
G2 MQTT Protocol User’s Guide
Gensym Corporation

Version Gensym.2020.1, March 2020

Table of Contents
Preface . 3

About this guide . 3

Audience . 3

Conventions . 3

Typographic . 3

Procedure Signatures . 4

Related Documentation . 4

Customer Support Services . 7

1. MQTT protocol . 9

1.1. Introduction. 9

1.2. Characteristics of MQTT . 9

1.3. MQTT protocol specification . 9

1.4. MQTT client . 10

1.5. Protocol options . 10

1.5.1. Explicit options . 10

1.5.2. Message/packet buffer. 10

1.5.3. When to deliver QoS=2 message. 11

1.5.4. Error handling. 11

1.5.5. MQTT under-specified. 13

1.6. Limits . 14

2. MQTT Knowledge Base . 17

2.1. Introduction. 17

2.2. Usage . 17

2.2.1. Startup/shutdown. 17

2.2.2. Sending messages. 17

2.2.3. Receiving messages . 18

2.3. Logging . 18

3. User API Reference . 19

3.1. Classes . 19

3.1.1. MQTT-SERVER . 19

3.2. Procedures . 21

3.2.1. G2-MQTT-DISCONNECT. 21

3.2.2. G2-MQTT-UNSUBSCRIBE. 21

3.2.3. G2-MQTT-SUBSCRIBE. 22

3.2.4. G2-MQTT-RECONNECT . 22

3.2.5. G2-MQTT-CONNECT . 22

3.2.6. G2-MQTT-PUBLISH-EXACTLY-ONCE. 23

3.2.7. G2-MQTT-PUBLISH-AT-LEAST-ONCE . 23

3.2.8. G2-MQTT-PUBLISH-AT-MOST-ONCE. 24

3.2.9. G2-MQTT-GET-UNCONFIRMED-MESSAGES . 25

3.2.10. G2-MQTT-GET-UNCONFIRMED-SUBSCRIBES. 25

3.2.11. G2-MQTT-GET-UNCONFIRMED-UNSUBSCRIBES . 25

G2 MQTT Protocol User’s Guide, Version Gensym.2020.1

Copyright (c) 1985-2018 Gensym Corporation

The information in this publication is subject to change without notice and does not
represent a commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole
risk.

All rights reserved. No part of this document may be reproduced, stored in a retrieval
system, translated, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of Gensym
Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym
Corporation. NeurOn-LineTM, Dynamic SchedulingTM G2 Real-Time Expert SystemTM, G2
ActiveXLinkTM, G2 BeanBuilderTM, G2 CORBALinkTM, G2 Diagnostic AssistantTM, G2
GatewayTM, G2 GUIDETM, G2GLTM, G2 JavaLinkTM, G2 ProToolsTM, GDATM, GFITM, GSITM,
ICPTM, IntegrityTM, and SymCureTM are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United
States and/or other countries. Telewindows is used by Gensym Corporation under license
from owner.

This software is based in part on the work of the Independent JPEG Group. Copyright (c)
1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks
or service marks of their respective companies or organizations, and Gensym Corporation
disclaims any responsibility for specifying which marks are owned by which companies or
organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, Texas USA 78701
Telephone: +1-800-248-0027
Email: success@ignitetech.com [mailto:success@ignitetech.com]

G2 MQTT Protocol User’s Guide

G2 MQTT Protocol User’s Guide 1

http://www.openssl.org/
mailto:success@ignitetech.com

Table of Contents

2 G2 MQTT Protocol User’s Guide

Preface

About this guide
This guide contains complete information about the G2 MQTT Protocol client
implementation. This guide is designed to help users communicate with other nodes of a
network using the MQTT protocol.

Audience
To understand and use this guide, you must be familiar with the G2 real-time expert system.
In addition, you should be familiar with basics of the MQTT protocol and networking
(TCP/IP) in general. If you encounter G2 terms or concepts that you do not understand, refer
to the G2 Reference Manual.

