb Returns the com.gensym.
classes.Kb associated with the
current KB for this connection.

getMinimumVersion Returns a com.gensym.jgi.
G2Version that is the earliest G2
version with which this
connection is expected to
communicate.
98 Part II Connecting to G2

TwGateway Reference
getNamedWorkspaces Returns a com.gensym.util.
Sequence containing the names of
all named KB workspaces in the
current connection.

getUserMenuChoice Returns a com.gensym.classes.
UserMenuChoice by specifying a
label and applicable class as
symbols.

changeUserMode Dynamically changes the user
mode of the currently logged in
user in G2. Provide a com.
gensym.util.Symbol as the
argument.

isLoggedIn Returns a boolean indicating
whether the current connection
has an active login session with
G2. Certain methods on
TwGateway require that you test
whether the connection is
currently logged in, such as
changeUserMode.

retrieveSession Returns the com.gensym.
classes.UiClientSession for
this connection, which has a one-
to-one relationship with the
connection. For details, see
“Creating a Telewindows2
Toolkit Connection” on page 33.

retrieveUserMode Gets the user mode of a currently
logged in user.

toString Returns a java.lang.String that
is a description of this connection.

Method Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 99

Chapter 6 Using TwGateway
Static Methods on TwGateway
These are the static methods on TwGateway:

Protected Methods on TwGateway
These are the protected methods of a TwGateway, which only subclasses of
TwGateway can call:

• initializeLocalRPCs

• initializeConnectionRPCs

• dispatchTwConnectionEvent

For details, see the API documentation.

Method Description

openConnection Attempts to open a G2
connection, and if successful,
returns a com.gensym.ntw.
TwAccess interface. You can
provide as arguments one of the
following:

• A host and port

• A brokerURL, host, and port

• A com.gensym.ntw.
TwConnectionInfo

getDialogManagerFactory
setDialogManagerFactory

Gets or sets the com.gensym.
dlgruntime.
DialogManagerFactory for this
connection. See Chapter 16,
“Launching Custom Item
Properties Dialogs” on page 305.
100 Part II Connecting to G2

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 7 Establishing a G2 Login Session
Version 3.1 Mode: Working Size: 7x9x11
7
Establishing a G2
Login Session
Describes how to establish a login session with G2 after successfully establishing a
connection.

Introduction 101

Packages Covered 102

Relevant Demos 103

Establishing a Login Session 103

Logging in to G2 105

Handling Login Exceptions 112

Logging Out From G2 113

Introduction
After using one of the connectivity classes to establish a connection to a G2 server
process, each Telewindows2 (TW2) Toolkit client must establish a login session
with G2.

Establishing a login session does two things:

• Creates an instance of a ui-client-session object in G2 that represents the login
session and consumes one Telewindows2 Toolkit floating license.

• Makes available the complete functionality of Telewindows2 Toolkit.
101

Chapter 7 Establishing a G2 Login Session
You establish login sessions differently depending on the connection class you
use:

The login method accepts a com.gensym.ntw.LoginRequest object as its
argument. This chapter describes the use and purpose of establishing login
sessions, and the exceptions that support them.

Packages Covered

com.gensym.ntw
Classes

LoginRequest

Exceptions
AlreadyLoggedInException
InvalidUserModeException
LoginFailedException
NotLoggedInException
OkException
TooManyLoginAttemptsException

If you connect to G2 by using a... Then...

com.gensym.TwGateway You establish a login session
with G2 by calling
TwGateway.login on the
returned connection object.

com.gensym.controls.ItemRetriever
com.gensym.controls.TwConnector

TW2 Toolkit calls the login
method on a TwGateway
automatically when a
connection is made and uses
specified login parameters.
102 Part II Connecting to G2

Relevant Demos
Relevant Demos
The Java applications that this chapter uses are available online in this directory,
depending on your platform:

The filenames correspond to the class names in each example in this chapter.

To run these demos, you must load this KB file into G2, depending on your
platform:

Establishing a Login Session
Creating a login session permits a client to access the full functionality of
Telewindows2 Toolkit.

Without a valid login session, a client can connect to G2, but it cannot populate a
workspace view. This is because displaying a workspace view requires the use of
one or more restricted RPC calls that TW2 Toolkit uses internally. For a list of
restricted RPC calls and their corresponding public APIs, see Appendix A,
“Restricted Remote Procedure Calls” on page 351.

Attempting to display a workspace without first creating a login session results in
a NotLoggedInException exception, as described in the “Handling Login
Exceptions” on page 112.

Managing Clients and Security in G2
While TW2 Toolkit clients must call the login method on a com.gensym.ntw.
TwGateway after a successful connection, G2 itself need not be secure. The reason
is that you call the login method without any arguments, which uses a
LoginRequest object with default property values.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\docs\
connectivitydemos*.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/docs/
connectivitydemos/*.java

NT: %SEQUOIA_HOME%\kbs\connectivity-demos.kb

UNIX: $SEQUOIA_HOME/kbs/connectivity-demos.kb
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 103

Chapter 7 Establishing a G2 Login Session
Requiring a client login session to connect to a non-secure G2 might seem
anomalous, but the TW2 Toolkit behavior corresponds to the way in which G2
handles client connections and their security.

G2 manages security through the OK file with which it is launched. The OK file
specifies whether a G2 is secure or not. For a secure G2, the OK file includes user
elements consisting of user name, password, and permitted user modes. G2
verifies the user login information from a client against the user elements in the
OK file. For a non-secure G2, the OK file specifies that G2 is not secure and
contains no user elements.

Representing a Login Session in G2
G2 represents every client connection with one or more object classes, as this table
describes:

g2-window and ui-client-session are both subclasses of ui-client-item, whereas
ui-client-interface is a subclass of gsi-interface, as this diagram shows:

As described in “Creating a Telewindows2 Toolkit Connection” on page 33,
creating a TW2 Toolkit connection creates an instance of a ui-client-interface.

This type of client... Creates instances of these classes...

Classic Telewindows g2-window

Telewindows2 Toolkit ui-client-interface
ui-client-session
104 Part II Connecting to G2

Logging in to G2
When a TW2 Toolkit client requests a login session to a non-secure G2, using
default user element values, G2 creates a ui-client-session object to represent the
user login. That object includes these attributes:

For a TW2 Toolkit client login session request to a secure G2, these attributes
would consist of the user mode, user name, and password properties that the
LoginRequest object includes.

Two-Tier Connections
In a two-tier connection, a one-to-one correspondence exists between a
ui-client-interface object representing the connection and a ui-client-session object
representing the user logged into G2 across that connection.

Three-Tier Connections
In a three-tier connection, a single ui-client-interface object can represent multiple
ui-client-session objects, since the middle tier creates a single connection, through
which multiple users can log in to G2.

Logging in to G2
A LoginRequest consists of three properties, each representing OK file user
elements that the client uses during the G2 login request:

• userMode

• userName

• userPassword

A LoginRequest is immutable. Typically, a client application creates a
LoginRequest, uses it as the argument to the login method on a TwGateway, then
constructs a new object for the next login session.

This attribute... Has this value...

ui-client-session-user-mode administrator

ui-client-session-user-name The symbol version of the
ui-client-session-user-name-in-
operating-system
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 105

Chapter 7 Establishing a G2 Login Session
Using Accessor Methods
The ItemRetriever and TwConnector connectivity components provide the
following methods for accessing the properties of a LoginRequest:

• getUserName

• setUserName

• getUserMode

• setUserMode

• setUserPassword

Note For security reasons, no accessor method exists to obtain a user password.

A LoginRequest is analogous to a TwConnectionInfo in that you typically do not
edit the properties of either object after it has been created. However, unlike a
connection information object, a login request allows you to edit the user mode of
a login session once it has been created.

The ItemRetriever and TwConnector components provide accessor methods that
you can call to set the properties of a LoginRequest object. These methods have
different effects depending on whether a current connection exists, as follows:

If a connection... This set method... Has this effect...

Exists setUserMode Sets the user mode of the current
connection.

setUserName
setUserPassword

Generates a runtime exception; you
cannot set the user name and
password when a connection exists.

Does not exist setUserMode
setUserName
setUserPassword

Sets the user mode, user name, and
password that the LoginRequest uses
the next time the login method is
called.
106 Part II Connecting to G2

Logging in to G2
Using LoginRequest Constructors
A LoginRequest provides three constructors for creating a login session to a non-
secure or secure G2, depending on the information that is available at compile
time:

• LoginRequest()

• LoginRequest(Symbol userMode)

• LoginRequest(Symbol userMode, Symbol userName, Symbol userPassword)

For most applications, login information will be unavailable until run time, at
which point the client will obtain one or more user elements with which to
populate the LoginRequest object.

In all constructors, you must create an upper-case symbol to represent each
property. We recommend that you do this by creating a private static final
variable that is a com.gensym.util.Symbol, then calling the intern method on
the Symbol to convert the property as an upper-case string to a symbol.

For example, here is a static final variable that defines the userMode argument:
private static final Symbol DEVELOPER_ = Symbol.intern("DEVELOPER");

A constructor also exists that takes an OK file as an argument. For details, see the
API documentation for LoginRequest.

Creating a Login Session to a Non-Secure G2
You can call the login method on a TwGateway without an argument to establish a
login session to a non-secure G2. TW2 Toolkit supplies a LoginRequest object
with default values, which logs in to G2 in Administrator mode, using the user
name of the currently logged in user in G2.

You might also want to login to a non-secure G2 as a particular user in a
particular user mode. To do this, you create a LoginRequest with user mode and
user name elements only, then pass this object as the argument to the login
method.

To create a login session to a non-secure G2, using a default LoginRequest:

private static TwAccess myConnection;

try{
//Establish a connection to G2
myConnection = TwGateway.openConnection("myhost","1234");

//log in to non-secure G2 with default LoginRequest
myConnection.login();

System.out.println("Connected to G2!");
}

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 107

Chapter 7 Establishing a G2 Login Session
To create a login session to a non-secure G2, specifying a user name and
mode:

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.LoginRequest;
import com.gensym.jgi.G2AccessException;
import com.gensym.jgi.ConnectionTimedOutException;
import com.gensym.jgi.G2CommunicationException;
import com.gensym.util.Symbol;

public class MyNonSecureLoginRequest {
 private static TwAccess myConnection;
 private static LoginRequest loginRequest;
 private static final Symbol DEVELOPER_ = Symbol.intern("DEVELOPER");
 private static final Symbol TASHA_ = Symbol.intern("TASHA");

 //Create a connection
 public static void runMyConnection () {
 try{
 //Establish a connection to G2
 myConnection = TwGateway.openConnection("localhost", "1111");
 //Create a LoginRequest with user mode and user name only
 loginRequest = new LoginRequest(DEVELOPER_, TASHA_, null);
 //Log in to non-secure G2 with LoginRequest
 myConnection.login(loginRequest);
 System.out.println("Connected to G2!");
 } catch (G2AccessException e){
 e.printStackTrace();
 System.exit (-1);
 }
 }

 // MAIN
 public static void main(String[] args){
 System.out.println("Got to main!");
 runMyConnection();
 myConnection.closeConnection();
 System.out.println("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

108 Part II Connecting to G2

Logging in to G2
Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111 with the
connectivity-demos.kb loaded:

Got to main!
Connected to G2!
Connection closed!
End of Main!

Creating a Login Session to a Secure G2
For a secure G2, every user must have a valid user mode, user name, and
password in the OK file with which G2 was launched. You request a login session
to a secure G2 process by first creating a LoginRequest object with valid user
elements, then passing it as the argument to the login method of a TwGateway.

Typically, you set at least the userPassword property at runtime, which typically
requires launching some kind of dialog.

The following example launches an InputDialog to obtain the user name, user
mode, and password from the user, and passing those values as the arguments to
a LoginRequest before logging in. You launch the dialog from a demo frame.

The example also prints the current user name and user mode to the command
window. In this example, the connection is declared to be a TwGateway, and the
result of the call to openConnection is cast to a TwGateway, because the
retrieveUserMode method is not defined on TwAccess. For a discussion of
obtaining the user mode, see “Working with User Modes in a TwGateway
Connection” on page 112.

To create a login session for a secure G2:
package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.demos.Demo;
import com.gensym.demos.DemoShell;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.LoginRequest;
import com.gensym.util.Symbol;
import com.gensym.jgi.G2AccessException;
import com.gensym.jgi.ConnectionTimedOutException;
import com.gensym.jgi.G2CommunicationException;
import com.gensym.dlg.StandardDialog;
import com.gensym.dlg.StandardDialogClient;
import com.gensym.dlg.InputDialog;
import java.awt.Frame;
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 109

Chapter 7 Establishing a G2 Login Session
public class MySecureLoginRequest implements Demo, StandardDialogClient
{
 private static TwAccess myConnection;
 private static LoginRequest myLogin;
 private static DemoShell demoShell;

 //Make frame visible and create dialog
 public void runDemo (Frame frame) {
 frame.setVisible(true);
 String[] textFieldLabels = new String[]{"User Name", "User Mode",

"Password"};
 String[] initialValues = new String[]{"", "", ""};
 InputDialog id = new InputDialog(frame, "Secure Login", false,

textFieldLabels, initialValues, this);
 id.setVisible(true);
 id.setNoEcho(2);
 }

 //Handle dialog events
 public void dialogDismissed (StandardDialog d, int code) {
 InputDialog id = (InputDialog)d;
 if (id.wasCancelled()) return;
 String[] results = id.getResults();
 Symbol userName = Symbol.intern(results[0]);
 Symbol userMode = Symbol.intern(results[1]);
 Symbol userPassword = Symbol.intern(results[2]);
 try{
 //Establish a connection to G2
 myConnection = TwGateway.openConnection("localhost", "1111");
 //Create LoginRequest
 myLogin = new LoginRequest(userName, userMode, userPassword);
 myConnection.login(myLogin);
 System.out.println("Connected to G2!");
 myConnection.returnMessage("Connected to G2!");
 //Get user name and user mode
 Symbol g2UserName = myLogin.getUserName();
 Symbol g2UserMode = myConnection.getUserMode();
 System.out.println(g2UserName);
 System.out.println(g2UserMode);
 } catch (G2AccessException e){
 e.printStackTrace();
 System.exit (-1);
 }
 }
110 Part II Connecting to G2

Logging in to G2
// MAIN
 public static void main(String[] args){
 System.out.println("Got to main!");
 MySecureLoginRequest demo = new MySecureLoginRequest();
 String msg = new String("This demo shows how to log in to a secure
G2.");
 demo.demoShell = new DemoShell ("Secure Login Demo", msg,

(Demo)demo, "MySecureLoginRequest.java");
 demo.demoShell.setSize(600,400);
 demo.demoShell.setVisible(true);
 }
}

When you run this demo and choose Run Demo, you see a login dialog for
entering the user information for the login request, as follows:

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111 with the
connectivity-demos.kb loaded, and you have entered the user information
specified above:

Got to main!
Connected to G2!
developer
tasha
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 111

Chapter 7 Establishing a G2 Login Session
Working with User Modes in a TwGateway
Connection

When a client is connected to a secure G2, the application might wish to get the
user mode of the current user, and the current user might wish to change his or
her user mode. A TW2 Toolkit client can call these methods on a com.gensym.
ntw.TwGateway to accomplish these tasks:

Note In TwGateway, the setUserMode and getUserMode methods have been deprecated
and are replaced by the changeUserMode and retrieveUserMode methods.

Handling Login Exceptions
These are the exceptions that can occur while creating a login session to either a
secure or non-secure G2:

To... Use this method...

Get the current user mode from G2 retrieveUserMode

Set the current user mode in G2 changeUserMode

Exception Description

InvalidUserModeException G2 rejects an attempt to log in, in a
particular user mode.

LoginFailedException No more floating licenses are
available or an attempt is made to
log in to a secure G2 with invalid
login information. Each logged in
user consumes a floating
Telewindows2 Toolkit license.

NotLoggedInException An attempt is made to call a
restricted RPC without first
logging in. For example, you
cannot display a workspace view
without first logging in.

OkException A problem occurred while
analyzing an OK file associated
with the login attempt or while
checking its authorization.
112 Part II Connecting to G2

Logging Out From G2
A client application using the TwGateway class can catch all of these login
exceptions in the catch statement following a connection attempt by catching the
com.gensym.jgi.G2AccessException.

For example, this code fragment catches connection and login exceptions:

catch (G2AccessException e){
e.printStackTrace();
System.exit (-1);

}

Logging Out From G2
Once you have a connection and a login session, the connection automatically
logs you out when you close the connection.

Note Closing the connection does not generate a loggedOut event to registered
TwConnectionListeners. Instead, the g2ConnectionClosed event indicates that
user has logged out because the connection no longer exists.

Your application might also wish to supply a way for a current user to log out
from G2 but leave the connection open. You use these two methods for this
purpose:

TooManyLoginAttemptsException Too many login attempts have
been made consecutively.

AlreadyLoggedInException G2 already includes a
ui-client-session object
representing the user name, user
mode, and password of the user
information that the LoginRequest
object contains.

Exception Description

Class Method Description

G2Gateway closeConnection Logs out and closes the
connection.

TwGateway logout Logs out and leaves the
connection open.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 113

Chapter 7 Establishing a G2 Login Session
Logging out:

• Logs out the current user from G2.

• Frees the Telewindows2 Toolkit floating license for use by another user.

If you are using the TwConnector component, call the closeConnection method
on a com.gensym.jgi.G2Gateway to log out and close the connection.

Logging Out and Closing the Connection
When you close a secure or non-secure connection, you must also log out.

To log out from a secure or non-secure G2 and close the current connection:
private static TwAccess myConnection;

try{
//Establish a connection to G2
myConnection = TwGateway.openConnection("mynode","1111");

//Log in to non-secure G2 with default LoginRequest
myConnection.login();

//log out and close connection
myConnection.closeConnection();

}

Logging Out and Leaving the Connection Open
You might want to log out and leave the connection open to allow another user to
log in to the current connection. When you log out and leave the connection open,
you must declare the connection variable to be a TwGateway and cast the result of
the openConnection method call to a TwGatweway. This is because the logout
method is not defined on TwAccess.

To log out from a secure or non-secure G2 and leave the connection open:

private static TwGateway myConnection;

try{
//Establish a connection to G2
myConnection = (TwGateway)TwGateway.openConnection("mynode","1111");

//Log in to non-secure G2 with default LoginRequest
myConnection.login();

//log out and leave connection open
myConnection.logout();

}

114 Part II Connecting to G2

Logging Out From G2
The following example creates a connection, logs in as one user, logs out, then
logs in as another user:

package com.gensym.demos.docs.connectivitydemos;

import com.gensym.ntw.TwGateway;
import com.gensym.ntw.TwAccess;
import com.gensym.ntw.LoginRequest;
import com.gensym.jgi.G2AccessException;
import com.gensym.jgi.ConnectionTimedOutException;
import com.gensym.jgi.G2CommunicationException;
import com.gensym.util.Symbol;

public class MyNonSecureLoginRequest2 {
 private static TwGateway myConnection;
 private static LoginRequest loginRequest;
 private static final Symbol DEVELOPER_ = Symbol.intern("DEVELOPER");
 private static final Symbol KANTI_ = Symbol.intern("KANTI");
 private static final Symbol JOHN_ = Symbol.intern("JOHN");

 //Create a connection
 public static void createConnection () {
 try{
 //Establish a connection to G2
 myConnection = (TwGateway)TwGateway.openConnection("localhost",

"1111");
 System.out.println ("Connection created!");
 } catch (G2AccessException e){
 e.printStackTrace();
 }
 }

 public static void loginKanti () {
 try {
 //Create a LoginRequest with user mode and user name only
 loginRequest = new LoginRequest(DEVELOPER_, KANTI_, null);
 //Log in to non-secure G2 with LoginRequest
 myConnection.login(loginRequest);
 System.out.println("Logged in as Kanti!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 115

Chapter 7 Establishing a G2 Login Session
public static void loginJohn () {
 try {
 //Create a LoginRequest with user mode and user name only
 loginRequest = new LoginRequest(DEVELOPER_, JOHN_, null);
 //Log in to non-secure G2 with LoginRequest
 myConnection.login(loginRequest);
 System.out.println("Logged in as John!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void logoutUser () {
 try {
 //Logout currently logged in user
 myConnection.logout();
 System.out.println ("Current user logged off!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // MAIN
 public static void main(String[] args){
 System.out.println("Got to main!");
 createConnection ();
 loginKanti();
 logoutUser ();
 loginJohn();
 myConnection.closeConnection();
 System.out.println("Connection closed!");
 System.out.println ("End of Main!");
 System.exit (0);
 }
}

Running this example produces these messages in the command window,
assuming you have a G2 running on your local machine on port 1111 with the
connectivity-demos.kb loaded:

Got to main!
Connection created!
Logged in as Kanti!
Current user logged off!
Logged in as John!
Connection closed!
End of Main!
116 Part II Connecting to G2

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part II Connecting to G2
Chapter 8 Using a Middle-Tier Server
Version 3.1 Mode: Working Size: 7x9x11
8
Using a
Middle-Tier Server
Provides an overview of the two- and three-tier communication models and
describes how to start, configure, and connect to a middle tier.

Introduction 117

Packages Covered 118

Relevant Demos 118

Using a Two-Tier Configuration 119

Using a Three-Tier Configuration 120

Setting Up a Three-Tier Configuration 122

Introduction

Telewindows2 (TW2) Toolkit includes two connection configurations:

• Two-tier

• Three-tier

Whenever a TW2 Toolkit client application connects to G2, by default, it connects
directly to G2 by using a two-tier configuration. You can optionally direct your
client to connect to G2 through a middle-tier server. The available middle tier that
TW2 Toolkit supports is currently an RMI server.

This chapter describes the purpose and use of a middle-tier server, and describes
how to create such a connection that your client application can use.
117

Chapter 8 Using a Middle-Tier Server
Telewindows2 Toolkit Communication Support
All communication between a TW2 Toolkit client and a G2 server occurs through
G2 JavaLink, as described in Chapter 2, “Overview of Connectivity” on page 25.
The two configurations that TW2 Toolkit provides are made possible by different
implementations of one of the fundamental G2 JavaLink connectivity classes.

G2 JavaLink supplies the com.gensym.jgi.G2Access interface to provide basic
connectivity behavior. By making this important class an interface, other classes
can and do implement it’s methods for different purposes. In this case, com.
gensym.jgi.G2Gateway implements G2Access for two-tier communication, while
a private G2 JavaLink class implements the interface for three-tier
communication.

Prerequisites
This chapter requires an understanding of the information presented in the
previous chapters of this part:

• Chapter 2, “Overview of Connectivity” on page 25.

• Chapter 5, “Using Connection Information Objects” on page 61.

Packages Covered

com.gensym.jgi.rmi
Interfaces

G2RMIAccessBroker

Classes
G2RMIAccessBrokerImpl

Relevant Demos
All of the TW2 Toolkit demos that extend com.gensym.core.GensymApplication
support three-tier communication. To run these demos in three-tier, run them
from the command line, using the -brokerURL command-line argument,
providing the name of the RMI server as the argument.
118 Part II Connecting to G2

Using a Two-Tier Configuration
The demos that support three-tier communication are:

• wksppanel

• singlecxnsdiapp

• singlecxnmdiapp

• multiplecxnsdiapp

• multiplecxnmdiapp

The demos are located in this directory, depending on your platform:

Using a Two-Tier Configuration
In a two-tier configuration, the TW2 Toolkit client loads G2 Gateway into the
client’s Java virtual machine (VM) to handle communication to the server, using
Gensym's proprietary protocol.

Each client requires the G2 JavaLink JgiInterface shared library file. Thus, the
client process is not pure Java.

Establishing a Two-Tier Connection
In a two-tier configuration, each TW2 Toolkit client attempts to establish a direct
connection with a G2 server. Upon a successful connection, G2 creates two items
that each exist in the KB for each TW2 Toolkit client:

• An instance of a ui-client-interface object to represent each client.

• An instance of a ui-client-session item to represent the user login when a
successful login is made through the client.

The G2 server has the additional processing load of handling each request from
every TW2 Toolkit client connection.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 119

Chapter 8 Using a Middle-Tier Server
The following figure illustrates two clients communicating with G2 through a
two-tier connection:

When to Use Two-Tier Connections

Two-tier connections to G2 are useful when:

• A small number of client connections exist.

• The G2 server has a limited amount of processing activity.

• Network limitations exist such that not having a direct connection to the G2
server could severely impact client performance.

Using a Three-Tier Configuration

In a three-tier communication configuration, each TW2 Toolkit client
communicates with G2 through a middle tier, using the Java Remote Method
Invocation (RMI) API. A middle tier consists of the two processes that use the
RMI API, an RMI registry and an RMI server. The system on which the RMI
server is running requires the G2 JavaLink JgiInterface shared library.

For information on the Java Remote Method Invocation system, see this Web site:
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/index.html

Establishing a Three-Tier Connection
When a TW2 Toolkit client attempts to connect to G2 through a middle tier, its
connectivity properties must include a Uniform Resource Locator (URL) for the
RMI server, in addition to the G2 host and port designators.

Upon receiving a client connection request, the middle tier uses G2 Gateway and
Gensym’s proprietary communications protocol to establish a connection with the

G2

TW2

Browser

Client

Client

Server

GSI

GSI
120 Part II Connecting to G2

Using a Three-Tier Configuration
G2 server. For more information about connectivity properties, see Chapter 5,
“Using Connection Information Objects” on page 61.

For a three-tier configuration, G2 maintains one item to represent the middle tier
and one item for each user login, as follows:

• When a TW2 Toolkit client connection is made, the G2 server creates an
instance of a ui-client-interface object to represent the middle tier, which G2
views as a single GSI connection.

• Each time a TW2 Toolkit client establishes a login session, G2 creates an
instance of a ui-client-session item to represent each user login made through
the middle tier.

The following figure illustrates two clients communicating with G2, through an
RMI server using a single, shared connection to G2:

As other TW2 Toolkit clients attempt to connect to the current G2 server, the
middle tier registers each client as being actively connected and uses the existing
connection to communicate client requests to and from the G2 server.

The middle tier funnels all client requests to and from one or more clients and the
G2 server process. The middle tier is capable of distributing a single G2 update,
such as a show workspace command, to multiple clients. G2 handles calls from
multiple clients through one or more middle-tier processes. Off-loading client
processing from the G2 server can significantly reduce the G2 process load in a
three-tier configuration.

Development Considerations
For developers, connecting a TW2 Toolkit client through a middle tier is entirely
transparent and requires no additional coding or development. You can develop
a client application without any consideration for the connection configuration it
will use.

G2
TW2

Browser

Client

Client

Server

RMI
Server

Server

RMI

RMI

GSI

UI-C-I
UI-C-S

UI-C-S
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 121

Chapter 8 Using a Middle-Tier Server
For your application to run in either two- or three-tier configurations, the client
must be capable of specifying a URL when making a connection.

Note The method registerJavaMethod on G2Connection is not currently
supported when called from a RMI Java client.

For information on G2 JavaLink, see the G2 JavaLink User’s Guide.

When to Use Three-Tier Connections

Three-tier connections to G2 are preferred when:

• A large number of client connections to G2 exist.

• Heavy processing activity exists in G2.

• Multi-platform access to G2 is required on non-supported platforms.

• Sufficient network resources exist for clients to communicate with G2
indirectly, without a performance loss.

Setting Up a Three-Tier Configuration
The three steps for creating a connection to G2 through a three-tier server are:

• Starting an RMI registry.

• Starting an RMI server.

• Specifying the URL for establishing a connection.

You can start the middle-tier server on the same machine as the one on which G2
is running or on an entirely separate system on the network, but it must exist
before a TW2 Toolkit client attempts a G2 connection.

Starting an RMI Registry

The RMI registry is a naming service tool of the Java Remote Method Invocation
system. RMI servers use the registry to bind remote objects to names. A TW2
Toolkit client can look up remote objects in the registry and, after locating the
object, invoke its methods.

The rmiregistry command creates and starts a remote object registry. The RMI
registry should run on the same machine as the RMI server and must exist before
starting the server.
122 Part II Connecting to G2

Setting Up a Three-Tier Configuration
To start an RMI registry:

Execute this command in a command window on the machine on which the
registry and the server will reside:

rmiregistry

Starting an RMI Server

An RMI server is a process for handling requests from clients to the server, and
from the server to its clients.

TW2 Toolkit supplies its own RMI server for your use, which is an instance of the
G2 JavaLink com.gensym.jgi.rmi.G2RMIAccessBrokerImpl class. This class
implements the G2RMIAccessBroker interface and supplies the functionality
required for connecting to G2 through RMI.

After starting a TW2 Toolkit RMI server, the server exists as a separate process
and waits for TW2 Toolkit client connection requests.

To start a G2 RMI server:

Execute this Java command in a command window:

java -Djava.rmi.server.hostname=machine
com.gensym.jgi.rmi.G2RMIAccessBrokerImpl -tsName rmi-server

For example:
java -Djava.rmi.server.hostname= mynode.gensym.com
com com.gensym.jgi.rmi.G2RMIAccessBrokerImpl -tsName demoserver

Together, the machine and rmi-server arguments specify the URL of the RMI
server.

Executing this command registers the RMI server with the RMI registry. Upon
registration, the RMI server displays a message similar to the following:

rmi://mynode/demoserver bound in registry

Tip The designator rmi://mynode/demoserver is the format of the URL for this
RMI server. Users use this URL when connecting to G2.

Argument Description

machine The fully qualified name of the machine on
which you locate the RMI server.

rmi-server The name of this particular RMI server.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 123

Chapter 8 Using a Middle-Tier Server
The middle tier needs to be able to locate the class definition for the classes that it
will create. One way of doing this is to use the -classpath command-line option
that starts the RMI server.

Connecting to G2 Through a Middle Tier
Once the RMI registry and server have been started, a TW2 Toolkit client need
only specify the correct URL, host, and port to connect to G2 through a middle
tier

In many cases, a client application will gather connection information from a user
and pass it to the appropriate connectivity class to create a G2 connection through
a middle tier. For example, if your client application displays a dialog requesting
URL, host, and port information, or if it accepts those values as arguments on the
command line, the user would enter the machine and rmi-server arguments that
were used to start the RMI server, as described in “Starting an RMI Server” on
page 123.

For example, if mynode is the machine on which an RMI server named demoserver
is running, the user would enter this value as the URL:

rmi://mynode/demoserver

The following table summarizes the minimum connectivity properties required
for both two-tier and three-tier connections:

For more information about connectivity properties, see Chapter 5, “Using
Connection Information Objects” on page 61.

After creating a successful connection to G2, a TW2 Toolkit client communicates
with the middle-tier server, using RMI.

A single middle-tier server can manage connections to multiple G2 processes.
Multiple TW2 Toolkit clients can use a single middle-tier server to communicate
with one or more G2 processes.

This connection configuration...
Requires these
connectivity properties...

Two-tier Host
Port

Three-tier URL
Host
Port
124 Part II Connecting to G2

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part III Viewing Workspaces
Version 3.1 Mode: Working Size: 7x9x11
Part III
Viewing Workspaces
Chapter 9 Workspace Views Terms and Concepts 127

Introduces the terms and concepts that you must understand to work with Telewindows2
Toolkit workspace view components for viewing KB workspaces in Java applications, Web
browsers, and other contexts.

Chapter 10 The Workspace View User Interface 133

Describes the user interface for Telewindows2 Toolkit workspace view components.

Chapter 11 Using the Text Editor 147

Describes the text editor that workspace views use for changing attributes with a grammar.
Comparisons and contrasts to the native G2 text editor appear as needed.

Chapter 12 Using Workspace View Components 159

Describes techniques and methods that you typically use when using any type of workspace
view in any programming environment.

Chapter 13 Customizing Popups for Selected Items 181

Describes how to customize the popup menu that gets created for selected items in a
WorkspaceView.
125

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part III Viewing Workspaces
Chapter 9 Workspace Views Terms and Concepts
Version 3.1 Mode: Working Size: 7x9x11
9
Workspace Views
Terms and Concepts
Introduces the terms and concepts that you must understand to work with
Telewindows2 Toolkit workspace view components for viewing KB workspaces in
Java applications, Web browsers, and other contexts.

Introduction 127

Workspace View Terminology 127

Programming Workspace Views 128

KB Workspaces vs. Workspace Views 129

Introduction
This chapter introduces the essential workspace view terms and concepts. The
definitions in this chapter are used in the subsequent chapters on workspace
views.

This and the following chapters show partial examples of workspace views. For
complete examples of workspace views in Java applications and applets, see the
Telewindows2 Toolkit Java Demos Guide.

Workspace View Terminology
Telewindows2 (TW2) Toolkit provides three closely related components that can
display G2 KB workspaces in a Java container, such as a TW2 Toolkit application
shell or an applet running in a Web browser. Such components are called
workspace view components. All workspace view components display views of
127

Chapter 9 Workspace Views Terms and Concepts
instances of the G2 kb-workspace class, referred to as a KB workspace or simply a
workspace when the meaning is clear in the context.

The three types of workspace view components are:

• Single workspace view — Displays a view of a single KB workspace that
exists in a G2 application. A single workspace view supports scaling of the
view along the x and y axes.

• Multiple workspace view — Displays any of several KB workspaces. The
workspaces can exist in one or more G2 applications. The workspace that is
visible in the view is called the current workspace.

• Multiple workspace panel — A multiple workspace view that has scrollbars
and that can listen for programmatic show and hide workspace events in G2.

TW2 Toolkit uses the term workspace view in various ways. Depending on the
context, it can refer to:

• Any display of a G2 KB workspace in a Java container.

• Any of the three types of workspace view components.

Multiple workspace views and panels have much in common. The term multiple
workspace display refers generically to a multiple workspace view or a multiple
workspace panel.

Programming Workspace Views
From the TW2 Toolkit programmer’s perspective, a workspace view is a Java
object that is an instance of one of these classes in the com.gensym.wksp package:

• ScalableWorkspaceView

• MultipleWorkspaceView

• MultipleWorkspacePanel

Note While a WorkspaceView also exists as a separate type of workspace view
component, typically you use one of the subclasses of WorkspaceView.

A ScalableWorkspaceView is associated with at most one KB workspace at a
time. A MultipleWorkspaceView or MultipleWorkspacePanel can be associated
with any number of KB workspaces, but it can display only one of them at a time.
Any others are hidden and can be displayed in place of the currently visible KB
workspace. Displaying more than one KB workspace simultaneously requires
using more than one workspace view component.

A MultipleWorkspaceView or MultipleWorkspacePanel that is associated with
only one KB workspace is effectively a ScalableWorkspaceView. The ability to
display multiple KB workspaces adds overhead, so a single
128 Part III Viewing Workspaces

KB Workspaces vs. Workspace Views
ScalableWorksapceView is more efficient when you only need to display one KB
workspace.

You can use the three types of workspace views together, as needed, in an
application. Thus, an application that needs to display several KB workspaces
could display each in a separate ScalableWorkspaceView, or all of them in one
MultipleWorkspaceView or MultipleWorkspacePanel, or it could distribute
them into a combination of single and multiple workspace views.

To use a workspace view, you must place it in a visible container, such as:

• A Telewindows2 Toolkit application, as described in Chapter 9 “Creating
Telewindows2 Toolkit Applications” in the Telewindows2 Toolkit Java
Developer’s Guide: Application Classes.

• Any type of Java container, such as the example shown in “Workspace View
Example” on page 177.

You can then invoke methods on the view to elicit the desired behavior.

Workspace views communicate with G2 via G2 JavaLink, as described in Part II,
“Connecting to G2,” and the G2 JavaLink User’s Guide.

KB Workspaces vs. Workspace Views
To use workspace views effectively, you must clearly understand the relationship
between the kb-workspace item in the G2 server, the G2 JavaLink representation
of the KB workspace item as data, and the view of that model data in the TW2
Toolkit client. This figure shows that relationship:

A kb-workspace item in G2 is analogous to a KbWorkspace in G2 JavaLink in that
both are representations of the same model data. The difference between a
kb-workspace in G2 and a KbWorkspace in G2 JavaLink is merely how you access

kb-workspace

G2 TW2 Toolkit

ScalableWorkspaceViewKbWorkspace

G2 JavaLink

Model
data
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 129

Chapter 9 Workspace Views Terms and Concepts
the data — using the G2 language or using Java methods. However,
fundamentally, these two data representations are the same.

The more significant difference between a kb-workspace in G2 and a KbWorkspace
in G2 JavaLink arises when representing KB workspace model data in a client by
rendering its data to the screen, as follows:

• In classic Telewindows, the rendering mechanism is private and is not
abstracted.

• In a Telewindows2 Toolkit client, the rendering mechanism is completely
open and standards-based, and is encapsulated into a single
ScalableWorkspaceView component, which is capable of painting directly to
a java.awt.Graphics object through its paint method.

Thus, in G2, the view of a kb-workspace is tightly bound to its data
representation. For this reason, the term “workspace” conventionally describes
both the G2 item and the screen display, and the term kb-workspace is used when
necessary to distinguish the item from its display.

By contrast, in a TW2 Toolkit client, a ScalableWorkspaceView in a TW2 Toolkit
client is separate from its data representation as a KbWorkspace in G2 JavaLink.
Both the view and its data representation are more accessible in the client. In
addition, a ScalableWorkspaceView can handle gestures on the client without
contacting the server, which means the client uses the network more efficiently.

The difference in how each type of client renders KB workspace data depends on
whether you are a user or a developer, as the following sections explain.

User’s Perspective
From the user’s perspective, a “workspace” is a graphical representation of some
information that exists in a G2 knowledge base. This information looks the same
whether it appears as a KB workspace in G2 or classic Telewindows, or as a
workspace view in a TW2 Toolkit client. The difference exists only in the
container in which the workspace is displayed; each of these displays is as much a
“view” of the workspace as any other.

KB workspaces and workspace views support virtually all of the same operations.
Some differences exist, but these are of interest primarily to users accustomed to
the G2 classic interface.
130 Part III Viewing Workspaces

KB Workspaces vs. Workspace Views
Developer’s Perspective
As a developer, you need to be aware of the differences between how a classic
Telewindows client interacts with KB workspace data and how a TW2 Toolkit
client interacts. In particular, you need to understand that when users interact
with a “workspace” in a TW2 Toolkit client, they are interacting directly with the
ScalableWorkspaceView; they are interacting only indirectly with the
KbWorkspace. For example, it is the ScalableWorkspaceView, not the
KbWorkspace, that determines how the user drags or resizes an item, and even
how that item is drawn to the screen.

Because the user is interacting with a view of the KB workspace and not the KB
workspace itself, the model data in the server does not get updated until the user
has concluded the interaction. For example, when the user moves an object in a
workspace view, the object does not move in the G2 server until the user
interaction is complete. This means a TW2 Toolkit client uses the network more
efficiently.

By contrast, when the user interacts with a KB workspace either in G2 or classic
Telewindows, the object it represents gets updated immediately. For example, in
classic Telewindows, when the user moves an object on a KB workspace, the
object moves simultaneously in the Telewindows client and the G2 server. This
means classic Telewindows uses the network heavily each time the user interacts
in any way with the KB workspace.

In addition, because you have much more control over both the data
representation of a KB workspace and its view in a TW2 Toolkit client, you need
to be aware of how you can interact with and manipulate a
ScalableWorkspaceView in the client.

For more information on... See...

The user interface characteristics of
a workspace view and the
behavioral differences between
workspaces views and KB
workspaces.

Chapter 10, “The Workspace View
User Interface” on page 133.

How the user interacts with the
text editor, which appears
whenever the user edits a textual
attribute of an item on a
workspace from a TW2 Toolkit
client

Chapter 11, “Using the Text
Editor” on page 147.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 131

Chapter 9 Workspace Views Terms and Concepts
For more information on... See...

The most common features that
are available to you when
programming the three types of
workspace views.

Chapter 12, “Using Workspace
View Components” on page 159.

The data representation of a
workspace view

com.gensym.classes.
KbWorkspace

Displaying workspace views in a
document window when building
multiple document interface (MDI)
applications

Chapter 8, “Using Telewindows2
Toolkit MDI Documents” in the
Telewindows2 Toolkit Java
Developer’s Guide: Application
Classes.
132 Part III Viewing Workspaces

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part III Viewing Workspaces
Chapter 10 The Workspace View User Interface
Version 3.1 Mode: Working Size: 7x9x11
10
The Workspace View
User Interface
Describes the user interface for Telewindows2 Toolkit workspace view
components.

