
Collector Guide

HawkEye AP 6.1.0

August 28, 2015

Hexis Cyber Solutions, Inc.
2800 Campus Drive, Suite 150

San Mateo, CA 94403
+1 855 529-3929

www.hexiscyber.com

Copyright

Copyright © 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Sensage, Inc.

Copyright © 2014, 2015 Hexis Cyber Solutions, Inc..

This document is unpublished and the foregoing notice is affixed to protect Hexis Cyber Solutions, Inc. in the event of inadvertent
publication. All rights reserved.

No part of this document may be reproduced in any form, including photocopying or transmission electronically to any computer,
without prior written consent of Hexis Cyber Solutions, Inc. The information contained in this document is confidential and
proprietary to Hexis Cyber Solutions, Inc., and may not be used or disclosed except as expressly authorized in writing by Hexis
Cyber Solutions, Inc.

Trademarks

The Hexis Cyber Solutions® logo and HawkEye AP are registered trademarks of Hexis Cyber Solutions, Inc., in the United States.
Other company, product names or logos mentioned or reproduced in this document may be trademarks or registered trademarks of
their respective companies and are hereby acknowledged.

Patents

The software described in this manual contains technology protected by U.S. Patent 7,024,414.

Permitted Use

This document is provided by Hexis Cyber Solutions, Inc., and/or its subsidiaries to entities using the services described herein
pursuant to a separate services and/or software license agreement. This document may be used by such entities only for the limited
purpose of using the services described herein as authorized by such services agreement. Any other use of this document is strictly
prohibited, unless expressly authorized by Hexis Cyber Solutions, Inc., in writing.

Disclaimer and Limitation of Liability

Except as otherwise expressly provided in the applicable services and/or software license agreement, Hexis Cyber Solutions, Inc.,
and its subsidiaries make no representations or warranties of any kind, whether express or implied, regarding the accuracy of this
document and disclaim the implied warranties of merchantability, fitness for a particular purpose, title and non-infringement of
third party rights, to the maximum extent permitted by law. Hexis Cyber Solutions, Inc., and its subsidiaries assume no
responsibility for any damage or loss resulting from the use of this document. This document is subject to revision from time to
time.

Confidential Information

The information contained in this document is confidential and proprietary to Hexis Cyber Solutions, Inc., and its subsidiaries and
may not be used or disclosed except as expressly authorized in writing by Hexis Cyber Solutions, Inc. This document is released to
the possessor on a strictly secure basis. No authority, express or implied, exists to permit discussion with any third party. By
continuing to possess this document, the bearer accepts all direct and indirect responsibility for keeping these materials in
confidence. The bearer acknowledges the implicit material commercial harm to Hexis Cyber Solutions, Inc., of unauthorized
disclosure of the contents herein, including an acknowledgment of responsibility for such damages caused to Hexis Cyber
Solutions, Inc., if any.

Destination Control Statement

ECCN (Export Control Classification Number):5D002 ENC

These commodities, technology, or software were exported from the United States in accordance with the Export Administration
Regulations. Diversion contrary to United States law is prohibited.

Collector Guide

TABLE OF CONTENTS
TABLE OF CONTENTS .3

PREFACE .9

Audience for this Book . 9
Event Collection Guide Organization . 9
Road Map to HawkEye AP Documentation . 10
Conventions Used in HawkEye AP Documentation 11
Contacting Technical Support . 12

CHAPTER 1: INTRODUCTION . 13

Overview of Collecting Event Data . 13
Processing Batched Events . 13

About the Collector .14
Collector Highlights . 14
Collector Architecture . 15
Collector Part Descriptions . 15

SNMP Bridge for Transport .16
Using SNMP Traps with SYSLOG . 17
Enabling Another type of Trap in the SNMP Bridge . 17

About Log Adapter and PTL Files .18
Collecting and Analyzing Network Data with the Netflow Receiver 18

CHAPTER 2: COLLECTOR CONFIGURATION . 19

Root Directories Used by the Collector . 19
FileRoot .19
StateRoot .20
CLIRoot .20

Configuring Collector Modules . 20
Configuring Collector Modules .20
Using the CollectorAdmin Tool to Manage your Configuration21

Viewing and Modifying your Configuration . 21
CollectorAdmin tool Usage .21

Examples . 22
Enabling and Disabling Log Adapters Manually .24

Configuring Log Queues . 25
Life Cycle of a Log File in a Log Queue .25

Defining Retrievers . 27
Retriever Attributes .27
Retriever Elements .28

LogQueue . 28
roundRobin . 29
Preprocess . 30
RunOnHost . 30
SourceDir . 30
BackupDir . 30
Collector Guide 3