Conventions
This guide uses the following typographic conventions and conventions for defining system
procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1, ws-top-level, sys-
mod

User-defined and system-defined G2 class
names, instance names, workspace names,
and module names

history-keeping-spec, temperature User-defined and system-defined G2 attribute
names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values specified or
viewed through dialogs

Main Menu > Start
KB Workspace > New Object
create subworkspace
Start Procedure

G2 menu choices and button labels

conclude that the x of y .. Text of G2 procedures, methods, functions,
formulas, and expressions

new-argument User-specified values in syntax descriptions

Preface

G2 MQTT Protocol User’s Guide 3

Convention Examples Description

text-string Return values of G2 procedures and methods
in syntax descriptions

File Name, OK, Apply, Cancel, General, Edit
Scroll Area

GUIDE and native dialog fields, button labels,
tabs, and titles

File > Save
Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()

gsi_start

Java, C and all other external c

 Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or method. A
procedure signature shows values supplied by the user in italics, and the value (if any)
returned by the procedure underlined. Each value is followed by its type:

g2-clone-and-transfer-objects
 (list: class item-list, to-workspace: class kb-workspace,delta-x: integer, delta-y: integer)
 → transferred-items: g2-list

Related Documentation
Integrity

• Integrity Relelease Notes

• Integrity Demo Guide

• Integrity User’s Guide

• Integrity Reference Manual

• Integrity with AutoDiscovery User’s Guide

• SymCure User’s Guide

• Integrity Utililies Guide

Related Documentation

4 G2 MQTT Protocol User’s Guide

• DXI3DB-Primer

• G2-SNMP Bridges Installation and User’s Guide

• Integrity G2/Java Socket Manager User’s Guide

• Integrity SNMP User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User’s Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

Preface

G2 MQTT Protocol User’s Guide 5

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Related Documentation

6 G2 MQTT Protocol User’s Guide

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer Support. Help
is available online, by telephone and by email.

To obtain customer support online:

→ Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if necessary. Ignite
Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

→ Use the following numbers and addresses:

United States Toll-Free +1-855-453-8174

United States Toll +1-512-861-2859

Email support@ignitetech.com [mailto:support@ignitetech.com]

Preface

G2 MQTT Protocol User’s Guide 7

https://support.ignitetech.com
mailto:support@ignitetech.com

Customer Support Services

8 G2 MQTT Protocol User’s Guide

Chapter 1. MQTT protocol

Provides an introduction to the MQTT protocol.

1.1. Introduction
MQTT (MQ Telemetry Transport or Message Queuing Telemetry Transport) is an ISO
standard (ISO/IEC PRF 20922) publish-subscribe-based messaging protocol. It is designed for
connections with remote locations where a "small code footprint" is required or the network
bandwidth is limited such as for communication in Machine to Machine (M2M) and Internet
of Things (IoT) contexts. The publish-subscribe messaging pattern requires a message broker.

1.2. Characteristics of MQTT
The protocol runs over TCP/IP, SSL/TLS or over other network protocols that provide ordered,
lossless, bi-directional connections. Its features include:

• Use of the publish/subscribe message pattern which provides one-to-many message
distribution and decoupling of applications.

• A messaging transport that is agnostic to the content of the payload.

• Three qualities of service for message delivery:

◦ "At most once", where messages are delivered according to the best efforts of the
operating environment. Message loss can occur. This level could be used, for example,
with ambient sensor data where it does not matter if an individual reading is lost as
the next one will be published soon after.

◦ "At least once", where messages are assured to arrive but duplicates can occur.

◦ "Exactly once", where message are assured to arrive exactly once. This level could be
used, for example, with billing systems where duplicate or lost messages could lead to
incorrect charges being applied.

1.3. MQTT protocol specification
MQTT protocol, as implemented by G2, is defined by the ISO standard (ISO/IEC PRF
20922:2016), version 3.1.1. At the time of this writing, it was publicly available at:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Chapter 1. MQTT protocol

G2 MQTT Protocol User’s Guide 9

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

1.4. MQTT client
This document pertains only to the MQTT client that is implemented in G2 and one can’t use
G2 as a MQTT server.

1.5. Protocol options
MQTT protocol definition leaves some options for the implementer - i.e. one can implement
some things or not or in a certain way. Here we list our choices on these matters. We did
choose options taking into account the proposed (draft) MQTT 5.0.

1.5.1. Explicit options

Publish before CONNACK

It is an option on the client part whether to send data (publish) to the server before client
receives CONNACK. G2 client will not send data (publish) before it receives a CONNACK from
the server. In general, this option is to make very small client implementations on very small
devices, but G2 is not of such ilk.