Introduction 133

Relevant Demos 134

Workspace View Appearance 134

Workspace View Behavior 135

Changing Workspace View Appearance 136

Changing Objects in a Workspace View 137

Using Workspace View Item Popup Menus 139

Using Workspace View Item Properties Dialogs 141

Scaling Workspace Views 144

Unsupported Features of Workspace Views 145

Introduction
This chapter describes the default behavior of a Telewindows2 (TW2) Toolkit
workspace view and the G2 objects that appear in it. This behavior is the same for
all three classes of workspace views.

This chapter contains various examples that show workspace view capabilities.
For a guided tour of using a workspace view in a Java application, see Chapter 2
133

Chapter 10 The Workspace View User Interface
“Guided Tour of the Telewindows2 Toolkit Shell” in the Telewindows2 Toolkit Java
Developer’s Guide: Application Classes.

This chapter assumes that you have read Chapter 9, “Workspace Views
Terms and Concepts” on page 127, which defines the essential workspace view
terms and concepts.

For information on the programmatic features of workspace views, see
Chapter 12, “Using Workspace View Components” on page 159.

Relevant Demos
The following demos use workspace views:

• wkspdemo

• wkspapplet

• wksppanel

The demos are located in this directory, depending on your platform:

Workspace View Appearance
A KB workspace is a locally managed rectangle within the G2 window. It has no
title bar, scrollbars, or other window accoutrements.

A workspace view is a Java component that provides a view of a KB workspace in
a TW2 Toolkit client. Items in a workspace view appear exactly the same as items
on a KB workspace in G2. This identity extends even to very complex items, such
as trend charts.

Some aspects of workspace view appearance, however, such as scroll position
and item selection, are independent of G2 and have no meaning to it; they exist
only in the workspace view and can differ in different views of the same KB
workspace.

Whereas in G2, a KB workspace can exist as a separate entity within the G2
window, in a TW2 Toolkit client, a workspace view must appear within a
container of some kind, such as a java.awt.Frame.

If you are creating a Java application that supports multiple document windows
within a single application frame, you can use com.gensym.shell.util.
WorkspaceDocument to display a workspace view within a child document of the
parent frame. When embedded within such a workspace document, the

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
134 Part III Viewing Workspaces

Workspace View Behavior
workspace view behaves like a window, with a title bar, minimize, resize, and
close buttons, and scroll bars. An example of an application that uses workspace
documents to display workspace views is the TW2 Toolkit default application
shell.

For information on using workspace documents, see Chapter 8 “Using
Telewindows2 Toolkit MDI Documents” in the Telewindows2 Toolkit Java
Developer’s Guide: Application Classes.

Workspace View Behavior
All user interface items that are intrinsic to G2 have the same effect in a
workspace view that they have in a KB workspace. For example, clicking an
action button in either context when G2 is running executes the action of the
button. TW2 Toolkit renders GUIDE/UIL dialogs as workspace views so they
have the same behavior in the client that they have in G2. You can also create
native palettes directly from GFR palettes.

TW2 Toolkit does not support a migration path for all G2 utilities. In such cases,
you can substitute equivalent TW2 Toolkit techniques to produce the desired
effects. For information on which KB utilities TW2 Toolkit supports, see Chapter 3
“Compatibility with Existing KBs and G2 Utilities” in the Telewindows2 Toolkit
Release Notes.

Workspace views honor most item configurations that affect KB workspaces.

Note If you edit the item configuration of an item in the G2 server, you must
redownload the workspace view to see the changes.

For details on features and configurations that workspace views do not support,
see “Unsupported Features of Workspace Views” on page 145.

Synchronizing KB Workspaces and Workspace
Views

When something changes a KB workspace in G2, the change propagates to all
associated workspace views. When a TW2 Toolkit client requests a change to a
workspace view, the request is first transmitted to G2, which changes the
underlying KB workspace item. The change then propagates to all associated
workspace views, including the view in which the change was requested.

This two-way communication occurs automatically via the capabilities described
in Part II, “Connecting to G2.” The communication is typically very fast, giving
the impression that the change occurs directly in the client, rather than being
routed through the G2 server.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 135

Chapter 10 The Workspace View User Interface
To reduce the amount of network traffic between KB workspaces and workspace
views, the two communicate only when necessary; thus, much of the computation
is handled locally. For example, once a workspace view has communicated with
G2 to determine the contents of a popup menu for an item on a workspace view,
that information is cached on the client and is used the next time the user displays
the popup.

For an example of the difference between the local and remote aspects of
changing a workspace view, see “Moving and Reshaping Objects” on page 138.

Differences between KB Workspaces and
Workspace Views

The independence of workspace views from G2 KB workspaces allows a
workspace view to follow modern GUI conventions, which the classic G2
interface generally does not do. Consequently, the workspace view user interface
differs in various ways from the classic G2 interface.

Few of the differences between KB workspaces and workspace views have
functional significance; they are just differences of convention and appearance.
However, some functional differences do exist because:

• Workspace views run in clients that are independent of G2 and communicate
with it only when necessary.

• Not all G2 item configurations are applicable to workspace views.

The following sections describe workspace view behavior and note differences
between it and the corresponding behavior in G2.

Changing Workspace View Appearance
Many changes that you make to the appearance of a workspace view within its
container do not affect the underlying KB workspace item but only the overall
appearance of the view. For example, when you reshape the container in which a
workspace view appears, such as a workspace document, such changes are local
to the particular view and have no effect on any other view or on the underlying
KB workspace item in G2.

Similarly, scrolling either the container in which a workspace view appears or the
workspace view itself, which you can also do, does not effect any other view or
the underlying KB workspace in G2.

This independence is similar to that provided by classic Telewindows, which
allows the same workspace to appear at different positions and scales in different
G2 windows.
136 Part III Viewing Workspaces

Changing Objects in a Workspace View
Changing Objects in a Workspace View
This section describes the gestures that operate on the objects in a workspace
view. All modern GUIs provide essentially the same set of gestures for
manipulating graphical objects, and workspace views use these exclusively. Your
platform might differ slightly or use different mouse-button mappings, but an
obvious equivalent gesture should exist.

Selecting and Deselecting Objects
In a workspace view, you can select and deselect individual objects or groups of
objects. The selected status persists until a subsequent gesture explicitly changes
it.

The selection status of an object in a workspace view is local to the view. It has no
effect on that object in any other view or on the KB workspace item in G2.

To select an object:

Click the object.

Selection occurs as soon as you press the mouse button. The selected object
becomes outlined, and handles appear on it. Any previously selected objects
become deselected.

To select several objects at once:

Click and hold on the workspace view background, drag to create a selection
rectangle that completely includes the objects, then release the mouse button.

Each of the selected objects becomes outlined and displays handles. Any
previously selected objects become deselected.

To add to an existing selection:

Hold down the Shift key, then click each object to be added.

or:

Click and drag to draw a selection rectangle that includes all item in the new
selection.

Any previously selected objects remain selected, and the newly specified object(s)
become selected also.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 137

Chapter 10 The Workspace View User Interface
To deselect a selected object:

Hold down the Shift key, then click the selected object.

The object is deselected. Any other selected objects remain selected.

To deselect all selected objects:

Click somewhere on the workspace view background away from any object.

Moving and Reshaping Objects
To minimize processing and network overhead, moving and reshaping objects
initially changes only an empty outline that appears around the object(s) when
the operation begins. Such an outline is called a ghost.

Only the local workspace view is aware of any moving or reshaping in progress.
After the change is complete, the client notifies G2, which then changes the
underlying KB workspace item and all views of it, including the one on which the
change was requested.

To move an object:

Click an object and drag it to a new location.

If the object was not previously selected, it becomes so when you press the mouse.
A ghost of the object moves with the mouse. When you release the mouse button,
the client notifies G2 of the change, and the object moves to its new location.

To move a group of objects:

1 Select the objects to be moved.

2 Click and drag any of the objects to a new location.

Ghosts of all selected objects move with the mouse. When you release the mouse,
G2 is notified of the change, and all objects move to the new location. The objects
retain their relative positions.

Note If moving an object is limited by a move-object or move-object-beyond-
workspace-margin item configuration in a G2 configuration statement, moving
any group that contains the object is limited by that configuration.

To reshape an object:
1 Select the object to be reshaped.

2 Drag one of the handles of the selected object until the ghost is the desired size
and shape.
138 Part III Viewing Workspaces

Using Workspace View Item Popup Menus
Note This feature of workspace views replaces the change size menu choice for items
on a KB workspace.

When you release the mouse button, the object resizes to fill the outline indicated
by the ghost.

To reshape a group of objects:

1 Select the objects to be reshaped.

2 Reshape any one of the objects as previously described.

All of the selected objects reshape in the same proportions as the one you
reshaped. For example, if you reshape one selected object to be half as tall and
twice as wide as it was, every other selected object also reshapes to be half as tall
and twice as wide as it was.

The relative positions of the reshaped objects do not change. Thus, reshaping a
group of objects can cause objects to overlap or cease to overlap.

Using Workspace View Item Popup Menus
Each item in a workspace view has a popup menu. A standard item popup menu
in a workspace view looks like this:

Workspace views handle the invocation and display of popup menu choices
locally, using data obtained from G2 as needed to populate the menu.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 139

Chapter 10 The Workspace View User Interface
Comparison with Item Popup Menus in KB
Workspaces

The system menu choices in a item popup menu in a workspace view are
equivalent to the choices of the same name in the item popup in G2, except for the
following menu choices:

The G2 change size menu choice is implemented by reshaping the object as
described in “Moving and Reshaping Objects” on page 138.

For information on using the Properties menu choice, see “Using Workspace
View Item Properties Dialogs” on page 141.

User Menu Choices in Item Popup Menus
If an object has any G2 user menu choices, they appear at the bottom of the item
popup menu below Properties. User menu choices appear in an item popup menu
in a workspace view only when G2 is running.

Here is a popup menu for an item that defines a G2 user menu choice named
edit-demo:

This popup menu choice
in a workspace view...

Is equivalent to this popup menu
choice in a KB workspace...

Cut/Copy/Paste clone/transfer

Name names

Properties table

User menu choice
140 Part III Viewing Workspaces

Using Workspace View Item Properties Dialogs
Choosing a user menu choice executes the choice in the G2 server. If the menu
choice changes the underlying KB workspace item, the change propagates to all
workspace views, including the one in which the choice was made.

Interacting with Item Popup Menus
To display an item’s popup menu:

Right-click the item.

To execute a menu choice from a popup menu:

Click the menu choice.

To dismiss a popup menu without choosing:

Click somewhere on the workspace view away from the popup.

The popup disappears, and the environment remains unchanged.

Using Workspace View Item Properties Dialogs
The Properties menu choice on an item popup menu in a workspace view is
equivalent to the table menu choice in an item popup on a KB workspace.
However, choosing Properties in a workspace view displays a free-floating
tabbed dialog rather than a table.

By default, the workspace view automatically generates Properties dialogs for
items, as described in “Item Properties Dialogs” on page 205. You can also create
and register custom item properties dialogs for individual items or entire classes
of items, as described in Chapter 16, “Launching Custom Item Properties
Dialogs” on page 305.

To display or edit an item’s properties:

Choose Properties from the item’s popup menu.

or

Double-click the item.

A dialog appears that has one or more tabs. The possible tabs are:

• Attributes

• Configuration

• Notes
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 141

Chapter 10 The Workspace View User Interface
For example, the figure below shows the Properties dialog for a material named
bolt-1, with the Attributes tab selected. In this example, the Names attribute is
textual and the Annealed attribute is a truth-value that currently is true:

A workspace view obtains from G2 the values shown in a Properties dialog just
before it launches the dialog. If G2 changes an item attribute while a Properties
dialog displays it, the dialog changes to display the new value.

Attributes Tab
The Attribute tab always appears and is selected when the dialog opens. This tab
page lists the names and values of all attributes other than notes and
item-configurations that appear in the item’s G2 table. Attributes that are invisible
in G2 due to item configuration statements do not appear on the Attributes page.

The values on the Attributes page appear using a variety of dialog controls,
depending on the data type of the attribute. You can edit the value of any
attribute that is not read-only.

To edit an attribute value:

Proceed as shown in the following table:

This G2
data type...

Uses this
dialog control... Which you edit by doing this...

Numeric Text box Click the value and edit it.

Text Text box Click the value and edit it.

Symbolic Text box Click the value and edit it.

Truth-value Check box Click to toggle the check.

Subobject Text area Click the button next to the text area to
launch a subdialog.
142 Part III Viewing Workspaces

Using Workspace View Item Properties Dialogs
This figure shows an item Properties dialog for a class that defines the following
class-specific attributes:

Note Because G2 does not enforce type checking for user-defined enumerated
attributes, such attributes cannot appear as dropdown choices in the client.
However, system-defined classes that use enumerated attributes, such as the
type-of-relation of a relation item, do represent these attributes as dropdown
choices.

Editing System-Defined Attributes with a Grammar
Some system-defined attributes have an associated grammar that controls the
values for the attribute. Such attributes appear with a button to the right of the
attribute field. Clicking the button displays a native, syntax-guided text editor
with language prompts, described in Chapter 11, “Using the Text Editor” on
page 147.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 143

Chapter 10 The Workspace View User Interface
Editing Typed Attributes
Some system-defined attributes and all user-defined attributes have only a type;
they have no associated grammar. The following principles govern changes to
such attributes:

• When you edit a typed attribute, G2 does not track the intermediate steps of
the change.

• When you complete an edit, G2 receives notification of the requested change,
as follows:

– If the new value is valid, G2 makes the change. Any resulting changes to
the KB workspace propagate immediately to all managed dialogs.

– If the value is invalid, a dialog describing the error appears and the value
in G2 remains unchanged.

• The last edit that completes overrides all other edits.

Configuration Tab
The Configuration tab appears unless a configuration is in effect that hides the
item-configurations attribute for the item. The corresponding page describes any
configurations that are in effect for the item.

To change an item’s configuration:

1 Click the Configuration tab, then click the current value of the configuration.

The Text Editor appears.

2 Edit the configuration as described in Chapter 11, “Using the Text Editor” on
page 147.

Notes Tab
The Notes tab appears only if the item has G2 notes that describe some problem
or special condition. The corresponding page contains the notes and is read-only.

Scaling Workspace Views
You can scale a workspace view by a specified percentage, to fit the workspace
document, or in and out by a standard percentage.

To make these commands available, use com.gensym.shell.commands.
ZoomCommands, described in Chapter 11, “Using Shell Commands” in the
Telewindows2 Toolkit Java Developer’s Guide: Application Classes.
144 Part III Viewing Workspaces

Unsupported Features of Workspace Views
Unsupported Features of Workspace Views
Most G2 item configurations on KB workspaces have the same effect in
workspace views that they have on KB workspaces. However, some item
configurations that affect KB workspaces, as well as certain other features, are
either obsolete or have not been implemented in TW2 Toolkit.

For information on unsupported item configurations, see Appendix B,
“Compatibility Issues.”

For information on additional compatibility with G2 in general, see Chapter 3
“Compatibility with Existing KBs and G2 Utilities” in the Telewindows2 Toolkit
Release Notes.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 145

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part III Viewing Workspaces
Chapter 11 Using the Text Editor
Version 3.1 Mode: Working Size: 7x9x11
11
Using the Text Editor
Describes the text editor that workspace views use for changing attributes with a
grammar. Comparisons and contrasts to the native G2 text editor appear as
needed.

Introduction 147

Using the Telewindows2 Toolkit Text Editor 148

Entering Native Language Texts 152

Text Editor Shortcuts 153

Text Editor Menu Reference 156

Introduction
When you edit a system-defined attribute through an item Properties dialog in a
workspace view and that attribute has an associated G2 grammar, the workspace
view launches the Telewindows2 (TW2) Toolkit text editor. The text editor
provides the same capabilities as the G2 Text Editor, but it packages them in a
dialog that provides greater convenience and conforms to the native GUI.

This chapter describes the essential techniques for using the TW2 Toolkit text
editor, the text editor shortcuts, and the capabilities of the View menu. It also
provides a reference for the text editor menus.

This chapter assumes you are familiar with:

• The G2 Text Editor.

• The standard mouse and keyboard gestures for your platform.
147

Chapter 11 Using the Text Editor
Using the Telewindows2 Toolkit Text Editor
The Telewindows2 Toolkit text editor appears whenever you click a value in an
item’s Properties table that has an associated G2 grammar, as described in “Using
Workspace View Item Properties Dialogs” on page 141.

In the following figure, the bolt in the workspace view has two attributes: Names
and Annealed. Choosing Properties from the item’s popup menu displays this
dialog with the Attributes page selected by default:

No name has been specified for the bolt, so the value of the Names attribute is
none. Because Names is a grammatical attribute, clicking the value displays the
text editor. This figure shows the text editor and labels its parts:

The text editor is not modal — more than one editor can be active at one time,
editing the same or different items in the same or different G2 applications. When
concurrent editors are editing the same value, the change that is applied last
overrides all others.

Menu bar

Toolbar

Text edit box

Prompts region

Status bar

Splitter bar
148 Part III Viewing Workspaces

Using the Telewindows2 Toolkit Text Editor
Editing Text
The top region of the text editor is a scrollable text edit box. The text in this box is
initially the value that you clicked to display the editor. The text appears in a
fixed-width font.

To enter text in the edit box:

Use standard mouse and keyboard gestures to enter the desired value.

For details, see “Text Editor Shortcuts” on page 153.

G2 parses the text that you enter to check for grammatical correctness. To avoid
excessive network traffic, parsing occurs only when you cease typing for one half
second. G2 parses only the text between the beginning of the text to the cursor
position; text after that position is ignored. Text already known to be correct is not
rechecked.

After G2 parses the text, the editor’s prompt region and status bar change to
reflect the results, as described under “Using Grammar Prompts” on page 150
and “Detecting Syntax Errors” on page 151.

To undo/redo a change:

Choose Edit > Undo to undo the last change or Edit > Redo to undo the undo.

To delete all text in the edit box:

Choose Edit > Clear.

Searching for Text
To search for text in the edit box:

1 Choose Edit > Search.

The search dialog appears:

2 Enter the string to be searched for.

The search is case sensitive. Use standard mouse gestures as needed to edit
the search string.

The search proceeds incrementally as you specify the search string. The first
instance of the string after the current cursor position becomes selected. If no
instance exists, no text is selected and the cursor position does not change.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 149

Chapter 11 Using the Text Editor
3 Click Find Next and Find Previous to search forwards or backwards for
additional instances of the search string.

The next/previous instance of the search string becomes selected. When no
further instances exist before/after the cursor, the button that searches in that
direction is unavailable.

4 Close the dialog when you no longer need it.

The search dialog is not modal, so you can leave it open and use it whenever you
need to. When you exit the text editor, any open search dialog disappears.

Using Grammar Prompts
The prompts region displays information that guides you through the grammar
of the attribute you are editing. The information consists of prompts that appear
in three scrollable read-only list boxes.

To select a prompt from any prompts region box:

1 Scroll to the desired prompt.

2 Click the prompt.

The effect varies with the box, as follows.

Language Prompts
The Language Prompts box displays strings that you can legally enter in the edit
box at the cursor position. Clicking any string enters it into the text at that
position, followed by a blank. The cursor moves to the position after the blank. If
you enter part of a prompt, then click that prompt in the Language Prompts box,
the text editor inserts the rest of the prompt into the text box at the cursor
position.

Item Types
The Item Types box displays descriptions of the kinds of items (if any) that you
may enter at the cursor position, such as any class or any symbol. Clicking any
description displays all instances of the item type in the Item Names box.

Item Names
The Item Names box displays the names of all items that match the description
currently selected in the Item Types box. Clicking any name enters it into the text
at the cursor position, followed by a blank. The cursor moves to the position after
the blank. If you enter part of a name, then click that name in the Item names box,
the editor inserts the rest of it into the text box at the cursor position.
150 Part III Viewing Workspaces

Using the Telewindows2 Toolkit Text Editor
Detecting Syntax Errors
While you edit text, the status bar displays the grammatical status of the text that
G2 has checked. If the text is grammatically correct, the status bar displays OK; if
not, the status bar displays Bad, followed by a brief description of the error.

Because parsing occurs only when you have ceased typing for a half second, you
might have typed beyond the location of the error by the time the editor reports it.

To determine the location of a syntax error:

Choose Edit > Goto Error.

The cursor moves to point in the text at which the first error occurs. This
capability replaces the ellipses (...) that would appear at the beginning of an error
in the G2 Text Editor.

Applying Changes
While editing is underway, the value of the attribute being edited remains
unchanged in G2. To change it, you must explicitly apply changes. When you
apply changes, the editor remains open, allowing you to make further changes.

You can also apply changes and exit in a single gesture, as described in “Toolbar
Buttons” on page 155.

To apply changes made in the text editor:

Choose Session > Apply Changes.

G2 parses any unparsed text. If any syntax error exists, no change is applied, and
the status bar displays Bad, followed by a brief description of the error.

If no syntax error exists, G2 compiles the text. If the compilation fails, no change is
applied, and the status bar displays Compiler, followed by a description of the
error.

If the compilation succeeds, the text in the text box becomes the value of the
edited attribute in G2. Any resulting changes to KB workspace appearance
propagate immediately to all workspace views.

Exiting the Editor
The text editor remains until you explicitly exit from it.

You can apply changes and exit in a single gesture, as described in “Toolbar
Buttons” on page 155.

To exit the text editor:

Choose Session > Exit.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 151

Chapter 11 Using the Text Editor
If changes exist that have not been applied, the editor closes. If changes exist that
have not been applied, the editor displays a confirmation dialog:

Entering Native Language Texts
The text editor supports entering texts in languages other than English by using
one of two techniques:

• For users running localized versions of NT that provide native input methods
for languages other than English, such as Japanese or Hebrew, you can use
those input methods to enter text directly in the native language.

• You can enter four-digit Unicodes to represent native characters.

To support the rest of the Unicode character set beyond the ASCII characters, you
must:

• Make the required fonts available on your computer.

• Set up the font preferences file as described in Appendix A: “Supporting
Languages Other than English” in the Telewindows2 Toolkit Installation Guide.

Click... To...

Yes Apply changes, as described under “Applying Changes”
on page 151, then exit. If changes cannot be applied due to
an error, the Exit command is cancelled.

No Discard changes and exit.

Cancel Cancel the Exit command itself, which allows editing to
continue as if the exit had not been attempted.
152 Part III Viewing Workspaces

Text Editor Shortcuts
To enter Unicode characters:

1 Choose View > Unicode Insertion to enable the Unicode insertion box.

The text editor displays a Unicode insertion box on the status bar, as follows:

2 Enter a four-digit unicode character to represent the native character.

The character that the Unicode represents appears in the text area in the currently
loaded font.

Text Editor Shortcuts
The text editor provides several types of shortcuts:

• Keyboard accelerators

• Text editor popup menu

• Toolbar buttons

Keyboard Accelerators
The text editor supports the following keyboard accelerators, some of which
might exist in the native GUI independently of TW2 Toolkit:

Unicode
insertion box

To move the cursor... Use...

Right one character Right Arrow key

Left one character Left Arrow key

Up one line Up Arrow key
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 153

Chapter 11 Using the Text Editor
Down one line Down Arrow key

Right one word Control + Right Arrow key

Left one word Control + Left Arrow key

To the start of the line Home key

To the end of the line End key

To the start of the text Control + Home key

To the end of the text Control + End key

To delete... Use...

Character left Backspace Key

Character right Delete Key

To insert a... Use...

Tab Tab key

Line break Enter key

To... Use...

Cut text to the clipboard Control + x

Copy text to the clipboard Control + c

Paste text from the clipboard Control + v

To complete... Use...

The first language
prompt that matches the
entered text

Ctrl + Space

The last language prompt
that matches the entered
text

Ctrl + Shift + Space

To move the cursor... Use...
154 Part III Viewing Workspaces

Text Editor Shortcuts
The Text Editor Popup Menu
Clicking the right mouse button in the text box when text is currently selected
displays the following popup menu:

Menu choices that are inapplicable under current conditions are unavailable.

To dismiss the menu without choosing, click anywhere away from it.

For information about undoing an operation, see “Editing Text” on page 149.

Toolbar Buttons
The tool bar contains a set of icons representing frequently used commands.
Buttons whose commands are inapplicable under current conditions are
unavailable. The next figure shows the command that each button executes:

Note that the Apply Changes and Exit button provides additional functionality
over the menu choices by performing two actions in a single button.

Undo

Redo

Clear

Search

Goto Error

Exit

Apply
Changes
and Exit

Apply
Changes

For information about... See...

Exit “Exiting the Editor” on page 151.

Apply Changes “Applying Changes” on page 151.

Undo, Redo, Clear, and
Search

“Editing Text” on page 149.

Goto Error “Detecting Syntax Errors” on page 151.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 155

Chapter 11 Using the Text Editor
Text Editor Menu Reference
This section provides a quick reference to the commands in the Telewindows2
Toolkit text editor menu bar. The menu bar provides three pulldown choices:

• Session

• Edit

• View

Commands that are inapplicable under current conditions are unavailable. The
toolbar provides equivalents for some menu bar choices. See “Toolbar Buttons”
on page 155 for details.

Session Menu
The Session menu provides commands that apply changes and/or exit the editor:

Edit Menu
The Edit menu provides commands that operate on the text in the Text Box:

Choose... To... See...

Apply Changes Apply the changes you have made
and continue the edit session.

“Applying Changes”
on page 151.

Exit Exit the editor. You will be prompted
to apply any changes.

“Exiting the Editor” on
page 151.

Choose... To... See...

Undo Reverse the preceding change to the
text.

“Editing Text” on
page 149.

Redo Reverse the preceding Undo
command. The text then appears as it
did before the Undo.

“Editing Text” on
page 149.

Clear Delete all text in the Text Box. “Editing Text” on
page 149.
156 Part III Viewing Workspaces

Text Editor Menu Reference
View Menu
The View menu provides commands that toggle the display of certain text editor
capabilities:

Search Search for a character or string of
characters anywhere in the text.

“Editing Text” on
page 149.

Goto Error Move the cursor to the position in the
text at which the first error begins.

“Detecting Syntax
Errors” on page 151
and “Applying
Changes” on page 151.

Choose... To... See...

Choose... To toggle the... See...

Unicode Insertion Unicode insertion box “Entering Native
Language Texts” on
page 152.

Tool Bar Toolbar “Toolbar Buttons” on
page 155.

Language Prompts Language Prompts box “Using Grammar
Prompts” on page 150.

Item Names Item Names box “Using Grammar
Prompts” on page 150.

Item Types Item Types box “Using Grammar
Prompts” on page 150.

Status Status bar “Detecting Syntax
Errors” on page 151
and “Applying
Changes” on page 151.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 157

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part III Viewing Workspaces
Chapter 12 Using Workspace View Components
Version 3.1 Mode: Working Size: 7x9x11
12
Using Workspace
View Components
Describes techniques and methods that you typically use when using any type of
workspace view in any programming environment.

Introduction 160

Packages Covered 161

Relevant Demos 161

Creating Workspace Views 162

Populating Workspace Views 162

Removing a KB Workspace from a Workspace View 165

Obtaining KB Workspaces 165

Obtaining a Single Workspace View from a Multiple Workspace View 167

Controlling KB Workspace Visibility 167

Scrolling Workspace Views 168

Working with Workspace View Elements 171

Working with Selections 173

Working with Collections 176

Scaling Workspace Views 176

Workspace View Example 177
159

Chapter 12 Using Workspace View Components
Introduction

The three types of workspace views provide somewhat different capabilities, and
different types of views sometimes implement the same capability in different
ways. These variations exist because the three types of views have different
purposes:

• ScalableWorkspaceView — Provides essential capabilities for representing a
KB workspace in the client as a single workspace view, including scaling.

• MultipleWorkspaceView — Provides a convenient way to manage a collection
of workspace views.

• MultipleWorkspacePanel — Adds frequently needed higher-level
capabilities to a multiple workspace view, but some lower-level capabilities
become inaccessible.

Note ScalableWorkspaceView extends WorkspaceView; however, typically you use one
of the subclasses of WorkspaceView.

All workspace views share many features. This chapter distinguishes between the
three types of views only where they differ. Wherever two or more types of views
are the same, this chapter refers to them generically as a workspace view or
multiple workspace display, as described in “Workspace View Terminology” on
page 127.

This chapter assumes that you:

• Have read Chapter 9, “Workspace Views Terms and Concepts,” which
defines the essential workspace view terms and concepts.

• Understand the use of events and methods in defining user interfaces.

• Have some familiarity with Java programming.

This chapter describes common capabilities for workspace views, providing the
syntax and a description for each method described. For each workspace view
capability, this chapter:

• Tells which type(s) of workspace views offer the capability.

• Shows how to invoke the capability in each type of view that offers it.

Additional methods also exist that are not described in this chapter. For complete
information on all workspace view methods, see the Telewindows2 (TW2) Toolkit
API documentation.

For a complete example of programming a workspace view, see “Workspace
View Example” on page 177.
160 Part III Viewing Workspaces

Packages Covered
Packages Covered

com.gensym.wksp
Interfaces

ItemView
WorkspaceElement

Classes
ScalableWorkspaceView
MultipleWorkspaceView
MultipleWorkspacePanel
WorkspaceView
WorkspaceViewScrollbar

com.gensym.ntw.util
Interfaces

CollectionListener
SelectionListener

com.gensym.util
Interfaces

ItemListener

Relevant Demos
The following demos use workspace views:

• wkspdemo

• wkspapplet

• wksppanel

The demos are located in this directory, depending on your platform:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 161

Chapter 12 Using Workspace View Components
Creating Workspace Views
For each of the following types of workspace view, a constructor with no
arguments exists:

• ScalableWorkspaceView

• MultipleWorkspaceView

• MultipleWorkspacePanel

For a ScalableWorkspaceView, you can create and populate the workspace view
in one call, by providing a com.gensym.classes.KbWorkspace as an argument to
the constructor.

Populating Workspace Views
You populate workspace views as follows:

• For a single workspace view, you set a KB workspace in the view explicitly or
when you create the view.

• For a multiple workspace display, you explicitly add a KB workspace to the
view.

• A multiple workspace panel can automatically populate the view by adding
the panel as a com.gensym.ntw.WorkspaceShowingListener.

Populating a Single Workspace View
You can populate a single workspace view in the same call that creates it or at any
time thereafter.

To create and populate a single workspace view:

ScalableWorkspaceView(KbWorkspace workspace)

To create and populate a scalable workspace view:

ScalableWorkspaceView(KbWorkspace workspace)

To populate an existing single workspace view:

setWorkspace(KbWorkspace workspace)

The KB workspace is immediately visible in the view, which loses all knowledge
of the workspace previously contained in it.
162 Part III Viewing Workspaces

Populating Workspace Views
Populating a Multiple Workspace Display
You can add a KB workspace to a multiple workspace display at any time. The
workspace is added to the end of a list of KB workspaces that the display
contains. This list is called the workspace list. You can add the same KB
workspace more than once to a multiple workspace display, which causes it to
appear more than once in the workspace list.

A workspace view must generate information from a KbWorkspace to display it
graphically. For each KB workspace in a multiple workspace display, you can
specify whether the display caches this information or re-creates it every time that
KB workspace becomes current.

To populate a multiple workspace display:

addWorkspace(KbWorkspace workspace, boolean keepHistory)

If keepHistory is true, the workspace view caches the information it creates to
display the KB workspace, and it reuses that information each time that
workspace becomes the current workspace in the view. If keepHistory is false,
the view recreates that information each time that workspace becomes current.

In a multiple workspace panel, a newly added KB workspace becomes the current
workspace by default. You can toggle this default as needed.

To set whether a MultipleWorkspacePanel makes a new workspace current:

setShowWorkspace(boolean showWorkspace)

If showWorkspace is true, a KB workspace subsequently added to the panel
automatically becomes current and, therefore, visible. If the argument is false,
subsequently adding a KB workspace does not make it current. The default is to
make a newly added KB workspace current.

To obtain the current value of setShowWorkspace:

getShowWorkspace(boolean showWorkspace)

If setShowWorkspace() has never been called, the value returned is true.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 163

Chapter 12 Using Workspace View Components
Automatically Populating a Multiple Workspace
Panel

A MultipleWorkspacePanel implements the com.gensym.ntw.
WorkspaceShowingListener interface. Therefore, by registering the panel as a
listener, once it is connected to a TwConnector or TwGateway:

• A show workspace action in G2 automatically adds the KB workspace to the
panel.

• A hide workspace action in G2 automatically removes the KB workspace from
the panel.

For information on WorkspaceShowingListener, see “Subscribing to Workspace
Show and Hide Events” on page 82.

When a show workspace action causes a KB workspace to be added to a multiple
workspace panel, the action cannot specify whether the panel should cache or re-
create the information it needs to display that workspace, as described under
“Populating a Multiple Workspace Display” on page 163.

To specify display information caching for automatically added workspaces:

setKeepInHistory(boolean keepInHistory)

If keepInHistory is true, the multiple workspace panel caches display
information for any KB workspace that is added automatically thereafter. If the
argument is false at the time the workspace was added, the panel re-creates
display information each time the KB workspace becomes current.

In effect, keepInHistory supplies globally the same information that the
keepHistory argument to the addWorkspace method supplies for individual
workspace views. You can toggle keepInHistory at any time, but the change does
not affect any KB workspace that is already in the panel.

To obtain the current value of setKeepInHistory:

getKeepInHistory()
−> boolean keepInHistory

If setKeepInHistory() has never been called, the value returned is true.
164 Part III Viewing Workspaces

Removing a KB Workspace from a Workspace View
Removing a KB Workspace from a Workspace
View

The KB workspace in a single workspace view workspace view is automatically
removed when a new workspace is added to the view. You can remove it
explicitly, if needed. You can also remove a KB workspace from a multiple
workspace display.

To remove explicitly a KB workspace from a single workspace view:

setWorkspace(null)

To remove a KB workspace from a multiple workspace display:

removeWorkspace(KbWorkspace workspace)
−> boolean workspaceRemoved

If workspace exists in the display’s workspace list, it is removed and the method
returns true. If workspace exists more than once in the list, only the first instance
is removed. If workspace does not exist in the list, the method has no effect on the
view and returns false.

Obtaining KB Workspaces
You can obtain a KB workspace from a connection or from a workspace view. You
can also test whether a workspace view contains a KB workspace.

Obtaining a KB Workspace from a Connection
Workspace views display objects of class com.gensym.classes.KbWorkspace, the
Java equivalent of a G2 kb-workspace.

One way of obtaining a KB workspace is through a com.gensym.jgi.G2Gateway
connection. When obtaining a KB workspace through a connection, you cast the
return value, which is a com.gensym.classes.Item, to a KbWorkspace.

You can also use a connection to obtain a list of named KB workspaces, as
described in “Getting a List of Named Workspaces” on page 90.

For information on creating a connection, see Part II, “Connecting to G2” on
page 23.

To obtain a KB workspace from a connection:

Call this method on a G2Gateway:

getUniqueNamedItem(Symbol itmClass, Symbol itmName)
throws G2AccessException
−> Item item
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 165

Chapter 12 Using Workspace View Components
Obtaining a KB Workspace(s) from a Workspace
View

You can obtain the KB workspace in a single workspace view, or an array
containing every KB workspace in a multiple workspace display.

To obtain the KB workspace contained in a single workspace view:

getWorkspace()
−> KbWorkspace workspace

To obtain all KB workspaces contained in a multiple workspace display:

getWorkspaces()
−> KbWorkspace workspaces[]

The returned array contains the KB workspaces in the same order that they were
added to the display. If the display contains no workspaces, the array is empty.

Obtaining the Current KB Workspace from a
Multiple Workspace Display

You cannot directly obtain the current KB workspace from a multiple workspace
display, but you can obtain it indirectly.

To obtain the current KB workspace from a multiple workspace display:

1 Use getCurrentView() on the view to obtain a single workspace view that
contains the workspace, as described under “Obtaining a Single Workspace
View from a Multiple Workspace View” on page 167.

2 Use getWorkspace() on the single workspace view to obtain the KB
workspace itself, as described under “Obtaining a KB Workspace(s) from a
Workspace View” on page 166.

Polling a Multiple Workspace Display for a Named
KB Workspace

You can interrogate a multiple workspace display to see whether it already
contains a specified named KB workspace.

To determine whether a multiple workspace display contains a named KB
workspace:

contains(KbWorkspace workspace)
−> boolean workspaceExists

The returned value is true if workspace exists in the display, and false
otherwise.
166 Part III Viewing Workspaces

Obtaining a Single Workspace View from a Multiple Workspace View
Obtaining a Single Workspace View from a
Multiple Workspace View

You can obtain the current KB workspace from a multiple workspace view as a
single workspace view. This view is functionally identical to the view you could
have created by instantiating ScalableWorkspaceView and using
setWorkspace() to populate it with that KbWorkspace.

To obtain a single workspace view from a multiple workspace view:

getCurrentView()
−> ScalableWorkspaceView singleWorkspaceView

Be careful not to confuse this method with getWorkspace() or getWorkspaces(),
which are described under “Obtaining a KB Workspace(s) from a Workspace
View” on page 166. Those methods return KB workspaces, not workspace views.

Controlling KB Workspace Visibility
The KB workspace in a single workspace view is necessarily current and therefore
always visible, so no methods exist that control its visibility.

You can set the current KB workspace in a multiple workspace display by
specifying the desired workspace, or by traversing the display’s workspace list.
You can also set a newly added KB workspace to become current automatically,
as described under “Populating a Multiple Workspace Display” on page 163.

To set the current KB workspace in a multiple workspace display:

setCurrentWorkspace(KbWorkspace workspace)

The specified workspace becomes current in the view. If workspace is not
contained in the view, the call throws a com.gensym.wksp.
WorkspaceNotAddedException

To make the next KB workspace current in a multiple workspace display:

nextWorkspace()

The next KB workspace in the workspace list becomes current. The method cycles
through the list; if the last KB workspace was current, the first becomes current. If
the display is empty, the call has no effect.

To make the previous KB workspace current in a multiple workspace display:

previousWorkspace()

The previous KB workspace in the workspace list becomes current. The method
cycles through the list; if the first workspace was current, the last becomes
current. If the display is empty, the call has no effect.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 167

Chapter 12 Using Workspace View Components
Scrolling Workspace Views
You can scroll all workspace views, whether or not they include scrollbars;
scrollbars serve only to provide an interactive interface to the scroll methods.

Adding and Removing Scrollbars
Single and multiple workspace views lack scrollbars, by default. Multiple
workspace panels have scroll bars, by default, which you cannot hide or remove.

To add a scrollbar to a single or multiple workspace view:

1 Create a com.gensym.wksp.WorkspaceViewScrollbar:

WorkspaceViewScrollbar
(ScalableWorkspaceView parent,
int orientation,
int value,
int visible,
int minimum,
int maximum)

2 Add the scrollbar to the workspace view:

addScrollbar(viewScrollbar scrollbar, boolean isHorizontal)

If isHorizontal is true, the scrollbar becomes a horizontal scrollbar; if false, it
becomes a vertical scrollbar. If you need to remove the scrollbar later, keep a
pointer to it.

Argument Description

parent The workspace view that the scrollbars
should control.

orientation Scrollbar.HORIZONTAL or
Scrollbar.VERTICAL

value Initial scroll position.

visible The visible amount of the scrollbar, which is
the range of values represented by the width
of the scroll bar's bubble. This value is used
to determine the scrollbar's block increment.

minimum The minimum value of this scrollbar.

maximum The maximum value of this scrollbar.
168 Part III Viewing Workspaces

Scrolling Workspace Views
For example:

// Create the ScalableWorkspaceView
wkspView = new ScalableWorkspaceView (wksp);

// Create the scrollbars
Rectangle initialBounds = wkspView.getBounds();
int initialLeft = initialBounds.x;
int initialTop = initialBounds.y;
int initialWidth = initialBounds.width;
int initialHeight = initialBounds.height;
hscroll = new WorkspaceViewScrollbar (wkspView,

Scrollbar.HORIZONTAL, 0, 1, initialLeft,
initialLeft + initialWidth);

vscroll = new WorkspaceViewScrollbar (wkspView,
Scrollbar.VERTICAL, 0, 1,initialTop,
initialTop + initialHeight);

// Associate the scrollbars with the view
wkspView.addScrollbar(vscroll, false);
wkspView.addScrollbar(hscroll, true);

// Add all UI components to the Frame
add (wkspView, BorderLayout.CENTER);
add (vscroll, BorderLayout.EAST);
add (hscroll, BorderLayout.SOUTH);

To remove a scrollbar from a multiple workspace view:

1 Keep a pointer to the scrollbar that you added with addScrollbar().

2 Call this method:

removeScrollbar(viewScrollbar scrollbar, boolean isHorizontal)

Set isHorizontal to true for a horizontal scrollbar, or false for a vertical
scrollbar.