Table of Contents
SourceUser . 31
SourceServer . 31
SourceHost . 31
SourcePasswd . 31
SourceFile . 31
Listen . 31
ConfigFile . 31
Schedule . 31
PollInterval . 32
Period . 32
Plugin . 32

Configuring Types of Retrievers .32
File System Retrievers . 33
HawkEye Retriever on Windows . 34
FTP Retrievers . 35
SFTP Retrievers . 36
RCP and SCP Retrievers . 37
HTTP Get Retrievers . 37
HTTP Push Retrievers . 37
Script Retrievers . 38

Using Process Groups .40
Configuring Preprocessors . 41
Defining Loaders . 42

Loader Attributes .43
Loader Elements .44

Description of the Loader Elements . 44
LogQueue . 44
PTL . 45
Merge . 46
SLSInstance . 48
SLSUser . 48
SLSPasswd . 48
SLSSharedKey . 48
Schedule . 49
PollInterval . 49
Period . 49
Compact . 49
DaisyChainHost . 50

Example Loader Configurations .50
Example File System Loader Configuration . 50
Example Firewall Loader Configuration . 50
Daisy-Chain Loader Example . 51

Collector Configurations for Networking . 51
Creating Daisy Chains .51

Configuring Error Reporting . 54
Specifying the location of activity.log and error.log .54

Adjusting Performance Levels . 54
CycleDelay .54
Throttle .54
FlushInterval .55

CHAPTER 3: CONFIGURING RETRIEVERS AND RECEIVERS 57

Configuring HawkEye Retriever on Windows for Batch Processing 57
Windows Agent and Agentless Configuration .58

Using the NetFlow Receiver . 59
4 Collector Guide

Table of Contents
CHAPTER 4: HAWKEYE RETRIEVER CONFIGURATION 61

Standard Configuration . 61
Introduction .61

Valid Source Data Types for Event Readers . 62
Valid Destination Types for Event Writers . 62
Using Pipelines . 62
Retriever Definition Files . 64

Attributes for HawkEye Retrievers .65
Introduction . 65
Windows 2008R2 and NTLMv2 . 66
Defining an Event Reader . 66
Defining an Event Writer . 75
Defining a Pipeline . 76
Tuning SMB Event Retrieval . 83
Defining Remote Shell Access . 85
Defining the Logging Level . 85
Defining Non-Standard Log Types . 85
Defining the State Files . 86
Controlling Historical Data . 86

Configuring the Agentless Retriever .86
Configuring the Retriever to Run as an Agent .87

Advanced Configuration . 88
Event Readers .89

Defining an SMB Event Reader . 89
Defining an Oracle Audit or Generic Table Reader (BETA) . 90
Defining a SQL Server Generic Table Reader . 90
Defining a SQL Server Audit Trace Reader . 91
Defining a SQL 2000 Server Audit Trace Reader . 91
Defining a File Event Reader . 92
Defining a Multifile Event Reader . 92
Performance Details and Recommendations for Configuration 93
Defining a TCP Event Reader . 93
Example: Defining Event Readers . 93

Event Writers .94
Defining a Collector Event Writer . 95
Defining a TCP Event Writer . 95
Defining a File Event Writer . 96
Defining a UDP Syslog Event Writer . 96
Defining a TCP Syslog Event Writer . 96

Serializers .97
Example: Using a Serializer . 97

Pipelines .97
Example: Defining 2 Pipelines . 98

Shells .98
Invoking the Interactive Shell . 99
Invoking the Remote Shell . 99
Example: Defining a Shell . 100
Shell Commands . 100

Discoverers .101
Example: Defining a Discoverer . 102

Logging .102
Example: Rolling Over the HawkEye Retriever Log File . 102
Example: Defining Logging . 103

Configuring Authentication . 103
General Authentication Configuration .103
Administrator Access .103
Collector Guide 5

Table of Contents
Non-Administrator Access .104
Delegating access to an event log using the registry .106
Forwarded Events Log in Windows 2008 .106

Example of Advanced Properties File . 108
Managing Remote Agents . 111

Configuring the Remote Agent .111
Configuring the Central Remote Manager .111

Defining a Remote Configuration . 112
An Example of a Remote Manager agentless.prop file 112
Managing Remote Agents with Windows Retriever 113

Example 1: . 113
Example 2: . 114
Example 3: . 114

Using Database Retrievers . 114
General DB Retriever Considerations .114
Oracle Database Retrievers (BETA) .115

Password Managers for Oracle Retrievers (BETA) . 115
SQL Server Database Retrievers .116