Not receiving PUBACK/PUBCOMP - Resending messages

MQTT 3.1.1 specifies that the “publisher” can (but doesn’t have to) resend the message if it
doesn’t receive a PUBACK/PUBCOMP in a reasonable amount of time. Also, MQTT 5.0
prohibits resending messages except on re-connect, so we don’t resend. We do, of course,
have to resend on reconnect with CleanSession=0.

PINGRESP timer

MQTT specifies that we should close the connection if we don’t receive PINGRESP in a
reasonable amount of time. To simplify things, we conclude that the reasonable amount of
time is the KEEP-ALIVE set for the MQTT-SERVER (i.e. there is no separate “PINGRESP
timeout” parameter).

CONNACK timer

If we don’t receive CONNACK in a reasonable amount of time, we should “break/close” the
(TCP/IP) connection. There’s no “universally reasonable amount of time” for G2, so this a
parameter of the MQTT-SERVER object.

1.5.2. Message/packet buffer

MQTT leaves everything about message/packet buffers up to implementation. Obviously, we
can’t have 65535 packet buffers statically allocated per each MQTT connection - there may be
a lot of them, and it would consume too much memory. OTOH, we can’t dynamically allocate

1.4. MQTT client

10 G2 MQTT Protocol User’s Guide

them buffers “as we go along” (as we’re a real-time application).

So, to give the user some control on how much memory is used, we make this a configurable
parameter, per MQTT-SERVER. This will only take effect at the start of a connection.

1.5.3. When to deliver QoS=2 message

MQTT explicitly allows the recipient of a message w/QoS=2 to either deliver the message
“onward” on (the first) PUBLISH or on PUBREL.

We believe that “the sooner, the better” applies here, so, G2 delivers on PUBLISH. Also, MQTT
5.0 doesn’t have this option any more, but specifies “you need to start the delivery on
PUBLISH, you don’t need to finish it before sending PUBREC or PUBCOMP”, but, in our case,
there’s no “lengthy process” here, if we start, we’ll finish shortly.

1.5.4. Error handling

Unsolicited CONNACK

While MQTT does specify that “any protocol violation is a cause for closing the connection”,
it doesn’t specify what is a protocol violation explicitly in most cases. The “unsolicited”
CONNACK is not specified in this way.

Given that MQTT allows one to go on publishing even before receiving CONNACK, from our
POV, it doesn’t make sense to break the connection in this case, so we ignore it (and log it).

Unsolicited PINGRESP

This is similar to Unsolicited CONNACK and we deal with it in a similar way - we ignore it
(but log it for the user).

Unsolicited PUBREL

If we receive a PUBLISH, we send PUBREC back and await PUBREL. When we then receive
PUBREL, we send PUBCOMP back.

But, if we receive a PUBREL “out of the blue” (without having received a PUBLISH for that
packet ID before), we’ll ignore this and log it for the user.

Please observe that, while similar in an abstract way, we analyzed this independent of
Invalid packet ID in SUBACK/PUBACK/PUBCOMP because there we’re analyzing the “sender”
side, while here we’re analyzing the “receiver” side.

Unsolicited PUBCOMP

We send a PUBLISH/QoS=2, but receive a PUBCOMP “right away”, without a PUBREC. MQTT

Chapter 1. MQTT protocol

G2 MQTT Protocol User’s Guide 11

specs are silent on how to handle this, though one can surmise that this is a protocol error.

The basic reasoning for not closing the connection is the same as for Unsolicited PUBREL -
but, another question is: should we actually “go with it” and ignore that we didn’t receive
PUBREC? Or should we ignore this PUBCOMP?

It does seem to be right to expect a PUBREC and not treat “PUBCOMP w/out PUBREC as being
OK”. So, we ignore this and log it for the user.

Completely unsolicited PUBCOMP

Just to be thorough, let’s mention “Completely unsolicited PUBCOMP”, that is, receiving
PUBCOMP when we haven’t even sent a PUBLISH for its packet ID.

The only difference (from the “not-completely-unsolicited PUBCOMP”) is that the only
options here are “ignore” and “close connection”, and, in line with other similar scenarios,
we “ignore”.