Setting Scrolling Increments
All types of workspace views provide scrolling in two granularities: scroll unit
and scroll block. Both of these are measured in pixels. By convention, a scroll unit
is smaller than a scroll block, but nothing requires this. The default values are:

• Scroll Unit: 10

• Scroll Block: 40

You can set or retrieve the value of either type of scroll increment.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 169

Chapter 12 Using Workspace View Components
To set the scroll unit increment of a workspace view:

setUnitIncrement(integer increment)

To obtain the current scroll unit increment of a workspace view:

getUnitIncrement()
−> integer increment

To set the scroll block increment of a workspace view:

setBlockIncrement(integer increment)

To obtain the current scroll block increment of a workspace view:

getBlockIncrement()
−> integer increment

Incrementally Scrolling a KB Workspace
You can scroll the KB workspace that is visible in any workspace view:

• By a unit or a block.

• Up, down, left, or right.

Eight scroll methods provide the eight permutations of increment and direction.
Their names follow a simple grammar.

To scroll a KB workspace incrementally:

scroll{Unit|Block}{Up|Down|Left|Right}()

For example, to scroll one unit up:

scrollUnitUp()

To scroll one block left:

scrollBlockLeft()

Note Scrolling a multiple workspace display scrolls only the current workspace view;
the scroll position of other views of the same KB workspace is unaffected.
Similarly, the scroll position of the underlying KB workspace is unaffected.
170 Part III Viewing Workspaces

Working with Workspace View Elements
Working with Workspace View Elements
When a KB workspace is displayed in a workspace view, each item on the
underlying kb-workspace is represented by an object that implements this
interface:

com.gensym.wksp.WorkspaceElement

An implementation of this interface is called a workspace view element, or, for
brevity, a workspace element.

The WorkspaceElement interface extends these two interfaces:

• com.gensym.wksp.ItemView — Provides a method for getting the com.
gensym.classes.Item that the workspace element represents.

• com.gensym.util.ItemListener — A listener for receiving notification when
a G2 item is modified or deleted, or when the listener interface is added.

Thus, adding, changing, or deleting an item on the underlying KB workspace in
G2 automatically creates, changes, or deletes a corresponding element in every
workspace view. Handshaking between G2 and the Telewindows2 Toolkit client
ensures that the KB workspace and its views remain synchronized.

You can obtain the elements in the current KB workspace of a workspace view,
then select and change some or all of them in various ways. Obtaining and
selecting workspace view elements does not affect G2. Changing them transmits a
request to G2, which makes the change to the corresponding items and
propagates it to all workspace views.

Operations on elements in a multiple workspace display affect only the current
KB workspace. If that workspace ceases to be current, any selected elements on it
cease to be selected. Making the KB workspace current again does not restore the
selection.

Obtaining All Workspace View Elements
You can obtain a list of all elements in the KB workspace of a single workspace
view, or the current KB workspace of a multiple workspace view. You cannot
obtain a list of all elements from a multiple workspace panel.

To obtain the elements in a single workspace view:

getElements()
−> workspaceElement java.util.Enumeration
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 171

Chapter 12 Using Workspace View Components
To obtain the elements in the current workspace of a multiple workspace view:

1 Extract the current KB workspace as a single workspace view, as described
under “Obtaining a Single Workspace View from a Multiple Workspace
View” on page 167.

2 Proceed as described for a single workspace view.

Obtaining the Workspace Element for an Item
You can obtain the WorkspaceElement associated with a particular com.gensym.
classes.Item on a workspace view or a multiple workspace panel.

To obtain the workspace element for an item:

findElement(Item item)
−> WorkspaceElement workspaceElement

Obtaining the Item Associated with a Workspace
Element

You can obtain the item associated with a workspace view element and, thereby,
have access to all methods for the particular class of item. For example, if the
workspace element is an instance of a com.gensym.classes.TrendChart, you
can:

• Get or set any of the attributes of the trend chart from the client.

• Call any of the methods on its superior class, which is com.gensym.classes.
Item, such as move, delete, enable, or disable.

• Receive notification of itemModified, itemDeleted, and
receivedInitialValues events.

For information on item events, see com.gensym.util.ItemListener, which is
part of G2 JavaLink.

To obtain the item associated with a workspace element:

1 Get the list of workspace elements from a single workspace view.

2 Call this method on a single workspace element:

getItem()
172 Part III Viewing Workspaces

Working with Selections
For example, the following method calls enable on the com.gensym.classes.
Item that is currently selected in a workspace view:

private ScalableWorkspaceView workspaceView = null;
private WorkspaceElement[] currentSelection = null;

//Create workspace view
ScalableWorkspaceView workspaceView =

new ScalableWorkspaceView();

//Enable currently selected item
private void handleEnableSelectionCommand() {
 try {
 if (currentSelection.length == 0)

ScalableWorkspaceView.getWorkspace().enable();
 else {

for (int i=0; i<currentSelection.length; i++)
 currentSelection[i].getItem().enable();

 }
 } catch (G2AccessException gae) {

}
 }

Working with Selections
A single workspace view maintains a list of currently selected items called a
selection. You can select individual or all workspace view elements, add
workspace view elements to the selection, and remove individual or all
workspace view element from the selection.

You can obtain the list of selected workspace view elements, move the selected
elements, or delete the selected elements.

Clients can add themselves as listeners to receive notification when the selection
changes.

Selecting Workspace View Elements
You can select and deselect workspace view elements with the mouse, as
described under “Selecting and Deselecting Objects” on page 137. You can also
select and deselect elements in any workspace view by calling methods that
indicate the element or elements affected. These methods operate on the current
KB workspace in a multiple workspace display. They have no effect on any other
workspaces.

Selecting an element that was already selected or deselecting an element that was
not selected has no effect.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 173

Chapter 12 Using Workspace View Components
To select a specified workspace element:

addElementToSelection(WorkspaceElement element)

The specified element becomes selected. The selection status of other elements is
unaffected.

To select several workspace elements:

addElementsToSelection(WorkspaceElement element[])

The specified elements become selected. The selection status of other elements is
unaffected.

To select several workspace elements and deselect all others:

selectElements(WorkspaceElement element[])

Any currently selected elements cease to be selected, and the specified elements
become selected. The effect is the same as calling clearSelection() before
calling addElementsToSelection().

To select all workspace elements:

selectAll()

All elements become selected.

To deselect a selected workspace element:

removeElementFromSelection(WorkspaceElement element)

The specified element becomes unselected. The selection status of other elements
is unaffected.

To deselect a list of workspace elements:

removeElementsFromSelection(WorkspaceElement element[])

The specified elements become unselected. The selection status of other elements
is unaffected.

To deselect all selected workspace elements:

clearSelection()

All elements become unselected.
174 Part III Viewing Workspaces

Working with Selections
Obtaining Selected Elements
You can obtain a list of all selected elements in the KB workspace in a single
workspace view, or the current KB workspace in a multiple workspace display.

To obtain the selected elements in a single workspace view:

getSelection()
−> WorkspaceElement elements[]

Manipulating Selected Elements
When one or more elements are selected on the current KB workspace, you can:

• Move the selection.

• Delete the selection.

To move the selected element(s):

moveSelection(int deltaX, int deltaY, boolean enlargeWorkspace)

This method moves the selection by deltaX pixels horizontally and deltaY pixels
vertically. Use a positive integer to specify motion right or down, and use a
negative integer to specify motion left or up.

If enlargeWorkspace is false, the movement is constrained by the borders of the
KB workspace. If it is true, the KB workspace expands as needed to allow the
move.

To delete the selected element(s):

deleteSelection()

This method deletes all currently selected items.

Handling Selection Events
Clients can receive notification when the list of selected workspace view elements
changes. To do this, they must add themselves as a com.gensym.ntw.util.
SelectionListener.

To listen for selection events in a single workspace view:

addSelectionListener(SelectionListener selectionListener)
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 175

Chapter 12 Using Workspace View Components
Working with Collections
A multiple workspace panel maintains a list of KB workspaces that it can show,
called a collection. Clients can receive notification when the collection changes by
adding themselves as a com.gensym.ntw.util.CollectionListener.

To listen for collection events in a multiple workspace panel:

addCollectionListener(CollectionListener collectionListener)

Scaling Workspace Views
A ScalableWorkspaceView supports scaling by setting the scale of the x and y
axes or scaling the view to fit the current workspace document. Once you have
scaled the workspace view, you can also set the size of the workspace view and
scroll the workspace view to a particular x, y location.

To set the x and y scale of a scalable workspace view:

setScale(double scaleX, double scale-Y)

or

setScaleX(double scaleX)
setScaleY(double scaleY)

To set the scalable workspace to fit the current workspace document:

setScaledToFit(boolean scaledToFit)

To get the current scale of a scalable workspace view:

getScaleX()
getScaleY()
−> double scaleFactor

To determine if the workspace view is scaled to fit:

isScaledToFit()
−> boolean scaledToFit
176 Part III Viewing Workspaces

Workspace View Example
Workspace View Example
You can add a workspace view to a container and display a KB workspace in the
view with relatively little Java programming. The code on the following pages
illustrates the essential techniques by showing the code in the wkspdemo.

package com.gensym.demos.wkspdemo;

import com.gensym.jgi.*;
import com.gensym.ntw.*;
import com.gensym.wksp.*;
import com.gensym.draw.*;
import com.gensym.util.*;
import com.gensym.classes.KbWorkspace;

import java.awt.*;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

/**
 * This class creates and displays a frame that holds a workspace view.
 */
public class WorkspaceFrame extends Frame {

 private static final Symbol DEMO_ = Symbol.intern (“DEMO”);
 private transient Image offscreen;
 private transient Graphics og;

 public static void main (String[] args) {
 // Create the frame with a ScalableWorkspaceView in it
 Frame f = new WorkspaceFrame (“Workspace Demo”);
 // Resize the frame
 f.setBounds (100, 100, 500, 400);
 // Display it
 f.setVisible (true);
 }

 private String host = “localhost”;
 private String port = “1111”;
 private Symbol wkspName = DEMO_;
 private ScalableWorkspaceView wkspView;

 WorkspaceFrame (String title) {
 super (title);
 // Exit when the user clicks the close button
 addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent we) {

// shut up shop
System.exit (0);

 }
 });
 displayWorkspace (host, port, wkspName);
 }
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 177

Chapter 12 Using Workspace View Components
/**
 * This class creates, customizes, and populates a Single Workspace View.
 */

private void displayWorkspace (String host, String port, Symbol wkspName_)
{
 ViewScrollbar vscroll, hscroll;
 try {
 // Make a connection and login
 TwAccess cxn = TwGateway.openConnection (host, port);
 cxn.login ();
 // Get the KB-WORKSPACE to display
 KbWorkspace wksp = (KbWorkspace)cxn.getUniqueNamedItem

(com.gensym.util.symbol.G2ClassSymbols.ITEM_, wkspName_);
 // Listen for deletion of workspace
 wksp.addItemListener (new ViewDisposer ());

 // Create the ScalableWorkspaceView
 wkspView = new ScalableWorkspaceView (wksp);

 // Create the scrollbars
 Rectangle initialBounds = wkspView.getBounds();
 int initialLeft = initialBounds.x;
 int initialTop = initialBounds.y;
 int initialWidth = initialBounds.width;
 int initialHeight = initialBounds.height;
 hscroll = new ViewScrollbar (wkspView, LWScrollbar.HORIZONTAL, 0, 1,

 initialLeft, initialLeft + initialWidth);
 vscroll = new ViewScrollbar (wkspView, LWScrollbar.VERTICAL, 0, 1,

 initialTop, initialTop + initialHeight);

 // Associate the scrollbars with the view
 wkspView.addScrollbar(vscroll, false);
 wkspView.addScrollbar(hscroll, true);

 // Add all UI components to the Frame
 add (wkspView, BorderLayout.CENTER);
 add (vscroll, BorderLayout.EAST);
 add (hscroll, BorderLayout.SOUTH);
 } catch (Exception e)

 // Display an error dialog if something went wrong
 new com.gensym.dlg.MessageDialog (this,

“Error!”,
false,
e.getMessage (),
(com.gensym.dlg.StandardDialogClient)null).setVisible (true);

 }
}

178 Part III Viewing Workspaces

Workspace View Example
/**
 * Override update to *not* erase the background before painting
 * This reduces flicker.
 */
 public void update(Graphics g) {
 paint(g);
 }

 /**
 * Implement double buffering by painting children into an offscreen
 * image and then blast entire image at once.
 */
 public void paint(Graphics g) {
 if(offscreen == null) {
 offscreen = createImage(getSize().width, getSize().height);
 og = offscreen.getGraphics();
 }
 og.setClip(0,0,getSize().width, getSize().height);
 super.paint(og);
 g.drawImage(offscreen, 0, 0, null);
 }

 /**
 * Handle invalidation of double-buffering data
 */
 public void invalidate () {
 super.invalidate ();
 offscreen = null;
 og = null;
 }

/**
 * Provide the item listener
 */

class ViewDisposer implements com.gensym.util.ItemListener {
 public void receivedInitialValues (ItemEvent e) {
 // No action to take
 }
 public void itemModified (ItemEvent e) {
 // Don’t care
 }
 public void itemDeleted (ItemEvent e) {
 // Dispose of the ScalableWorkspaceView
 remove (wkspView);
 }
 }
}

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 179

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part III Viewing Workspaces
Chapter 13 Customizing Popups for Selected Items
Version 3.1 Mode: WorkingSize: 7x9x11
13
Customizing Popups
for Selected Items
Describes how to customize the popup menu that gets created for selected items in
a WorkspaceView.

Introduction 182

Packages Covered 184

Relevant Demos 184

Displaying a Popup Menu with User Menu Choices Only 185

Displaying Custom Commands in a Popup Menu 188

Registering Popup Menu Choices for Individual Workspaces 193

Invoking System-Defined User Menu Choices Locally in the Client 196
181

Chapter 13 Customizing Popups for Selected Items
Introduction

By default, when you right-click an item in a ScalableWorkspaceView, you get a
popup menu that includes instances of these commands, which display these
menu choices:

In addition, if you right-click the ScalableWorkspaceView item itself, the popup
includes this command and associated menu choice:

You can override the popup menu choices for selected items in all
ScalableWorkspaceViews of an application or in a particular
ScalableWorkspaceView. For example, you might want the item popup menu to
show only user menu choices, or you might want to add a custom command to
the popup, which appears only in the client or is invoked locally.

To do this, you use a SelectionCommandGenerator to generate popup menu
choices of type SelectionCommand.

Customizing the item popup menu in this way represents an alternative to using
G2 item configurations to restrict menu choices for items based on user mode.

This command... Contains these menu choices...

com.gensym.wksp.
SystemMenuChoiceCommands

Cut
Copy
Paste

Name
Delete
Disable

Create Subworkspace

Rotate/Reflect
Color
Drop to Bottom
Lift to Top

Describe
Edit Attribute Display Layout

Properties

com.gensym.wksp.
UserMenuChoiceCommands

All user menu choices that have
been defined for the class.

This command... Contains this menu choices...

com.gensym.wskp.
CreationCommands

New Item
182 Part III Viewing Workspaces

Introduction
SelectionCommandGenerator
You have two options for using a SelectionCommandGenerator to generate
popup menu choices for items on workspaces:

SelectionCommand
The item popup commands that the factory generates or that you explicitly
register must be implementations of the SelectionCommand interface. You can
specify any of the commands that appear by default on an item popup menu, as
described earlier, or you can implement your own SelectionCommand.

The SelectionCommand interface is responsible for setting the
ScalableWorkspaceView of the selected items.

SelectionCommand is a subclass of the com.gensym.ui.StructuredCommand
interface, which provides an interface for defining logical groupings of actions, a
hierarchical structure of actions, or a dynamic number of actions.

For more information on the StucturedCommand interface, see Chapter 5
“Creating Menus and Toolbars” in the Telewindows2 Toolkit Java Developer’s Guide:
Application Classes.

MenuChoiceHandler
By default, a ScalableWorkspaceView invokes user menu choices remotely in the
G2 server, which then updates the representation of the view in the client, as
needed. You can provide local invocations of user menu choices so they are
invoked only in a particular client. To do this, you implement a
MenuChoiceHandler, which specifies the behavior of the user menu choice when it
is invoked on the client.

To override the popup
menu choices for items on... Do this...

All workspaces in the application Set the
SelectionCommandsFactory and
implement the factory to
determine which commands
should appear.

Specific workspaces in the
application

Register the commands that
should appear for a particular
ScalableWorkspaceView.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 183

Chapter 13 Customizing Popups for Selected Items
Packages Covered

com.gensym.wksp
Interfaces

MenuChoiceHandler
SelectionCommand
SelectionCommandsFactory

Classes
CreationCommands
SelectionCommandGenerator
SystemMenuChoiceCommands
UserMenuChoiceCommands

Relevant Demos
The demos in the following directory, depending on your platform, show
examples of customizing popup menus for selected items on workspaces:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
custompopups\

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
custompopups/

For information about these classes... See...

WorkspaceFrame
CustomSelectionCommandsFactory

“Displaying a Popup Menu
with User Menu Choices Only”
on page 185.

WorkspaceFrame2
CustomSelectionCommandsFactory2
EditCommandsImpl

“Displaying Custom
Commands in a Popup Menu”
on page 188.

SimpleWorkspaceApplication “Registering Popup Menu
Choices for Individual
Workspaces” on page 193.

WorkspaceFrame3
CustomSelectionCommandsFactory3
LocalMenuChoiceHandler

“Invoking System-Defined
User Menu Choices Locally in
the Client” on page 196.
184 Part III Viewing Workspaces

Displaying a Popup Menu with User Menu Choices Only
Displaying a Popup Menu with User Menu
Choices Only

Suppose you want popups for selected items to display user menu choices only;
you do not want them to display system menu choices. Furthermore, if the
selected item is a ScalableWorkspaceView, you do not want the item popup
menu to display commands for creating items.

To do this, set the SelectionCommandsFactory to generate the menu choices that
appear in the popup menu for selected items in any ScalableWorkspaceView of
your application.

To display a popup menu with user menu choices only:

1 Create a class that implements SelectionCommandsFactory, whose name
corresponds to the factory you just set.

In the previous example, you would create a class named
CustomSelectionCommandsFactory.

2 Provide an implementation of the createCommands method of the
SelectionCommandsFactory interface, which returns an array of
SelectionCommand objects that contains a single element: an instance of a
UserMenuChoiceCommands.

The createCommands method takes as its argument a
ScalableWorkspaceView, which is workspace view for which the factory
generates item popup menus.

3 In the constructor for your application, call the
setSelectionCommandsFactory static method on com.gensym.wksp.
SelectionCommandGenerator, passing an implementation of the com.gensym.
wksp.SelectionCommandsFactory interface as the argument.

Note Ensure that this method is called before the application downloads any
workspaces; otherwise, the application will only use the factory to generate
popup commands for selected items on subsequently downloaded
workspaces.

For example, this method call sets the factory to an instance of a
CustomSelectionCommandsFactory, an implementation of
SelectionCommandsFactory:

SelectionCommandGenerator.setSelectionCommandsFactory
(new CustomSelectionCommandsFactory());
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 185

Chapter 13 Customizing Popups for Selected Items
Example
To see this example online, run com.gensym.demos.docs.custompopups.
WorkspaceFrame, described in “Relevant Demos” on page 184.

To cause the factory to generate popup menus for selected items that contain only
user menu choices, you would implement the createCommands method as
follows:

public SelectionCommand[] createCommands (ScalableWorkspaceView view) {
return new SelectionCommand[] {

new UserMenuChoiceCommands ()};
}

The resulting popup menu for selected items, as well as the
ScalableWorkspaceView itself contains only user menu choices.

The following figure shows a KB workspace named demo, which contains an item
named demo-item that defines a user-menu-choice named edit-demo. In G2, the
item popup menu display all system-defined and user-defined user menu
choices:

User menu choice
186 Part III Viewing Workspaces

Displaying a Popup Menu with User Menu Choices Only
In the client, the item popup menu displays only the Edit Demo menu choice:

Choosing Edit Demo in the client invokes the user menu choice in G2, which
updates the attributes of the item as the G2 attribute table shows:

Custom popup
menu shows
user menu
choices only in
the client.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 187

Chapter 13 Customizing Popups for Selected Items
Displaying Custom Commands in a Popup
Menu

The createCommands method of the SelectionCommandsFactory interface returns
an array of implementations of the SelectionCommand interface. This array can
include any of the following commands or any other commands that you create:

• com.gensym.wksp.SystemMenuChoiceCommands

• com.gensym.wksp.UserMenuChoiceCommands

• com.gensym.wksp.CreationCommands

For information on the menu choices that these commands define, see
“Introduction” on page 182.

The array can also contain any user-defined implementation of the
SelectionCommand interface. This interface extends com.gensym.ui.
StructuredCommand and provides one additional method, setWorkspaceView.
This method takes as its argument the ScalableWorkspaceView in which the
command is to be included.

Typically, a SelectionCommand defines actions that apply to the current selection,
in which case, the command must also implement the SelectionListener
interface or use a SelectionAdapter. However, this is not a requirement; the
actions can be independent of the current selection, and the command need not
implement this listener.

For example, suppose you want all items in the application to provide the
Cut/Copy/Paste commands in their popup menu, and no others.

One way to do this is to create a command that extends
AbstractStructuredCommand. By extending AbstractStructuredCommand, you
can create the command structure in the constructor, and you can call methods to
set the properties of each command key. Otherwise, you must implement these
features yourself in the abstract methods of the SelectionCommand interface.

By default, popup menus represent command keys by using the textual
description only; by default, they do not represent them by using the iconic
description. However, to make the command more generic, we recommend that
you provide an icon anyway.

Implementing a SelectionCommand is similar to implementing a Command. For
more information, see these sections in Chapter 5 “Creating Menus and Toolbars”
in the Telewindows2 Toolkit Java Developer’s Guide: Application Classes:

• “Implementing the Command Interface”

• “Creating Commands with a Structure”
188 Part III Viewing Workspaces

Displaying Custom Commands in a Popup Menu
To display custom commands in a popup menu:

1 Create a class that:

• Implements the com.gensym.wksp.SelectionCommand interface.

• If the action of the command applies to the current selection, implements
the com.gensym.ntw.util.SelectionListener interface or uses a
SelectionAdapter.

• Optionally, extends the com.gensym.ui.AbstractStructuredCommand
interface, for convenience.

2 Define the AbstractStructuredCommand as follows:

• Define command keys for each action of the command.

• In the constructor, call the constructor for the superior class, passing in an
array of CommandInformation objects for each command key.

• Implement the actionPerformed method to specify the behavior of each
command key.

3 Implement the setWorkspaceView method of the SelectionCommand interface
to determine the behavior of the command when the ScalableWorkspaceView
gets set.

Typically, this method:

• Sets the current ScalableWorkspaceView to workspace view that you pass
in as the argument to the method.

• Listens to the selection on the current ScalableWorkspaceView if the
command applies to the current selection. For example, the cut command
cuts the current selection.

• If the action of the command applies to the current selection, gets the
current selection from the ScalableWorkspaceView.

4 Implement the selectionChanged method of the SelectionCommand interface
to determine the behavior of command when the selected item changes, or use
a SelectionAdapter.

Typically, this method:

• Gets the current selection.

• Updates the availability of the command keys.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 189

Chapter 13 Customizing Popups for Selected Items
5 Update the properties of each command key, such as availability, as needed.

For example, if you extend AbstractStructuredCommand, you can call
setAvailable to set the availability of each command key. Note that if you do
this, you do not need to override isAvailable.

6 Follow the steps under “Displaying a Popup Menu with User Menu Choices
Only” on page 185, substituting UserMenuChoiceCommands with your
implementation of the SelectionCommand interface.

Example
To see this example online, run com.gensym.demos.docs.custompopups.
WorkspaceFrame2, described in “Relevant Demos” on page 184.

This example creates a command named EditCommandsImpl, with command keys
called CUT_SELECTION, COPY_SELECTION, and PASTE_SELECTION:

public final class EditCommandsImpl extends AbstractStructuredCommand
implements SelectionCommand, SelectionListener {

public static final String CUT_SELECTION = "cut";
public static final String COPY_SELECTION = "copy";
public static final String PASTE_SELECTION = "paste";

private static final String shortResource = "ShortCommandLabels";
private static final String longResource = "LongCommandLabels";
private static Resource shortBundle =

Resource.getBundle("com.gensym.demos.custompopups.
ShortCommandLabels");

private static Resource longBundle =
Resource.getBundle("com.gensym.demos.custompopups.

LongCommandLabels");
private Resource i18n =

Resource.getBundle("com.gensym.demos.custompopups.Errors");

public Frame frame;
private ScalableWorkspaceView workspaceView = null;
private WorkspaceElement[] currentSelection = null;

private static final int offset = 10;
private static boolean clipboardDataWasCut;
190 Part III Viewing Workspaces

Displaying Custom Commands in a Popup Menu
//Constructor
public EditCommandsImpl(){

super(new CommandInformation[]{
new CommandInformation(CUT_SELECTION, true,

shortResource, longResource,
null, null, null, true),

new CommandInformation(COPY_SELECTION, true,
shortResource, longResource,
null, null, null, true),

new CommandInformation(PASTE_SELECTION, false,
shortResource, longResource,
null, null, null, true)});

}

//Action of the command
public void actionPerformed(ActionEvent event) {

String cmdKey = event.getActionCommand();
if (cmdKey.equals(CUT_SELECTION)) {

//cutSelectionToClipboard is an undocumented method.
workspaceView.cutSelectionToClipboard();
clipboardDataWasCut = true;

}
else if (cmdKey.equals(COPY_SELECTION)) {

//copySelectionToClipboard is an undocumented method.
workspaceView.copySelectionToClipboard();
clipboardDataWasCut = false;

}
else if (cmdKey.equals(PASTE_SELECTION)) {

handlePasteSelectionCommand();
clipboardDataWasCut = false;

}
}

private void updateAvailability(){
if (workspaceView != null) {

setAvailable(PASTE_SELECTION, true);
if (currentSelection == null ||

currentSelection.length == 0) {
// There is no selection
setAvailable(CUT_SELECTION, false);
setAvailable(COPY_SELECTION, false);

} else {
// There is a selection
setAvailable(CUT_SELECTION, true);
setAvailable(COPY_SELECTION, true);

}
} else {

setAvailable(CUT_SELECTION, false);
setAvailable(COPY_SELECTION, false);
setAvailable(PASTE_SELECTION, false);

}
}
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 191

Chapter 13 Customizing Popups for Selected Items
private void handlePasteSelectionCommand() {
//Handle paste selection

}

//BEGIN: SelectionCommand methods
public void setWorkspaceView(ScalableWorkspaceView workspaceView) {

if (this.workspaceView != null) {
this.workspaceView.removeSelectionListener(this);

}
this.workspaceView = workspaceView;
if (this.workspaceView != null) {

this.workspaceView.addSelectionListener(this);
currentSelection = workspaceView.getSelection();

}
updateAvailability();

}

// END: SelectionCommand methods

// BEGIN: SelectionListener methods
public void selectionChanged(SelectionEvent event){

currentSelection = workspaceView.getSelection();
updateAvailability();

}
// END: SelectionListener methods

}

To cause the factory to generate popup menus for selected items that contain only
the Cut, Copy, and Paste menu choices, you would implement the
createCommands method of the SelectionCommandsFactory interface as follows:

public SelectionCommand[] createCommands (ScalableWorkspaceView view) {
return new SelectionCommand[] {

new EditCommandsImpl()};
}

192 Part III Viewing Workspaces

Registering Popup Menu Choices for Individual Workspaces
The resulting popup menu for selected items, as well as the
ScalableWorkspaceView itself contains only Cut, Copy, and Paste, as this
workspace in the client shows:

Registering Popup Menu Choices for Individual
Workspaces

Instead of generating menu choices for item popups in all workspaces of an
application, you can register commands with the SelectionCommandGenerator to
generate item popups for specific workspaces.

For example, you might define a single document interface (SDI) application that
provides a MultipleWorkspacePanel and commands to switch between multiple
workspaces, where each workspace provides a different set of popup menu
choices for selected items.

You can also use this approach in a multiple document interface (MDI)
application that provides multiple document windows in which to view
workspaces.

To register popup menu choices for individual workspaces, you must first de-
register existing commands that you do not want to appear in the popup menu.
Then, you can register individual commands with individual workspaces.

The commands that you register must be implementations of the
SelectionCommand interface, as described in “Displaying Custom Commands in a
Popup Menu” on page 188.

Custom popup
menu shows
custom menu
choices only in
the client.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 193

Chapter 13 Customizing Popups for Selected Items
To register popup menu choices for individual workspaces:

1 In the method in which you create a ScalableWorkspaceView, call
getSelectionCommandGenerator on the ScalableWorkspaceView to obtain
the SelectionCommandGenerator.

Tip If you are working with a MultipleWorkspaceView, you can call
getCurrentView to get the ScalableWorkspaceView from which you can get
the SelectionCommandGenerator.

2 In the same method, call getRegisteredCommands on the
SelectionCommandGenerator to return a Vector of the registered commands.

3 Loop through the Vector and call deregisterCommand on each command that
you do not wish the popup menu to include.

4 For each workspace for which you wish to register commands, call
registerCommand on the SelectionCommandGenerator, passing an instance of
an implementation of the SelectionCommand interface as the argument.

For information on commands that implement this interface and
implementing your own SelectionCommand, see “Displaying Custom
Commands in a Popup Menu” on page 188.

5 Repeat step 4. for each command you wish to register for that workspace.

Example
To see this example online, run com.gensym.demos.docs.custompopups.
SimpleWorkspaceApplication, described in “Relevant Demos” on page 184.

For example, suppose your application has two workspaces, and you want the
popup menu for items on one workspace to include user menu choices and a
custom menu choice, and you want the popup menu for items on the other
workspace to include system menu choices only.

To do this, you might write this code in the method that is responsible for
downloading workspaces in the application class:

//Deregister default commands
ScalableWorkspaceView wkspView = multiWkspView.getCurrentView();
SelectionCommandGenerator generator =

wkspView.getSelectionCommandGenerator();
Vector registeredCommands = generator.getRegisteredCommands();
for (int i=0; i<registeredCommands.size(); i++) {
SelectionCommand sc = (SelectionCommand)registeredCommands.

elementAt (i);
generator.deregisterCommand(sc);
}

194 Part III Viewing Workspaces

Registering Popup Menu Choices for Individual Workspaces
//Register individual workspaces with particular commands for
//generating popup menus for selected items.
private static final Symbol DEMO_ = Symbol.intern("DEMO");
private static final Symbol DEMO2_ = Symbol.intern("DEMO2");
if (DEMO_.equals(wkspName){

generator.registerCommand(new UserMenuChoiceCommands());
generator.registerCommand(new EditCommandsImpl());

}
if (DEMO2_.equals(wkspName)

generator.registerCommand(new SystemMenuChoiceCommands());

The resulting popup menu for selected items on the Demo workspace contains
user menu choices and Cut, Copy, and Paste, as this workspace in the client
shows:

Custom popup
menu for Demo
workspace shows
user menu
choices and
custom menu
choices only in
the client.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 195

Chapter 13 Customizing Popups for Selected Items
The popup menu for selected items on the Demo2 workspace contains system
menu choices only:

Invoking System-Defined User Menu Choices
Locally in the Client

You might want to invoke user menu choices only in a particular client. To do
this, you implement a MenuChoiceHandler that describes the behavior of a
particular user menu choice when it is invoked in the client. You then set the
MenuChoiceHandler by calling a static method on UserMenuChoiceCommands.

To invoke user menu choices locally, you must implement a
SelectionCommandsFactory that creates a UserMenuChoiceCommands and set the
factory.

The static method that sets the MenuChoiceHandler takes a UserMenuChoice as
one of its arguments. This means that each time your application connects to G2,
you must get the UserMenuChoice from the connection.

Custom popup
menu for Demo2
workspace shows
system menu
choices only in the
client.
196 Part III Viewing Workspaces

Invoking System-Defined User Menu Choices Locally in the Client
If your application allows connections to a single G2, you only need to get the
user menu choice once. However, if your application allows connections to
multiple G2s, you need to get the user menu choice each time a connection gets
created. This can be cumbersome, especially if you wish to invoke numerous user
menu choices locally. Therefore, we recommend that you use this feature only
when you wish to invoke a small number of user menu choices. To invoke a large
number of user menu choices locally in a multiple connection application, we
recommend that you implement your own local invoker.

To invoke a user menu choice locally in the client:

1 Create a class that implements the com.gensym.wksp.MenuChoiceHandler
interface.

2 Provide an implementation of the executeMenuChoice method, which
specifies how the user menu choice is to be invoked in the client.

The handler calls this method when the user invokes the user menu choice in
the client.

3 Follow the steps under “Displaying a Popup Menu with User Menu Choices
Only” on page 185 to create a factory that generates a
UserMenuChoiceCommands.

4 In the method in which you create a ScalableWorkspaceView, call
getUserMenuChoice on a TwGateway to get the com.gensym.classes.
UserMenuChoice that you wish to invoke locally.
For more information, see “Invoking a User Menu Choice” on page 93.

5 In the same method, create an instance of your implementation of the
MenuChoiceHandler interface.

6 In the same method, call setLocalMenuChoiceHandler statically on
UserMenuChoiceCommands, passing the user menu choice and menu choice
handler as arguments.

When the user invokes the specified user menu choice in the client, the local menu
choice handler invokes its executeMenuChoice method, which invokes the user
menu choice only in the client.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 197

Chapter 13 Customizing Popups for Selected Items
Example
To see this example online, run com.gensym.demos.docs.custompopups.
WorkspaceFrame3, described in “Relevant Demos” on page 184.

The following method shows how to display a workspace named demo and
invoke a user menu choice named edit-demo for the demo-class class. The local
invocation simply displays a message dialog indicating that it is being invoked
locally. This method appears in the application class that displays workspaces.

private static final Symbol DEMO_ = Symbol.intern ("DEMO");
private static final Symbol EDIT_DEMO_ = Symbol.intern("EDIT-DEMO");
private static final Symbol DEMO_CLASS_ = Symbol.intern("DEMO-CLASS");

private void displayWorkspace (String host, String port,
Symbol wkspName_) {
WorkspaceViewScrollbar vscroll, hscroll;
try {
// Make a connection and login
TwAccess cxn = TwGateway.openConnection (host, port);
cxn.login ();

// Get the KB-WORKSPACE to display
KbWorkspace wksp = (KbWorkspace)cxn.getUniqueNamedItem

(com.gensym.util.symbol.G2ClassSymbols.KB_WORKSPACE_, wkspName_);

// Listen for deletion of workspace
wksp.addItemListener (new ViewDisposer ());

// Create the ScalableWorkspaceView
ScalableWorkspaceView wkspView = new ScalableWorkspaceView (wksp);

//Get UserMenuChoice
UserMenuChoice userMenuChoice = cxn.getUserMenuChoice

(EDIT_DEMO_, DEMO_CLASS_);

//Create a local menu choice handler for user menu choices
LocalMenuChoiceHandler handler = new LocalMenuChoiceHandler();

//Set local menu choice handler
UserMenuChoiceCommands.setLocalMenuChoiceHandler

(userMenuChoice, handler);

// Create the scroll-bars

// Associate the scroll-bars with the view

// Add all UI components to the Frame

} catch (Exception e) {
// Display an error dialog if something went wrong
new com.gensym.dlg.MessageDialog (this,

"Error!", false, e.getMessage (),
(com.gensym.dlg.StandardDialogClient)null).setVisible (true);

}
}

198 Part III Viewing Workspaces

Invoking System-Defined User Menu Choices Locally in the Client
Here is the class definition for the LocalMenuChoiceHandler, which implements
the executeMenuChoice method:

public class LocalMenuChoiceHandler implements MenuChoiceHandler {

public void executeMenuChoice(Symbol menuLabel,
Item itm, TwConnection cxn) throws G2AccessException {
new MessageDialog (null, "Message", true,

"Handling user menu choice locally", null).setVisible (true);
}

}

To cause the factory to generate popup menus for selected items that contain user
menu choices, you would implement the createCommands method of the
SelectionCommandInterface as follows:

public SelectionCommand[] createCommands (ScalableWorkspaceView view) {
return new SelectionCommand[] {

new UserMenuChoiceCommands ()};
}

The resulting item popup menu for demo-item, an instance of demo-class,
displays the Edit Demo menu choice:

Custom popup
menu shows
user menu
choices only in
the client.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 199

Chapter 13 Customizing Popups for Selected Items
Choosing Edit Demo in the client displays the following message dialog:

The menu choice does not get invoked in G2.
200 Part III Viewing Workspaces

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part IV Using Dialogs
 Part IV
Using Dialogs
Chapter 14 Introduction to Telewindows2 Toolkit Dialogs 203

Presents the use of dialogs in Telewindows2 Toolkit, how to create them in the Component
Editor, and discusses how to manage and launch them.

Chapter 15 Using Dialog Components 213

Presents the data-aware components that you can use to create dialogs.

Chapter 16 Launching Custom Item Properties Dialogs 305

Describes how to register custom item properties dialogs with a dialog manager to replace
automatically generated dialogs for editing the properties of G2 items.

Chapter 17 Customizing Automatically Generated Dialogs 321

Describes how to customize automatically generated dialogs that appear when the user
chooses Properties on an item on a workspace.

Chapter 18 Launching General Dialogs 337

Describes how to implement your own dialog launcher and dialog reader, and how to create
your own dialog resource for dialog resources saved in a format other than a serialized file or a
Java class file.
201

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part IV Using Dialogs
Chapter 14 Introduction to Telewindows2 Toolkit Dialogs
Version 3.1 Mode: Working Size: 7x9x11
14
Introduction to
Telewindows2 Toolkit Dialogs
Presents the use of dialogs in Telewindows2 Toolkit, how to create them in the
Component Editor, and discusses how to manage and launch them.

Introduction 203

Item Properties Dialogs 205

General Dialogs 209

Dialog Resources 210

Introduction

Telewindows2 (TW2) Toolkit uses dialogs for displaying data and messages of
any kind. Some dialogs are created automatically, using default controls, others
are created automatically, using custom configurations, while others exist as
dialog resources or classes that your application launches directly.

Various ways exist for you to create and manage dialogs. Using TW2 Toolkit
dialog components you can:

• Create dialogs in a JavaBeans-compliant visual programming environment.

• Write Java code that uses dialog components within an application container.

• Customize the automatically generated dialogs for similar items.
203

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs
The TW2 Toolkit dialogs described in this guide fall into two major categories:

• Item properties dialogs — Dialogs that you use to edit G2 item attributes.

• General dialogs — Informational dialogs for displaying text and input
dialogs for obtaining data from a user.

While an item properties dialog is also an input dialog, it is treated separately in
this document because of its special status in being used only for G2 item
attributes.

This chapter describes both categories of dialogs, and how to create and manage
them. Remaining chapters in this part present other specific topics:

Terminology
This part uses these terms:

• Dialog — A generic term for a set of one or more components that you
display in a Java container.

• Dialog resource — A dialog that you create from components, which is stored
as a serialized file.

• Dialog class — A dialog that you create from components in any Java
programming environment.

This part uses the term dialog to refer to both dialog resources and dialog classes,
unless a finer distinction is required.

This chapter... Describes...

Chapter 15, “Using Dialog
Components”

The Telewindows2 Toolkit
components you use to create
dialog resources.

Chapter 16, “Launching Custom
Item Properties Dialogs”

How to save custom item property
dialogs as part of your KB, and
how to register these dialogs in G2
so they launch automatically.

Chapter 17, “Customizing
Automatically Generated Dialogs”

How to customize the way in
which a workspace view
automatically generates dialogs for
similar items.

Chapter 18, “Launching
General Dialogs”

The programmatic requirements
for launching general dialogs after
you have created them.
204 Part IV Using Dialogs

Item Properties Dialogs
Standard Dialogs
TW2 Toolkit also supplies a set of standard dialogs, which are Java classes that
you use within Java applications or subclass to tailor to your specific needs.

Standard dialogs also include informational and input dialogs, but they are
limited to use as TW2 Toolkit Java classes, as opposed to resources that you create
using TW2 Toolkit components.

For information about using these dialog classes, see Chapter 4 “Using Standard
Dialogs” in the Telewindows2 Toolkit Java Developer’s Guide: Application Classes.

Item Properties Dialogs

As G2 uses attribute tables to display item attributes, Telewindows2 Toolkit uses
item properties dialogs.