Defining a Metadata Function . 117
Performance Considerations for SQL Server Audit Data . 120
Maximizing SQL Server Audit Log Reader Performance (sqlserverauditlogreader) . 121
Performance Details and Recommendations for Configuration 122
 . 122

CHAPTER 5: CONFIGURING NETFLOW RECEIVER FOR DATA COLLECTION AND ANAL-
YSIS . 123

How Netflow Receiver Works . 123
Netflow Receiver Security Requirements . 124
Configuring Netflow Receiver . 124

Configuring Network Sources to Export Netflow Data .125
Sample Configuration . 125

Specifying Netflow Receiver Output Formats .126
Printing IPv6 Records .129
Capturing Netflow Data (nfcapd) .129
Configuring Netflow Data Display and Analysis (nfdump)130
Reading and Converting Flow-Tools Data (ft2nfdump) 130
Aggregating Flows .130

Aggregating Flows on a Subnet Level . 131
Filtering Netflow Data for Display and Analysis . 131

Specifying and Displaying Top N Statistics .133
Anonymizing Flows .133

Converting Flow-Tools Netflow Data . 134
Cleaning up old Netflow Data (nfclean.pl) . 134
Investigating Netflow Receiver Failures . 134
Sample Netflow Receiver Configuration Files . 134

Sample netflow_client.prop Configuration File . 134
Sample netflow_server.prop Configuration File . 136

CHAPTER 6: CONFIGURING COMMON EVENT FORMAT (CEF) FORWARDER 139

HawkEye AP CEF Forwarder Multi-Daemon Environment 140
Specifying HawkEye AP CEF Forwarder Options 141

Synopsis .141
6 Collector Guide

Table of Contents
Description .141
Options . 141

Example .141
Setting Up HawkEye AP CEF Forwarder . 142

Creating the Postgres User and Schema for CEF Forwarder142
Creating the Postgres Table for Uploads .142
Modifying the Collector .143
Creating Your Configurations File .143
Creating Your Column Mappings File .145
Adding a sensageCef Daemon to your Configuration .146

Sample Configuration File . 147
HawkEye EDW to ArcSight CEF Column Name Mappings 150
HawkEye AP CEF Forwarder Sample Log Output 152

 . 152

APPENDIX A: PTL FILE FORMAT . 153

Synopsis . 153
Description . 153
Prerequisites . 154
Overview of a PTL File . 154

Synopsis of a PTL File .154
The Sections of a PTL File .155
Regular Expression .156

Analyzing Source Log Entries . 156
Identifying Capture Groups and Fields . 157
Completing the Entire Regular Expression . 160
Ellipses as a Parsing Shorthand . 160
Additional Resources . 161

Creating the PTL . 161
Declaring the Regular Expression .161
Field Declarations .162
SELECT Statement .163

Specifying Column Names . 163
Specifying Column Types . 164
Including the TS Column in Target Schemas . 165
Functions in PTL Select Statements . 165
Unsupported Keywords in PTL Select Statements . 165
Timestamps in PTL Select Statements . 165
Schema Changes in PTL Select Statements . 166

Table Names .166
The FROM Clause .166
Where Clauses .166

Using Macros . 166
Synopsis of Macros .167
Overriding Macro Values .167
Using Mandatory Macros .167

Storing Raw Log Entries . 168
The Catch-All Regular Expression .169
Match Fields for Raw Log Entries .169

Table Columns for Raw Log Entries . 169
Column for Parse Success or Failure . 169
Column for the Unparsed Log Entry . 170

Varchar to Inet Conversion Failure .170
Collector Guide 7

Table of Contents
Timestamps for Unmatched Log Entries .170
Troubleshooting . 171

Match Failures .171
Field Miscounts .171
Incorrectly Parsed Timestamps .171
Missing Time Zones .172
Missing Timestamps .172
Old Data Does Not Load .172

INDEX . 175
8 Collector Guide

Collector Guide

PREFACE

The Event Collection Guide describes how batch event data is collected and stored in version 6.0.1 of a
HawkEye AP deployment. Log entries are collected and stored through the HawkEye AP batch collection,
which processes file-based event logs and loads their entries into the EDW.

This preface contains these sections:

• “Audience for this Book”, next

• “Event Collection Guide Organization”, on page 9

• “Road Map to HawkEye AP Documentation”, on page 10

• “Conventions Used in HawkEye AP Documentation”, on page 11

• “Contacting Technical Support”, on page 12

AUDIENCE FOR THIS BOOK

The audience for the Collector Guide includes system administrators who initially set up receivers,
retrievers, parsers, and the Collector. The audience also includes developers who create Parser rules and
Parse, Transform and Load (PTL) files.