Receiving DISCONNECT

We (as a client) should never receive a DISCONNECT. While MQTT spec is silent on the
matter, we take this to imply that if we do receive a DISCONNECT, it is a protocol violation
(i.e. the other side thinks we’re the server, and we’re not). Thus, we close/break the
connection (without sending DISCONNECT) in this case.

MQTT 5.0 allows for server sending a DISCONNECT, so, this will also ease our “upgrade” to it.

Receiving SUBSCRIBE or UNSUBSCRIBE

This is very similar to Receiving DISCONNECT and we treat it the same way (as a protocol
violation and close the connection).

Receiving CONNECT

This is very similar to Receiving DISCONNECT and we treat it the same way (as a protocol
violation and close the connection).

Not receiving SUBACK or UNSUBACK

MQTT doesn’t deal with this, except not receiving (UN)SUBACK before the connection
ends/breaks.

But, it does deal with not receiving PUBLISH confirmations (see Explicit options). So, we
conclude that same stands for (UN)SUBACK - we can, but don’t have to, resend the
(UN)SUBSCRIBE.

Since we’re using the reliable transport and subscriptions are kept by the server on

1.5. Protocol options

12 G2 MQTT Protocol User’s Guide

connection close, we deem this not worthy of adding complexity of resending the
(UN)SUBSCRIBE on timeout.

But, user does have a need to see “are all my (un)subscriptions confirmed by the server”. So,
we provide an API which gives back to the user a list of “unconfirmed subscriptions” and a
separate list of “unconfirmed unsubscriptions”.

MQTT 5.0 forbids re-sending of (UN)SUBSCRIBE (although only implicitly), so this will also
ease our upgrade to it.

Receiving Packet ID == 0

Message with a Packet ID == 0 is invalid. MQTT specs are not explicit what to do if we receive
such a packet. It is a protocol error, so, one concludes that we should close the connection.

But, it does seem wrong to close a connection just because we received one Packet ID == 0.
So, we drop/ignore the message, and report to the user, but do not close the connection.

Packet lengths

If the user tries to publish a message which is longer than the maximum allowed by MQTT
spec, we indicate that error to the user (also giving the actual maximum allowed length).
Similar, if our internal maximum is different than the MQTT spec maximum, we indicate
that error (and give the actual maximum). If we receive (from the server) a packet whose
length is longer than the maximum allowed by MQTT spec, that is an error and we
close/break the connection.

1.5.5. MQTT under-specified

There are some things that are under-specified in MQTT specs. That is, if taken at “face
value”, they don’t make much sense or are obviously lacking. Smaller items that have to do
with error handling specifically we covered in Error handling, here we cover the “more
significant ones”.

No SUBACK before end of connection

We sent a SUBSCRIBE, but have not received a SUBACK. Then, the connection drops (and not
because of a disconnect request by the user but, say, network issues). Thus, we re-connect,
with “CleanSession=0”. The question is: do we resend the unconfirmed SUBSCRIBE(s)?

If CleanSession is 0, that implies that the user expects the subscriptions to be “remembered”
(as MQTT states that server keeps the subscriptions if CleanSession = 0), but, we don’t know if
the connection dropped before the server received our SUBSCRIBE.

Another point is that MQTT specifies that client keeps the (published) messages if it uses
CleanSession=0, which implies it keeps their packet IDs. But, SUBSCRIBE (and SUBACK) also

Chapter 1. MQTT protocol

G2 MQTT Protocol User’s Guide 13

use (the same) packet IDs. Thus, it doesn’t make sense to keep packet IDs (and content of said
packets) for (published) messages, but not for subscriptions.

Thus, we do it like this:

• When we send SUBSCRIBE, we remember the subscriptions we sent (associated with the
packet Id we sent in the SUBSCRIBE).

• When we receive SUBACK, we “forget” the subscriptions we sent for the packet ID that
“came in” SUBACK.

• On successful CONNACK after our CONNECT with CleanSession=0, we resend all
subscriptions (for all “pending” SUBSCRIBE packets), using their original packet IDs (even
though it should not matter, as packet IDs lose their meaning in a new session, it will be
easier to reason about protocol behavior if we use the original packet IDs).