By default, when a user chooses Properties from an item’s popup menu in a
workspace view, TW2 Toolkit creates and displays a properties dialog for editing
the item. The dialog includes all of the attributes visible in the current user mode
of that TW2 Toolkit session.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 205

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs
This diagram illustrates the difference between an automatically generated item
properties dialog that appears in a workspace view and its counterpart attribute
table for the same item in G2:

For information on how to use item properties dialogs in a workspace view, see
“Using Workspace View Item Properties Dialogs” on page 141.

Automatically Generated Item Properties Dialogs
By default, workspace views automatically generate item properties dialogs when
the user chooses Properties on an item. The workspace view gathers the
properties and types necessary to create an automatically generated dialog
through class introspection, then uses the com.gensym.dlgruntime package
classes to manage and launch the dialog. The attributes that appear in the dialog
depend on the attributes visible in the user’s current user mode.

Each time a user displays a properties dialog, the workspace view calls G2 to
obtain the current attribute values for the item being edited.

G2 attributes table.

Item properties dialog
displayed in a
workspace view.
206 Part IV Using Dialogs

Item Properties Dialogs
The automatically generated dialog maps attribute types to specific components
based on the G2 attribute type, as follows:

The item-configuration and notes attributes of an item appear in their own tab
page. All other attributes appear on one tab page. The notes tab page is only
visible when the item has notes. If the autoUpload property of the ItemProxy is
false, then OK, Apply, and Cancel buttons appear at the bottom of the dialog;
otherwise, no buttons appear and changes in the dialog are immediately sent to
G2.

Note The autoDownload property of the ItemProxy determines whether the dialog is
updated when the attribute’s value changes in G2.

Once an automatically generated dialog exists for an item, the workspace view
caches the dialog on the client for use during the current TW2 Toolkit session.

Like their attribute table counterparts in G2, generated item properties dialogs are
updated automatically when any displayed value changes in the server. Changes
to values displayed in an item properties dialog are similarly updated in the
server.

G2 Type Component

truth-value com.gensym.jcontrols.G2Checkbox

symbol com.gensym.jcontrols.G2TextField

text com.gensym.jcontrols.G2TextField

integer com.gensym.jcontrols.G2TextField

float com.gensym.jcontrols.G2TextField

quantity com.gensym.jcontrols.G2TextField

value com.gensym.jcontrols.G2TextField

structure com.gensym.gcg.G2TextArea

sequence com.gensym.gcg.G2TextArea

item com.gensym.gcg.G2TextArea
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 207

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs
Customizing Item Properties Dialogs
While generated dialogs exist automatically for your user interface, you might
want to customize them for your application’s requirements. You can create
custom item property dialogs in one of two ways, depending on the requirements
of your application and the development environment you wish to use:

Creating and Registering Custom Dialog Resources
and Classes

To create custom item property dialogs as dialog resources or dialog classes, you
build each dialog manually, in a JavaBeans-compliant visual programming
environment or in pure Java.

Once the custom item properties dialog resource or class exists, you must register
it with the DialogManager for launching whenever a user chooses the Properties
item menu choice. You can register the dialog resource or class for a particular
class or item. Registration occurs through an RPC call from G2 to this method on a
com.gensym.dlgruntime.DialogManager:

setDialogResourceEntry

This method supports registration of dialog classes created in a Java
programming environment.

Chapter 16, “Launching Custom Item Properties Dialogs” presents an example of
registering custom item properties dialogs.

To customize... Do this... Described in...

A small number of
dialogs for specific
classes or items, but
not subclasses

Use the dialog components to
create a dialog resource, or a
dialog class, using any Java
development environment,
then register the dialog for a
particular class or item.

Chapter 16, “Launching
Custom Item Properties
Dialogs” on page 305.

Numerous dialogs
whose contents
depends on the
contents of the class
or subclass

Customize the way in which a
workspace view automatically
generates dialogs

Chapter 17,
“Customizing
Automatically Generated
Dialogs” on page 321.
208 Part IV Using Dialogs

General Dialogs
Customizing Automatically Generated Dialogs
If you wish to override dialogs for more than several classes or items, you should
customize the way in which a workspace view automatically generates dialogs
for items. You can customize any aspect of the automatically generated dialog
you wish, such as:

• The “editor” or control that the dialog uses for editing a single attribute or a
set of attributes.

• The label associated with each attribute editor.

• The order in which the attribute editors and labels appear in the dialog.

• The groups of attributes that the dialog displays, which you can generate
based on any number of criteria, including its name, type, defining class, and
whether it is system defined.

In addition, you can create your own automatically generated dialogs from
scratch by assembling the above components and adding editors that launch
these subdialogs:

• A native text editor for editing attributes with a grammar.

• A color dialog for editing color attributes.

Finally, you can generate the attribute panel and/or command button panel of the
default automatically generated dialog, and place them inside your own type of
container. If you define your own container for automatically generated dialogs,
you must explicitly generated the item properties dialog.

General Dialogs
General dialogs consist of all dialogs other than those used to edit and display
item properties and include:

• Informational dialogs

• Input dialogs

Numerous reasons exist for creating general dialogs in your application.
Informational dialogs typically consist only of text. Warnings, messages, and
prompts for users can all be classified as informational dialogs. Input dialogs are
what your application displays to obtain various kinds of information from the
user. For example, you could create a connection dialog for specifying a G2
process to which to connect, or a login dialog to log on to a secure G2.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 209

Chapter 14 Introduction to Telewindows2 Toolkit Dialogs
General dialogs exist in two forms as a set of components:

• Saved in a serialized resource file and launched within a container, using the
DialogReader and DialogLauncher classes of the com.gensym.dlgruntime
package.

• Instantiated in a Java program at run time and shown in a Java container.

Using General Dialogs for Event Notification

One common reason for launching or displaying a general dialog is to advise a
user that a particular event has occurred in the application. Such events cover
numerous situations, including alarm signalling, status changes, or operator
input requests. Regardless of the event purpose, however, two main
methodologies exist for detecting and reacting to them:

• Event listening from a TW2 Toolkit client to predefined server events.

• Event propagation through RPC calls from the server to one or more clients,
using G2 “whenever” rules.

Both techniques require KB design and intervention. For TW2 Toolkit client
applications, we recommend using the first method in which your KB is designed
to follow the Java publish and subscribe event model. TW2 Toolkit and G2
JavaLink together supply tools and sample KBs outlining how to accomplish this
in your KB. For information about setting up your KB to handle events by using
this methodology, see the G2 JavaLink User’s Guide.

Once your KB is set up to publish events, the client registers itself as a listener for
one or more KB events to receive necessary updates.

While the initial setup for events and event handling occurs on the G2 server side,
listening is handled at the client side, and thus off-loads some KB processing.

Dialog Resources
You can create dialog resources in any Java-beans compliant visual programming
environment, using the components that TW2 Toolkit supplies or using other
components of your choice. You can create item properties dialogs and general
dialogs as dialog resources.

To launch an item properties dialog, you simply need to register the dialog
resource with the dialog manager, as described in “Creating and Registering
Custom Dialog Resources and Classes” on page 208.

To launch a general dialog, you must launch the dialog yourself by using classes
in the com.gensym.dlgruntime package.
210 Part IV Using Dialogs

Dialog Resources
For information about... See...

G2 connectivity components Chapter 3, “Using ItemRetriever”
and Chapter 4, “Using
TwConnector.”

TW2 Toolkit user interface
components available for creating
dialog resources

Chapter 15, “Using Dialog
Components.”

Launching a general dialog after
you have created it

Chapter 18, “Launching
General Dialogs.”
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 211

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part IV Using Dialogs
Chapter 15 Using Dialog Components
Version 3.1 Mode: Working Size: 7x9x11
15
Using Dialog Components
Presents the data-aware components that you can use to create dialogs.

Introduction 214

Packages Covered 214

Class Hierarchy of the Dialog Components 216

Component Support Classes 220

Using Dialog Components 222

Using G2 Item Components in Dialogs 226

DialogCommand 232

G2Button 235

G2Checkbox 238

G2ComboBox 241

G2DropDownChoice 242

G2Label 248

G2Listbox 252

G2Radiobox 272

G2TextField 277

ItemProxy 290

StructureMUX 300
213

Chapter 15 Using Dialog Components
Introduction
The Telewindows2 (TW2) Toolkit sequoia.jar file contains graphical user
interface and connectivity components for creating dialogs for your client
applications. Using these components, you can construct dialogs and dialog
resources to perform such tasks as:

• Connecting to G2 and creating a login session.

• Displaying information about G2 items.

• Getting information from a user to update G2 items.

• Collecting data about multiple items to present to a user.

The two connectivity components are documented in:

• Chapter 3, “Using ItemRetriever.”

• Chapter 4, “Using TwConnector.”

The workspace view components are documented in Part III, “Viewing
Workspaces” on page 125.

Note The examples shown in this chapter were created using the Telewindows2 Toolkit
Component Editor, which is no longer supported. However, using the dialog
components as Java beans in an IDE such as Symantec Visual Café would be
similar.

Packages Covered
All of the components described in this chapter are defined in one of two
packages:

• com.gensym.controls package, which contains java.awt versions of the
controls for use in a JavaBeans-compliant visual programming environment,
such as Symantec Visual Café or Borland J Builder.

• com.gensym.jcontrols package, which contains javax.swing versions of the
controls.
214 Part IV Using Dialogs

Packages Covered
com.gensym.controls
Interfaces

AttributeEditor

Classes
AttributeHolder
DialogCommand
FieldType
FieldTypeEditor
G2Button
G2Checkbox
G2DropDownChoice
G2Label
G2Listbox
G2Radiobox
G2TextField
ItemProxy
LimitMode
LimitModeEditor
StructureMUX
SymbolVector
SymbolVectorEditor

com.gensym.jcontrols
Classes

G2Button
G2Checkbox
G2ComboBox
G2Label
G2Listbox
G2Radiobox
G2TextField

BeanInfo Classes
BeanInfo classes extend java.beans.SimpleBeanInfo and are not documented
here. In general, BeanInfo classes are used for limiting the properties, events, and
methods that are visible in a JavaBeans-compliant visual programming
environment.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 215

Chapter 15 Using Dialog Components
com.gensym.dlgruntime
These classes apply to the DialogCommand control only.

Interfaces
DialogCommandListener

Classes
DialogCommandEvent

com.gensym.dlgevent
These classes are part of the G2 JavaLink.

Interfaces
ObjectChangeListener
ObjectUpdateListener

Classes
ObjectChangeEvent
ObjectUpdateEvent

Class Hierarchy of the Dialog Components
The dialog components in the com.gensym.controls package extend the java.
lang.Object class or classes in the java.awt package. The dialog components in
the com.gensym.jcontrols package extend classes in the javax.swing package.

Knowing the class hierarchy of these components provides relevant background
information about available Java properties, events, and methods.
216 Part IV Using Dialogs

Class Hierarchy of the Dialog Components
Helper Components
A number of the dialog components in the com.gensym.controls package are
invisible beans that allow you to represent G2 data structures and control dialog
events.

These helper components extend java.lang.Object:

java.lang Classes

Object

Telewindows2 Toolkit
com.gensym.controls Classes

DialogCommand

Class

StructureMUXItemProxy
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 217

Chapter 15 Using Dialog Components
Dialog Controls Based on AWT
The bulk of the dialog components in the com.gensym.controls package are
visible beans that provide UI controls for editing the attributes if G2 items.

These dialog components extend classes in the java.awt package:

java.awt Classes

TextField

Telewindows2 Toolkit
com.gensym.controls Classes

G2TextField G2Button G2Checkbox

G2Label G2DropDownChoice

G2Radiobox

G2Listbox

Button Checkbox Panel

Canvas ChoiceList

TextComponent

Component

Container
218 Part IV Using Dialogs

Class Hierarchy of the Dialog Components
Dialog Controls Based on Swing
All the dialog components in the com.gensym.jcontrols package are visible
beans that provide UI controls for editing the attributes if G2 items.

These dialog components extend classes in the javax.swing package:

JTextField

Telewindows2 Toolkit
com.gensym.jcontrols Classes

G2TextField G2Button G2Checkbox

G2Label G2ComboBox

G2Radiobox

G2Listbox

JButton JCheckbox JPanel

JLabel JComboBoxJScrollPane

JTextComponent

JComponent

javax.swing Classes
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 219

Chapter 15 Using Dialog Components
Component Support Classes
The com.gensym.controls package provides a number of support classes for the
visual components, which you see when you load the sequoia.jar file but which
are not classes that you use explicitly.

AttributeEditor Interface
This class provides an interface that all TW2 Toolkit data-aware components
implement, which causes each component to:

• Generate objectChanged events and notifies registered implementations of
the com.gensym.beansruntime.ObjectChangeListener interface.

• Handle event notification for objectUpdated events.

• Get and set the G2 attribute whose value your component represents.

The following data-aware controls, in both the com.gensym.controls and com.
gensym.jcontrols packages, implement the AttributeEditor interface:

• G2Checkbox

• G2DropDownChoice

• G2TextField

• G2Listbox

The other data-aware controls implement ObjectChangeListener and/or
ObjectUpdateListener directly.

AttributeHolder Class
This class implements the common features of the ItemProxy and StructureMUX
components.

FieldType and FieldTypeEditor Classes
All of the data-aware controls define the fieldType property, which is an
instance of the FieldType class. This class translates string values that the user
enters in a dialog into data types that G2 requires before the value gets sent to G2.
It also converts G2 data types to strings before updating the component in a
dialog.

The FieldType class supports these G2 data types:

• text

• symbol

• integer
220 Part IV Using Dialogs

Component Support Classes
• float

• quantity

• sequence

• structure

• truth-value

To allow editing of the fieldType property, the com.gensym.controls package
provides the FieldTypeEditor class, which provides a drop down choice with
options for each available data type.

LimitMode and LimitModeEditor Classes
The G2TextField component, in both the com.gensym.controls and com.
gensym.jcontrols packages, provides properties called upperLimit and
lowerLimit, which allow you to restrict the values a user enters when fieldType
is one of the numeric data types. To determine whether the value the user can
enter is inclusive or exclusive of the upper and lower limits, the component
provides properties called upperLimitMode and lowerLimitMode, whose value is
an instance of the LimitMode class.

To provide a way of editing these properties, the com.gensym.controls package
provides the LimitModeEditor class, which provides a dropdown choice with
options Exclusive and Inclusive.

SymbolVector and SymbolVectorEditor Classes
Several data-aware controls provide a list of options from which the user can
choose. You specify this list as a vector of symbols of type SymbolVector. For
example, com.gensym.controls.G2DropDownChoice, com.gensym.jcontrols.
G2ComboBox, and G2Listbox in both packages define the choices property, and
the G2Radiobox in both packages defines the members property, both of which
take a SymbolVector.

To allow editing of these properties, the com.gensym.controls package provides
the SymbolVectorEditor class for entering the symbols.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 221

Chapter 15 Using Dialog Components
Using Dialog Components
When you load the sequoia.jar file into a JavaBeans-compliant visual
programming environment, a palette similar to the following appears:

Note This palette shows the java.awt version of the visual controls. If you load the
sequoia.jar into JavaBeans-compliant visual programming environment, such
as Symantec Visual Café or Borland J Builder, you would see the javax.swing
versions of the visual controls, and G2ComboBox would replace G2DropDownChoice
in the palette. Otherwise, the palettes are equivalent.

The dialog components are data aware, as described in “Data-Aware
Components” on page 9.

They handle updates to and from G2 as described in “Change and Update
Events” on page 10.

They all support the standard Java properties, events, and methods of their
superior classes, as described in “Class Hierarchy of the Dialog Components” on
page 216.

The following sections provide details on:

• How the dialog components handle updates.

• Using standard Java properties, events, and methods.

• Localizing dialog text.

The rest of this chapter provides a reference for each dialog component, including
examples.

G2DropDownChoice

ItemProxy
ItemRetriever

G2Listbox

G2Label

G2RadioboxG2Button

TwConnector

StructureMUX

G2Checkbox

DialogCommand

G2TextField
222 Part IV Using Dialogs

Using Dialog Components
How G2 Gets Data Changes from a Control
This figure shows how a G2 control and an ItemProxy interact, when the
autoUpload property of the ItemProxy is true, to upload a value from the control
to G2, based on an ObjectChangeEvent:

As this figure illustrates:

• When a user edits the value of a control, the control generates an
ObjectChangeEvent and invokes the objectChanged() method in the
ItemProxy.

• The ItemProxy automatically calls its upload() method, which sets the
attribute value of the item in the G2 server to the new value.

How a Control Gets G2 Data Updates
This diagram shows how a G2 control and an ItemProxy interact, when the
autoDownload property of the ItemProxy is true, to get a value from G2 and set
the value in the control, based on an ObjectUpdateEvent:

G2
Control

Item
Proxy

G2
Server

ObjectChangeEvent

upload()objectChanged()

ItemProxy Listening for ObjectChangeEvents

G2 item updatedG2 control changes

G2
Control

Item
Proxy

G2
Server

ObjectUpdateEvent

download()objectUpdated()

G2 Control Listening for ObjectUpdateEvents

G2 item updatedG2 control updated
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 223

Chapter 15 Using Dialog Components
As this figure illustrates:

• When an update to an attribute value of a G2 item named by the ItemProxy
occurs in G2, the download() method of the ItemProxy is automatically
invoked, which gets the attribute value from the G2 server.

• When the ItemProxy calls its download() method, it generates an
ObjectUpdateEvent and invokes the objectUpdated() method in the control.

• The objectUpdated() method sets the current value of the control to the new
value from the ItemProxy.

Using Standard Java Properties
Because the TW2 Toolkit components inherit from the java.lang.Object class,
java.awt classes, or javax.swing classes, certain properties are standard Java
properties, which this guide does not document. The following table lists these
properties and the Java class that defines them. Depending on the inheritance
structure of the component, some or all of these properties are visible for the TW2
Toolkit components. For a picture of the inheritance structure of these controls,
see “Dialog Controls Based on AWT” on page 218.

Property Description Class

background The background color of the component. By
default, the background is grey.

Component
JComponent

enabled Whether or not the component can respond
to user input and generate events.

Component
JComponent

font The display font, style, and point size. Component
JComponent

foreground The foreground color of the component, for
example, the color of text in a G2TextField.

Component
JComponent

label The descriptive text of the component, if
applicable.

Button
Checkbox
JButton
JCheckbox

name The name of the component. Component
JComponent
224 Part IV Using Dialogs

Using Dialog Components
Localizing Dialog Component Text
All TW2 Toolkit components that have text provide standard Java properties and
methods to support localization. These are the properties and corresponding
accessor methods that support localization:

For more information about localization, see the API documentation for the JDK
java.util package and the Telewindows2 Toolkit Java Developer’s Guide: Application
Classes.

Using Standard Java Events and Methods
Many of the methods visible for the data-aware components are inherited directly
from the parent classes and, as such, are not documented here.

Because the com.gensym.controls components inherit from classes in the
java.awt package, most of the events they generate are standard Java events.
Similarly, most of the target methods for the components are standard Java
methods.

This table lists the Java events and their associated classes that the data-aware
controls support. For a picture of the inheritance structure of these controls, see
“Dialog Controls Based on AWT” on page 218.

Property
Get Method
Set Method Type Description

labelKey

getLabelKey

setLabelKey

String The text key to add to a resource file
for localizing dialog text.

resourceName

getResourceName

setResourceName

String The name of the resource containing
the keys and accompanying text to use
for localizing component text.

Event Type Event Class

action actionPerformed Button
JButton

component componentResized
componentMoved
componentShown
componentHidden

Component

JComponent
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 225

Chapter 15 Using Dialog Components
For information on these events, as well as the Java target methods for TW2
Toolkit components, refer to the Java API documentation.

Using G2 Item Components in Dialogs
You can create dialogs that include G2 items as Java Beans, which you create by
using the G2 Bean Builder. You can create beans from system-defined or user-
defined classes. You use these beans in a dialog in place of an ItemProxy and a
TwConnector, or in place of an ItemRetriever to interact with a G2 item.

You use the G2 Bean Builder to generate a bean when you want to:

• Call user-defined methods of G2 items.

• Get and set attributes of G2 items, using third-party controls, which do not
support objectChanged and objectUpdated events.

When you generate the bean, the G2 Bean Builder creates a JAR file for the bean,
which you can load into any JavaBeans-compliant visual programming

container componentAdded
componentRemoved

Container
JContainer

focus focusGained
focusLost

Component

JComponent

item itemStateChanged Component

JComponent

key keyTyped
keyPressed
keyReleased

Component

JComponent

mouse mouseClicked
mousePressed
mouseReleased
mouseEntered
mouseExited

Component

JComponent

mouseMotion mouseDragged
mouseMoved

Component

JComponent

text textValueChanged TextComponent
JTextComponent

Event Type Event Class
226 Part IV Using Dialogs

Using G2 Item Components in Dialogs
environment.. The JAR file is located in the jars directory of your G2 JavaLink
product directory.

If you are working in a pure Java programming environment, you can import into
your application the Java classes that the G2 Bean Builder creates.

For information on creating beans from G2 classes, see the G2 Bean Builder User’s
Guide.

Identifying the Item
To identify the item with which the bean is associated, you specify the sourceURL
property of the bean as follows, where NAME is the name of the G2 item, which
must appear in upper case:

g2://<host>:<port>/<NAME>

For example:

g2://myhost:1234/MY-ITEM

Fetching the Item
To get and set attributes of the item, you must first fetch the G2 item. To do this,
you have two options:

When you fetch the G2 item of a user-defined bean, all the properties, events, and
methods of the bean are visible.

To... Do this...

Call the bean’s accessor methods
to get and set user-defined
attributes of the item, or to call
user-defined methods of the item
and pass in arguments of the
appropriate type

Use an event hookup to call the
fetchG2Item target method on the
bean.

Set the user-defined attributes
through the properties table for
testing purposes

Set the G2ItemFetched property to
true in the properties table for the
bean.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 227

Chapter 15 Using Dialog Components
Handling Events
You handle event notification for a G2 bean in the same way you do with an
ItemProxy:

• Use objectChanged events to notify the bean that the value of a data-aware
control has changed.

• Use objectUpdated events to notify data-aware controls that the G2 item has
been updated.

Example
The following example shows how to create a dialog that passes an argument to a
user-defined method of a G2 item. The item has been generated as a bean, using
the G2 Bean Builder, and the JAR has been loaded into a JavaBeans-compliant
visual programming environment.

Here is the palette with the user-defined bean that appears when you load the
user-defined JAR file:
228 Part IV Using Dialogs

Using G2 Item Components in Dialogs
This figure shows the layout, event hookups, and sourceURL property of the user-
defined bean:

The dialog passes the value of the Multiplier field as the argument to the compute
method of the demo-item. The method multiplies this argument by the value of
the Integer Attribute field and concludes the product as the value of the
Computed Attribute field.

The event hookups are as follows:

• The Multiplier G2TextField notifies the bean of objectChanged events and
calls the user-defined compute method of the bean, using a custom hookup.

• The Integer Attribute G2TextField notifies the bean of changes and gets
notified of updates in G2.

• The Computed Attribute G2TextField is read-only and just gets notified of
updates in G2.

• The DialogCommand component calls the fetchG2Item method of the user-
defined bean when the dialog gets launched.

DialogCommand

G2TextField

User-defined
bean.

sourceURL =
g2://localhost:1111/DEMO-ITEM
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 229

Chapter 15 Using Dialog Components
Tip To cause the bean’s icon to scale to fit the specified rectangle, set the
ScaleImageToFit property of the bean to true and set the G2ItemFetched
property to true. Note that you will not see the G2 icon of the bean unless you
make the bean visible on the dialog.

Here is the method in the custom hookup that you must edit, which initializes the
parameter that gets passed to the user-defined compute method, where the circled
code has been edited:

Here is the G2 class definition for the user-defined bean, the item, the method,
and the method declaration:

When you launch the dialog and edit the Multiplier and Integer Attribute fields,
the bean passes the argument to the compute method in G2, which updates the
230 Part IV Using Dialogs

Using G2 Item Components in Dialogs
computed-attribute of the item in G2, which in turn updates the Computed
Attribute field in the dialog, as this figure shows:

Here are the corresponding attributes in the G2 table:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 231

Chapter 15 Using Dialog Components
DialogCommand
Use the DialogCommand component to inform dialog listeners that a user has
invoked the ok, apply, and/or close methods, typically by using a G2Button.

You use this component to batch uploads through an ItemProxy. By setting the
autoUpload property of the ItemProxy to false, uploads occur when the ok or
apply method of the DialogCommand is invoked.

This component also dispatches notification of the launching, shutdown, and
flushing of changes of the dialog.

The DialogCommand is not a visual component, though it uses this representation:

Properties and Accessor Methods

These are the properties and associated accessor methods of a DialogCommand
component:

com.gensym.controls.DialogCommand

Property
Get Property
Set Property Type Description

handleProxiesAutomatically

getHandleProxiesAutomatically

setHandleProxiesAutomatically

boolean Determines whether the
component flushes and shuts
down all ItemProxy components
on the dialog automatically.

The default value is true, which:

• Invokes the upload method
of all ItemProxy components
in the dialog when the
DialogCommand component’s
ok or apply method is called.

• Clears the stubs from all
ItemProxy components
when the DialogCommand
component’s ok or close
method is called.

If set to false, the component
does not flush or shut down
ItemProxy components.
232 Part IV Using Dialogs

DialogCommand
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

Events
These are the events that a DialogCommand component generates:

For details, see these classes in the com.gensym.dlgruntime package:

• DialogCommandListener

• DialogCommandEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of a DialogCommand component:

Event Description

dialogChangesFlushed Dispatches a FLUSH DialogCommandEvent to
all registered listeners to commit their data
when the apply method is called.

dialogLaunched Dispatches a LAUNCH DialogCommandEvent
to all registered listeners to indicate that the
launch is complete when the open method is
called.

dialogShutdown Dispatches a SHUTDOWN
DialogCommandEvent to all registered
listeners to indicate that the dialog is no
longer needed and no more events will
occur when the close method is called.

Method Argument Description

apply N/A Applies the changes as indicated on the dialog in all
known ItemProxy components and leaves the dialog
open. The DialogCommand generates a FLUSH
DialogStateEvent to all listeners and handles
ItemProxy uploads, if necessary.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 233

Chapter 15 Using Dialog Components
For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Example

This example shows how to implement OK, Apply, and Cancel buttons on a
dialog to batch uploads from an ItemProxy to G2. Notice that the autoUpload
property of the ItemProxy is set to false, which causes the ItemProxy to hold
value changes from the dialog components for uploading to G2 all at once, using
the buttons.

close N/A Closes the dialog, generates a SHUTDOWN
DialogStateEvent to notify all listeners, and sets the
items in all known ItemProxy components to null.

ok N/A Applies the changes as indicated on the dialog in all
known ItemProxy components and closes the dialog.

The DialogCommand generates a FLUSH
DialogStateEvent to all listeners to commit their data
and a subsequent SHUTDOWN DialogStateEvent to
indicate that the launch is complete.

Method Argument Description

DialogCommand

ItemProxy
autoUpload = false

ItemRetriever
234 Part IV Using Dialogs

G2Button
G2Button
Use a G2Button component to capture a user clicking the button to perform some
action. In addition to the basic capabilities provided by a java.awt.Button or
javax.swing.Button, a G2Button adds support for localization of the button
label.

The G2Button is a visual component with this icon:

Properties and Accessor Methods

These are the properties and associated accessor methods of a G2Button
component:

For information on the standard properties that this component includes, see:

• “Using Standard Java Properties” on page 224.

• “Localizing Dialog Component Text” on page 225.

Events
The G2Button generates the applicable events described in “Using Standard Java
Events and Methods” on page 225.

Methods

Note These methods are available in Expert mode only.

com.gensym.controls.G2Button

Property
Get Property
Set Property Type Description

actionCommand

getActionCommand

setActionCommand

String The name of the action command that
this button fires, which is the button
label, by default.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 235

Chapter 15 Using Dialog Components
These are the target methods of a G2Button component:

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Method Argument Description

get Object Gets the value of the Object argument to any of
the put methods, which is a key. You invoke
this method after invoking one of the put
methods to retrieve state information from the
button.

You might do this, for example, if you want to
use state information stored in the button as
arguments to method calls that the button
eventually triggers through its
actionPerformed method.

If you invoke the put method, the get method
returns the value of the first Object argument.

getInt Object, int Gets the value of the int argument to the
putInt or put method, which is the value
associated with the key argument. You invoke
this method after invoking the putInt method
to retrieve state information from the button in
the form of a key and an integer value.

getString Object Gets the value of the String argument to the
putString and put methods, which is the value
associated with the key argument. You invoke
this method after invoking the putString
method to retrieve state information from the
button in the form of a key and a string value.

put Object, Object Allows you to store state information, in the
form of a key and a value of any type, in the
G2Button.

putInt Object, int Allows you to store state information, in the
form of any key and an integer value, in the
G2Button.

putString Object, String Allows you to store state information, in the
form of any key and a string value, in the
G2Button.
236 Part IV Using Dialogs

G2Button
Example

This example shows how to create buttons to cycle between the previous and next
KB workspaces. The dialog uses a com.gensym.wksp.MultipleWorkspacePanel
that displays one of three KB workspaces from the mill.kb in the kbs directory of
your TW2 Toolkit product directory for Java. The dialog also provides buttons to
select all items in the workspace view, delete all selected items, and retrieve the
named workspaces from G2.

For an example of how to use G2Button components to implement OK, Apply,
and Cancel buttons on a dialog to batch uploads from an ItemProxy to G2, see
“Example” on page 234 for DialogCommand.

ItemRetrieverMultipleWorkspacePanel

G2Button
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 237

Chapter 15 Using Dialog Components
G2Checkbox
Use a G2Checkbox component to turn an option on or off, or to set a G2 attribute
whose data type is truth-value to true (checked) or false (not checked).

In addition to the basic capabilities provided by a java.awt.Checkbox or a
javax.swing.Checkbox, a G2Checkbox adds support for localization of its label.

The G2Checkbox is a visual component with this icon:

Properties and Accessor Methods

These are the properties and associated accessor methods of a G2Checkbox
component:

com.gensym.controls.G2Checkbox

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute associated
with this component, as a com.gensym.
util.Symbol.

When initializing this property in code,
call Symbol.intern(String string),
where string is the attribute name as an
upper-case string.

defaultContents

getDefaultContents

setDefaultContents

Boolean The initial value for this component as a
java.lang.Boolean, such as Boolean.
TRUE.

state

N/A

setState

boolean Whether the component is selected. The
default is true, which displays a check
mark in the checkbox.

Note: The getState accessor method is
defined in the parent class.

Note: Overrides setState in java.awt.
Checkbox.
238 Part IV Using Dialogs

G2Checkbox
For information on the additional properties that this component includes, see:

• “Using Standard Java Properties” on page 224.

• “Localizing Dialog Component Text” on page 225.

Events
These are the events that a G2Checkbox component generates:

For details, see these classes in the G2 JavaLink com.gensym.dlgevent package:

• ObjectChangeListener

• ObjectChangeEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of a G2Checkbox component:

For details, see these classes in the G2 JavaLink com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Event Description

objectChanged Dispatched when the user checks or
unchecks the G2Checkbox.

Method Argument Description

objectUpdated ObjectUpdateEvent Responds to ObjectUpdateEvents
by setting the state of this
component to the current value of
the attribute that this component
represents.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 239

Chapter 15 Using Dialog Components
Example

This dialog allows the user to toggle a truth-value attribute in G2:

G2Checkbox

ItemProxy

ItemRetriever
240 Part IV Using Dialogs

G2ComboBox
G2ComboBox
Use a G2ComboBox component to display a fixed-length list of options of the same
type from which a user can choose one. It extends javax.swing.JComboBox and is
located in the com.gensym.jcontrols package.

This component behaves the same as a com.gensym.controls.
G2DropDownChoice. For details, see “G2DropDownChoice” on page 242.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 241

Chapter 15 Using Dialog Components
G2DropDownChoice
Use a G2DropDownChoice component to display a fixed-length list of options of
the same type from which a user can choose one. It extends java.awt.Choice and
is only available in the com.gensym.controls package. For the Swing equivalent,
use a com.gensym.jcontrols.G2ComboBox.

You can initialize the choices by:

• Specifying the choices property as a vector of strings that provide the default
choices.

• Specifying the initializationAttribute property as an attribute of type
sequence, if the G2DropDownChoice is editing an atomic data type.

• Specifying the attribute property as an attribute of type sequence.

The G2DropDownChoice is a visual component with this icon:

com.gensym.controls.G2DropDownChoice
242 Part IV Using Dialogs

G2DropDownChoice
Properties and Accessor Methods

These are the properties and associated accessor methods of a G2DropDownChoice
component:

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute
associated with this
component, as a com.
gensym.util.Symbol.

When initializing this
property in code, call
Symbol.intern(String
string), where string is the
attribute name as an upper-
case string.

choices

getChoices

setChoices

StringVector The choices that this
component includes, as a
com.gensym.beansruntime.
StringVector.

The value of the fieldType
property must be able to
parse the strings in the vector
according to the specified G2
type.

If the G2 attribute associated
with this component defines
an enumerated list of values,
using the has values syntax,
the choices must match some
or all of the values defined in
the attributes of the class.

defaultContents

getDefaultContents

setDefaultContents

String The default value of the
component, as a java.lang.
String, when it receives an
objectUpdated event and
the G2 attribute named by
the attribute property does
not provide an initial value.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 243

Chapter 15 Using Dialog Components
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

Events
These are the events that a G2DropDownChoice component generates:

For details, see these classes in the G2 JavaLink com.gensym.dlgevent package:

• ObjectChangeListener

• ObjectChangeEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

fieldType

getFieldType

setFieldType

FieldType The G2 type converter for the
values that this component
represents. See “FieldType
and FieldTypeEditor
Classes” on page 220.

initializationAttribute

getInitializationAttribute

setInitializationAttribute

Symbol The name of a G2 attribute of
type sequence that provides
the contents of the choices
property, as a com.gensym.
util.Symbol. This property
is used by the
initializeChoices method.

Property
Get Property
Set Property Type Description

Event Description

objectChanged Dispatched when the user selects a new
value from the G2DropDownChoice.
244 Part IV Using Dialogs

G2DropDownChoice
Methods

These are the target methods of a G2DropDownChoice component:

Method Argument Description

add String Adds a String to the end of the
dropdown choice.

Note: Overrides add in java.awt.
Choice.

addItem String Adds a String to the end of the
dropdown choice.

Note: Overrides addItem in java.
awt.Choice.

insert String, int Inserts a String at a specified
index, given as an int, into the
dropdown choice.

Note: Overrides insert in java.
awt.Choice.

initializeChoices ObjectUpdateEvent Initializes the choices of this
component by using the value of
the G2 attribute named by the
initializationAttribute
property. You call this method by
hooking up an objectUpdated
event to the G2DropDownChoice.

objectUpdated ObjectUpdateEvent Responds to ObjectUpdateEvents
by setting the value of this
component to the current value of
the attribute that this component
represents.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 245

Chapter 15 Using Dialog Components
For details on the objectUpdated method, see these classes in the G2 JavaLink
com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Example

This example shows how to create a simple dialog that lets the user choose from
one of several symbolic values to set the attribute of a G2 item:

remove String

String, int

Removes the first occurrence of
String from the dropdown choice,
or removes the item at the
specified index, given as an int.

Note: Overrides remove in java.
awt.Choice.

removeAll N/A Removes all items from the
dropdown choice.

Note: Overrides removeAll in
java.awt.Choice.

Method Argument Description

G2DropDownChoice

ItemProxy

ItemRetriever
246 Part IV Using Dialogs

G2DropDownChoice
Here is the properties dialog for the G2DropDownChoice, which specifies:

• attribute as a G2 attribute that defines an enumerated list of symbols, for
example:

enumerated-attribute is a symbol, has values red, blue, or green,
initially is red

• choices as a vector of strings that match the fieldType.

• fieldType as Symbol.

Here is the dialog when it is launched, with the choices visible:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 247

Chapter 15 Using Dialog Components
G2Label
Use a G2Label component as a dialog title or in any location on your dialog where
static text should appear.

In addition to the basic capabilities provided by a java.awt.Canvas or a javax.
swing.JLabel, a G2Label adds support for localization.

The G2Label is a visual component with this icon:

Properties and Accessor Methods

These are the properties and associated accessor methods of a G2Label
component:

com.gensym.controls.G2Label

Property
Get Property
Set Property Type Description

alignment

getAlignment

setAlignment

Enum Determines whether the text is right,
left, or center justified. The default
value is right justified.

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute
associated with this component, as a
com.gensym.util.Symbol.

When initializing this property in
code, call Symbol.intern(String
string), where string is the
attribute name as an upper-case
string.

fieldType

getFieldType

setFieldType

FieldType The G2 type converter for the values
that this component represents. See
“FieldType and FieldTypeEditor
Classes” on page 220.
248 Part IV Using Dialogs

G2Label
For information on the additional properties that this component includes, see:

• “Using Standard Java Properties” on page 224.

• “Localizing Dialog Component Text” on page 225.

Events
The G2Label generates the applicable events described in “Using Standard Java
Events and Methods” on page 225.

minimumSize

getMinimumSize

N/A

Dimension The minimum size of this
component as a java.awt.
Dimension.

Note: Overrides minimumSize in
java.awt.Component.

preferredSize

getPreferredSize

N/A

Dimension The preferred size of this component
as a java.awt.Dimension.

Note: Overrides preferredSize in
java.awt.Component.

showQuotesForTextType boolean Determines whether the label shows
quotes when the fieldType
property is Text. The default value
is true. To hide quotes, set this
property to false.

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 249

Chapter 15 Using Dialog Components
Methods

These are the target methods of a G2Label component:

For details on the objectUpdated method, see these classes in the G2 JavaLink
com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Example

This dialog shows how you create a message dialog that uses G2Label
components for both static and dynamic text. The title and “The color is:” are
static text, while the color text updates dynamically based on the value of an
attribute of a G2 item. To do this, you specify the attribute property of the
dynamically updating label and connect an objectUpdated event to the label to
receive updates from the attribute in G2. The G2Label has no need to notify G2 of
any objectChanged events.

Method Argument Description

objectUpdated ObjectUpdateEvent Responds to ObjectUpdateEvents
by setting the value of this
component to the current value of
the attribute that this component
represents.

paint N/A Paints the Graphics context for this
component.

Note: Overrides paint in java.awt.
Canvas.
250 Part IV Using Dialogs

G2Label
Because the dynamically updating text is initially empty, the figure shows the
handles on the G2Label.

Here is the message dialog that appears when you launch the dialog:

G2Label
(static)

ItemProxy

ItemRetriever

G2Label
(dynamic)

Dynamic text

Static text
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 251

Chapter 15 Using Dialog Components
G2Listbox
Use the G2Listbox component for displaying multiple members in a single
control. This component inherits from java.awt.List or javax.swing.
JScrollPane.

You can use this component in one of two modes:

• Selection — A scalar control for editing atomic data structures such as
numbers, symbols, strings, and truth values.

• Collection — An aggregate control for editing G2 sequence data structures.

You can initialize the choices by:

• Specifying the choices property as a vector of strings that provide the default
choices.

• Specifying the initializationAttribute property as an attribute of type
sequence, if the G2Listbox is editing an atomic data type, that is, if it is a
selection list.

• Specifying the attribute property as an attribute of type sequence, if the
G2Listbox is editing a sequence, that is, if it is a collection list.

The G2Listbox is a visual component with this icon:

com.gensym.controls.G2Listbox
252 Part IV Using Dialogs

G2Listbox
Properties and Accessor Methods

These are the properties and associated accessor methods of a G2Listbox
component:

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2
attribute associated with
this component, as a com.
gensym.util.Symbol.

When initializing this
property in code, call
Symbol.intern(String
string), where string is
the attribute name as an
upper-case string.

choices

getChoices

setChoices

StringVector The choices that this
component includes, as a
com.gensym.
beansruntime.
StringVector.

The value of the fieldType
property must be able to
parse the strings in the
vector according to the
specified G2 type.

If the G2 attribute
associated with this
component defines an
enumerated list of values,
using the has values
syntax, the choices must
match some or all of the
values defined in the
attributes of the class.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 253

Chapter 15 Using Dialog Components
defaultContents

getDefaultContents

setDefaultContents

String The default value of the
component, as a java.
lang.String, when it
receives an objectUpdated
event and the G2 attribute
named by the attribute
property does not provide
an initial value.

fieldType

getFieldType

setFieldType

FieldType The G2 type converter for
the values that this
component represents. See
com.gensym.controls.
FieldType.

formatter Formatter The com.gensym.
controls.
FormatterEditor for this
component, which formats
the label. You do not need
to specify this property.

initializationAttribute

getInitializationAttribute

setInitializationAttribute

String The name of a G2 attribute
of type sequence that
provides the contents of the
choices property, as a
com.gensym.util.Symbol.
This property is used by
the initializeChoices
method.

Property
Get Property
Set Property Type Description
254 Part IV Using Dialogs

G2Listbox
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

listType

getListType

setListType

Enum Determines the type of
attribute the control
represents and the
behavior of the list. The
options are:

Selection — Represents
scalar attribute values in
G2 and allows the user to
select a single element from
the list.

Collection — Represents
a G2 sequence data type
and allows the user to
manipulate the size and
elements of the list through
a scalar control.

multipleMode boolean Determines whether the
user can select more than
one element in the list. The
default value is false.

This property is inherited
from java.awt.List.

preferredSize

getPreferredSize

N/A

Dimension The preferred size of this
component as a java.awt.
Dimension.

Note: Overrides
preferredSize in java.
awt.List.

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 255

Chapter 15 Using Dialog Components
Events
These are the events that a G2Listbox component generates:

For details, see these classes in the G2 JavaLink com.gensym.dlgevent package:

• ObjectChangeListener and ObjectChangeEvent

• ObjectUpdateListener and ObjectUpdateEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Event Description

objectChanged In collection or selection mode, dispatched
when the user chooses an item from the
G2Listbox. You connect an
objectChanged event from the G2Listbox
to an ItemProxy.

objectUpdated In collection mode, dispatched when the
value of the attribute that this component
represents gets updated in the G2 server.
You connect an objectUpdated event
from the G2Listbox to a scalar control,
such as a G2TextField, to edit the
collection list.
256 Part IV Using Dialogs

G2Listbox
Methods

These are the target methods of a G2Listbox component:

Method Argument Description

add String

String int

Adds a String to the end of
the list box, or adds a String
at a specified index, given as
an int.

Note: Overrides add in java.
awt.List.

addItem String

String int

Adds a String to the end of
the list box, or adds a String
at a specified index, given as
an int.

Note: Overrides addItem in
java.awt.List.

extend N/A In collection mode, adds an
element to the end of the
collection list, which is the
string G2, by default. To edit
the element, connect a scalar
control to the collection list
via an objectChanged event.

getCurrentSelection N/A In collection mode, returns
the currently selected list
element. In selection mode,
returns null.

initializeChoices ObjectUpdatedEvent Initializes the choices of this
component by using the
value of the G2 attribute
named by the
initializationAttribute
property. You call this
method by hooking up an
objectUpdated event to the
G2Listbox.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 257

Chapter 15 Using Dialog Components
For details on the objectChanged and objectUpdated method, see these classes in
the G2 JavaLink com.gensym.dlgevent package:

• ObjectUpdateListener and ObjectUpdateEvent

• ObjectChangeListener and ObjectChangeEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

objectChanged ObjectChangeEvent In collection mode, responds
to ObjectChangeEvents by
setting the value of the
currently selected element to
the current value of a scalar
control, which is the source
of the objectChanged event.

objectUpdated ObjectUpdatedEvent In collection or selection
mode, responds to
ObjectUpdateEvents by
setting the value of this
component to the current
value of the attribute that this
component represents.

remove String

int

Removes the first occurrence
of String from the list box,
or removes the item at the
specified index, given as an
int.

Note: Overrides remove in
java.awt.List.

removeAll N/A Removes all items from the
list box.

Note: Overrides removeAll
in java.awt.List.

replaceItem String, int Replaces the item at the
specified index, given as an
int, with a new String.

Note: Overrides
replaceItem in java.awt.
List.

Method Argument Description
258 Part IV Using Dialogs

G2Listbox
Examples
Using a G2Listbox in Selection Mode
A G2Listbox in selection mode is a scalar control for editing individual typed
attributes of G2 items.

This example shows how to create a simple dialog that lets the user choose from
one of several symbolic values to set an attribute of a G2 item:

The properties dialog for the G2Listbox specifies these properties:

• attribute as a G2 attribute that specifies an enumerated list of symbols, for
example:

enumerated-attribute is a symbol, has values red, blue, or green,
initially is red

• choices as a vector of strings that match the fieldType.

• fieldType as Symbol.

G2Listbox
listType = Selection

ItemProxy

ItemRetriever
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 259

Chapter 15 Using Dialog Components
Here is the properties dialog:

Here is the dialog when it is launched:

Using a G2Listbox in Collection Mode
A G2Listbox in collection mode is an aggregate control for editing an attribute of
a G2 item that is defined as a G2 sequence. In collection mode, you use the
G2Listbox in conjunction with a scalar control to edit individual elements of the
collection list or the overall list itself.

Note You cannot currently use this control to edit the elements of a G2 list or array.
260 Part IV Using Dialogs

G2Listbox
This figure shows how you use a G2Listbox with a G2TextField to edit a G2
attribute, whose value is a structure. This figure shows the class definition for the
demo-class-1:

This figure shows the demo-item-1 and its table, which defines a sequence for the
flavors attribute:

The following figure shows the dialog for editing the sequence with the
objectChanged and objectUpdated event hookups showing. The objectUpdated
events are located above the controls and flow from right to left, while the
objectChanged events are located below the controls and flow from left to right.

The event hookups are labeled as follows:

1 The G2TextField notifies the G2Listbox of objectChanged events.

2 The G2Listbox notifies the ItemProxy of objectChanged events.

3 The ItemProxy notifies the G2Listbox of objectUpdated events.

4 The G2Listbox notifies the G2TextField of objectUpdated events.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 261

Chapter 15 Using Dialog Components
ItemProxy

ItemRetriever

G2Listbox
listType = Collection

G2TextField

Direction of flow of objectUpdated events.

Direction of flow of objectChanged events.

2

34

1

262 Part IV Using Dialogs

G2Listbox
This figure shows the properties tables for the G2Listbox associated with the
Flavors field. Notice that the listType of the G2Listbox is Collection:

This figure shows the properties table for the G2TextField associated with the
Flavors field. Notice that the G2TextField does not specify any value for the
attribute property:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 263

Chapter 15 Using Dialog Components
This figure shows the result of launching the dialog. The G2Listbox initializes
with the contents of the sequence:

You can now edit any values of the lists by selected the list element to edit and
entering a new value in the text field, for example:

You use the Add and Remove buttons to add elements to the Flavors list. The
event hookups for the Add and Remove G2Button controls use an
actionPerformed event to invoke these methods in the G2Listbox:

• add(String int) — Adds the specified String element to the collection at a
particular index, which you specify as the selectedIndex property of the
target object, which is the G2Listbox.

• remove(int) — Removes the list element at the selectedIndex of the target.
264 Part IV Using Dialogs

G2Listbox
This figure shows the dialog with the actionPerformed events showing:

Here is the Edit Arguments dialog for each argument to the add target method:

G2Button

G2Listbox
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 265

Chapter 15 Using Dialog Components
Here is the Edit Arguments dialog for the argument to the remove target method:

This figure shows the result of adding a new flavor to the list just above the last
list element:

Result of clicking Add.
266 Part IV Using Dialogs

G2Listbox
After editing the new flavor to be LEMON, the dialog and G2 sequence looks like
this:

Using a G2Listbox to Edit the Elements of a G2 List or Array
In addition to using a G2Listbox to edit the elements of a G2 sequence, you can
use this component to edit the elements of a G2 list or array. To do this, you edit
the following class attributes of the list or array that holds the elements, which are
both G2 sequences:

For additional class attributes that you can edit, see the G2 Class Reference Manual.

To edit these attributes of a list or array item directly, you would use the same
event hookups that you use to edit the elements of a sequence, as described in the
previous example.

However, if your G2 list or array is a subobject of an attribute of a G2 item, as is
typically the case, the dialog requires an additional ItemProxy and corresponding

G2 List G2 Array

g2-list-sequence g2-array-sequence
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 267

Chapter 15 Using Dialog Components
event hookups to edit an attribute of a subobject. For details on the properties and
event hookups required for editing subobjects of an ItemProxy, see “Editing
Attributes of a Subobject” on page 295.

The following dialog performs these tasks, which are labeled:

1 The ItemRetriever retrieves the item whose attribute corresponds with
ANIMALS, as the first ItemProxy specifies in its attributes property.

2 The first ItemProxy notifies the second ItemProxy when the value of the
animals attribute changes in G2, through an objectUpdated event.

3 The second ItemProxy represents the animals subobject, and, thus, handles
event notification to and from the G2Listbox when the value of the class
attribute g2-array-sequence changes in the dialog or gets updated in G2.

4 The G2Listbox edits the g2-array-sequence attribute, which is a G2 sequence
whose values are all text.

5 The G2TextField allows the user to edit the current element of the array by
handling the appropriate events.
268 Part IV Using Dialogs

G2Listbox
Here is the dialog for editing the elements of the animals subobject, which is a G2
text array:

Here are the class definitions for the demo-class and its subobject, which is a
my-text-array:

ItemProxy
attributes = [G2-ARRAY-SEQUENCE]
subObjectAttribute = ANIMALS

ItemProxy
attributes = [ANIMALS]

ItemRetriever

G2TextField

G2Listbox
attribute = G2-ARRAY-SEQUENCE
fieldType = Text

2
34

5

1

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 269

Chapter 15 Using Dialog Components
Here is the demo-item-1 item, an instance of demo-class-1, with its table and the
result of describing the initial value of the attributes attribute:

Here is the dialog that appears when you launch:
270 Part IV Using Dialogs

G2Listbox
This figure shows the effect of editing the elements of the array, both in the dialog
and in G2:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 271

Chapter 15 Using Dialog Components
G2Radiobox
Use a G2Radiobox component to make a single choice from a list of multiple
options. You can also use this component to represent a boolean value. This
component extends java.awt.Panel or javax.swing.JPanel.

The G2Radiobox is the visual component with this icon:

Properties and Accessor Methods

These are the properties and associated accessor methods of a G2Radiobox
component:

com.gensym.controls.Radiobox

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute
associated with this component, as a
com.gensym.util.Symbol.

When initializing this property in
code, call Symbol.intern(String
string), where string is the attribute
name as an upper-case string.

columns

getColumns

setColumns

int The number of columns that the
G2Radiobox uses to align its members.
The default value is 1.

defaultContents

getDefaultContents

setDefaultContents

String The default value of the component, as
a java.lang.String, when it receives
an objectUpdated event and the G2
attribute named by the attribute
property does not provide an initial
value.

fieldType

getFieldType

setFieldType

FieldType The G2 type converter for the values
that this component represents. See
“FieldType and FieldTypeEditor
Classes” on page 220.
272 Part IV Using Dialogs

G2Radiobox
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

insets

getInsets

setInsets

Insets The size of the container’s border, as a
java.awt.Insets.

Note: Overrides insets in java.awt.
Container.

labels

getLabels

setLabels

StringVector The label for each radio box, as a com.
gensym.beansruntime.StringVector.

If the label property is not specified,
the value of the members property is
uses for the labels.

members

getMembers

setMembers

StringVector The members that this component
includes, as a com.gensym.
beansruntime.StringVector.

The value of the fieldType property
must be able to parse the strings in the
vector according to the specified G2
type.

If the G2 attribute associated with this
component defines an enumerated list
of values, using the has values syntax,
the choices must match some or all of
the values defined in the attributes of
the class.

rows

getRows

setRows

int The number of rows that the
G2Radiobox uses to align its members.
The default value is 3.

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 273

Chapter 15 Using Dialog Components
Events
These are the events that a G2Radiobox component generates:

For details on the objectChanged event, see these classes in the G2 JavaLink com.
gensym.dlgevent package:

• ObjectChangeListener

• ObjectChangeEvent

For details on the itemStateChanged event, see these classes in the java.awt
package:

• ItemListener

• ItemEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of a G2Radiobox component:

Event Description

itemStateChanged Dispatched when the state of this item
changes.

objectChanged Dispatched when the user clicks a
G2Radiobox button.

Method Argument Description

objectUpdated ObjectUpdateEvent Responds to ObjectUpdateEvents by
setting the value of this component to
the current value of the attribute that
this component represents.

setEnabled boolean Specifies whether this component can
respond to user input and generate
events.

Note: Overrides setEnabled in java.
awt.Component.

setState String Sets the selected radio button based on
a String, which must match one of the
strings in members.
274 Part IV Using Dialogs

G2Radiobox
For details on the objectUpdated method, see these classes in the G2 JavaLink
com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Example

This example shows how to create a simple dialog that lets the user choose from
one of two values to set an attribute of a G2 item whose value is a G2 truth-value:

G2Radiobox

ItemProxy

ItemRetriever
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 275

Chapter 15 Using Dialog Components
Here is the properties dialog for the G2Radiobox, which specifies the attribute,
fieldType, labels, members, and rows properties:

Here is the dialog that appears when you launch:
276 Part IV Using Dialogs

G2TextField
G2TextField
Use a G2TextField component to obtain data from a user. The field is type
sensitive. If the value does not match the type you specify, the component can
display a warning message. This component extends java.awt.TextField or
javax.swing.JTextField.

The G2TextField is a visual component with this icon:

Properties and Accessor Methods

These are the properties and associated accessor methods of a G2TextField
component:

com.gensym.controls.G2TextField

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute
associated with this component,
as a com.gensym.util.Symbol.

When initializing this property
in code, call Symbol.
intern(String string), where
string is the attribute name as
an upper-case string.

caretPosition

getCaretPosition

setCaretPosition

int The current position of the
cursor in the G2TextField, as an
integer.

Note: This property is inherited
from java.awt.TextComponent.

defaultContents

getDefaultContents

setDefaultContents

String The default value of the
component, as a java.lang.
String, when it receives an
objectUpdated event and the G2
attribute named by the
attribute property does not
provide an initial value.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 277

Chapter 15 Using Dialog Components
editable

getEditable

setEditable

boolean Determines whether the user can
edit the value of the
G2TextField. The default value
is true. Set to false to make the
field read-only.

Note: This property is inherited
from java.awt.TextComponent.

emptyFieldImpliesNull

getEmptyFieldImpliesNull

setEmptyFieldImpliesNull

boolean Determines how G2 interprets an
empty G2TextField. The default
value is false, which means the
user must always provide a
value for the G2TextField.

Set this property to true to allow
the user to leave the
G2TextField blank, which G2
interprets as the symbol none.
Thus, if the field is empty, any
G2 expression that tests for the
existence of the specified
attribute returns false.

You can only set this property to
true for an untyped attribute;
setting it to true for a typed
attribute has no effect.

fieldType

getFieldType

setFieldType

FieldType The G2 type converter for the
values that this component
represents. See “FieldType and
FieldTypeEditor Classes” on
page 220.

lowerLimit

getLowerLimit

setLowerLimit

double For numeric field types, specifies
the lower limit of a range of
allowable values, when the
lowerLimitMode property is
Exclusive or Inclusive.

Property
Get Property
Set Property Type Description
278 Part IV Using Dialogs

G2TextField
lowerLimitMode

getLowerLimitMode

setLowerLimitMode

LimitMode For numeric field types,
determines whether the value of
the G2TextField can include the
lowerLimit property. The value
is a com.gensym.controls.
LimitMode, which can be
Inclusive or Exclusive.

propagateEveryKeyTyped

getPropagateEveryKeyTyped

setPropagateEveryKeyTyped

boolean Determines whether the
component generates an
objectChanged event for each
character the user enters, or only
for focusLost or
actionPerformed events. The
default is false.

selectionEnd

getSelectionEnd

setSelectionEnd

int The cursor position of the end of
the selected text, as an integer.

Note: This property is inherited
from java.awt.TextComponent.

selectionStart

getSelectionStart

setSelectionStart

int The cursor position of the
beginning of the selected text, as
an integer.

Note: This property is inherited
from java.awt.TextComponent.

showQuotesForTextType boolean When fieldType is Text,
determines whether the
component requires the user to
enter double quotes around the
text. The default is true.

upperLimit double For numeric field types, specifies
the upper limit of a range of
allowable values, when the
upperLimitMode property is
Exclusive or Inclusive.

Property
Get Property
Set Property Type Description
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 279

Chapter 15 Using Dialog Components
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

upperLimitMode LimitMode For numeric field types,
determines whether the value of
the G2TextField can include the
upperLimit property. The value
is a com.gensym.controls.
LimitMode, whose value can be
Exclusive or Inclusive.

warnOnBadSyntax boolean Determines whether the
component displays an error
message if the data type of the
value entered does not match the
fieldType property of the
component. The default is true,
which means the dialog becomes
modal if the user enters a bad
value.

These are some of the error
messages a G2TextField, by
default:

• Incompatible type warning
if the user does not enter a
text value in quotation marks
when
showQuotesForTextType is
true.

• Incomplete text message if
the user does not complete
the field.

To prevent these errors from
displaying, set this property to
false.

Property
Get Property
Set Property Type Description
280 Part IV Using Dialogs

G2TextField
Events
These are the events that a G2TextField component generates:

For details on the objectChanged event, see these classes in the G2 JavaLink com.
gensym.dlgevent package:

• ObjectChangeListener

• ObjectChangeEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of a G2TextField component:

For details on the objectUpdated method, see these classes in the G2 JavaLink
com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

This component defines this protected method, which subclasses can call:

• fireObjectChangeOnContents

Event Description

objectChanged Dispatched when the text of the
G2TextField changes.

Method Argument Description

objectUpdated ObjectUpdatedEvent Responds to ObjectUpdateEvents
by setting the value of this
component to the current value of
the attribute that this component
represents.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 281

Chapter 15 Using Dialog Components
Examples
Editing Numeric Data Types
This example shows how to use a G2TextField to edit numeric data types,
including a G2 integer, float, and quantity. The Range field allows the user to enter
a number between 0.0 and 100, excluding 100.

ItemProxy

ItemRetriever

G2TextField
fieldType = Integer

G2TextField
fieldType = Float

G2TextField
fieldType = Quantity

G2TextField
fieldType = Quantity
lowerLimit = 0.0
lowerLimitMode = Inclusive
upperLimit = 100
upperLimitMode = Exclusive
282 Part IV Using Dialogs

G2TextField
Here is the dialog that appears when you launch, which gets the default values of
each G2TextField from the corresponding G2 attribute:

Here is the dialog that appears when you edit values in the text fields and the
corresponding values in the G2 attribute table. Note that, by default, the value
only gets updated in G2 when the user presses the Return key or moves the
cursor to another field.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 283

Chapter 15 Using Dialog Components
If the user attempts to enter a value for any text field that is not of the correct type
or within the specified range, the G2TextField displays an error dialog, as this
figure shows:

Editing Textual Data Types and Untyped Attributes
This example shows how to use a G2TextField to edit textual and untyped
attributes. The Text field represents an attribute that takes a G2 text data type,
while the Untyped field represents an attribute with no type specification at all.
284 Part IV Using Dialogs

G2TextField
The Text field hide quotes and propagates every key as it is typed. The Untyped
field allows the user to leave the field blank to imply a value of none.

This figure shows two stages of editing the Text field in the dialog that is
launched and the corresponding attributes in the G2 table. The Text field notifies
G2 of changes each time the user enters a character in the field. The value of the
Text field is a G2 string that includes double quotes, although the user does not
need to enter them in the dialog. The value of the Untyped field is the symbol
none, indicating that the blank field implies that the attribute “does not exist”

ItemRetriever

ItemProxy

G2TextField
fieldType = Text
propagateEveryKeyTyped = true
showQuotesForTextType = false

G2TextField
fieldType = Value
emptyFieldImpliesNull = true

G2TextField
fieldType = Text
editable = false
showQuotesForTextType = false
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 285

Chapter 15 Using Dialog Components
according to the G2 compiler. The Read-only field gets updated each time the
Text field changes.

2

1

286 Part IV Using Dialogs

G2TextField
This figure shows the result of entering a value in the Untyped field and enabling
the following G2 rule, which tests for the existence of untyped-attribute:

When the Untyped field is left blank, no message appears.

Passing G2TextField Values as Arguments to Methods
One common use of the G2TextField component is to obtain data that a user
inputs and pass it as an argument to a G2 method or procedure that requires it. To
do this:

• Choose an event that notifies listeners when the user has entered the value.

• Create an event hookup from the G2TextField to a component and invoke a
method that takes an argument.

For example, you might use a focusLost event, which occurs when the cursor
moves to another text field, to pass the host and port arguments to the setHost
and setPort methods of a TwConnector.

You can also use this technique to provide arguments to G2 methods or
procedures, which requires that you use the G2 Bean Builder to create a
component representation of a G2 class. When the value gets uploaded to G2,
your application can perform the action, using input data from the G2TextField.
For an example, see “Using G2 Item Components in Dialogs” on page 226.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 287

Chapter 15 Using Dialog Components
This dialog allows the user to set the host and port of the G2 to which to connect,
then connect to the specified server:

When you connect the textValueChanged events from the G2TextField
components and you choose the specified target methods, the Edit Arguments
dialog appears for you to specify the arguments to the methods. In both cases, the
argument to the target method is the text property of the source, which is the
G2TextField. This figure shows the configured Edit Arguments dialog for both
target methods:

When the user enters values for the Host and Port fields, the TwConnector calls its
setHost method with the text value entered in the Host field as its argument, and
it calls its setPort method with the text value entered in the Port field as its

TwConnector

G2Button

G2TextField
288 Part IV Using Dialogs

G2TextField
argument. When the user clicks the Connect button, the TwConnector uses the
specified host and port information to create the connection, as this dialog shows:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 289

Chapter 15 Using Dialog Components
ItemProxy

An ItemProxy component represents an item in G2. When you create a custom
item properties dialog, you use an ItemProxy to represent the item whose
attributes the dialog displays and edits.

If you are building dialogs in a JavaBeans-compliant visual programming
environment, you can use an ItemProxy with an ItemRetriever to connect to G2
and retrieve an item to test the dialog.

You can also use an ItemProxy to edit the attributes of a subobject.

The ItemProxy handles objectUpdated and objectChanged events for the
attributes your dialog is displaying.

The ItemProxy is not a visual component, though it uses this representation:

com.gensym.controls.ItemProxy
290 Part IV Using Dialogs

ItemProxy
Properties and Accessor Methods

These are the properties and associated accessor methods of an ItemProxy
component:

Property
Get Property
Set Property Type Description

attributes

getAttributes

setAttributes

SymbolVector The names of the G2 attributes
connected to this ItemProxy as a
com.gensym.controls.
SymbolVector.

When initializing this property in
code, call Symbol.intern(String
string), where string is the
attribute name as an upper-case
string.

autoDownload

getAutoDownload

setAutoDownload

boolean Determines when the ItemProxy
downloads value changes from G2
to a data-aware component. The
default value is true, which causes
the ItemProxy to download value
changes from G2 to a component
as they occur. Set this property to
false to hold value changes from
G2 for downloading all at once,
using an OK or Apply button.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 291

Chapter 15 Using Dialog Components
For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

Events
These are the events that an ItemProxy component generates:

For details, see these classes in the following G2 JavaLink packages:

• com.gensym.util.ItemListener

• com.gensym.dlgevent.ObjectUpdateListener and ObjectUpdateEvent

autoUpload

getAutoUpload

setAutoUpload

boolean Determines when the ItemProxy
uploads value changes from a
data-aware component to G2. The
default value is true, which causes
the ItemProxy to upload value
changes from a component to G2
as they occur. Set this property to
false to hold value changes from
the dialog components for
uploading to G2 all at once, using
an OK or Apply button.

subObjectAttribute

getSubObjectAttribute

setSubObjectAttribute

Symbol The name of a G2 attribute
associated with this component
that contains a subobject, as a com.
gensym.util.Symbol.

When initializing this property in
code, call Symbol.intern(String
string), where string is the
attribute name as an upper-case
string.

Property
Get Property
Set Property Type Description

Event Description

itemDeleted Dispatched when the item that this
component represents gets deleted in G2.

objectUpdated Dispatched when the value of the attribute
that this component represents gets
updated in the G2 server.
292 Part IV Using Dialogs

ItemProxy
For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of an ItemProxy component:

Method Argument Description

download N/A Causes the ItemProxy to
download a new attribute value
from G2 to a data-aware
component.

editItem N/A Launches a dialog for editing the
item that this ItemProxy
represents.

getProxy N/A Returns the com.gensym.
classes.Item that this
ItemProxy represents in G2
JavaLink.

itemRetrieved ItemRetrievalEvent Responds to com.gensym.
controls.ItemRetrievalEvents
by retrieving the item that this
ItemProxy represents.

itemRetrievalFailed ItemRetrievalEvent Responds to com.gensym.
controls.ItemRetrivalEvents
by generating a com.gensym.
jgi.G2AccessException and a
com.gensym.message.
MessageEvent, which indicates
that the ItemProxy could not
retrieve the item. This method
also clears the current item.

objectChanged ObjectChangeEvent Responds to
ObjectChangeEvents by calling
the upload method of the
ItemProxy, if autoUpload is
true, which uploads changes in
the attributes of the item that the
ItemProxy holds, from a
component to G2.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 293

Chapter 15 Using Dialog Components
For details on the objectChanged and objectUpdated methods, see these classes
in the G2 JavaLink com.gensym.dlgevent package:

• ObjectChangeListener and ObjectChangeEvent

• ObjectUpdateListener and ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Examples
Automatically Uploading and Downloading Changes
This dialog allows the user to edit several textual attributes of a G2 item named
demo-item, which is an instance of demo-class. The ItemProxy generates
objectUpdated events when the G2 item changes, and it receives objectChanged
events when the dialog component changes. Because the Read-only field is read-
only, the ItemProxy simply generates objectUpdated events.

Because the autoUpload property is set to true, the default, the ItemProxy
automatically uploads changes based on objectChanged events from the
G2TextField components to G2. Similarly, because the autoDownload property is
set to true, also the default, the ItemProxy automatically downloads changes
based on objectUpdated events from G2 to the G2TextField components.

objectUpdated ObjectUpdatedEvent Responds to
ObjectUpdateEvents by calling
the download method of the
ItemProxy, if autoDownload is
true, which downloads changes
in the attributes of the item that
the ItemProxy holds, from G2 to
a component.

setProxy Item Sets the com.gensym.classes.
Item that the ItemProxy
represents. Pass null to clear the
current item.

upload N/A Causes the ItemProxy to upload
changed attribute values from a
component to G2.

Method Argument Description
294 Part IV Using Dialogs

ItemProxy
The ItemProxy also receives an itemRetrieved event from an ItemRetriever,
which invokes the proxy’s itemRetrieved method to retrieve the item.

For an example of using an ItemRetriever when autoUpload and autoDownload
are set to false, see “Example” on page 234 under DialogCommand.

Editing Attributes of a Subobject
You can use an ItemProxy to edit the attributes of an object that is defined as a
subobject of another object. For example, you might define the location attribute
of an instance of the company class to be an instance of a building class, which
defines these attributes:

• street-address

• city

ItemRetriever

ItemProxy
attributes = [TEXT-ATTRIBUTE,

UNTYPED-ATTRIBUTE,
READ-ONLY-ATTRIBUTE]

autoDownload = true
autoUpload = true

G2TextField
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 295

Chapter 15 Using Dialog Components
• state

• zip-code

To edit the attributes of a subobject, you use two ItemProxy components, as
follows:

• One ItemProxy names the attribute of the item that defines the subobject, for
example, LOCATION, which receives events from the connection component.

• The other ItemProxy names the attributes of the subobject, for example,
STREET-ADDRESS, CITY, STATE, and ZIP-CODE, and specifies the subobject
attribute as the value of the subObjectAttribute property.

You hookup the components as follows:

• Connect a connection component, such as a ItemRetriever, to the first
ItemProxy to retrieve the item.

• Connect the first ItemProxy to the second ItemProxy, using a standard
objectUpdated event.

• Connect scalar controls, such as a G2TextField, to the second ItemProxy,
using standard objectUpdated and objectChanged events.

This figure shows such a dialog, used for editing the location of a company:

ItemProxy

ItemProxy

ItemRetriever

G2TextField

2

1

296 Part IV Using Dialogs

ItemProxy
This figure shows the properties dialogs for each ItemProxy in the previous
diagram:

2

1

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 297

Chapter 15 Using Dialog Components
Here is the dialog that appears when you launch and the corresponding table in
G2:
298 Part IV Using Dialogs

ItemProxy
Finally, here are the class definitions for the company and building, as well as the
gensym item and its table:

For an explanation of the headquarters attribute, see “StructureMUX” on
page 300.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 299

Chapter 15 Using Dialog Components
StructureMUX
Use a StructureMUX component to represent G2 structure values, which you
cannot view in a single component. You use one of the scalar controls to view and
edit the elements of the structure. The scalar controls represent the attributes
within the structure, while the StructureMUX represents the structure attribute.

A StructureMUX is not a visual component, but it uses this representation:

Properties and Accessor Methods

These are the properties and associated accessor methods of a StructureMUX
component:

For information on the additional properties that this component includes, see
“Using Standard Java Properties” on page 224.

com.gensym.controls.StructureMUX

Property
Get Property
Set Property Type Description

attribute

getAttribute

setAttribute

Symbol The name of the G2 attribute
associated with this
component, as a com.
gensym.util.Symbol.

When initializing this
property in code, call
Symbol.intern(String
string), where string is the
attribute name as an upper-
case string.
300 Part IV Using Dialogs

StructureMUX
Events
These are the events that a StructureMUX component generates:

For details, see these classes in the G2 JavaLink com.gensym.dlgevent package:

• ObjectChangeListener and ObjectChangeEvent

• ObjectUpdateListener and ObjectUpdateEvent

For information on the standard events that this component generates, see “Using
Standard Java Events and Methods” on page 225.

Methods

These are the target methods of a StructureMUX component:

For details on the objectUpdated method, see these classes in the G2 JavaLink
com.gensym.dlgevent package:

• ObjectUpdateListener

• ObjectUpdateEvent

For information on the standard methods that this component defines, see “Using
Standard Java Events and Methods” on page 225.

Event Description

objectChanged Dispatched when the value of this
component changes. You connect an
objectChanged event from the
StructureMUX to an ItemProxy.

objectUpdated Dispatched when the value of the attribute
that this component represents gets
updated in the G2 server. You connect an
objectUpdated event from the
StructureMUX to a scalar control, such as a
G2TextField.

Method Argument Description

objectUpdated ObjectUpdatedEvent Responds to ObjectUpdateEvents
by setting the value of this
component to the current value of
the attribute that this component
represents.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 301

Chapter 15 Using Dialog Components
Example

This dialog shows how to use a StructureMUX with a G2TextField and a
G2DropDownChoice to edit the attributes of a G2 structure. The structure has two
attributes, city and state, each of which is a type of symbol. To set up the dialog to
edit the structure in G2 and to receive updates to the structure in the dialog, you
use objectChanged and objectUpdated events, as follows:

• The objectChanged events flow from the scalar controls, the G2TextBox and
G2DropDownChoice, to the StructureMUX, and from the StructureMUX to the
ItemProxy.

• The objectUpdated events flow from the ItemProxy to the StructureMUX,
and from the StructureMUX to the scalar controls.

In addition, you must specify the attribute property of the controls as follows:

• The attribute of the StructureMUX is the name of the attribute whose value
is a G2 structure.

• The attribute of the scalar controls is the name of the attributes of the
structure.

The following figure shows the event hookups and attribute properties of the
sample dialog:

StructureMUX
attribute = HEADQUARTERS

ItemProxy

ItemRetriever

G2TextField
attribute = CITY

G2DropDownChoice
attribute = STATE
choices = [ME, VT, MA, NH, RI, CT]
302 Part IV Using Dialogs

StructureMUX
This figure shows the dialog that appears when you first launch the dialog and
the corresponding structure in G2, which provides defaults for the G2TextField
and G2DropDownChoice:

This figure shows the result of changing the City and State fields in the dialog and
the changed structure in G2:
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 303

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part IV Using Dialogs
Chapter 16 Launching Custom Item Properties Dialogs
Version 3.1 Mode: Working Size: 7x9x11
16
Launching Custom Item
Properties Dialogs
Describes how to register custom item properties dialogs with a dialog manager to
replace automatically generated dialogs for editing the properties of G2 items.

Introduction 305

Packages Covered 307

Relevant Demos 307

Registering Custom Item Properties Dialog Resources 308

Registering Custom Item Properties Dialog Classes 316

Creating Your Own Dialog Manager 318

Introduction

When you create a custom item properties dialog to replace the automatically
generated dialog for a specific G2 class or item, you need to configure the
Telewindows2 (TW2) Toolkit client to launch the custom dialog.

You have two options for creating and launching individual custom item
properties dialogs:

• Use a JavaBeans-compliant visual programming environment to create a
dialog resource, which is a serialized (.ser) file, then register the resource
with the DialogManager by specifying a G2 media bin, a URL location, or a
serialized dialog resource file located on the client.

• Use Java to create a dialog class, then register that class with the
DialogManager by specifying its name.
305

Chapter 16 Launching Custom Item Properties Dialogs
Because the TW2 Toolkit dialog components are packaged as Java Beans, you can
create custom item properties dialogs in a JavaBeans-compliant visual
programming environment, such as Symantec Visual Café or Borland J Builder.

Registering dialog resources and dialog classes requires calling a version of this
method on a com.gensym.dlgruntime.DialogManager:

setDialogResourceEntry

Typically, when you register custom item properties dialogs, you call the method
from your G2 application as a remote procedure call (RPC). To do this, you:

• Declare the RPC in G2.

• Create a procedure that calls the RPC.

• Create a rule that calls your procedure when it detects that a TW2 Toolkit
client session has been established.

You can register dialogs with an entire class of items or an individual instance of a
class. You can also specify a locale when you register the dialog resource to
localize dialog text.

When you create custom item properties dialog classes in a visual Java
programming environment, the class you create must implement the com.
gensym.dlgruntime.SingleItemEditor or MultipleItemEditor interface, which
allows editing of one or multiple items through the dialog class. You represent the
item or items to edit by using a com.gensym.controls.ItemProxy.

This chapter describes:

• How to register dialog resources in G2, using an RPC call.

• The steps required to create a dialog class in Java and how to register those
dialog classes, using an RPC call.

• How to create your own DialogManager for registering dialog resources or for
customizing the behavior when the user chooses Properties on an item.

For information on... See...

Customizing automatically
generated dialogs for classes based
on their contents

“Customizing Automatically
Generated Dialogs” on page 321.

Using the DialogManager to
manage and launch general
dialogs.

Chapter 18, “Launching
General Dialogs” on page 337.
306 Part IV Using Dialogs

Packages Covered
Packages Covered

com.gensym.dlgruntime
Interfaces

Commandable
DialogManagerFactory
SingleItemEditor
MultipleItemEditor

Classes
DefaultDialogManagerFactory
DialogManager

com.gensym.classes
Interfaces

MediaBin

Relevant Demos
The dialog resources that this chapter shows how to register are available online
in this directory, depending on your platform:

To run these dialog resources, you must load this KB file into G2, depending on
your platform:

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\
customdialogs

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/
customdialogs

NT: %SEQUOIA_HOME%\kbs\dialog-demo.kb

UNIX: $SEQUOIA_HOME/kbs/dialog-demo.kb
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 307

Chapter 16 Launching Custom Item Properties Dialogs
Registering Custom Item Properties Dialog
Resources

When a client application creates a G2 connection, the connection creates an
associated com.gensym.dlgruntime.DialogManager. Once the custom dialog
exists as a resource in a G2 media bin, you must register it with the
DialogManager associated with the connection to use it in place of the
automatically generated properties dialog for an item.

The DialogManager is responsible for launching and managing both custom and
automatically generated item properties dialogs. To do this, it:

• Determines the resource to use.

• Generates the dialog resource, if necessary.

• Caches the dialog resource on the client after generating it.

Caching the generated resource on the client eliminates the need to re-create the
dialog resource each time a request is made to view item properties.

If your application registers a custom item properties dialog resource for an item
with the DialogManager after connecting to G2, whenever a user chooses
Properties from the item’s popup menu or double-clicks an item, the
DialogManager launches the custom dialog rather than the automatically
generated one.

You register custom dialog resources by completing these tasks in G2:

• Monitor client sessions through a whenever rule. When a TW2 Toolkit client
establishes a session, G2 can register custom item properties dialogs with the
client’s DialogManager.

• Create a remote procedure declaration for the DialogManager method
setDialogResourceEntry, called set-dialog-resource-entry.

• Call the set-dialog-resource-entry remote procedure from G2 to register one or
more custom item properties dialog resources with a class of items or an
individual instance.

• Create a procedure that calls the remote procedure across the interface
associated with the TW2 Toolkit client session.

The following sections explain these steps in more detail.

Monitoring Client Sessions
As described in “Determining the Connectivity Class to Use” on page 30,
whenever a TW2 Toolkit client establishes a connection, G2 creates an instance of
a ui-client-interface to represent the client connection. Similarly, whenever the
308 Part IV Using Dialogs

Registering Custom Item Properties Dialog Resources
client establishes a login session, G2 creates a ui-client-session item to represent
the login session.

You can monitor client session activity in G2 by using a whenever rule. For
example, this is the text of the rule that the dialog-demo.kb uses, which passes
the ui-client-session item to the dialog registration procedure:

whenever any ui-client-session session is activated
then start demo-dialog-registration-procedure (session)

The client session is an instance of a gsi-interface. You call the remote procedure
across this interface, as described in “Creating a Procedure that Calls the RPC
Across the Interface” on page 315.

Declaring the Remote Procedure in G2
To register one or more custom dialogs from G2, you must write a procedure that
calls the DialogManager class method setDialogResourceEntry remotely,
through the use of a G2 remote procedure call (RPC) declaration.

The setDialogResourceEntry method is one of several TW2 Toolkit
DialogManager class methods of that name. The method you call to register
custom item dialog resources is specifically for use from G2 and indicates
whether a resource exists for a dialog, and if it does, the location of that resource.
The registration method also allows you to register dialog classes by specifying
the Java class name instead of the resource location.

The sequoia-support.kb module includes this remote procedure declaration:

Your KB must include a remote-procedure-declaration with this signature. For
more information about remote procedure declarations, see the G2 Reference
Manual.

Calling the Remote Procedure
The procedure you write to register one or more custom item dialog resources or
classes calls the setDialogResourceEntry method of the com.gensym.
dlgruntime.DialogManager class as a remote procedure call.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 309

Chapter 16 Launching Custom Item Properties Dialogs
This is the signature of the remote procedure:

set-dialog-resource-entry
(item-or-class: (item-or-value as handle), user-mode: symbol,
 locale: structure, resource-description: (structure as handle))

The following sections explain the locale and resource-description structure
arguments, provide examples of different types of resource descriptions, and
show how to register a custom item properties dialog resource for a G2 class and
for a G2 instance.

Locale Structure
The locale structure consists of these three subattributes for localizing the dialog
resource text:

Argument Description

item-or-class The G2 item or class, as a handle, for
which a dialog is to be launched. Specify
this as either:

• An instance name: my-object

• A class name: the symbol class-name

user-mode The G2 user mode for which the dialog
resource is applicable, as a symbol.

locale A G2 structure consisting of language,
country code, and variant subattributes.

resource-description A G2 structure, described after the locale
structure, as a handle, of the dialog
resource location or dialog class name,
and whether it is applicable to an entire
class.

Subattribute Type Description

language text A two-character language code as
a text value.

country text A two-character country code as a
text value.

variant text An optional code that is vendor-
and browser-specific.
310 Part IV Using Dialogs

Registering Custom Item Properties Dialog Resources
Both the language and country values are lower-case, two-letter codes defined by
the two standards:

• ISO Language Code

• ISO Country Code

For more information, refer to the API documentation for java.util.Locale.

For example, you might declare the locale structure argument for your client in a
local variable of your procedure. As an example, the dialog-demo.kb sample
procedure declares the locale argument as follows for a particular operating
system:

{The locale structure for US. See java.util.Locale. }
locale: structure = structure (LANGUAGE: "en", COUNTRY: "US");

Resource Description Structure
The resource-description structure consists of these subattributes:

Subattribute Type Description

source item-or-value The type of location for your dialog
resource or class. The options are:

• MediaBin

• the symbol URL

• the symbol FILE

• the symbol JAVA-CLASS

If you are registering a dialog resource,
then you specify one of the first three
values and a corresponding value for the
location attribute.

If you are registering a dialog class, then
you specify the last value and a
corresponding value for the class-name
attribute.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 311

Chapter 16 Launching Custom Item Properties Dialogs
If the source subattribute contains the symbol URL, there should be an attribute
that holds a string containing the protocol, such as "http", and the location is used
as the tail of the URL.

If the source attribute contains the symbol FILE, the location subattribute should
contain a file name.