• On “failed” CONNACK or on CONNECT with CleanSession=1, we “forget” all the
subscriptions.

Invalid packet ID in SUBACK/PUBACK/PUBCOMP

These “acknowledge” packets “carry” the packet ID they acknowledge. But, what if that
packet ID is not “awaiting acknowledgement” on the client side?

MQTT is silent on the matter. From a certain POV, you can conclude that this is a protocol
error, thus, one should close/break the connection. But, actually, MQTT implies that this
should be ignored, because it allows for re-sending of PUBLISH on timeout.

So, even though we don’t re-send PUBLISH (or SUBSCRIBE), that is beside the point, MQTT
actually wants us to ignore this. Of course, we log this as a warning to the user.

1.6. Limits
G2 MQTT implementation imposes certain limits regarding its configuration, as described
below. These cannot be changed by the user. But, they can be changed, on request, for a
future release.

{MQTT-MAX-ACTIVE-CONNECTIONS-
docs}

{MQTT-MAX-ACTIVE-CONNECTIONS}

Maximum length of MQTT server
address

44

Maximum length of Client ID 63

Maximum length of the user name 12

1.6. Limits

14 G2 MQTT Protocol User’s Guide

Maximum length of the password 12

{MQTT-MAX-MESSAGE-LENGTH-docs} {MQTT-MAX-MESSAGE-LENGTH}

Maximum length of a topic 255

Maximum number of topics in a
SUBSCRIBE packet

256

Maximum size of Last Will message 1023

Maximum length of hex data trace 3072

Chapter 1. MQTT protocol

G2 MQTT Protocol User’s Guide 15

1.6. Limits

16 G2 MQTT Protocol User’s Guide

Chapter 2. MQTT Knowledge Base

Provides information about the G2 MQTT KB.

2.1. Introduction
The MQTT KB is the module enabling use of MQTT protocol in a G2 KB application. It
contains the User API. The reference for the API is documented at User API Reference. Here
we give a description of the KB and how to use it.

2.2. Usage
To use the MQTT protocol in your G2 KB application, set the mqtt-client.kb as a required
module. Please note that G2 can is only a MQTT client.

2.2.1. Startup/shutdown

Before you start using the MQTT protocol, you need to create one or more instances of
MQTT-SERVER class.

Configure the connection by changing instance attributes and then call G2-MQTT-CONNECT.
Upon successful connection, MQTT-STATE attribute of the instance changes to symbol
CONNECTED. It is possible to create a rule to monitor that.

To close the connection, call G2-MQTT-DISCONNECT. Upon connection termination MQTT-
STATE attribute of the instance changes to symbol DISCONNECTED.

2.2.2. Sending messages

To send a message, use G2-MQTT-PUBLISH-AT-MOST-ONCE, G2-MQTT-PUBLISH-AT-LEAST-
ONCE or G2-MQTT-PUBLISH-EXACTLY-ONCE, for QoS 0, 1 or 2, respectively.

call g2-mqtt-publish-exactly-once (server-1, "topic1", "payload", false);

Chapter 2. MQTT Knowledge Base

G2 MQTT Protocol User’s Guide 17

2.2.3. Receiving messages

First thing to do in order to receive messages is to define a "callback" procedure that will be
called upon a message arrival. This procedure should take three arguments: TOPIC: text,
MESSAGE: text, UTF8-P: truth-value; the last argument will be TRUE if MESSAGE looks like a
text string, not just byte vector. Then set MQTT-CALLBACK attribute of your MQTT-SERVER
instance to the symbol naming the procedure.

Once the callback is set, you can use G2-MQTT-SUBSCRIBE to subscribe to some topics and
start receiving messages from these topics. Once you don’t want receive those messages any
more, you should call G2-MQTT-UNSUBSCRIBE.

call g2-mqtt-subscribe (server-1,
 sequence(
 structure(topic: "some/topic0", qos: 0),
 structure(topic: "some/topic1", qos: 1),
 structure(topic: "some/topic2", qos: 2)));

call g2-mqtt-unsubscribe (server-1,
 sequence("some/topic0", "some/topic1",
 "some/topic2"));

2.3. Logging
MQTT errors will be logged in general G2 log.

Additionally, MQTT-LOG-PACKET-DATA and MQTT-LOG-TOPIC-DATA attributes of MQTT-SERVER
instance can be used to log packet and topic data, respectively.