You specify either the location or class-name subattribute, but not both,
depending on the value of the source subattribute.

The following sections provide examples of registering dialog resources stored in
a media bin, as a URL, and in a file.

For an example of registering a dialog class, see “Registering Custom Item
Properties Dialog Classes” on page 316.

Specifying a Media Bin Resource Location
If you stored your dialog resource in a media bin within your KB, you specify:

• The source subattribute as the name of the media bin you created, as a
symbol.

• The location subattribute as the serialized dialog resource file name in the
media bin, as a text string, preceded with a slash (/) character.

location text The specific location of the dialog
resource. You specify the location in
conjunction with the source subattribute,
as follows:

• MediaBin: A text string that defines a
pathname in the MediaBin, separated
by slashes.

• URL: The full URL path, including the
protocol, such as FTP or HTTP.

• FILE: The pathname for the file.

class-name string The fully qualified Java class name as a
string, for example:

"com.test.dlg.EmployeeDialog"

applicable-for-class truth-value Whether the dialog should be used for the
entire class of items. You specify this
attribute only when you do not want to
use a custom item properties dialog for an
entire class. The default value is true.

Subattribute Type Description
312 Part IV Using Dialogs

Registering Custom Item Properties Dialog Resources
For an explanation of the across intf statement in the following example, see
“Creating a Procedure that Calls the RPC Across the Interface” on page 315.

To specify a media bin location:
call set-dialog-resource-entry

(tank-1,
the symbol ADMINISTRATOR,
locale,
structure

(SOURCE: my-media-bin,
LOCATION: "/tank1.ser",
APPLICABLE-FOR-CLASS: false))

across intf;

Specifying a URL Resource Location
If your serialized dialog resource file is accessible through a URL location, you
specify:

• The source subattribute as URL.

• The location subattribute as the actual URL, as a text string.

To specify a URL location:
call set-dialog-resource-entry

(tank-1,
the symbol ADMINISTRATOR,
locale,
structure

(SOURCE: the symbol URL,
LOCATION: "http://mydir/my-special-dir/tank1.ser",
APPLICABLE-FOR-CLASS: false))

across intf;

Specifying a File Resource Location
While we do not recommend saving a dialog as a serialized file and managing it
as a separate resource, your application might need to do this. If you saved your
serialized dialog resource file on the disk, you specify:

• The source subattribute as the symbol FILE.

• The location subattribute as the directory path to the dialog resource file, as a
text string.

For example, your application might create a custom dialog resource for the tank1
instance of the tank class, named tank1.ser. To do this, create a local text variable
for the location of the dialog file, for example:

DialogLocation: text;
DialogLocation = "c:\Program Files\Gensym\g2-6.1\tw2\resources\tank1.ser";
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 313

Chapter 16 Launching Custom Item Properties Dialogs
To specify a file location using a variable:
call set-dialog-resource-entry

(tank-1,
the symbol ADMINISTRATOR,
locale,
structure

(SOURCE: the symbol FILE,
LOCATION: DialogLocation,
APPLICABLE-FOR-CLASS: false))

across intf;

Registering a Custom Dialog for a Class
To register a custom dialog resource for an entire class of items, specify the first
argument to the set-dialog-resource-entry remote procedure as follows:

the symbol class-name

In addition, the applicable-for-class subattribute of the resource-description
structure determines whether the dialog resource file you pass to the
set-dialog-resource-entry remote procedure is for the entire class or for the
instance named by the first argument.

By default, the value of this subattribute is true. Thus, when registering a custom
dialog resource for a class, you do not need to provide this subattribute. For
example, the dialog-demo.kb calls the procedure as follows to register a custom
dialog for the entire dial class of items:

{ Use a single overriden resource from media-1 for all dials }
call set-dialog-resource-entry

(the symbol DIAL,
the symbol ADMINISTRATOR,
locale,
structure (SOURCE: media-1, LOCATION: "/dial.ser"))
across intf;

Registering a Custom Dialog for Items
You can register a custom item property dialog for an individual instance of a
class by providing the item as the first argument to the remote procedure.

In addition, if you do not want to register the custom item property dialog for an
entire class, you must explicitly specify the applicable-for-class subattribute as
false.

The dialog-demo.kb illustrates how to register custom dialog resources for two
instances of the juggler class. The dialog resource for the instance named jughead
is stored with the KB in the media-bin item called media-1, while the dialog
resource for the instance named johnny is stored in a specific location on the
client. Notice that in both cases, the applicable-for-class subattribute is explicitly
set to false.
314 Part IV Using Dialogs

Registering Custom Item Properties Dialog Resources
{ Use specific resources for JUGHEAD (from media-1) and JOHNNY (from disk) }
call set-dialog-resource-entry

(jughead,
the symbol ADMINISTRATOR,
locale,
structure (SOURCE: media-1, LOCATION: "/jughead.ser",
APPLICABLE-FOR-CLASS: false))
across intf;

call set-dialog-resource-entry
(johnny,
the symbol ADMINISTRATOR,
locale,
structure (SOURCE: the symbol FILE, LOCATION: dlgLocn,
APPLICABLE-FOR-CLASS: false))
across intf;

In the dialog-demo.kb, the DialogManager automatically generates dialogs for
all other instances of the juggler class.

Creating a Procedure that Calls the RPC Across the
Interface

When creating a procedure to register custom dialog resources, you must pass the
ui-client-session item as an argument to the procedure to obtain the interface
across which to call the remote procedure.

To create a procedure that calls the RPC across the interface:

1 Create a procedure that passes the ui-client-session as an argument, for
example:

my-dialog-registration-procedure (session: class ui-client-session)

2 Call the remote procedure across the interface, by referring to the ui-client-
interface attribute of the ui-client-session, for example:
call set-dialog-resource-entry (tank-1, the symbol ADMINISTRATOR, locale,

structure (SOURCE: the symbol FILE, LOCATION: DialogLocation,
APPLICABLE-FOR-CLASS: false))
across the ui-client-interface of session;
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 315

Chapter 16 Launching Custom Item Properties Dialogs
Registering Custom Item Properties Dialog
Classes

You can create item properties dialogs in Java, using TW2 Toolkit dialog
components. Dialogs that you create in Java are classes.

The technique you use for registering dialog classes created in Java is similar to
the technique you use for registering dialog resources: you call the
setDialogResourceEntry method on the DialogManager as a remote procedure.
However, to register dialog classes, you use a slightly different version of this
method, which specifies a Java dialog class rather than a dialog resource. In
addition, when creating your Java dialog class, you must use particular TW2
Toolkit classes to keep track of the G2 item the dialog is editing.

Telewindows2 Toolkit has been tested with the following two Java-based IDEs:

• Symantec Visual Café

• Borland J Builder

The following sections describe how to:

• Create a dialog class that you can use in a TW2 Toolkit application to edit G2
items.

• Register a Java dialog class within G2.

Creating Dialog Classes for Editing G2 Items
The following steps show the general techniques for defining a Java class for use
as a G2 item properties dialog from within a TW2 Toolkit client application.

Note You must include in your IDE’s CLASSPATH environment variable these JAR files:
sequoia.jar file and coreui.jar, located in the classes directory of the Java
directory of your TW2 Toolkit product directory, and javalink.jar, core.jar,
and classtools.jar, located in the classes directory of your G2 JavaLink
product directory.

To create a dialog class for use as a G2 item properties dialog in the client:

1 Define a Java class for the dialog that inherits from java.awt.Component, or a
subclass, for example, java.awt.Dialog.

2 Define a constructor, which takes no arguments.

Currently, the method that registers the dialog class does not take as one of its
arguments the window from which to launch the dialog. Therefore, if your
dialog class extends java.awt.Dialog, you must provide as part of the
constructor the window from which the dialog is to be launched.
316 Part IV Using Dialogs

Registering Custom Item Properties Dialog Classes
If your TW2 Toolkit client application extends com.gensym.core.
UiApplication, you can provide the window by calling the getCurrentFrame
static method on UiApplication. For example:

import java.awt.Dialog;
import com.gensym.core.UiApplication;

public class MyDialog extends Dialog {
public MyDialog() {

super(UiApplication.getCurrentFrame());
}

}

If your Java application does not extend UiApplication, you are responsible
for getting the frame as part of the constructor.

If your dialog class is not a subclass of java.awt.Dialog, you can define an
empty constructor with no arguments.

For information on UiApplication, see Chapter 9 “Creating Telewindows2
Toolkit Applications” in the Telewindows2 Toolkit Java Developer’s Guide:
Application Classes.

3 Use the following classes to keep track of the item that the dialog is supposed
to edit:

• com.gensym.controls.ItemProxy — Your dialog class should use an
ItemProxy to hold the item being edited.

• com.gensym.dlgruntime.SingleItemEditor — The dialog class must
implement the SingleItemEditor interface. This interface has a single
method, getProxy(), which should return the ItemProxy. The superior
class for the interface, com.gensym.dlgruntime.Commandable, defines the
getDialogCommand method, which can safely return null.

Defining a Procedure that Calls the RPC to Register
the Dialog Class

The following example shows how to call the set-dialog-resource-entry remote
procedure from G2 to associate the Java dialog class with a G2 class for use as a
custom item properties dialog in the client. Once you have registered the dialog
class, choosing Properties from the popup menu for any instance of the class
launches the custom dialog. You can also use set-dialog-resource-entry to register
the dialog class for a particular instance.

The technique for registering the dialog class directly by using the TW2 Toolkit
API from within your Java application would be similar, except that you would
call the setDialogResourceEntry method directly on com.gensym.dlgruntime.
DialogManager.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 317

Chapter 16 Launching Custom Item Properties Dialogs
To register a Java dialog class as a custom properties dialog for a G2 class:

1 Monitor the client session, as described in “Monitoring Client Sessions” on
page 308.

2 Declare the remote procedure, as described in “Declaring the Remote
Procedure in G2” on page 309.

3 Create a procedure that calls set-dialog-resource-entry and provide as the
final structure these subattributes:

• The source subattribute is the symbol JAVA-CLASS.

• The location subattribute is the Java class name that is the dialog, as a text
string.

The following procedure shows an example of registering a Java dialog class for
use as the properties dialog for a G2 class. The key differences between this
method call and the method call shown in the dialog-demo.kb is the last
argument to the set-dialog-resource-entry RPC, which describes the type and
location of the dialog class.

demo-dialog-registration-procedure(session: class ui-client-session)
intf: class gsi-interface = the ui-client-interface of session;
begin

call set-dialog-resource-entry
(the symbol EMPLOYEE,
the symbol ADMINISTRATOR,
structure (LANGUAGE: "en", COUNTRY: "US"),
structure (SOURCE: the symbol JAVA-CLASS,

CLASS-NAME: "com.test.dlg.EmployeeDialog"))
across intf;

end

Creating Your Own Dialog Manager
By default, each connection has an associated DialogManager for launching and
reading dialog resources and dialog classes for use as custom item properties
dialogs. By default, com.gensym.ntw.TwGateway uses a
DefaultDialogManagerFactory to generate a DialogManager for this purpose.

You can create your own DialogManager to customize:

• The behavior when the user choose Properties from the popup menu on an
item.

• The dialog registration procedure that the dialog manager uses, for example,
to register dialog resources that are saved out in a format other than a
serialized file or a Java class file.

You use an implementation of DialogManagerFactory to generate your
DialogManager. You should install the factory in the main method of your
318 Part IV Using Dialogs

Creating Your Own Dialog Manager
application, before you make a connection request. That way, when you register
custom item properties dialogs in G2 by calling setDialogResourceEntry across
an interface, the connection uses the DialogManager that your
DialogManagerFactory creates. When the client makes a connection request, the
connection asks your factory to create a dialog manager, before it actually
connects to G2.

To create your own dialog manager:

1 Subclass DialogManager and override its methods, as needed.

For example, you might override the editItem method to customize the
behavior when the registered dialog resource is requested, or you might
implement your own setDialogResourceEntry method to register different
types of dialog resources.

2 Implement the DialogManagerFactory interface.

3 Install your implementation of DialogManagerFactory by calling the
TwGateway.setDialogManagerFactory static method.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 319

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part IV Using Dialogs
Chapter 17 Customizing Automatically Generated Dialogs
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 22:03:37
 17
Customizing Automatically
Generated Dialogs
Describes how to customize automatically generated dialogs that appear when the
user chooses Properties on an item on a workspace.

Introduction 321

Registering the Generated Dialog Factory 325

Overriding the Editor for Attributes of a Given Type 325

Localizing Attribute Labels 328

Creating Tabs for Groups of Attributes 330

Adding Buttons to Automatically Generated Dialogs 332

Creating a Dialog with User-Defined Attributes Only 334

Introduction
Each connection to G2 has a DialogManager that manages requests for item
properties dialogs. Each DialogManager specifies a GeneratedDialogFactory
that is responsible for generating a properties dialog for a specific item. The com.
gensym.gcg package provides the DefaultGeneratedDialogFactory class, a
default implementation of the GeneratedDialogFactory interface, which
provides useful methods for each step in the creation and assembly of a dialog.
321

Chapter 17 Customizing Automatically Generated Dialogs
You can create your own factory to customize automatically generated properties
dialogs for items. Typically, you subclass DefaultGeneratedDialogFactory and
customize the automatically generated dialogs by using one of two approaches:

• Bottom-up — Call super in the subclass constructor, then override various
methods to customize the default dialog components.

• Top-down — Call various methods on DefaultGeneratedDialogFactory to
construct the dialog from scratch from its components.

You set the factory in the DialogManager associated with a connection.

DeafultGeneratedDialogFactory
To customize an automatically generated dialog, using a bottom-up approach,
you subclass DefaultGeneratedDialogFactory and override one or more of its
methods. For example, to include only user-defined attributes in all automatically
generated item properties dialogs, define a subclass of
DefaultGeneratedDialogFactory and override the getG2AttributeEditor
method. When taking a top-down approach, you would call these methods to
build the dialog from individual components.

The following is a top-down list of some of the public and protected methods in
DefaultGeneratedDialogFactory.

• generateDialog

Explicitly generates a properties dialog for editing an item. This method
implicitly calls the generateAttributePanel and
generateCommandButtonPanel methods and determine the contents of the
dialog.

• generateAttributePanel

Creates a java.awt.Container for the attribute panel area and tab pages
of the automatically generated dialog. When subclassing
DefaultGeneratedDialogFactory, calling this method on the superior
class automatically creates a Notes tab whenever the item has notes and
hides it otherwise. When constructing a dialog from scratch, you can call
this method on the superior class to create the attribute panel and tab
pages and place the results inside your own type of container.

• getAttributeEditors

Returns a list of AttributeEditor objects for an item, which allows you to
rearrange the attributes and editors within a tab page or across tab pages

• getAttributeInfos

Returns a list of com.gensym.gcg.AttributeInfo objects for an item,
which provides access to the visible attributes for the current user mode of
322 Part IV Using Dialogs

Introduction
the connection. You can use this information to filter the attributes to
include in the automatically generated dialog.

• getG2AttributeEditor

Returns the com.gensym.gcg.G2AttributeEditor for editing the attribute
of an item, which encapsulates the group name, label, editor, item, and
attribute. You use this method to override any of these features of a single
attribute and implicitly call hookUpEditor.

• getAttributeGroupName

Returns the group name associated with an attribute or set of attributes of
an item. By default, the notes are assigned to the NOTES_GROUP, the item
configurations are assigned to the CONFIGURATION_GROUP, and the rest of
the attributes are assigned to the ATTRIBUTES_GROUP. You use this method
to control the groups to which attributes and editors are assigned.

• getAttributeEditor

Returns the AttributeEditor to use for editing a single attribute. For
example, you might want your dialogs to use a dropdown choice rather
than a check box for editing boolean attributes.

• getAttributeLabel

Returns the com.gensym.gcg.AttributeLabel, which is the text label
associated with the attribute name for a given attribute or set of attributes,
in a given locale. You override this method to localize dialog labels and
override the default formatting of attribute labels.

In addition to these methods, DefaultGeneratedDialogFactory defines these
methods:

• hookUpEditor

Provides the necessary event hookups between an AttributeEditor and
an ItemProxy for a particular AttributeEditor, and lets you set whether
the attribute is read-only. This method is generally not designed to be
overridden. Call this method if you are building a dialog from the top
down.

• getGroupNames

Returns a list of names of each attribute group. By default, the dialog
places each attribute group on its own tab page.

• generateCommandButtonPanel

Creates a java.awt.Container for the command button panel area of the
automatically generated dialog. By default, the panel is empty. When
autoUpload on an ItemProxy is false, the panel contains OK, Apply, and
Cancel buttons for accepting the edits and closing the dialog. When
constructing a dialog from scratch, call this method on the superior class
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 323

Chapter 17 Customizing Automatically Generated Dialogs
to create the default behavior of the command button panel and place it
inside your own type of container.

Dialog Components
An automatically generated dialog provides access to these dialog elements,
which you can customize or use to construct your own dialog:

• com.gensym.gcg.AttributeInfo

An object that encapsulates all the information about a particular attribute,
such as its name, type, defining class, whether it is system defined, and so
on. This information is useful in determining whether to include an
attribute on the dialog or what component to use to edit the attribute.

• com.gensym.gcg.G2AttributeGroup

A logical grouping of attribute editors, which you can use to organize the
attributes and editors in the dialog. Each group has a name. For example,
the default implementation creates a tab page for each G2 attribute group.

• com.gensym.gcg.G2AttributeEditor

An object that encapsulates the group name, label, editor, item, and
attribute name. You can override one or more of these features for item
attributes.

• com.gensym.controls.AttributeEditor

An interface that describes the editor to use to edit the attribute of an item.
The editor handles events of type ObjectUpdateEvent.

• com.gensym.controls.FieldType

A class that handles the conversion of G2 data types to Java, and vice
versa. You can obtain the type from any item attribute, then set the field
type of any control in the com.gensym.controls package.

• com.gensym.gcg.AttributeLabel

The label associated with an item attribute. By default, the label is the
attribute name, using spaces in place of hyphens, initial capitalization,
followed by a colon.

• com.gensym.gcg.G2ReadOnlyTextArea

A JScrollPane used for displaying complex attributes such as sequences
and structures or attributes with a grammar or attributes that display
items.

• com.gensym.gcg.SubDialogLauncher

Launches a subdialog for editing an attribute of an item that is an object.
324 Part IV Using Dialogs

Registering the Generated Dialog Factory
• com.gensym.gcg.G2TextArea

A G2ReadOnlyTextArea used for editing attributes with a grammar and
subobjects. G2ReadOnlyTextArea implements com.gensym.gcg.
SubDialogLauncher. If the attribute is a text value with a grammar, calling
launchSubDialog launches the TW2 Toolkit text editor. If the attribute is
an object, clicking the text area launches a properties dialog for editing the
attributes of the subobject.

• com.gensym.gcg.G2ColorField

A com.gensym.controls.G2TextField whose background is a color, used
for editing color attributes. Clicking the text field launches a color dialog
for editing the color.

Registering the Generated Dialog Factory
To override the default automatically generated dialogs, you must create a factory
and set the factory in the DialogManager. You set the factory once for the dialog
manager associated with a connection. To set the factory, call
setGeneratedDialogFactory, which takes an implementation of the
GeneratedDialogFactory interface as its argument.

This line of code registers the generated dialog factory to use the
BooleanEditorFactory shown in “Overriding the Editor for Attributes of a Given
Type” on page 325.

DialogManager().setGeneratedDialogFactory
(new com.gensym.demos.gcg.BooleanEditorFactory());

Overriding the Editor for Attributes of a Given
Type

To override the editor that the automatically generated dialog uses for editing
attributes of a particular type, subclass DefaultGeneratedDialogFactory and
override the getAttributeEditor method to return the AttributeEditor to use
when editing attributes of a given type. All controls in the com.gensym.controls
package implement the AttributeEditor interface.

The signature of this method is:
protected AttributeEditor getAttributeEditor(TwAccess connection,

ItemProxy itemProxy,
DialogCommand dlgCommand,
AttributeInfo info,
Locale locale)

throws com.gensym.jgi.G2AccessException
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 325

Chapter 17 Customizing Automatically Generated Dialogs
To determine the attribute type, call getType on the AttributeInfo argument to
getAttributeEditor and set the return value to a com.gensym.controls.
FieldType. To set the attribute type for the editor, call setFieldType on any
control in the com.gensym.controls package.

If you create your own AttributeEditor, you can explicitly call methods on the
DialogCommand argument to apply and close the dialog. If you are using one of
the editors in the com.gensym.controls package, this is not necessary.

When overriding the attribute editor, you must explicitly call hookUpEditor to
create the necessary event hookups. You can get the attribute name and read-only
status by calling methods on the AttributeInfo as well.

This factory uses a com.gensym.jcontrols.G2ComboBox instead of a G2Checkbox
for boolean attributes; otherwise, the factory uses the default attribute editor:

public class BooleanEditorFactory extends
DefaultGeneratedDialogFactory{

protected AttributeEditor getAttributeEditor
(TwAccess connection, ItemProxy itemProxy,
DialogCommand dlgCommand, AttributeInfo info, Locale locale)
throws G2AccessException{

//Test for boolean attribute types
if (info.getType() instanceof BooleanTruthValueType){

//Create combo box
G2ComboBox comboBox = new G2ComboBox();

//Create and set FieldType
FieldType fieldType = new FieldType(info.getType());
comboBox.setFieldType(fieldType);

//Create and set choices
StringVector choices = new StringVector();
choices.addElement("true");
choices.addElement("false");
comboBox.setChoices(choices);

//Handle events
hookUpEditor((AttributeEditor)comboBox, itemProxy,

info.getAttributeName(),
info.isValueWritable());

return comboBox;
}
else

//Return default editor for all other attribute types
return super.getAttributeEditor(connection, itemProxy,

dlgCommand, info, locale);
}

}

326 Part IV Using Dialogs

Overriding the Editor for Attributes of a Given Type
The following example shows the default automatically generated dialog for an
object with a truth-value attribute named power, and the dialog that gets
generated when you set the BooleanEditorFactory with the default application
shell, Shell.java:

Default

BooleanDialogFactory
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 327

Chapter 17 Customizing Automatically Generated Dialogs
Localizing Attribute Labels
To localize the attribute labels in an automatically generated dialog, subclass
DefaultGeneratedDialogFactory and override the getAttributeLabel method
to return the AttributeLabel to use for each attribute editor in the dialog.

The signature for this method is:
protected Component getAttributeLabel(TwAccess connection,
 ItemProxy itemProxy,
 DialogCommand dlgCommand,
 AttributeInfo info,
 Locale locale)
 throws com.gensym.jgi.G2AccessException

By default, this method returns an AttributeLabel, which you must create. Here
is the constructor:

AttributeLabel(TwAccess connection,
com.gensym.classes.Item item,
com.gensym.util.Symbol attribute,
boolean live)

throws com.gensym.jgi.G2AccessException

You pass the Item, which you get by calling getProxy on the ItemProxy
argument to getAttributeLabel, and the attribute name, which you get by
calling getAttributeName on the AttributeInfo argument. You also pass in a
boolean to determine whether the attribute label is automatically updated, which
you can obtain by calling getAutoUpload on the ItemProxy argument.

You call setText on the AttributeLabel and pass in the label text to display in
the dialog.

You define the resource by calling getBundle on the com.gensym.messages.
Resource class, passing in a string that names the properties file.

The following factory uses the attribute name as a key for localizing the label text,
using a resource, then uses the translated name as the label. The factory uses the
default label for the NOTES_ and ITEM_CONFIGURATION_ attributes.

public class TranslatedLabelsFactory extends
DefaultGeneratedDialogFactory{

//Create resource
private static final Resource i18nAttributeLabels =

Resource.getBundle("com.gensym.demos.gcg.AttributeLabels");

protected Component getAttributeLabel(TwAccess connection,
ItemProxy itemProxy,
DialogCommand dlgCommand,
AttributeInfo info,
Locale locale)
328 Part IV Using Dialogs

Localizing Attribute Labels
throws G2AccessException{
AttributeLabel label = null;

//Get attribute name
Symbol attributeName = info.getAttributeName();

//Set the label text to the localized text string
//for all attributes other than notes and item configuration
if (!attributeName.equals(SystemAttributeSymbols.NOTES_) &&

!attributeName.equals
(SystemAttributeSymbols.ITEM_CONFIGURATION_)){
label = new AttributeLabel(connection,

itemProxy.getProxy(),
attributeName,
itemProxy.getAutoUpload());

label.setText(i18nAttributeLabels.getString
(attributeName.getPrintValue()));

}
return label;

}
}

The properties file named AttributeLabels.properties defines translated
labels for an object with attributes named Names and Power, as follows:

NAMES=Nom
POWER=Energie

The following example shows the dialog that gets generated when you set the
TranslatedLabelsFactory with the default application shell, Shell.java:

TranslatedLabelsFactory
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 329

Chapter 17 Customizing Automatically Generated Dialogs
Creating Tabs for Groups of Attributes
By default, automatically generated dialogs create three tabs: Attributes, Notes,
and Item Configurations. If the item contains no notes, the dialog contains no
notes tab.

To create different tabs for groups of attributes, you subclass
DefaultGeneratedDialogFactory and override the getG2AttributeEditor
method to return the G2AttributeEditor to use for each attribute of an item.

The signature for this method is:
protected G2AttributeEditor getG2AttributeEditor

(TwAccess connection,
ItemProxy itemProxy,
DialogCommand dlgCommand,
AttributeInfo info,
Locale locale)

throws com.gensym.jgi.G2AccessException

The G2AttributeEditor contains the group, label, editor, item proxy, and
attribute for each item attribute, any of which you can override. To override the
groups that the dialog uses to create tab pages in the dialog for its attributes,
create a new G2AttributeEditor, passing in each of these elements. Here is the
constructor:

public G2AttributeEditor(String groupName,
Component label,
AttributeEditor editor,
ItemProxy itemProxy,
com.gensym.util.Symbol attribute)

To override the group name for each G2AttributeEditor, pass in a string to use
for the group name. The following factory uses the name of the defining class as
the group name, which it determines by calling getDefiningClass on the
AttributeInfo argument to getG2AttributeEditor.

To use the default label and editor, the factory calls getLabel and getEditor on
the default G2AttributeEditor. To use the default attribute name, the factory
calls getAttributeName on the AttributeInfo argument.

Once the new G2AttributeGroup has been defined, you can override the group
names for the dialog by overriding the getGroupNames method, which returns a
list of strings that define the groups.

The signature for this method is:
public String[] getGroupNames(TwAccess connection,

ItemProxy itemProxy,
Locale locale)

The factory uses the class inheritance path, which it gets from the ItemProxy
argument to getGroupNames to determine the list of groups. It then generates a list
330 Part IV Using Dialogs

Creating Tabs for Groups of Attributes
of strings from this list and adds two additional groups for configuration and
notes.

public class ClassTabFactory extends DefaultGeneratedDialogFactory{

//Override the group name, label, editor, item, and attribute
protected G2AttributeEditor getG2AttributeEditor
(TwAccess connection, ItemProxy itemProxy,
DialogCommand dlgCommand, AttributeInfo info, Locale locale)
throws G2AccessException{

//Get default G2 attribute editor
G2AttributeEditor g2Editor =
super.getG2AttributeEditor(connection,itemProxy,dlgCommand,

info,locale);

//Return default G2AttributeEditor for Notes and
//Item Configuration attributes
if
(info.getAttributeName().

equals(SystemAttributeSymbols.NOTES_) ||
info.getAttributeName().
equals(SystemAttributeSymbols.ITEM_CONFIGURATION_))

return g2Editor;

//For all other attributes, override the group name to be
//the defining class of each attribute; use default label,
//editor, and attribute
else
return new G2AttributeEditor
(info.getDefiningClass().getPrintValue(),
g2Editor.getLabel(), g2Editor.getEditor(), itemProxy,
info.getAttributeName());

}

//Override the group names
public String[] getGroupNames(TwAccess connection,
ItemProxy itemProxy, Locale locale){
try{

//Get inheritance path from item proxy
Sequence inheritancePath = itemProxy.getProxy().
getDefinition().getClassInheritancePath();

//Bind inheritancePath size, plus create two
//additional groups for Configuration and Notes
String[] groups = new String[inheritancePath.size()+2];
for (int i=0; i<inheritancePath.size(); i++)
groups[i] = inheritancePath.elementAt(i).toString();

groups[inheritancePath.size()]="Configuration";
groups[inheritancePath.size()+1]="Notes";
return groups;

}
catch(G2AccessException ex){
ex.printStackTrace();
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 331

Chapter 17 Customizing Automatically Generated Dialogs
}
return super.getGroupNames(connection, itemProxy, locale);

}

}

The following example shows each tab page of the dialog that gets generated
when you set the ClassTabFactory with the default application shell,
Shell.java:

Adding Buttons to Automatically Generated
Dialogs

By default, automatically generated dialogs do not include OK, Apply, and
Cancel buttons for accepting the edits and closing the dialog. This is because, by
default, autoUpload is true for the ItemProxy component, which means that
edits to controls linked to an item attribute are automatically uploaded to the G2
item whenever the edits occur.

ClassTabFactory
332 Part IV Using Dialogs

Adding Buttons to Automatically Generated Dialogs
You might want to set autoUpload to false and provide OK, Apply, and Cancel
buttons on the dialog instead. To do this, set autoUpload to false and override
the generateDialog method on the DefaultGeneratedDialogFactory subclass,
as this factory shows:

public class CommandButtonsFactory extends
DefaultGeneratedDialogFactory{

public Component generateDialog(Frame frame,
TwAccess connection,
ItemProxy itemProxy,
DialogCommand dlgCommand,
Locale locale)

throws G2AccessException{

//Set autoUpload to false
itemProxy.setAutoUpload(false);

//Generate the dialog, which automatically creates buttons
Component component = super.generateDialog(frame,

connection,
itemProxy,
dlgCommand,
locale);

return component;
}

}

This example shows each tab page of the dialog that gets generated when you set
the CommandButtonsFactory with the default application shell, Shell.java:

CommandButtonsFactory
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 333

Chapter 17 Customizing Automatically Generated Dialogs
Creating a Dialog with User-Defined Attributes
Only

By default, the automatically generated dialog contains both system-defined and
user-defined attributes. To restrict the dialog to display user-defined attributes
only, override getG2AttributeEditor to return null if the AttributeInfo is
system-defined, which you check by calling isSystemDefined. Otherwise, the
method returns the default G2AttributeEditor, as this factory shows:

public class UserDefinedAttributesFactory extends
DefaultGeneratedDialogFactory{

protected G2AttributeEditor
getG2AttributeEditor(TwAccess connection, ItemProxy itemProxy,

DialogCommand dlgCommand,
AttributeInfo info, Locale locale)

throws G2AccessException{
G2AttributeEditor g2Editor =

super.getG2AttributeEditor(connection, itemProxy,
dlgCommand, info, locale);

//Return null if AttributeInfo is system-defined
if (info.isSystemDefined())

return null;
//Otherwise, return default G2AttributeEditor
else

return new G2AttributeEditor(g2Editor.getGroupName(),
g2Editor.getLabel(),
g2Editor.getEditor(),
itemProxy,
info.getAttributeName());

}
}

334 Part IV Using Dialogs

Creating a Dialog with User-Defined Attributes Only
This example shows the dialog that gets generated when you set the
UserDefinedAttributesFactory with the default application shell, Shell.java:

UserDefinedAttributesFactory
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 335

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part IV Using Dialogs
Chapter 18 Launching General Dialogs
Version 3.1 Mode: Working Size: 7x9x11
18
Launching
General Dialogs
Describes how to implement your own dialog launcher and dialog reader, and how
to create your own dialog resource for dialog resources saved in a format other
than a serialized file or a Java class file.

Introduction 337

Relevant Packages 338

Relevant Demos 338

Reviewing the Dialog Runtime Interfaces and Classes 339

Launching General Dialogs from Your Application 340

Creating Your Own Types of Dialog Resources 345

Introduction
To create general dialogs, you use Java to create a dialog class.

Because the TW2 Toolkit dialog components are packaged as Java Beans, you can
create general dialogs in a JavaBeans-compliant visual programming
environment, such as Symantec Visual Café or Borland J Builder.

After you create a general dialog that you want to launch from your client
application, you use the classes in the com.gensym.dlgruntime package to read
and launch the dialog.

This chapter describes how to launch general dialogs and how to create your own
types of dialog resources.
337

Chapter 18 Launching General Dialogs
Relevant Packages

com.gensym.dlgruntime
Interfaces

DialogCommandListener
DialogLauncher
DialogReader

Classes
DefaultDialogLauncher
DefaultDialogReader
DialogClassReader
DialogCommandEvent
DialogManager
DialogResource

Exceptions
ResourceInstantiationException

Relevant Demos
The Java applications that this chapter uses are available online in this directory,
depending on your platform:

The filenames correspond to the class names in each example in this chapter.

NT: %SEQUOIA_HOME%\classes\com\gensym\demos\docs\
launchdialog*.java

UNIX: $SEQUOIA_HOME/classes/com/gensym/demos/docs/
launchdialog/*.java
338 Part IV Using Dialogs

Reviewing the Dialog Runtime Interfaces and Classes
Reviewing the Dialog Runtime Interfaces and
Classes

These are the interfaces in the com.gensym.dlgruntime package that you can use
to launch general dialogs:

These are the classes in the dlgruntime package that you use to launch general
dialogs:

Interface Description

DialogLauncher The launching interface.

DialogReader The resource reading interface.

DialogCommandListener The listener interface to handle event
notification when the dialog is launched,
when dialog edits are flushed, and when
the dialog is closed.

Class Description

DefaultDialogLauncher A TW2 Toolkit implementation of the
DialogLauncher interface, which launches the
output of an implementation of DialogReader.

DefaultDialogReader A TW2 Toolkit implementation of the
DialogReader interface, which reads serialized
dialog resource (.ser) files.

DialogClassReader An implementation of DialogReader for reading
dialog classes that are saved as Java classes. For
details, see “Registering Custom Item Properties
Dialog Classes” on page 316.

DialogResource The dialog resource object and its associated
launcher and reader.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 339

Chapter 18 Launching General Dialogs
Telewindows2 (TW2) Toolkit supplies the DialogLauncher and DialogReader
interfaces, and the DialogResource class for developers who wish to design and
create their own dialog launchers and readers, as described in “Creating Your
Own Types of Dialog Resources” on page 345.

Launching General Dialogs from Your
Application

These are the steps for launching a dialog resource once it exists:

• Create a new dialog reader and launcher.

• Create a resource object.

• Get the ItemProxy components from the dialog resource.

• Ask the reader to create the top-level component from the resource.

• Launch the dialog, passing in as arguments the component, the ItemProxy,
and the item for which the dialog is to be launched.

Typically, you would launch a general dialog for a particular item in response to
some application event. For example, your application might be a com.gensym.

DialogManager Registers dialog resources for use as custom item
properties dialogs. Depending on the dialog
registration method that your application calls,
the DialogManager can use:

• The DefaultDialogLauncher and
DefaultDialogReader to launch and read
serialized dialog resources or dialog classes
created in Java.

• A DialogResource that you create, which
provides its own implementation of a
DialogReader and/or DialogLauncher.

For details on using this class, see Chapter 16,
“Launching Custom Item Properties Dialogs” on
page 305.

DialogCommandEvent The event that a com.gensym.controls.
DialogCommand generates when a dialog is
launched, flushed, or closed. The
DialogLauncher calls the open method on a
DialogCommand, which generates this event.

Class Description
340 Part IV Using Dialogs

Launching General Dialogs from Your Application
util.ItemListener so it receives notification when an attribute value of an item
has exceeded a certain threshold. In response to that event, the application could
launch a general dialog for that item.

Alternatively, you might want to launch a general informational dialog about the
currently selected item in a workspace view. To do this, you would get the
current selection from the workspace view, check if a single item is selected, get
the item from the workspace element, and launch the dialog for that item.

You can also launch general dialogs that display information about multiple G2
items. You do this by naming each ItemProxy component in the dialog and
passing in an array of names, along with an array of ItemProxy components, and
an array of associated items.

If your dialog resource contains any instances of the com.gensym.controls.
DialogCommand component for applying dialog changes and closing the dialog,
your application must also get the DialogCommand and pass this component as an
argument when you launch the dialog.

This section uses a simple example that launches a dialog created for the
material-source item named warehouse in the mill.kb, which is shipped in the
kbs subdirectory of your TW2 Toolkit product directory. The dialog resource is
stored in a serialized file.

Creating a Default Dialog Reader and Launcher
Assuming you want to use the DefaultDialogReader and the
DefaultDialogLauncher to manage your dialog resource, your application must
import these classes from the com.gensym.dlgruntime package. If you have
implemented your own dialog reader and launcher, you would create instances
of those classes instead.

The DefaultDialogLauncher notifies registered listeners of
DialogCommandEvents when the dialog is launched, flushed, or closed.

To create a default dialog reader and launcher:

// Create dialog reader and launcher
private DialogReader reader = new DefaultDialogReader();
private DialogLauncher launcher = new DefaultDialogLauncher();

Creating a Resource from a Dialog Resource File
The DefaultDialogReader class provides the makeResource method, which
creates a dialog resource from a specified URL. You read the dialog resource by
calling the readResource method on the dialog reader.

Because the argument you pass to the makeResource method is a java.net.URL,
you can also provide a URL to a G2 media bin in which the dialog resource is
stored.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 341

Chapter 18 Launching General Dialogs
When making and reading a resource, you must catch these exceptions:

• makeResource throws com.gensym.dlgruntime.
ResourceInstantiationException

• readResource throws java.io.IOExcpetion

This example creates a resource from a resource file stored on the client.

To create a resource from a dialog resource file:
try {

// Make the dialog resource object
Object resource = reader.makeResource (reader.readResource

(new java.net.URL ("file:///c:/gensym/Telewindows2Toolkit/
Java/resources/LaunchDialogExample.ser")));

}

To point to a dialog resource stored in a media bin:

Point to the item with a string such as:

"g2://host:port//namedBin/media-bin-name/dialog.ser"

Thus, the string would be:
"g2://localhost:1111//namedBin/DIALOG-MEDIA-BIN/MillDialog.ser"

Getting the ItemProxy Components from the
Resource

Before launching the dialog resource, you need to get the ItemProxy components
that are stored in the resource file, as an array. You will pass this array to the
method that launches the dialog resource later in your code. You get the
ItemProxy components from the DefaultDialogReader.

Element Description

host:port The host and port specification for where
the G2 is running, for example:

localhost:1111

media-bin-name The name of the media-bin item in which the
dialog resource is stored. For example:

DIALOG-MEDIA-BIN

dialog-ser The name of the serialized dialog file, for
example:

MillDiaolg.ser
342 Part IV Using Dialogs

Launching General Dialogs from Your Application
To get the ItemProxy components from the resource:

//Get item proxies from the resource
ItemProxy[] proxies = reader.getItemProxies(resource);

Creating the Top-Level Component from the
Resource

Once you have created the resource, you must create the top-level component in
which to display the dialog.

To do this, you call getComponent on the DefaultDialogReader, which returns
different values, depending on how you created the dialog resource. If you use
the DefaultDialogLauncher to launch the dialog, the dialog gets launched
differently, depending on the return value, as follows:

To get the dialog component from the resource:

//Get component for the resource
Component dlg = reader.getComponent(resource);

Launching the Dialog

To launch the dialog, you can call the launch method on the
DefaultDialogLauncher, providing these arguments:

• The dialog component to launch.

• An ItemProxy.

• An Item that is the stub for the ItemProxy component.

• A DialogCommand component, if present in your dialog resource.

If your dialog contains multiple ItemProxy components, you can call the
alternative version of the launch method, which takes an array of ItemProxy

If you create the
dialog resource in...

Then
getComponent returns...

And the
DefaultDialogLauncher...

A JavaBeans-compliant
visual programming
environment

An instance of a java.
awt.Panel

Places the Panel
component inside of a
java.awt.Dialog.

Java, and place it in any
kind of a java.awt.
Window component, such
as a Dialog, Frame,
JDialog, or JFrame

The Window component Calls setVisible on the
Window, which launches
the component in the
center of the parent
frame.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 343

Chapter 18 Launching General Dialogs
components, an array of names for each ItemProxy, which you specify using the
name property, and an array of Item stubs. For details, see the API documentation.

The following example simply launches a dialog in a frame; it does not launch it
for a particular item.

Typically, you would pass in the item for which the dialog is to be launched,
which requires making a connection and getting the unique named item from the
connection. Your application would then listen for a particular event and launch
the dialog for the item when the event occurs. For information on creating
connections, getting items from connections, and listening for events, see Part II,
“Connecting to G2” on page 23.