2.3. Logging

18 G2 MQTT Protocol User’s Guide

Chapter 3. User API Reference

3.1. Classes

3.1.1. MQTT-SERVER

MQTT

Direct Superior Classes

OBJECT

Attribute Type Initial Value Initial Value
Type

Description

MQTT-STATE SYMBOL DISCONNECTED SYMBOL Current state of
MQTT
connection

MQTT-HOST WHOLE-STRING localhost WHOLE-STRING MQTT server
host

MQTT-PORT POSITIVE-
INTEGER

1883 POSITIVE-
INTEGER

MQTT server
port

MQTT-USE-TLS TRUTH-VALUE TRUTH-VALUE Shall we use
TLS?

MQTT-USERNAME WHOLE-STRING WHOLE-STRING Username

MQTT-PASSWORD WHOLE-STRING WHOLE-STRING Password

MQTT-WILL-RETAIN TRUTH-VALUE TRUTH-VALUE Last Will retain

MQTT-WILL-QOS NON-NEGATIVE-
INTEGER

0 NON-NEGATIVE-
INTEGER

Last Will QoS

MQTT-WILL-TOPIC WHOLE-STRING WHOLE-STRING Last Will topic

MQTT-WILL-
MESSAGE

WHOLE-STRING WHOLE-STRING Last Will
message

MQTT-KEEP-ALIVE POSITIVE-
INTEGER

60 POSITIVE-
INTEGER

Keep-Alive, in
seconds; the
maximum keep
alive is 18h
12min 15 sec

MQTT-CLIENT-ID WHOLE-STRING WHOLE-STRING MQTT client Id

Chapter 3. User API Reference

G2 MQTT Protocol User’s Guide 19

Attribute Type Initial Value Initial Value
Type

Description

MQTT-CONNACK-
TIMEOUT

POSITIVE-
INTEGER

1000 POSITIVE-
INTEGER

CONNACK
timeout, in
milliseconds; the
minimum is 100
and the
maximum is
10000

MQTT-MESSAGE-
BUFFER-COUNT

POSITIVE-
INTEGER

100 POSITIVE-
INTEGER

Maximum
number of
outgoing packets
awaiting
confirmation

MQTT-IN-FLIGHT-
MESSAGES-LIMIT

POSITIVE-
INTEGER

10 POSITIVE-
INTEGER

In-flight message
limit

MQTT-LOG-PACKET-
DATA

TRUTH-VALUE TRUTH-VALUE Shall we log
packet data?

MQTT-LOG-TOPIC-
DATA

TRUTH-VALUE TRUTH-VALUE Shall we log topic
data?

MQTT-LOG-
DIRECTORY

WHOLE-STRING WHOLE-STRING Log directory

MQTT-LOG-
ROLLING-INTERVAL

POSITIVE-
INTEGER

1 POSITIVE-
INTEGER

Log rolling
interval

MQTT-CALLBACK SYMBOL SYMBOL Callback for
incoming
messages, a
symbol; shall be
a name of a
procedure taking
three arguments:
TOPIC: text,
MESSAGE: text,
UTF8-P: truth-
value; the last
argument will be
TRUE if
MESSAGE looks
like a text string,
not just byte
vector

3.1. Classes

20 G2 MQTT Protocol User’s Guide

Description

MQTT server

3.2. Procedures

3.2.1. G2-MQTT-DISCONNECT

Synopsis

G2-MQTT-DISCONNECT(SERVER: CLASS MQTT-SERVER)

Argument Description

SERVER MQTT server

It has no return values.

Description

Explicit disconnect by the user. It is ignored if we’re already not connected to the server.

3.2.2. G2-MQTT-UNSUBSCRIBE

Synopsis

G2-MQTT-UNSUBSCRIBE(SERVER: CLASS MQTT-SERVER, TOPICS: SEQUENCE) → RET0: INTEGER

Argument Description

SERVER MQTT server

TOPICS sequence of topics, like sequence("abc",
"some/topic/0") etc.