In the following example, the dialog resource contains a single ItemProxy and no
DialogCommand components.

To launch the dialog resource:

//Launch it!
launcher.launch (dlg, proxies[0], null, null);

Example Code
Following is the complete code for the example described in the previous
sections:

package com.gensym.demos.docs.launchdialog;

import java.awt.Component;
import java.awt.Frame;
import java.awt.Window;
import java.awt.Dialog;
import java.awt.event.*;
import java.net.URL;
import com.gensym.dlgruntime.*;
import com.gensym.controls.ItemProxy;

public class LaunchDialog {

 // Create default reader and launcher
 private DefaultDialogReader reader = new DefaultDialogReader ();
 private DefaultDialogLauncher launcher = new DefaultDialogLauncher();

 private static final String FILE =
"file:///c:/gensym/Telewindows2Toolkit/classes/com/gensym/
demos/docs/launchdialog/LaunchDialogExample.ser";
344 Part IV Using Dialogs

Creating Your Own Types of Dialog Resources
private void showDialog(Frame f) {
 try{
 // Make the dialog resource object
 Object resource = reader.makeResource (reader.readResource

(new URL (FILE)));
 //Get item proxies from the resource
 ItemProxy[] proxies = reader.getItemProxies(resource);
 //Get component for the resource
 Component dlg = reader.getComponent(resource);
 //Register the frame
 launcher.registerFrame(f);
 //Launch it!
 launcher.launch (dlg, proxies[0], null, null);
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void main (String args[]) {
 //Create an adapated frame so we can close it
 LaunchDialog d = new LaunchDialog();
 Frame f = new Frame("Launch Dialog Example");
 WindowAdapter wa =
 new WindowAdapter() {
 public void windowClosing (WindowEvent e) {

System.exit(0);
 }
 };
 f.addWindowListener(wa);
 f.setSize(600,400);
 f.show();
 d.showDialog(f);
 }
}

Creating Your Own Types of Dialog Resources
The com.gensym.dlgruntime package provides the DialogResource class for
creating your own type of dialog resource. A DialogResource takes as its
arguments:

• The dialog resource as a URL.

• An implementation of the DialogReader interface.

• An implementation of the DialogLauncher interface.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 345

Chapter 18 Launching General Dialogs
You use a dialog resource to launch both custom item properties dialogs, as well
as general dialogs, as follows:

When to Create Your Own Dialog Resource
This table describes when you need to implement your own dialog reader and
launcher, and when you need to create your own dialog resource:

If you do not wish to implement your own reader and launcher, but you wish to
customize the behavior of the default reader and launcher, you may also subclass
the DefaultDialogReader and DefaultDialogLauncher classes.

To launch... Do this...

A custom item
properties dialog

Use the version of the setDialogResourceEntry
method on the DialogManager that takes an
instance of a DialogResource, rather than a
serialized dialog resource file or a Java dialog
class, as described in Chapter 16, “Launching
Custom Item Properties Dialogs” on page 305.
See the API for DialogManager for details.

A general dialog Provide the DialogResource directly to the
launch method on your dialog launcher.

You do this... When you want to...

Implement the
DialogReader interface

Create dialog resources in serialized (.ser) files or
any other format, such as XML.

Implement the
DialogLauncher interface

Launch a dialog resource inside a container other
than a java.awt.Dialog. For example, you might
want to launch a dialog inside a Java applet or frame.

Create your own
DialogResource

Implement your own DialogReader or
DialogLauncher. If you do not implement both of
these interfaces, you can use one of the default
implementations as either the launcher or reader for
the dialog resource.
346 Part IV Using Dialogs

Creating Your Own Types of Dialog Resources
Launching a Custom Dialog Resource
The steps for launching a DialogResource that you create are similar to those you
use to launch a dialog resource:

• Implement the DialogReader and/or DialogLauncher interfaces, as needed.

• Create a new dialog reader and launcher, using your implementations of
DialogReader and/or DialogLauncher.

• Create a resource object from a URL.

• Get the ItemProxy components from your dialog resource.

• Get the top-level component that contains your dialog resource from the
resource.

• Create an instance of a DialogReader, passing in the dialog resource, and
your implementations of DialogReader and/or DialogLauncher.

• Launch the dialog by calling the launch method on your implementation of
DialogLauncher, passing in an instance of your DialogResource as the
resource.

The following example shows how to create and launch a custom dialog resource
by subclassing DefaultDialogReader and DefaultDialogLauncher. You provide
your customizations in the CustomDialogReader and CustomDialogLauncher
inner classes. You could also implement your own DialogReader and
DialogLauncher interfaces. This example behaves exactly the same as the
previous example.

package com.gensym.demos.docs.launchdialog;

import java.awt.Component;
import java.awt.Frame;
import java.awt.Window;
import java.awt.Dialog;
import java.awt.event.*;
import java.net.URL;

import com.gensym.dlgruntime.*;
import com.gensym.controls.ItemProxy;

public class LaunchDialogResource {

 // Create custom reader and launcher
 private CustomDialogReader reader = new CustomDialogReader ();
 private CustomDialogLauncher launcher = new CustomDialogLauncher();

 // Point to the dialog resource
 private static final String FILE =

"file:///c:/gensym/Telewindows2Toolkit/classes/com/gensym/
demos/docs/launchdialog/LaunchDialogExample.ser";
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 347

Chapter 18 Launching General Dialogs
 //Inner classes
 class CustomDialogReader extends DefaultDialogReader {
 //Provide customizations here or implement DialogReader
 }

 class CustomDialogLauncher extends DefaultDialogLauncher {
 //Provide customizations here or implement DialogLauncher
 }

 private void showDialog(Frame f) {
 try{
 // Make the dialog resource object
 Object resource = reader.makeResource (reader.readResource

(new URL(FILE)));
 //Create DialogResource
 DialogResource dialogResource = new DialogResource

(resource, reader, launcher);
 //Get item proxies from the resource
 ItemProxy[] proxies = reader.getItemProxies(resource);
 //Get component for the resource
 Component dlg = reader.getComponent(resource);
 //Register the frame
 launcher.registerFrame(f);
 //Launch it!
 launcher.launch (dlg, proxies[0], null, null);
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public static void main (String args[]) {
 //Create an adapated frame so we can close it
 LaunchDialogResource d = new LaunchDialogResource();
 Frame f = new Frame("Launch Dialog Example");
 WindowAdapter wa =
 new WindowAdapter() {
 public void windowClosing (WindowEvent e) {

System.exit(0);
 }
 };
 f.addWindowListener(wa);
 f.setSize(600,400);
 f.show();
 d.showDialog(f);
 }
}

348 Part IV Using Dialogs

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part V Appendixes, Glossary, and Index
 Part V
Appendixes,
Glossary, and Index
Appendix A Restricted Remote Procedure Calls 351

Appendix B Compatibility Issues 353

Glossary 357

Index 361
349

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part V Appendixes, Glossary, and Index
Appendix A Restricted Remote Procedure Calls
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 22:03:56
 A
Restricted Remote
Procedure Calls
These are the restricted RPC calls that require the existence of a login session:

g2-add-trend-chart-component
g2-change-mode-for-window
g2-clear-parsing-context
g2-commit-parse-result
g2-create-parsing-context
g2-delete-parsing-context
g2-delete-trend-chart-component
g2-fire-action-button
g2-fire-user-menu-choice
g2-get-containment-hierarchy
g2-get-current-user-menu-choices
g2-get-user-menu-choice
g2-make-ui-client-session
g2-menu-of-names-for-category
g2-release-ui-client-session
g2-represent-trend-chart
g2-represent-workspace
g2-shift-cursor-position
g2-subscribe-to-modules
g2-unrepresent-workspace
g2-unsubscribe-to-modules
g2-update-parsing-context
351

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
Part V Appendixes, Glossary, and Index
Appendix B Compatibility Issues
Version 3.1 Mode: Working Size: 7x9x11 5/31/02 22:03:56
 B
Compatibility Issues
The following table describes the features of G2 that the Telewindows2 Toolkit
components do not support. The details list the item configurations that
correspond to the feature.

Note If you edit the item configuration of an item in the G2 server, you must
redownload the workspace view to see the changes.

G2 Feature Details

Mouse tracking constrain moving

Workspace scaling and z-order
positioning

All
353

Appendix B Compatibility Issues
Main menu choices new-title-block
neatly-stack-windows
network-info
system-tables
close-telewindows-connection
log-out
change-password
reinstall-authorized-users
connect-to-foreign-image
disconnect-from-foreign-image
load-attribute-file
clear-kb
shut-down-g2
enter-package-preparation-mode
leave-package-preparation-mode
strip-text-now
make-workspaces-proprietary-now
flush-change-log-for-entire-kb
enter-simulate-proprietary-mode
leave-simulate-proprietary-mode
do-not-highlight-invoked-rules
highlight-invoked-rules
enable-all-items
remove-tracing-and-breakpoints
launch-online-help
refresh
long-menus
short-menus
run-options
inspect
view-change-log

Workspaces get-workspace
print

KB load-merge-save
load-kb
merge-kb
save-kb
change-mode

Modules create-new-module
delete-module

G2 Feature Details
354 Part V Appendixes, Glossary, and Index

Appendix B Compatibility Issues
Item menu choices describe-configuration
move
edit-icon

Chart items edit-cell-expression
edit-cell-format
other-edits

Free form tables edit-cell-expression
edit-cell-format
other-edits

Obsolete features clone-as-trend-chart
change-min-size
table-of-values
change-size
main-menu
operate-on-area
miscellany

G2 Feature Details
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 355

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part V Appendixes, Glossary, and Index
 Glossary

Version 3.1 Mode: Working Size: 7x9x11

 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A
aggregate control: A dialog control for editing data structures, such as G2 lists,
sequences, and structures. You must use one of the scalar controls to edit subparts
of the data structure. Contrast with scalar control. See also data-aware component.

C
collection: The list of KB workspaces that a multiple workspace panel maintains.
See also selection.

component developer: A Telewindows2 (TW2) Toolkit user who uses and
extends TW2 Toolkit components and core classes to create applications that
access and manipulate KB data and knowledge. Contrast with UI developer.

connection information object: An object that defines properties related to
creating TW2 Toolkit and G2 JavaLink connections to G2.

connectivity class: A TW2 Toolkit class or component for connecting a Java client
to G2.

current workspace: The workspace that is visible in a multiple workspace view or
panel. See multiple workspace view and multiple workspace panel.

D
data-aware component: A TW2 Toolkit component for viewing and representing
attributes of G2 items, which can perform automatic updates to and from G2 and
which transparently handle G2 data types. TW2 Toolkit provides two categories
of data-aware components: visual controls for representing attributes of G2 items
and invisible components for representing G2 items and structures. See also
aggregate control and scalar control.

dialog class: A dialog that you create from components in any integrated
development environment (IDE). You can use dialog classes to create custom item
properties dialogs for viewing and editing attributes of G2 items in the client.
Contrast with dialog resource. See item properties dialog and general dialog.
357

Glossary
G
G2 application programmer’s interface (API): A set of G2 procedures that
provide access to G2 data and actions, which permits client applications to
subscribe to the state of G2 items and attributes programmatically.

general dialog: An informational dialog for displaying messages to the user or an
input dialog for obtaining data from a user. You create general dialogs by using
data-aware components in any integrated development environment (IDE). See
also dialog class and dialog resource.

ghost: An empty outline that appears around an object in a workspace view when
the user moves or reshapes it in the client. Only when the user lifts the mouse to
complete the operation does the client notify G2 that the object has changed,
which minimizes processing and network overhead. See workspace view.

I
integrated development environment (IDE): A fully integrated Java
development environment, such as Symantec Visual Café or Borland J Builder,
which sometimes also includes a JavaBeans-compliant visual programming
environment. See also JavaBeans-compliant visual programming environment.

item properties dialog: A dialog that you use to edit G2 item attributes. When
editing item attributes in the client through a workspace view, by default, you use
an automatically generate item properties dialog, which provides native controls
for editing typed and untyped item attributes. You can override the automatically
generated dialogs by using TW2 Toolkit components in an integrated
development environment (IDE) to create custom item properties dialogs, which
you must register for G2 items or classes. See also dialog class and dialog resource.

J
JavaBeans-compliant visual programming environment: A Java-based
programming environment that allows UI developers to create Java applications
from Java Beans, which are visual representations of Java components that
conform to the Java Beans specification of properties, events, and methods.
Developers load JAR files of Java Beans into the visual Java programming
environment, edit the properties of those beans through a properties table, and
hook up event triggers from one component to target methods in another
component. The Telewindows2 Toolkit is an example of a JavaBeans-compliant
visual programming environment. See also integrated development environment.

K
KB workspace: Instances of the G2 kb-workspace class, a representation of which
appears in workspace view. See workspace view.
358 Part V Appendixes, Glossary, and Index

Glossary
M
middle tier: The two processes that use the Java Remote Method Invocation API,
which includes an RMI registry and an RMI server. You can use a middle tier to
connect to G2 from a TW2 Toolkit client by specifying a broker URL as the RMI
server. By default, TW2 Toolkit client connections use a two-tier configuration.
See RMI registry and RMI server.

multiple workspace display: A multiple workspace view or a multiple
workspace panel. See multiple workspace view and multiple workspace panel.

multiple workspace panel: A multiple workspace view that has scrollbars and
that listens for programmatic show and hide workspace events in G2. See multiple
workspace view.

multiple workspace view: A representation of a KB workspace that displays any
of several KB workspaces, which can exist in one or more G2 applications. See KB
workspace and workspace view. Contrast with multiple workspace panel.

R
RMI registry: A naming service tool of the Java Remote Method Invocation (RMI)
system. RMI servers use the registry to bind remote objects to names. See also
middle tier and RMI server.

RMI server: A process for handling requests from clients to the server, and from
the server to its clients. See also middle tier and RMI registry.

S
scalar control: A visual data-aware component that you use to view and edit
“atomic” data types, such as integers, floats, text, symbols, and truth values.
Contrast with aggregate controls. See data-aware component.

scroll block: A level or granularity for scrolling workspace views, measured in
pixels. Contrast with scroll unit.

scroll unit: A level or granularity for scrolling workspace views, measured in
pixels. Contrast with scroll block.

selection: The list of currently selected items in a single workspace view. Clients
can register as listeners for selection events to receive notification when an item is
added to removed from the selection. See single workspace view and workspace
view element. See also collection.

single workspace view: A representation of a G2 KB workspace that displays a
view of a single KB workspace that exists in a G2 application. A single workspace
view that supports scaling of the view along the x and y axes. Contrast with
multiple workspace view. See KB workspace.
Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes 359

Glossary
standard dialog: A G2 JavaLink class that you can use directly within a Java
application or subclass to create an informational dialog or a dialog that accepts
user input. Contrast with general dialog and item properties dialog.

stub: A G2 JavaLink representation of a G2 item in a client, which remains
synchronized without polling G2. The underlying technology that enables the
creation of stubs for use in a Java client is the G2 and G2 JavaLink application
programmer’s interface (API). See G2 application programmer’s interface (API).

U
UI developer: A TW2 Toolkit user who creates client user interfaces for G2
applications. Contrast with component developer.

W
workspace list: The list of KB workspaces that a multiple workspace display
maintains. See multiple workspace panel and multiple workspace view.

workspace view component: A TW2 Toolkit component that can display a
representation of a G2 KB workspace in a Java container, such as a TW2 Toolkit
application shell or an applet running in a Web browser. See also workspace view,
multiple workspace view, and multiple workspace panel.

workspace view element: A representation of a G2 item in a workspace view.
When you manipulate workspace view elements in the client, G2 is notified of
changes only when the client has completed the edit, which minimizes network
traffic.

workspace view: Any display of a G2 KB workspace in a Java container. The term
workspace view also refers to any of the three types of workspace view
components and an instance of the single workspace view.
360 Part V Appendixes, Glossary, and Index

Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes

Telewindows2 Toolkit Java Developer’s Guide Components and
Core Classes
Part V Appendixes, Glossary, and Index
 Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
accessor methods

calling for user-defined items 96
introduction to 14
of DialogCommand component 232
of G2Button component 235
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Label component 248
of G2Listbox component 253
of G2Radiobox component 272
of G2TextField component 277
of ItemProxy component 291
of ItemRetriever component 46
of LoginRequest class 106
of StructureMUX component 300
of TwConnectionInfo class

advanced 66
basic 65

of TwConnector component 54
action events, Java 225
actionCommand property

of G2Button component 235
adapters

KbModuleAdapter 84
TwConnectionAdapter 79

add method
of G2DropDownChoice component 245
of G2ListBox component 257

addCollectionListener method
listening for collection events in multiple

workspace panels, using 176
addElementsToSelection method

selecting several workspace elements,
using 174

addElementToSelection method
selecting workspace elements, using 174

addItem method
of G2DropDownChoice component 245
of G2Listbox component 257

addItemRetrievalListener method
of ItemRetriever component 48
addKbMessageListener method
handling KB message events, using 79

addKbModuleListener method
handling KB module events, using 79

addScrollbar method
adding scrollbars to single or multiple

workspace views, using 168
addSelectionListener method

listening for selection events in a
WorkspaceView, using 175

addTwConnectionListener method
handling connection events, using 79
of TwAccess interface 98
of TwConnector component 57, 58

addWorkspace method
populating multiple workspace displays,

using 163
addWorkspaceShowingListener method

handling workspace showing events,
using 79

of TwAccess interface 98
of TwConnector component 58

aggregate controls 10
alignment property

of G2Label component 248
AlreadyLoggedInException class

of LoginRequest class 113
application programmer’s interface (API)

G2 27
TW2 Toolkit xviii

Apply button
implementing 234

Apply Changes menu choice
applying edits, using 151
Session menu 156

apply method
of DialogCommand component 233

applying changes
in text editor 151
361

Index
arguments
passing

to component methods 287
to user-defined methods 228

arrays
editing, using list boxes 267

attribute property
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Label component 248
of G2Listbox component 253
of G2Radiobox component 272
of G2TextField component 277
of StructureMUX component 300

AttributeEditor class
customizing automatically generated

dialogs, using 324
AttributeEditor interface 220
AttributeHolder class 220
AttributeInfo class 324
AttributeLabel class 324
attributes

editing
of subobjects 295
system-defined, with grammar 143
through item properties dialogs 142
typed 144

getting and setting for user-defined items
through connections 96

attributes property
of ItemProxy component 291

autoDownload property
of ItemProxy component 291

automatically generated dialogs
adding buttons to 332
creating tabs for attribute groups of 330
creating with user-defined attributes

only 334
customizing 321
for editing item properties 206
introduction to customizing 209
localizing attribute editors of 328
overriding attribute editors 325

autoUpload property
of ItemProxy component 292

ax2jbeans.jar file 9
362
B
background property

of dialog components 224
beans

See also G2 beans
Borland J Builder

TW2 Toolkit support for 17
brokerURL property

of ItemRetriever component 46
of TwConnectionInfo class 66
of TwConnector component 54

buttons
See also G2Button component
implementing OK, Apply, and

Cancel 234
interacting with a MultipleWorkspacePanel,

using 237
retrieving items, using 237

C
Cancel button

implementing 234
caretPosition property

of G2TextField component 277
change events 10
change size KB Workspace menu choice

workspace view support for 139
changeUserMode method

of TwAccess interface 99
setting current user mode, using 112

choices property
of G2DropDownChoice component 243
of G2ListBox component 253

class hierarchy
of connection information objects 62
of connectivity classes 28

classes
See also individual class listings
connectivity 27
creating Java Beans from G2 17
dialog 316
registering custom item properties dialogs

as Java 317
for entire 314

classic Telewindows
See Telewindows
Part V Appendixes, Glossary, and Index

Index
Clear menu choice
Edit menu 156
editing text, using 149

clearSelection method
deselecting all workspace view elements,

using 174
clients

managing, using login sessions 103
representing in G2

using classic Telewindows 104
using TW2 Toolkit 104

clone KB Workspace menu choice
workspace view support for 140

close method
of DialogCommand component 234

closeConnection method
logging off from G2, using
closeConnection 113

closing connections
created using

ItemRetriever component 43
TwGateway class 76

CollectionListener interface
listening for multiple workspace panel

collection events, using 176
collections

for multiple workspace displays 176
columns property

of G2Radiobox component 272
com.gensym.controls package

connectivity components in 7
dialog controls in 8

com.gensym.dlgruntime package
dialog resource classes in 15
summary of interfaces and classes in 338

com.gensym.gcg package
dialog classes in 15

com.gensym.jcontrols package
data-aware controls in 7

com.gensym.ntw package
connectivity classes in 14
KB classes in 14

com.gensym.wksp package
workspace view components in 8

Commandable interface
creating custom item properties dialog

classes, using 317
communicationError event

of G2Gateway class 80
of TwConnector component 57
Telewindows2 Toolkit Java Developer’s Guide Components
completing text
in text editor 154

component developers 5
component events, Java 225
components

See also G2 item components
connectivity

See also connectivity
class hierarchy of 29
ItemRetriever 35
overview of 26
TwConnector 51

creating from dialog resources 343
data-aware 9
dialog 222
G2 item 226
TW2 Toolkit

accessor methods for 14
change and update events for 10
how to work with 6
internationalization for 14
JAR files for 9
using

packages and classes for 7
what you can do with 4
who uses 5

workspace view
terms and concepts 127
user interface for 133
using 160

configurations, item
See item configurations

connecting to G2
establishing login sessions 101
overview of 25
using

connection information objects 61
middle-tier servers 117
TwGateway class 76

connection information objects
basic and advanced properties of 65
class hierarchy of 62
creating 64
introduction to 61
setting advanced properties of 66
setting basic properties of 65
using 63
 and Core Classes 363

Index
connectionClassName property
of ItemRetriever component 46
of TwConnectionInfo class 67
of TwConnector component 54

connectionInfo property
of ItemRetriever component 46

connections
See also G2 JavaLink connection types
See also G2Gateway class
See also TW2 Toolkit connection types
See also TwConnector component
See also TwGateway class
choosing types of 30
closing

created using ItemRetriever
component 43

created using TwGateway class 76
creating

G2 JavaLink 32
shared TW2 Toolkit 70
TW2 Toolkit 33
using TwGateway class 76

establishing login sessions 101
forcing new 70
logical names for 71
login requirements for 33
opening, using TwGateway class 76
permanent 71
result of creating 31
sending messages through 95
sharing 69
three-tier

connecting to G2 through 124
overview of 120

ConnectionTimedOutException class
handling, using TwGateway class 79

connectivity
See also connections
choosing connection types 30
classes

class hierarch of 28
determining which to use 30
summary of 27

components
class hierarchy of 29
determining which to use 30
overview of 26
summary of 27

establishing login sessions 101
364
connectivity (continued)
G2 JavaLink 26
middle-tier servers 34
overview of 25

container events, Java 226
contains method

polling multiple workspace displays,
using 166

controls
See also dialog components
aggregate 10
scalar 10

conventions xviii
Copy item popup menu choice

equivalent in KB workspaces 140
copying text

to the clipboard 154
coreui.jar file 9
createConnection method

of TwConnector component 59
createItem method

of TwConnector component 59
creating

connection information objects 64
connections

using TwGateway class 76
dialogs

resources 210
using dialog components 214

login requests 101
workspace views

multiple 162
scalable 162
single 162

current workspace
definition of 128

cursor
moving, in text editor 153

custom dialogs
See also custom item properties dialogs
See also general dialogs
See also automatically generated dialogs
for editing item properties 208
registering for items 208

custom item properties dialogs
defining procedures for registering

dialog classes 317
dialog resources 315

introduction to 305
Part V Appendixes, Glossary, and Index

Index
custom item properties dialogs (continued)
registering

calling the remote procedure for 309
dialog classes 316
dialog resources 308
for classes 314
for instances 314
monitoring client sessions for 308

resource locations for
file 313
Java class 317
media bin 312
URL 313

customer support services xxiii
Cut item popup menu choice

equivalent in KB workspaces 140
cutting text

to the clipboard 154

D
data types

mapping of dialog components to 142
data-aware components 9
declaring

remote procedure calls in G2 309
defaultContents property

of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Listbox component 254
of G2Radiobox component 272
of G2TextField component 277

DefaultDialogLauncher class
creating 341
description of 339

DefaultDialogManagerFactory class
generating a DialogManager, using 318

DefaultDialogReader class
creating 341
description of 339

DefaultGeneratedDialogFactory class 322
defaultLogicalName property

of TwConnectionInfo class 71
deleteSelection method

deleting selected elements, using 175
deleting

See also removing
selected workspace elements 175
text, in text editor 154
Telewindows2 Toolkit Java Developer’s Guide Components
demos
launching custom item properties

dialogs 307
middle-tier servers 118
TwConnectionInfo class 63
TwGateway class 75
workspace view UI 134

deselecting objects
in workspace views 137

developers
component 5
user interface (UI) 5

dialog
A generic term for a set of one or more

components that you display in a Java
container 204

dialog classes
definition of 204
editing G2 items, using 316

dialog components
G2 item 226
getting G2 data updates from 223
introduction to 214
localizing text of 225
mapping to G2 data types 142
notifying G2 of changes in 223
subclasses of

based on AWT
java.awt classes 218

based on Swingjava.awt classes 219
java.lang.object class 217

support classes for 220
using 222
using standard Java

events and methods for 225
properties for 224

dialog launchers
creating default 341

dialog readers
creating default 341

dialog resources
creating

top-level component from 343
your own types of 345

definition of 204
getting ItemProxy component from 342
launching custom 347
 and Core Classes 365

Index
dialog resources (continued)
registering

See also custom item properties
dialogs, registering

when to create your own types of 346
dialogChangesFlushed event

of DialogCommand component 233
DialogClassReader class

description of 339
DialogCommand component

accessor methods 232
events 233
example 234
methods 233
properties 232
reference 232

DialogCommandEvent class
description of 340

DialogCommandListener interface
description of 339
listening for dialog events, using 233

dialogLaunched event
of DialogCommand component 233

DialogLauncher interface
description of 339
when to implement 346

DialogManager class
creating your own 318
generating, using factories 318
getting current, through connections 91
registering custom item properties dialogs,

using 308
using with DialogReader and
DialogLauncher 340

DialogManagerFactory interface
implementing 318

DialogReader interface
description of 339
when to implement 346

DialogResource class
description of 339
when to create your own 346

dialogs
See also custom dialogs
See also custom item properties dialogs
See also dialog classes
See also dialog resources
See also item properties dialogs
366
dialogs (continued)
automatically generated

adding buttons to 332
creating tabs for attribute groups

of 330
creating with user-defined attributes

only 334
customizing 321
introduction to 206
introduction to customizing 209
localizing attribute labels of 328
overriding attribute editors 325

creating
for logging on 116
resources 210
using dialog components 214

custom
for editing item properties 208
registering 208

definition of 204
informational 209
input 209
introduction to TW2 Toolkit 203
item properties 205
launching

custom item properties 305
general 337

standard 205
using

for event notification 210
G2 item components in 226

dialogShutdown event
of DialogCommand component 233

dispatchTwConnectionEvent method
of TwGateway class 100

documentation
related xx

download method
of ItemProxy component 293

downloading changes
from an ItemProxy to G2

automatically 294
dynamic text

creating in dialogs 250

E
Edit menu

text editor 156
Part V Appendixes, Glossary, and Index

Index
editable property
of G2TextField component 278

editing
arguments to methods

of components 287
of user-defined 228

arrays, example of 267
attributes

numeric, example of 282
of subobjects 295
sequences, example of 260
structures, example of 302
symbolic, using drop down

choices 246
symbolic, using list boxes 259
textual, example of 284
through item properties dialogs 142
truth values, using check boxes 240
truth values, using radio boxes 275
untyped 284

connectivity information
advanced 66
basic 65
login elements 105

lists, example of 267
text, using text editor 147
workspace view components 160

editItem method
of ItemProxy component 293
overriding for DialogManager 319

emptyFieldImpliesNull property
of G2TextField component 278

enabled property
of dialog components 224

errors
See exceptions

event detection
See events

event notification
using dialogs for 210

events
See also subscribing
change and update 10
connection 79
for dialog controls

notifying controls of G2 223
notifying G2 of 223

for DialogCommand component 233
for G2Button component 235
Telewindows2 Toolkit Java Developer’s Guide Components
events (continued)
for G2Checkbox component 239
for G2DropDownChoice component 244
for G2Label component 249
for G2Listbox component 256
for G2Radiobox component 274
for G2TextField component 281
for ItemProxy component 292
for ItemRetriever component

reference 48
subscribing to 41

for StructureMUX component 301
for TwConnector component

reference 57
for TwGateway class 79
for workspace view components

collection 176
selection 175

Java
action 225
component 225
container 226
focus 226
item 226
key 226
mouse 226
mouseMotion 226
text 226

KB message 87
KB module 84
show and hide workspace 82
using standard Java 225

exceptions
connection

for ItemRetriever 43
for TwGateway 79

handling when
getting lists of named workspaces 90
getting user menu choices 93
obtaining KB workspaces from

connections 165
retrieving an item 38

JavaLink
for getOrMakeConnection method 40
for getUniqueNamedItem method 41

login 112
existence, G2

testing for, using untyped attributes 287
 and Core Classes 367

Index
Exit menu choice
exiting text editor, using 151
Session menu 156

exiting
text editor 151

extend method
of G2Listbox component 257

F
factories

for generating a DialogManager 318
fetchG2Item method

of G2 item components 227
FieldType class 220

customizing automatically generated
dialog, using 324

fieldType property
handling data-type conversion, using 12
of G2DropDownChoice component 244
of G2Label component 248
of G2Listbox component 254
of G2Radiobox component 272
of G2TextField component 278

FieldTypeEditor class 220
files

.jar

for G2 item components 228
TW2 Toolkit 9

registering custom item properties dialog
resources in 313

findElement method
obtaining elements from items, using 172

fireObjectChangeOnContents method
of G2TextField component 281

focus events, Java 226
font property

of dialog components 224
forceNew property

of TwConnectionInfo class 70
of TwConnector component 54

foreground property
of dialog components 224

formatter property
of G2Listbox component 254
368
G
G2

application programmer’s interface
(API) 27

connecting to
See also connecting to G2
non-secure 107
overview of 25
results of 31
secure 109

creating components from classes in 17
logging off from 113
logging on to 105
managing clients and security in 103
representing

connections in 31
login sessions in 104

sending messages to 95
G2 Bean Builder

creating Java Beans from G2 classes,
using 17

G2 Foundation Resources (GFR)
support for 135

G2 item components
example of creating dialogs, using 228
fetching the item 227
handling events for 228
identifying the item 227
JAR files for 228
using in dialogs 226

G2 JavaLink
See also G2 JavaLink connection types
connection types

creating 32
creating, using G2ConnectionInfo

class 68
shared 32

connectivity
classes 28
components 29
packages 27

G2 Bean Builder 17
methods

returnMessage 95
g2://

identifying
G2 item components, using 227
dialog resources, using 342
Part V Appendixes, Glossary, and Index

Index
G2Access interface
implementations of 28

G2AccessException class
handling, using TwGateway class 79

G2AttributeEditor class 324
G2AttributeGroup class 324
G2Button component

accessor methods 235
events 235
example 237
methods 235
properties 235
reference 235

G2Callbacks interface
implementations of 28

G2Checkbox component
accessor methods 238
events 239
example 240
methods 239
properties 238
reference 238

G2ColorField class 325
G2ComboBox component

reference 241
G2CommunicationException class

handling, using TwGateway class 79
G2Connection interface

implementations of 28
g2ConnectionClosed event

of G2Gateway class 80
of TwConnector component 57

G2ConnectionInfo class
class hierarchy of 62

G2ConnectionInfo object
using with an ItemRetriever

component 39
g2ConnectionInitialized event

of G2Gateway class 80
of TwConnector component 57

G2ConnectionListener interface
using with TwConnector component 57
using with TwGateway class 79

G2DropDownChoice component
accessor methods 243
events 244
example 246
methods 245
Telewindows2 Toolkit Java Developer’s Guide Components
G2DropDownChoice component (continued)
properties 243
reference 242

G2Gateway class
closing connections, using 77
connection

events for 79
exceptions for 79

creating
G2 JavaLink connections, using 32
shared connection, using 69

getOrMakeConnection method 40
getting and setting attributes of user-

defined items, using 96
getUniqueNamedItem method 41
inheritance of 28
logging off from G2, using 113
returning instances of, when creating G2

JavaLink connections 32
sending messages to G2, using 95
setting connectionClassName property

to 67
using

for middle-tier connections 118
with connection information

objects 63
g2IsPaused event

of G2Gateway class 80
of TwConnector component 57

g2IsReset event
of G2Gateway class 80
of TwConnector component 57

g2IsRestarted event
of G2Gateway class 80

g2IsResumed event
of G2Gateway class 80
of TwConnector component 57

g2IsStarted event
of TwConnector component 57

G2ItemFetched property
of G2 item components 227

G2Label component
accessor methods 248
creating static and dynamic text,

using 250
events 249
example 250
methods 250
 and Core Classes 369

Index
G2Label component (continued)
properties 248
reference 248

G2Listbox component
accessor methods 253
events 256
examples 259
methods 257
properties 253
reference 252
using in collection mode 260
using in selection mode 259

g2MessageReceived event
of G2Gateway class 80
of TwConnector component 57

G2Radiobox component
accessor methods 272
editing truth values, using 275
events 274
example 275
methods 274
properties 272
reference 272

G2ReadOnlyTextArea class 324
G2TextArea class 325
G2TextField component

accessor methods 277
editing numeric data types, using 282
editing typed and untyped attributes,

using 284
events 281
examples 282
methods 281
passing arguments to component

methods, using 287
properties 277
reference 277

g2-window class
representing classic Telewindows clients

in G2, using 104
geBlockIncrement method

obtaining scroll block increment of a
WorkspaceView, using 170

generated dialogs
introduction to 209

GeneratedDialogFactory class
registering 325
370
generating dialogs
automatically 206
using a factory 321

getActionCommand method
of G2Button component 235

getAlignment method
of G2Label component 248

getAttribute method
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Label component 248
of G2Listbox component 253
of G2Radiobox component 272
of G2TextField component 277
of StructureMUX component 300

getAttributes method
of ItemProxy component 291

getAutoDownload method
of ItemProxy component 291

getAutoUpload method
of ItemProxy component 292

getBrokerURL method
of ItemRetriever component 46
of TwConnector component 54

getCaretPosition method
of G2TextField component 277

getChoices method
of G2DropDownChoice component 243
of G2Listbox component 253

getColumns method
of G2Radiobox component 272

getComponent method
getting the top-level component from

dialog resources, using 343
getConnectionClassName method

of ItemRetriever component 46
of TwConnector component 54

getConnectionInfo method
of ItemRetriever component 46

getCurrentSelection method
of G2Listbox component 257

getCurrentView method
obtaining the current KB workspace in a
MultipleWorkspaceView, using 167

getDefaultContents method
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Listbox component 254
Part V Appendixes, Glossary, and Index

Index
getDefaultContents method (continued)
of G2Radiobox component 272
of G2Textfield component 277

getDialogManager method
getting the current DialogManager from

connections, using 92
of TwAccess interface 98
of TwConnector component 59

getDialogManagerFactory method
of TwGateway class 100

getEditable method
of G2TextField component 278

getElements method
obtaining elements of a WorkspaceView,

using 171
getEmptyFieldImpliesNull method

of G2TextField component 278
getFieldType method

of G2DropDownChoice component 244
of G2Label component 248
of G2Listbox component 254
of G2Radiobox component 272
of G2TextField component 278

getForceNew method
of TwConnector component 54

getGsiInterfaceClassName method
of ItemRetriever component 46
of TwConnector component 54

getGsiInterfaceName method
of TwConnector component 55

getHandleProxiesAutomatically method
of DialogCommand component 232

getHost method
of TwConnector component 55

getHostName method
of ItemRetriever component 47

getInitializationAttribute method
of G2DropDownChoice component 244
of G2Listbox component 254

getInsets method
of G2Radiobox component 273

getItem method
obtaining the Item of workspace view

elements, using 172
getItemClassName method

of ItemRetriever component 47
getItemName method

of ItemRetriever component 47
Telewindows2 Toolkit Java Developer’s Guide Components
getItemProxies method
getting ItemProxy components from dialog

resources, using 342
getKb method

getting the KB from connections, using 89
of TwAccess interface 98
of TwConnector component 59

getKeepInHistory method
obtaining value of setKeepInHistory,

using 164
getLabelKey method

of textual dialog components 225
getLabels method

of G2Radiobox component 273
getListType method

of G2Listbox component 255
getLogicalName method

of TwConnector component 55
getLowerLimit method

of G2TextField component 278
getLowerLimitMode method

of G2TextField component 279
getMembers method

of G2Radiobox component 273
getMinimumSize method

of G2Label component 249
getMinimumVersion method

of TwAccess interface 98
getNamedWorkspaces method

getting lists of named workspaces from
connections, using 90

of TwAccess interface 99
of TwConnector component 59

getOrMakeConnection method
creating G2 JavaLink connections,

using 32
using with ItemRetriever 40

getPort method
of ItemRetriever component 47
of TwConnector component 55

getPreferredSize method
of G2Label component 249
of G2Listbox component 255

getPropagateEveryKeyTyped method
of G2TextField component 279

getProxy method
of ItemProxy component 293

getRemoteProcessInitString method
of TwConnector component 55
 and Core Classes 371

Index
getResourceName

of textual dialog components 225
getSelection method

obtaining selected elements from a
WorkspaceView, using 175

getSelectionEnd method
of G2TextField component 279

getSelectionStart method
of G2TextField component 279

getShowWorkspace method
obtaining value of setShowWorkspace,

using 163
getSubObjectAttribute method

of ItemProxy component 292
getUniqueNamedItem method

getting a handle on an item, using 96
obtaining KB workspaces from

connections, using 165
using with ItemRetriever 41

getUnitIncrement method
obtaining scroll unit increment of a
WorkspaceView, using 170

getUserMenuChoice method
getting user menu choices from

connections, using 93
of TwAccess interface 99
of TwConnector component 59

getUserMode method
logging on to G2, using 106
of ItemRetriever component 47
of TwConnector component 56

getUserName method
logging on to G2, using 106
of ItemRetriever component 47
of TwConnector component 56

getWorkspace method
obtaining KB workspaces from a
WorkspaceView, using 166

getWorkspaces method
obtaining all KB workspaces from multiple

workspace displays, using 166
ghosts

moving and reshaping objects, using 138
Goto Error menu choice

detecting syntax errors, using 151
Edit menu 157

grammar prompts
using in text editor 150
372
gsi-interface class
created for G2 JavaLink connections 32
subclasses of 104

gsiInterfaceClassName property
of ItemRetriever component 46
of TwConnectionInfo objects 67
of TwConnector component 54

gsiInterfaceName property
of TwConnector component 55

GUIDE/UIL
support for 135

H
handleProxiesAutomatically property

of DialogCommand component 232
has values G2 syntax

using with
G2DropDownChoice component 247
G2ListBox component 259

hide workspace action
automatically removing KB workspaces

from a MultipleWorkspacePanel,
using 164

hide workspace events
subscribing to 82

hideWorkspace event
of TwConnector component 58
of TwGateway class 82

hiding
workspaces, programmatically 82

host property
of ItemRetriever component 47
of TwConnector component 55
setting

for TwConnectionInfo class 65

I
IDEs

See integrated development environments
(IDEs)

informational dialogs 209
initializationAttribute property

of G2DropDownChoice component 244
of G2Listbox component 254

initializeChoices method
of G2DropDownChoice component 245
of G2Listbox component 257
Part V Appendixes, Glossary, and Index

Index
initializeConnectionRPCs method
of TwGateway class 100

initializeLocalRPCs method
of TwGateway class 100

input dialogs 209
input methods, native 152
insert method

of G2DropDownChoice component 245
inserting

line breaks 154
tabs 154

insets property
of G2Radiobox component 273

integrated development environments (IDEs)
definition of 5
determining connectivity classes to use

in 30
registering custom item properties dialog

classes created in 316
using TW2 Toolkit components in 16

interface classes
See also listeners
created for

G2 JavaLink connections 32
TW2 Toolkit connections 33

interfaceName property
of TwConnectionInfo objects 68

interfaces
See listeners

internationalization
introduction to 14

InvalidUserModeException class
of LoginRequest class 112

isLoggedIn method
of TwAccess interface 99

ISO Country Code 311
ISO Language Code 311
isPermanent method

of TwConnector component 55
isShared method

of TwConnector component 55
item configurations

support for
in item properties dialogs 144
in workspace views 135

item events, Java 226
Item Names menu choice

View menu 157
Item Names region

of text editor 150
Telewindows2 Toolkit Java Developer’s Guide Components
item popup menus
comparing with item popups in KB

workspaces 140
interacting with 141
user menu choices in 140
using 139

item properties dialogs
See also custom item properties dialogs
adding buttons to 332
Attributes tab 142
automatically generated 206
Configuration tab 144
creating tabs for attribute groups of 330
creating with user-defined attributes

only 334
customizing automatically generated 321
introduction to 205
introduction to customizing automatically

generated 209
localizing attribute labels 328
Notes tab 144
overriding attribute editors for 325
using in workspace views 141