Return Value Description

RET0 packet id

Description

Unsubscribes from given topics. Please refer to MQTT protocol specification for details.The
return value is the ID assigned to the outbound UNSUBSUBRIBE packet. If we’re not
connected, or in case of any other error which makes us not even try to subscribe, we raise
an ERROR. Otherwise, the unsubscribe is started.

Chapter 3. User API Reference

G2 MQTT Protocol User’s Guide 21

3.2.3. G2-MQTT-SUBSCRIBE

Synopsis

G2-MQTT-SUBSCRIBE(SERVER: CLASS MQTT-SERVER, TOPICS: SEQUENCE) → RET0: INTEGER

Argument Description

SERVER MQTT server

TOPICS sequence of structure(topic: text, QoS:
integer)

Return Value Description

RET0 packet id

Description

Subscribes to given topics. Please refer to MQTT protocol specification for details.The return
value is the ID assigned to the outbound SUBSUBRIBE packet. If we’re not connected, or in
case of any other error which makes us not even try to subscribe, we raise an ERROR.
Otherwise, the subscribe is started.

3.2.4. G2-MQTT-RECONNECT

Synopsis

G2-MQTT-RECONNECT(SERVER: CLASS MQTT-SERVER)

Argument Description

SERVER MQTT server

It has no return values.

Description

This implies “CleanSession=0”. Otherwise, it’s same as G2-MQTT-CONNECT(server).

3.2.5. G2-MQTT-CONNECT

Synopsis

G2-MQTT-CONNECT(SERVER: CLASS MQTT-SERVER)

3.2. Procedures

22 G2 MQTT Protocol User’s Guide

Argument Description

SERVER MQTT server

It has no return values.

Description

Establishes a connection to MQTT server. Please refer to MQTT protocol specification for
details. This implies “CleanSession=1”. The whole configuration (using SSL/TLS,
username/password…) is kept in the server object. There is no return value. If we’re already
connected, this is ignored. If something is wrong and we didn’t even try to connect, an
ERROR is raised. Otherwise, the connection process is started and the server will be updated
with the “state” of connection (similar to GSI).

3.2.6. G2-MQTT-PUBLISH-EXACTLY-ONCE

Synopsis

G2-MQTT-PUBLISH-EXACTLY-ONCE(SERVER: CLASS MQTT-SERVER, TOPIC: TEXT, MESSAGE: TEXT,
RETAIN: TRUTH-VALUE) → RET0: INTEGER

Argument Description

SERVER MQTT server

TOPIC topic to publish to

MESSAGE a non-empty string or byte array

RETAIN retain flag

Return Value Description

RET0 packet id

Description

Publishes the message in given topic. Please refer to MQTT protocol specification for
details.The return value is the ID assigned to the outbound PUBLISH packet. This is QoS=2. If
we’re not connected, or in case of any other error which makes us not even try to publish,
we raise an ERROR. Otherwise, the publish is started.

3.2.7. G2-MQTT-PUBLISH-AT-LEAST-ONCE

Synopsis

G2-MQTT-PUBLISH-AT-LEAST-ONCE(SERVER: CLASS MQTT-SERVER, TOPIC: TEXT, MESSAGE: TEXT,
RETAIN: TRUTH-VALUE) → RET0: INTEGER

Chapter 3. User API Reference

G2 MQTT Protocol User’s Guide 23

Argument Description

SERVER MQTT server

TOPIC topic to publish to

MESSAGE a non-empty string or byte array

RETAIN retain flag

Return Value Description

RET0 packet id

Description

Publishes the message in given topic. Please refer to MQTT protocol specification for
details.The return value is the ID assigned to the outbound PUBLISH packet. This is QoS=1. If
we’re not connected, or in case of any other error which makes us not even try to publish,
we raise an ERROR. Otherwise, the publish is started.

3.2.8. G2-MQTT-PUBLISH-AT-MOST-ONCE

Synopsis

G2-MQTT-PUBLISH-AT-MOST-ONCE(SERVER: CLASS MQTT-SERVER, TOPIC: TEXT, MESSAGE: TEXT,
RETAIN: TRUTH-VALUE) → RET0: INTEGER

Argument Description

SERVER MQTT server

TOPIC topic to publish to

MESSAGE a non-empty string or byte array

RETAIN retain flag

Return Value Description

RET0 packet id

Description

Publishes the message in given topic. Please refer to MQTT protocol specification for details.
The return value is a dummy packet ID=1, as it’s QoS=0. If we’re not connected, or in case of
any other error which makes us not even try to publish, we raise an ERROR. Otherwise, the
publish is started.