Item Types menu choice
View menu 157

Item Types region
of text editor 150

itemClassName property
of ItemRetriever component 47

itemDeleted event
of ItemProxy component 292

ItemListener interface
listening for ItemEvents for workspace

view elements, using 171
itemName property

of ItemRetriever component 47
ItemProxy component

accessor methods 291
automatically

downloading changes from 294
uploading changes from 294

editing attributes of subobjects, using 295
events 292
examples 294
getting from dialog resources 342
methods 293
properties 291
reference 290
 and Core Classes 373

Index
ItemProxy component (continued)
using with

custom item properties dialog
classes 317

data-aware controls 10
itemRetrievalFailed event

of ItemProxy component 293
of ItemRetriever component 48
subscribing to 41

ItemRetrievalListener interface
components that implement 42
informing listeners of events 42
using with ItemRetriever component 48

itemRetrieved event
of ItemProxy component 293
of ItemRetriever component 48
subscribing to 41

ItemRetriever component
accessor methods reference 46
constructors for 37
establishing login sessions, using 102
events

reference 48
subscribing to 41

inheritance of 29
introduction to 35
logging on to G2, using 106
methods reference 49
passing a G2ConnectionInfo object to 39
properties

reference 46
setting programmatically 38

reference 46
retrieving an item, using 38
using

programmatically 37
when to use 30

items
customizing popups for 182
getting and setting attributes of user-

defined 96
getting unique named 41
obtaining from workspace view

elements 172
registering custom properties dialogs for

editing 314
representing G2 290
retrieving, using ItemRetriever

component 38
374
items (continued)
using

custom item properties dialogs for
editing 208

properties dialogs for editing 205
viewing and editing properties of 141

itemStateChanged event
of G2Radiobox component 274

ItemView class
getting workspace view element Item,

using 171

J
JAR files

for G2 item components 228
TW2 Toolkit 9

Java
using standard

events and methods 225
properties 224

Java Beans
creating from G2 classes 17

JavaLink
methods used for ItemRetriever 40
See G2 JavaLink

K
KB workspaces

See also workspace views
comparing with workspace views 129
definition of 128
differences with workspace views 136
getting

current, from multiple workspace
displays 166

from connections 165
from workspace views 166
lists of named, from connections 90

polling multiple workspace displays for
named 166

removing from workspace views 165
subscribing to show and hide events of 82
synchronizing with workspace views 135

kbCleared event
of TwGateway class 85

kbMessageAdded event
of TwGateway class 87
Part V Appendixes, Glossary, and Index

Index
kbMessageDeleted event
of TwGateway class 87

KbMessageListener interface
using with TwGateway class 87

KbModuleAdapter class
using with TwGateway class 84

KbModuleListener interface
using with TwGateway class 84

KBs
See also G2
getting through connections 89
subscribing to

message events in G2 87
module events in G2 84

key events, Java 226
keyboard accelerators

in text editor 153

L
label property

of dialog components 224
labelKey property

of textual dialog components 225
labels property

of G2Radiobox component 273
Language Prompts menu choice

View menu 157
Language Prompts region

text editor 150
languages

entering text in native 152
launch method

launching dialog resources, using 343
launchers, dialog 341
launching

custom
dialog resources 347
item properties dialogs 305

general dialogs
example 344
from your application 340
introduction to 337
using DefaultDialogLauncher 343

line breaks
inserting in text editor 154

listeners
CollectionListener 176
DialogCommandListener 233
Telewindows2 Toolkit Java Developer’s Guide Components
listeners (continued)
G2ConnectionListener

using with TwConnector
component 57

using with TwGateway class 79
ItemListener 171
ItemRetrievalListener 41

using with ItemRetriever
component 48

KbMessageListener 87
KbModuleListener 84
ObjectChangeListener

See also objectChange event
See also objectChanged method
implemented by ItemProxy

component 223
interface that extends 220

ObjectUpdateListener

See also objectUpdate event
See also objectUpdated method
implemented by data-aware

components 223
interface that extends 220

SelectionListener 175
TwConnectionListener

using with TwConnector
component 58

using with TwGateway class 79
WorkspaceShowingListener

automatically populating multiple
workspace panels, using 164

using with TwConnector
component 58

using with TwGateway class 82
lists

editing, using list boxes 267
listType property

of G2Listbox component 255
locales

registering custom item properties dialogs,
using 310

localizing
dialog component text 225

loggedIn event
of TwConnector component 58
of TwGateway class 80

loggedOut event
of TwConnector component 58
of TwGateway class 80
 and Core Classes 375

Index
logging off
See also login sessions
from G2 113

logging on
See also login sessions
to G2 105

logical names
specifying for connections 71

logicalName property
of TwConnector component 55

login dialog
creating 116

login method
of TwAccess interface 98

login sessions
creating

to non-secure G2s 107
to secure G2s 109

establishing 103
representing in G2 104
requirements for creating 33
result of establishing 101

LoginFailedException class
of LoginRequest class 112

LoginRequest class
accessor methods of 106
constructors of 107
establishing login sessions, using 103
handling login exceptions, using 112
introduction to 101
logging off

and closing the connection, using 114
and leaving the connection open 114
from G2 113

logging on to G2, using 105
managing clients and security in G2 103

logout method
logging off from G2, using 113
of TwAccess interface 98

lowerLimit property
of G2TextField component 278

lowerLimitMode property
of G2TextField component 279

M
makeResource method

creating dialog resources from
DialogReader, using 341
376
media bins
registering custom item properties dialog

resources in 312
members property

of G2Radiobox component 273
MenuChoiceHandler class 183
menus

See item popup menus
See Text Editor

Message Board
sending message to G2 95

messages
sending through connections 95
subscribing to events from the KB 87

methods
See also accessor methods
accessor 14
G2 JavaLink

closeConnection 113
JavaLink

getOrMakeConnection 40
getUniqueNamedItem 41

of DialogCommand component 233
of G2Button component 235
of G2Checkbox component 239
of G2DropDownChoice component 245
of G2Label component 250
of G2Listbox component 257
of G2Radiobox component 274
of G2TextField component 281
of ItemProxy component 293
of ItemRetriever component 49
of MultipleWorkspacePanel

component 160
of MultipleWorkspaceView component 160
of StructureMUX component 301
of TwAccess interface 98
of TwConnector component 59
of TwGateway class 100

protected 100
of WorkspaceView component 160
passing arguments to

component 287
user-defined 228

using standard Java 225
middle-tier servers

See also three-tier communication mode
introduction to 117
representing login sessions in 105
Part V Appendixes, Glossary, and Index

Index
middle-tier servers (continued)
supporting

using ItemRetriever component 46
using TwConnectionInfo class 66
using TwConnector component 54
using TwGateway class 76

minimumSize property
of G2Label component 249

moduleCreated event
of TwGateway class 85

moduleDeleted event
of TwGateway class 85

moduleDependencyChanged event
of TwGateway class 85

moduleNameChanged event
of TwGateway class 85

modules
subscribing to events from the KB 84

mouse events, Java 226
mouseMotion events, Java 226
move-object item configuration

support for, in workspace views 138
move-object-beyond-workspace-margin item

configuration
support for, in workspace views 138

moveSelection method
moving selected workspace view

elements, using 175
moving

cursor, in text editor 153
objects, in workspace views 138

multiple workspace displays
collections in 176
definition of 128
getting current KB workspace from 166
polling for named KB workspaces in 166
populating 163

multiple workspace panels
automatically populating 164
definition of 128

multiple workspace views
definition of 128
obtaining single workspace views

from 167
multipleMode property

of G2Listbox component 255
MultipleWorkspacePanel component

using methods of 160
Telewindows2 Toolkit Java Developer’s Guide Components
MultipleWorkspaceView component
using 160

N
Name item popup menu choice

equivalent in KB workspaces 140
name property

of dialog components 224
names KB Workspace menu choice

workspace view support for 140
names, logical 71
native input methods

entering native language text, using 152
native language text

entering in text editor 152
nextWorkspace method

making the next KB workspace current in
multiple workspace displays, using 167

non-secure G2
creating login sessions to 107

notes
displaying in item properties dialogs 144

NotLoggedInException class
of LoginRequest class 112

numeric data types
editing, using text fields 282

O
objectChanged event

of G2Checkbox component 239
of G2DropDownChoice component 244
of G2Listbox component 256
of G2Radiobox component 274
of G2TextField component 281
of StructureMUX component 301

objectChanged method
of G2Listbox component 258
of ItemProxy component 293

ObjectChangeEvent

using data-aware controls with 10
ObjectChangeListener interface

implemented by ItemProxy
component 223

interface that extends 220
 and Core Classes 377

Index
objectUpdated event
of G2Listbox component 256
of ItemProxy component 292
of StructureMUX component 301

objectUpdated method
of G2Checkbox component 239
of G2DropDownChoice component 245
of G2Label component 250
of G2Listbox component 258
of G2Radiobox component 274
of G2TextField component 281
of ItemProxy component 294
of StrutureMUX component 301

ObjectUpdateEvent

using data-aware controls with 10
ObjectUpdateListener interface

implemented by data-aware
components 223

interface that extends 220
OK button

implementing 234
ok method

of DialogCommand component 234
OkException class

of LoginRequest class 112
openConnection method

creating
TW2 Toolkit connections, using 33

of TwGateway class 100
opening connections, using 76

P
packages

com.gensym.controls 7
com.gensym.dlgruntime 15
com.gensym.gcg 15
com.gensym.ntw 14
com.gensym.wksp 8
for customizing popups for items 184
for establishing G2 login sessions 102
for launching

custom item properties dialogs 307
general dialogs 338

for using
dialog components 214
the ItemRetriever component 36
the TwConnector component 53
378
packages (continued)
for using (continued)

the TwGateway class 74
workspace view components 161

paint method
of G2Label component 250

palettes
converting GFR 135

passing arguments
to component methods 287
to user-defined methods 228

passwords
accessor methods for 106
logging on to secure G2s, using 109
managing clients and security in G2,

using 103
Paste item popup menu choice

equivalent in KB workspaces 140
pasting text

from the clipboard 154
permanent connections

setting 71
permanent property

of TwConnectionInfo class 71
of TwConnector component 55

polling
multiple workspace displays for named

KB workspaces 166
populating

multiple workspace displays 163
multiple workspace panels 164
workspace views 162

popup menus
See item popup menus

popups
customizing for items in workspace

views 182
displaying custom commands in 188
displaying with user menu choices

only 185
invoking system-defined user menu

choices locally 196
registering menu choices for individual

workspaces 193
port property

of ItemRetriever component 47
of TwConnector component 55
setting

for TwConnectionInfo class 65
Part V Appendixes, Glossary, and Index

Index
preferredSize property
of G2Label component 249
of G2Listbox component 255

previousWorkspace method
making the previous workspace current in

multiple workspace displays, using 167
propagateEveryKeyTyped property

of G2TextField component 279
properties

of connection information objects
advanced 66
basic 65

of DialogCommand component 232
of G2Button component 235
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Label component 248
of G2Listbox component 253
of G2Radiobox component 272
of G2TextField component 277
of ItemProxy component 291
of ItemRetriever component 46
of LoginRequest class 105
of StructureMUX component 300
of TwConnector component 54

properties dialogs
See item properties dialogs

Properties item popup menu choice
editing item properties, using 141
equivalent in KB workspaces 140

R
ranges

editing, using text fields 282
readBlockage event

of G2Gateway class 80
of TwConnector component 57

readers, dialog 341
readResource method

reading dialog resources, using 341
receivedInitialContents event

of TwGateway class 87
receivedInitialModules event

of TwGateway class 85
Redo menu choice

Edit menu 156
Telewindows2 Toolkit Java Developer’s Guide Components
registering
custom item properties dialogs

classes 316
introduction to 208
resources 308

registerJavaMethod method
not available with RMI 122

Remote Method Invocation (RMI) 120
remote procedure calls (RPCs)

communicating through middle-tier
servers, using 34

declaring in G2 309
registering custom item properties dialogs,

using 315
restricted 351

remote procedure invocation strings
setting for connections 71

remoteProcessInitString property
of TwConnector component 55

remove method
of G2DropDownChoice component 246
of G2Listbox component 258

removeAll method
of G2DropDownChoice component 246
of G2Listbox component 258

removeElementFromSelection method
deselecting selected workspace view

elements, using 174
removeElementsFromSelection method

removing workspace view elements from
selections, using 174

removeG2ConnectionListener method
of G2Connector component 57

removeItemRetrievalListener method
of ItemRetriever component 48

removeScrollbar method
removing scrollbars from a
MultipleWorkspaceView, using 169

removeTwConnectionListener method
of TwAccess interface 98
of TwConnector component 58

removeWorkspace method
removing KB workspaces from multiple

workspace displays, using 165
removeWorkspaceShowingListener method

of TwAccess interface 98
of TwConnector component 58

replaceItem method
of G2Listbox component 258
 and Core Classes 379

Index
reshaping objects
in workspace views 138

resource descriptions
See also custom item properties dialogs
registering custom item properties dialogs,

using 311
resourceName property

of textual dialog components 225
resources

See also dialog resources
creating

from dialog resource files 341
your own types of dialog 345

localizing dialog component text,
using 225

retrieveItem method
of ItemRetriever component 49
retrieving items, using 38

retrieveSession method
of TwAccess interface 99

retrieveUserMode method
getting current user mode, when

connections exists, using 112
of TwAccess interface 99

retrieving items
with an ItemRetriever component 38

returnMessage method
sending messages to the G2 Message

Board, using 95
RMI

See Remote Method Invocation (RMI)
RMI registry

starting 122
RMI server

starting 123
rows property

of G2Radiobox component 273
RPCs

See remote procedure calls (RPCs)
rpis property

of TwConnectionInfo class
71

S
scalable workspace views

creating 162
using 144

ScalableWorkspaceView class
inheritance of 160
380
scalar controls 10
scaling

workspace views 176
scroll methods

scrolling KB workspaces incrementally,
using 170

scrollbars
adding to workspace views 168
removing from workspace views 168

scrolling
KB workspaces 170
setting increments for 169
workspace views 168

Search menu choice
Edit menu 157
editing text, using 149

searching for text
in text editor 149

secure G2
creating login sessions to 109

security
managing, using login sessions 103

selectAll method
selecting all workspace view elements,

using 174
selected elements

manipulating in workspace views 175
selectElements method

selecting workspace view elements and
deselecting others, using 174

selecting
workspace view elements

programmatically 173
through the UI 137

selection events
in workspace views 175

SelectionCommand class 183
SelectionCommandGenerator class 183
selectionEnd property

of G2TextField component 279
SelectionListener interface

listening for workspace view selection
events, using 175

selections
of workspace views 173

selectionStart property
of G2TextField component 279

sending messages
to G2 Message Board 95
Part V Appendixes, Glossary, and Index

Index
sequence data types
editing, using list boxes 260

sequoia.jar file
dialog components in 222
introduction to 9

SEQUOIA_G2 environment variable 18
sequoia-support.kb file

declaring set-dialog-resource-entry RPC,
using 309

Session menu
text editor 156

setActionCommand method
of G2Button component 235

setAlignment method
of G2Label component 248

setAttribute method
of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Label component 248
of G2Listbox component 253
of G2Radiobox component 272
of G2TextField component 277
of StructureMUX component 300

setAttributes method
of ItemProxy component 291

setAutoDownload method
of ItemProxy component 291

setAutoUpload method
of ItemProxy component 292

setBlockIncrement method
setting scroll block increment of a
WorkspaceView, using 170

setBrokerURL method
of ItemRetriever component 46
of TwConnector component 54

setCaretPosition method
of G2TextField component 277

setChoices method
of G2DropDownChoice component 243
of G2Listbox component 253

setColumns method
of G2Radiobox component 272

setConnectionClassName method
of ItemRetriever component 46
of TwConnector component 54

setConnectionInfo method
of ItemRetriever component 46
Telewindows2 Toolkit Java Developer’s Guide Components
setCurrentWorkspace method
setting the current KB workspace of

multiple workspace displays, using 167
setDefaultContents method

of G2Checkbox component 238
of G2DropDownChoice component 243
of G2Listbox component 254
of G2Radiobox component 272
of G2TextField component 277

setDialogManager method
of TwAccess interface 98

setDialogManagerFactory method
of TwGateway class 100
registering your DialogManagerFactory,

using 319
setDialogResourceEntry method

declaring an RPC for registering dialog
resources, using 309

registering your own types of dialog
resources, using 319

set-dialog-resource-entry RPC
calling in G2 310

setEditable method
of G2TextField component 278

setEmptyFieldImpliesNull method
of G2TextField component 278

setEnabled method
of G2Radiobox component 274

setFieldType method
of G2DropDownChoice component 244
of G2Label component 248
of G2Listbox component 254
of G2Radiobox component 272
of G2TextField component 278

setForceNew method
of TwConnector component 54

setGsiInterfaceClassName method
of ItemRetriever component 46
of TwConnector component 54

setGsiInterfaceName method
of TwConnector component 55

setHandleProxiesAutomatically method
of DialogCommand component 232

setHost method
of TwConnector component 55

setHostName method
of ItemRetriever component 47
 and Core Classes 381

Index
setInitializationAttribute method
of G2DropDownChoice component 244
of G2Listbox component 254

setInsets method
of G2Radiobox component 273

setItemClassName method
of ItemRetriever component 47

setItemName method
of ItemRetriever component 47

setKeepInHistory method
specifying workspace view display

caching, using 164
setLabelKey method

of textual dialog components 225
setLabels method

of G2Radiobox component 273
setListType method

of G2Listbox component 255
setLogicalName method

of TwConnector component 55
setLowerLimit method

of G2TextField component 278
setLowerLimitMode method

of G2TextField component 279
setMembers method

of G2Radiobox component 273
setPermanent method

of TwConnector component 55
setPort method

of ItemRetriever component 47
of TwConnector component 55

setPropagateEveryKeyTyped method
of G2TextField component 279

setProxy method
of ItemProxy component 294

setRemoteProcessInitString method
of TwConnector component 55

setResourceName

of textual dialog components 225
setRows method

of G2Radiobox component 273
setSelectionEnd method

of G2TextField component 279
setSelectionStart method

of G2TextField component 279
setShared method

of TwConnector component 55
setShowWorkspace method

setting current workspace, using 163
382
setState method
of G2Checkbox component 238
of G2Radiobox component 274

setSubObjectAttribute method
of ItemProxy component 292

setUnitIncrement method
setting scroll unit increment of a
WorkspaceView, using 170

setUserMode method
logging on to G2, using 106
of ItemRetriever component 47
of TwConnector component 56

setUserName method
logging on to G2, using 106
of ItemRetriever component 47
of TwConnector component 56

setUserPassword method
logging on to G2, using 106
of ItemRetriever component 49
of TwConnector component 59

setWorkspace method
populating a WorkspaceView, using 162
removing KB workspaces from a
WorkspaceView, using 165

sharable property
of TwConnectionInfo class 70
of TwConnector component 55

shared connections
creating TW2 Toolkit 70
using 69

sharing connections 69
show workspace action

automatically populating a
MultipleWorkspacePanel, using 164

show workspace events
subscribing to 82

showing
workspaces, programmatically 82

showQuotesForTextType property
of G2Label component 249
of G2TextField component 279

showWorkspace event
of TwConnector component 58
of TwGateway class 82

single workspace views
See also workspace views
definition of 128
Part V Appendixes, Glossary, and Index

Index
SingleItemEditor interface
creating custom item properties dialog

classes, using 317
standard dialogs

See also dialogs
definition of 205

state property
of G2Checkbox component 238

static text
creating in dialogs 250

Status menu choice
View menu 157

structure data types
editing, using a StructureMUX

component 302
StructureMUX component

accessor methods 300
events 301
example 302
methods 301
properties 300
reference 300

SubDialogLauncher class 324
subObjectAttribute property

of ItemProxy component 292
subobjects

editing attributes of, using an ItemProxy
component 295

subscribing
to connection events

for TwGateway class 79
to G2 connection events

for TwConnector component 57
to ItemRetriever events 41
to KB message events 87
to KB module events 84
to TW2 Toolkit connection events

for TwConnector component 58
to workspace show and hide events

for TwConnector component 58
for TwGateway class 82

to workspace view
collection events 176
selection events 175

Symantec Visual Café
TW2 Toolkit support for 17

symbolic data types
example of editing

using drop down choices 246
using list boxes 259
Telewindows2 Toolkit Java Developer’s Guide Components
SymbolVector class 221
SymbolVectorEditor classes 221
syntax errors

in text editor 151
system-defined attributes

editing, with grammar 143

T
table KB Workspace menu choice

workspace view support for 140
tabs

inserting in text editor 154
Telewindows

representing clients in G2, using
classic 104

Telewindows2 Toolkit
See TW2 Toolkit

text editor
applying changes in 151
detecting syntax errors in 151
Edit menu 156
editing text, using 149
entering native language text 152
exiting 151
grammar prompts in 150
introduction to 13, 147
keyboard accelerators in 153
menu reference 156
popup menu 155
searching for text 149
Session menu 156
shortcuts 153
toolbar buttons 155
using 148
View menu 157

text events, Java 226
textual data types

creating
dynamic text in dialogs 250
static text in dialogs 250

editing, using text fields 284
three-tier communication mode

connecting to G2, using 124
development considerations for 121
establishing connections, using 120
setting up 122
 and Core Classes 383

Index
three-tier communication mode (continued)
starting

RMI registry for 122
RMI server for 123

using 120
when to use 122

Tool Bar menu choice
View menu 157

TooManyLoginAttemptsException class
of LoginRequest class 113

topLevelWorkspaceAdded event
of TwGateway class 85

topLevelWorkspaceDeleted event
of TwGateway class 85

toString method
of ItemRetriever component 49
of TwAccess interface 99

transfer KB Workspace menu choice
workspace view support for 140

truth value data types
editing

using check boxes 240
using radio boxes 275

TW2 Toolkit
application programmer’s interface

(API) xviii
audience xviii
components

See also components
accessor methods for 14
change events for 10
creating from G2 classes 17
data-aware 9
how to work with 6
update events for 10
using 7
using in IDEs 16
what you can do with 4
who uses 5
workspace view 13

core classes
how to work with 6
using 14

demonstrations for Java 17
internationalization, using 14
introduction to 3
JAR files for 9
representing clients in G2, using 104
text editor 13
384
TW2 Toolkit connections
See also connections
creating 33
login requirements for 33
unshared 33
working with 89

TwAccess interface
abstract methods of 98
inheritance of 28

TwCallbacks interface
inheritance of 28

TwConnection interface
implementations of 28

TwConnectionAdapter class
using with TwGateway class 79

TwConnectionInfo class
accessor methods

advanced 66
basic 65

class hierarchy of 62
interrelated properties of 67

TwConnectionInfo objects
properties

setting advanced 66
setting basic 65

TwConnectionListener interface
using with TwConnector component 58
using with TwGateway class 79

TwConnector component
accessor methods reference 54
establishing login sessions, using 102
events 57
inheritance of 29
introduction to 51
logging on to G2, using 106
methods reference 59
properties reference 54
when to use 30

TwGateway class
See also TwAccess interface
closing connections, using 76
creating connections, using 76
creating TW2 Toolkit connections,

using 32
establishing login sessions, using 102
getting

attributes of user-defined items,
using 96

lists of named workspaces, using 90
Part V Appendixes, Glossary, and Index

Index
TwGateway class (continued)
getting (continued)

the current DialogManager, using 91
the KB, using 89

handling events for 79
inheritance of 28
introduction to 73
invoking user menu choices, using 93
methods

protected 100
opening connections, using 76
reference 97
setting attributes of user-defined items,

using 96
static methods of 100
subscribing

to connection events, using 79
to KB message events, using 87
to KB module events, using 84
to workspace show and hide events,

using 82
supporting middle-tier servers, using 76
when to use 30
working with connections created

using 89
two-tier communication mode

establishing connections, using 119
using 119
when to use 120

two-tier connections
representing login sessions in 105

typed attributes
editing

using item properties dialogs 144
using list boxes 259

U
ui-client-interface class

created for TW2 Toolkit connections 32
representing TW2 Toolkit clients in G2,

using 104
setting the name of 68

ui-client-item class
G2 subclasses of 104
Telewindows2 Toolkit Java Developer’s Guide Components
ui-client-session class
created for TW2 Toolkit connections 33
monitoring the creation of, in G2 308
representing TW2 Toolkit clients in G2,

using 104
ui-client-session-user-mode attribute

of g2-client-session class 105
ui-client-session-user-name attribute

of g2-client-session class 105
Undo menu choice

Edit menu 156
editing text, using 149

Unicode characters
entering in text editor 152

Unicode Insertion menu choice
View menu 157

untyped attributes
editing, using text fields 284
testing for existence of 287

update events 10
upload method

of ItemProxy component 294
uploading changes

from an ItemProxy to G2
automatically 294
batch uploading 234

upperLimit property
of G2TextField component 279

upperLimitMode property
of G2TextField component 280

URLs
connecting to G2 using 124
creating dialog resources from 341
registering custom item properties dialog

resources, using 313
user interface (UI) developers 5
user menu choices

displaying popups with only 185
in item popup menus of workspace

views 140
invoking system-defined locally 196
invoking through connections 93

user modes
accessor methods for 106
logging on

to non-secure G2s, using 107
to secure G2s, using 109

managing clients and security in G2,
using 103
 and Core Classes 385

Index
user modes (continued)
representing in ui-client-session 105
working with 112

user names
accessor methods for 106
logging on

to non-secure G2s, using 107
to secure G2s, using 109

managing clients and security in G2,
using 103

representing in ui-client-session 105
user passwords

See passwords
userMode property

of ItemRetriever component 47
of LoginRequest class 105
of TwConnector component 56

userModeChanged event
of TwConnector component 58
of TwGateway class 80

userName property
of ItemRetriever component 47
of LoginRequest class 105
of TwConnector component 56

userPassword property
of LoginRequest class 105

V
View menu

text editor 157

W
warnOnBadSyntax property

of G2TextField component 280
workspace view components

definition of 127
workspace view elements

See also workspace views
manipulating

selected 175
obtaining

all 171
items associated with 172
selected 175

selecting 173
working with

overview of 171
386
workspace views
See also KB workspaces
See also multiple workspace displays
See also multiple workspace panels
See also multiple workspace views
See also workspace view dialog
See also workspace view elements
adding scrollbars to 168
appearance of 134
behavior of 135
changing

appearance of 136
objects in 137

comparing with KB workspaces 129
components, using 160
controlling KB workspace visibility in 167
creating

multiple 162
scalable 162
single 162

current workspaces of 128
customizing popups for selected items

in 182
definition of 128
developer’s perspective 131
differences with KB workspaces 136
elements of

See workspace view elements
getting KB workspace(s) from 166
incrementally scrolling 170
item popup menus of

interacting with 141
user menu choices in 140
using 139

item properties dialogs of 141
manipulating selected elements in 175
moving and reshaping objects in 138
obtaining

from multiple workspace views 167
populating

overview of 162
single 162

programming 128
removing

KB workspaces from 165
scrollbars from 168

scalable
using 144

scaling 176
Part V Appendixes, Glossary, and Index

Index
workspace views (continued)gm
scrolling 168
selecting and deselecting objects in 137
selecting elements of 173
selections 173
setting scrolling increments of 169
subscribing to selection events in 175
support for item configurations in 135
synchronizing with KB workspaces 135
terms and concepts 127
user interface 133
user’s perspective 130

WorkspaceElement class
representing workspace view elements,

using 171
workspaces

See KB workspaces
See workspace views

WorkspaceShowingListener interface
automatically populating multiple

workspace panels, using 164
using with TwConnector component 58
using with TwGateway class 82

WorkspaceView class
backward compatibility of 160

WorkspaceView component
using methods of 160

WorkspaceViewScrollbar class
creating scrollbars, using 168

writeBlocakge event
of G2Gateway class 80

writeBlockage event
of TwConnector component 57
Telewindows2 Toolkit Java Developer’s Guide Components
 and Core Classes 387

	Telewindows2 Toolkit Java Developer’s Guide Components and Core Classes
	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	A Note About the API
	Conventions
	Typographic
	Procedure Signatures

	Related Documentation
	Customer Support Services

	Introduction
	Overview of Telewindows2 Toolkit
	Introduction
	What Can You Do with Telewindows2 Toolkit Components?
	Who Uses Telewindows2 Toolkit Components?
	How Do You Work with Telewindows2 Toolkit Components and Core Classes?

	Using Telewindows2 Toolkit Components
	JAR Files
	Data-Aware Components
	Change and Update Events
	Data Type Conversion
	Workspace View Components
	Text Editor
	Internationalization
	Accessor Methods

	Using Telewindows2 Toolkit Core Classes
	Using Java-Based Visual Programming Environments
	Creating Components from G2 Classes
	Using Telewindows2 Toolkit Demonstrations for Java

	Connecting to G2
	Overview of Connectivity
	Introduction
	Connectivity Components
	G2 JavaLink Connectivity to G2

	Understanding the Connectivity Classes
	Class Hierarchy of Connectivity Classes
	Class Hierarchy of Connectivity Components
	Determining the Connectivity Class to Use

	Choosing a Connection Type
	Result of Connecting to G2
	Creating a G2 JavaLink Connection
	Shared Connections
	Interface Class

	Creating a Telewindows2 Toolkit Connection
	Shared Connections
	Interface Class
	Login Requirements

	Using a Middle-Tier Server

	Using ItemRetriever
	Introduction
	Packages Covered
	com.gensym.controls
	Interfaces
	Classes

	com.gensym.jgi
	Exceptions

	Using an ItemRetriever Programmatically
	Using ItemRetriever Constructors
	Retrieving an Item
	Setting ItemRetriever Properties
	Passing a Connection Information Object to an ItemRetriever
	Using JavaLink Methods
	Using getOrMakeConnection
	Using getUniqueNamed Item

	Subscribing to ItemRetriever Events
	Components that Implement the ItemRetrievalListener Interface
	Informing an ItemRetrievalListener of Events

	Handling Connection Exceptions
	Closing a Connection
	Example

	ItemRetriever Reference
	Properties
	Events and Listeners
	Methods

	Using TwConnector
	Introduction
	Packages Covered
	com.gensym.controls
	com.gensym.jgi
	Exceptions

	TwConnector Reference
	Properties
	Events and Listeners
	Methods

	Using Connection Information Objects
	Introduction
	The TwConnectionInfo Class Hierarchy

	Packages Covered
	com.gensym.jgi
	com.gensym.ntw

	Relevant Demos
	Using Connection Information Objects
	Creating a Connection Information Object
	Basic and Advanced Properties

	Setting Basic Connectivity Properties
	Setting the Host and Port
	Specifying a Middle-Tier Server

	Setting Advanced Connectivity Properties
	Interrelated and Independent Properties
	Connection and Interface Classes
	Changing the Interface Name
	Sharing a Connection
	Using a Shared Connection
	Creating a Shared Telewindows2 Toolkit Connection
	Understanding How These Properties Interact

	Setting a Permanent Connection
	Specifying a Logical Name
	Setting a Remote Procedure Invocation String

	Using TwGateway
	Introduction
	Packages Covered
	com.gensym.ntw
	Interfaces
	Classes

	com.gensym.ntw.util
	Interfaces

	com.gensym.jgi
	Exceptions

	Relevant Demos
	Supporting a Middle-Tier Connection
	Creating a G2 Connection
	Opening and Closing a Connection
	Handling Connection Exceptions

	Handling Events
	Subscribing to Connection Events
	Subscribing to Workspace Show and Hide Events
	Subscribing to KB Module Events
	Subscribing to KB Message Events

	Working with Telewindows2 Toolkit Connections
	Getting the KB
	Getting a List of Named Workspaces
	Getting the Current DialogManager
	Invoking a User Menu Choice
	Sending a Message
	Getting and Setting Attributes of User-Defined Items

	TwGateway Reference
	Abstract Methods on TwAccess
	Static Methods on TwGateway
	Protected Methods on TwGateway

	Establishing a G2 Login�Session
	Introduction
	Packages Covered
	com.gensym.ntw
	Classes
	Exceptions

	Relevant Demos
	Establishing a Login Session
	Managing Clients and Security in G2
	Representing a Login Session in G2
	Two-Tier Connections
	Three-Tier Connections

	Logging in to G2
	Using Accessor Methods
	Using LoginRequest Constructors
	Creating a Login Session to a Non-Secure G2
	Creating a Login Session to a Secure G2
	Working with User Modes in a TwGateway Connection

	Handling Login Exceptions
	Logging Out From G2
	Logging Out and Closing the Connection
	Logging Out and Leaving the Connection Open

	Using a Middle�Tier�Server
	Introduction
	Telewindows2 Toolkit Communication Support
	Prerequisites

	Packages Covered
	Relevant Demos
	Using a Two-Tier Configuration
	Establishing a Two-Tier Connection
	When to Use Two-Tier Connections

	Using a Three-Tier Configuration
	Establishing a Three-Tier Connection
	Development Considerations
	When to Use Three-Tier Connections

	Setting Up a Three-Tier Configuration
	Starting an RMI Registry
	Starting an RMI Server
	Connecting to G2 Through a Middle Tier

	Viewing Workspaces
	Workspace Views Terms�and Concepts
	Introduction
	Workspace View Terminology
	Programming Workspace Views
	KB Workspaces vs. Workspace Views
	User’s Perspective
	Developer’s Perspective

	The Workspace View User�Interface
	Introduction
	Relevant Demos
	Workspace View Appearance
	Workspace View Behavior
	Synchronizing KB Workspaces and Workspace Views
	Differences between KB Workspaces and Workspace Views

	Changing Workspace View Appearance
	Changing Objects in a Workspace View
	Selecting and Deselecting Objects
	Moving and Reshaping Objects

	Using Workspace View Item Popup Menus
	Comparison with Item Popup Menus in KB Workspaces
	User Menu Choices in Item Popup Menus
	Interacting with Item Popup Menus

	Using Workspace View Item Properties Dialogs
	Attributes Tab
	Editing System-Defined Attributes with a Grammar
	Editing Typed Attributes

	Configuration Tab
	Notes Tab

	Scaling Workspace Views
	Unsupported Features of Workspace Views

	Using the Text Editor
	Introduction
	Using the Telewindows2 Toolkit Text Editor
	Editing Text
	Searching for Text
	Using Grammar Prompts
	Language Prompts
	Item Types
	Item Names

	Detecting Syntax Errors
	Applying Changes
	Exiting the Editor

	Entering Native Language Texts
	Text Editor Shortcuts
	Keyboard Accelerators
	The Text Editor Popup Menu
	Toolbar Buttons

	Text Editor Menu Reference
	Session Menu
	Edit Menu
	View Menu

	Using Workspace View Components
	Introduction
	Packages Covered
	Relevant Demos
	Creating Workspace Views
	Populating Workspace Views
	Populating a Single Workspace View
	Populating a Multiple Workspace Display
	Automatically Populating a Multiple Workspace Panel

	Removing a KB Workspace from a Workspace View
	Obtaining KB Workspaces
	Obtaining a KB Workspace from a Connection
	Obtaining a KB Workspace(s) from a Workspace View
	Obtaining the Current KB Workspace from a Multiple Workspace Display
	Polling a Multiple Workspace Display for a Named KB Workspace

	Obtaining a Single Workspace View from a Multiple Workspace View
	Controlling KB Workspace Visibility
	Scrolling Workspace Views
	Adding and Removing Scrollbars
	Setting Scrolling Increments
	Incrementally Scrolling a KB Workspace

	Working with Workspace View Elements
	Obtaining All Workspace View Elements
	Obtaining the Workspace Element for an Item
	Obtaining the Item Associated with a Workspace Element

	Working with Selections
	Selecting Workspace View Elements
	Obtaining Selected Elements
	Manipulating Selected Elements
	Handling Selection Events

	Working with Collections
	Scaling Workspace Views
	Workspace View Example

	Customizing Popups for�Selected Items
	Introduction
	SelectionCommandGenerator
	SelectionCommand
	MenuChoiceHandler

	Packages Covered
	Interfaces
	Classes

	Relevant Demos
	Displaying a Popup Menu with User Menu Choices Only
	Example

	Displaying Custom Commands in a Popup Menu
	Example

	Registering Popup Menu Choices for Individual Workspaces
	Example

	Invoking System-Defined User Menu Choices Locally in the Client
	Example

	Using Dialogs
	Introduction to Telewindows2�Toolkit Dialogs
	Introduction
	Terminology
	Standard Dialogs

	Item Properties Dialogs
	Automatically Generated Item Properties Dialogs
	Customizing Item Properties Dialogs
	Creating and Registering Custom Dialog Resources and Classes
	Customizing Automatically Generated Dialogs

	General Dialogs
	Using General Dialogs for Event Notification

	Dialog Resources

	Using Dialog Components
	Introduction
	Packages Covered
	com.gensym.controls
	Interfaces
	Classes

	com.gensym.jcontrols
	Classes
	BeanInfo Classes

	com.gensym.dlgruntime
	Interfaces
	Classes

	com.gensym.dlgevent
	Interfaces
	Classes

	Class Hierarchy of the Dialog Components
	Helper Components
	Dialog Controls Based on AWT
	Dialog Controls Based on Swing

	Component Support Classes
	AttributeEditor Interface
	AttributeHolder Class
	FieldType and FieldTypeEditor Classes
	LimitMode and LimitModeEditor Classes
	SymbolVector and SymbolVectorEditor Classes

	Using Dialog Components
	How G2 Gets Data Changes from a Control
	How a Control Gets G2 Data Updates
	Using Standard Java Properties
	Localizing Dialog Component Text
	Using Standard Java Events and Methods

	Using G2 Item Components in Dialogs
	Identifying the Item
	Fetching the Item
	Handling Events
	Example
	DialogCommand
	G2Button
	G2Checkbox
	G2ComboBox
	G2DropDownChoice
	G2Label
	G2Listbox
	Using a G2Listbox in Selection Mode
	Using a G2Listbox in Collection Mode

	G2Radiobox
	G2TextField
	ItemProxy
	StructureMUX

	Launching Custom Item Properties Dialogs
	Introduction
	Packages Covered
	com.gensym.dlgruntime
	Interfaces
	Classes

	com.gensym.classes
	Interfaces

	Relevant Demos
	Registering Custom Item Properties Dialog Resources
	Monitoring Client Sessions
	Declaring the Remote Procedure in G2
	Calling the Remote Procedure
	Locale Structure
	Resource Description Structure
	Specifying a Media Bin Resource Location
	Specifying a URL Resource Location
	Specifying a File Resource Location
	Registering a Custom Dialog for a Class
	Registering a Custom Dialog for Items

	Creating a Procedure that Calls the RPC Across the Interface

	Registering Custom Item Properties Dialog Classes
	Creating Dialog Classes for Editing G2 Items
	Defining a Procedure that Calls the RPC to Register the Dialog Class

	Creating Your Own Dialog Manager

	Customizing Automatically Generated Dialogs
	Introduction
	DeafultGeneratedDialogFactory
	Dialog Components

	Registering the Generated Dialog Factory
	Overriding the Editor for Attributes of a Given Type
	Localizing Attribute Labels
	Creating Tabs for Groups of Attributes
	Adding Buttons to Automatically Generated Dialogs
	Creating a Dialog with User-Defined Attributes Only

	Launching General�Dialogs
	Introduction
	Relevant Packages
	com.gensym.dlgruntime
	Interfaces
	Classes
	Exceptions

	Relevant Demos
	Reviewing the Dialog Runtime Interfaces and Classes
	Launching General Dialogs from Your Application
	Creating a Default Dialog Reader and Launcher
	Creating a Resource from a Dialog Resource File
	Getting the ItemProxy Components from the Resource
	Creating the Top-Level Component from the Resource
	Launching the Dialog
	Example Code

	Creating Your Own Types of Dialog Resources
	When to Create Your Own Dialog Resource
	Launching a Custom Dialog Resource

	Appendixes, Glossary,�and Index
	Restricted Remote Procedure Calls
	Compatibility Issues
	Glossary
	A
	C
	D
	G
	I
	J
	K
	M
	R
	S
	U
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