3.2. Procedures

24 G2 MQTT Protocol User’s Guide

3.2.9. G2-MQTT-GET-UNCONFIRMED-MESSAGES

Synopsis

G2-MQTT-GET-UNCONFIRMED-MESSAGES(SERVER: CLASS MQTT-SERVER) → RET0: SEQUENCE

Argument Description

SERVER MQTT server

Return Value Description

RET0 sequence of structure(packet-id: integer, text-
p: truth-value, message: text)

Description

Returns a sequence of unconfirmed PUBLISH messages, if any. TEXT-P attribute of returned
structures is TRUE when MESSAGE is probably a text string, not just a byte vector.

3.2.10. G2-MQTT-GET-UNCONFIRMED-SUBSCRIBES

Synopsis

G2-MQTT-GET-UNCONFIRMED-SUBSCRIBES(SERVER: CLASS MQTT-SERVER) → RET0: SEQUENCE

Argument Description

SERVER MQTT server

Return Value Description

RET0 sequence-of-structs(packet-id: integer, topics:
sequence-of-structs(topic: text, qos: integer)

Description

Returns a sequence of unconfirmed SUBSCRIBEs, each element being a structure with the
following fields: PACKET-ID - an id of outbound SUBSCRIBE packet, TOPICS - sequence of
topics we tried to subscribe to, each being a structure with TOPIC name and QOS value

3.2.11. G2-MQTT-GET-UNCONFIRMED-UNSUBSCRIBES

Synopsis

G2-MQTT-GET-UNCONFIRMED-UNSUBSCRIBES(SERVER: CLASS MQTT-SERVER) → RET0: SEQUENCE

Chapter 3. User API Reference

G2 MQTT Protocol User’s Guide 25

Argument Description

SERVER MQTT server

Return Value Description

RET0 sequence-of-structs(packet-id: integer, topics:
sequence-of-texts

Description

Returns a sequence of unconfirmed UNSUBSCRIBEs, each element being a structure with the
following fields: PACKET-ID - an id of outbound UNSUBSCRIBE packet, TOPICS - sequence of
topics we tried to unsubscribe from

3.2. Procedures

26 G2 MQTT Protocol User’s Guide

	G2 MQTT Protocol User’s Guide
	Table of Contents
	Preface
	About this guide
	Audience
	Conventions
	Typographic
	Procedure Signatures

	Related Documentation
	Customer Support Services

	Chapter 1. MQTT protocol
	1.1. Introduction
	1.2. Characteristics of MQTT
	1.3. MQTT protocol specification
	1.4. MQTT client
	1.5. Protocol options
	1.5.1. Explicit options
	1.5.2. Message/packet buffer
	1.5.3. When to deliver QoS=2 message
	1.5.4. Error handling
	1.5.5. MQTT under-specified

	1.6. Limits

	Chapter 2. MQTT Knowledge Base
	2.1. Introduction
	2.2. Usage
	2.2.1. Startup/shutdown
	2.2.2. Sending messages
	2.2.3. Receiving messages

	2.3. Logging

	Chapter 3. User API Reference
	3.1. Classes
	3.1.1. MQTT-SERVER

	3.2. Procedures
	3.2.1. G2-MQTT-DISCONNECT
	3.2.2. G2-MQTT-UNSUBSCRIBE
	3.2.3. G2-MQTT-SUBSCRIBE
	3.2.4. G2-MQTT-RECONNECT
	3.2.5. G2-MQTT-CONNECT
	3.2.6. G2-MQTT-PUBLISH-EXACTLY-ONCE
	3.2.7. G2-MQTT-PUBLISH-AT-LEAST-ONCE
	3.2.8. G2-MQTT-PUBLISH-AT-MOST-ONCE
	3.2.9. G2-MQTT-GET-UNCONFIRMED-MESSAGES
	3.2.10. G2-MQTT-GET-UNCONFIRMED-SUBSCRIBES
	3.2.11. G2-MQTT-GET-UNCONFIRMED-UNSUBSCRIBES