EVENT COLLECTION GUIDE ORGANIZATION

The information in the Collector Guide is organized into the following chapters:

 Chapter 1: Introduction—Describes the batched event-log data and illustrates the general architectures of
receivers and the Collector.

 Chapter 2: Collector Configuration—Describes how to initially set up the Collector and its different kinds
of modules: retrievers, preprocessors, and loaders; describes how to establish several Collectors in a
daisy-chain configuration to load event-log data into an Event Data Warehouse (EDW).

 Chapter 3: Configuring Retrievers and Receivers—Describes how to set up and configure HawkEye AP
receivers for different streaming protocols: syslog, SNMP, and LEA.

 Chapter 4: HawkEye Retriever Configuration—Describes the standard and advanced configuration
properties for the Hawkeye Retriever, as well as the procedure for configuring agentless authentication.

 Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis—Describes how to configure
Netflow Receiver, the HawkEye AP process of collecting and analyzing network.

 Chapter 6: Configuring Common Event Format (CEF) Forwarder—Describes the how to configure the
CEF Forwarder, the HawkEye AP process for converting event data to the CEF format and forwarding
this data to the ArcSight System for real-time processing.

 Appendix A: PTL File Format—Describes how to write a Parse, Transform and Load (PTL) file used to
transform event data into normalized data for storage in the Event Data Warehouse (EDW).
Collector Guide 9

Preface
ROAD MAP TO HAWKEYE AP DOCUMENTATION

This document, the Collector Guide, is part of the larger documentation set of your HawkEye AP system.
Figure P-1 illustrates HawkEye AP components and modules in the context of their function within the
HawkEye AP system.

Figure P-1: Road Map to HawkEye AP Documentation

The table below describes all the manuals in the HawkEye AP documentation set and the user roles to which
they are directed.

Role Tasks Documentation

Business Analyst or
System Administrator

• Learn about Analytics

• Configure Insider Threat (IT) Detection
Model

• Use IntelliSchema views

• Learn about the Foundation and
Compliance Analytics packages

• Learn about additonal Analytics packages

Analytics Guide
10 Collector Guide

Conventions Used in HawkEye AP Documentation
TIP: You can access the manuals listed above from:

 HawkEye AP Welcome page

Click the Documentation hyperlink.

CONVENTIONS USED IN HAWKEYE AP DOCUMENTATION

Developer, Report
Developer or Security
Analyst

• Use HawkEye AP SQL, HawkEye AP SQL
functions, and libraries to create reports or
query the EDW

• Access EDW data using open standards as
ANSI SQL, ODBC, and JDBC

• Create and use Perl code in HawkEye AP
SQL statements

• Use the DBD Driver to query HawkEye AP
from other locations

Event Data Warehouse Guide

Security System
Administrator

• Configure retrievers, receivers, and
collectors

• Enable/disable log adapters

• Configure HawkEye Retriever

• Create log adapter PTL files

Collector Guide

System Administrator • Install HawkEye AP

• Configure HawkEye AP and its
components

• Configure VMWare

Installation, Configuration, and
Upgrade Guide

System Administrator • Manage the HawkEye Event Data
Warehouse (EDW)

• Manage the Collector

• Manage users, groups, and permissions

• Archive to nearline storage

• Monitor security alerts

• Monitor logs

• Troubleshoot

• Error Messages

Administration Guide

Legal Monitor third-party licenses Third-Party Open Source
Licensing

This conven-
tion...

Indicates... Example

bold text Names of user interface items, such as field
names, buttons, menu choices, and
keystrokes

Click Clear Filter.

italic text Indicates a variable name or a new term the
first time it appears

http://<host>:<port>/index.mhtml

Courier text Indicates a literal value, such as a command
name, file name, information typed by the
user, or information displayed by the
system

atquery localhost:8072 myquery.sql

Role Tasks Documentation
Collector Guide 11

Preface
CONTACTING TECHNICAL SUPPORT

For additional help, email support@hexiscyber.com or call +1 855 529-3929. Also see the Hexis Cyber
Solutions Technical Support web page at http://www.hexiscyber.com/content/ for HawkEye AP
documentation, product downloads, and additional information on contacting support to escalate help on
issues that impact your production environment.

SMALL CAPS Indicates a key on the computer keyboard Press ENTER.

{ } In a syntax line, curly braces surround a set
of options from which you must choose one
and only one.
NOTE: Syntax specifications for SELECT
statements include curly braces as part of
the {INCLUDE_BAD_LOADS] keyword.

{ start | stop | restart }

[] In a syntax line, square brackets surround
an optional parameter

atquery [options] <host>:<port> -

| In a syntax line, a pipe within square
brackets or curly braces separates a choice
between mutually exclusive parameters
NOTE: Syntax for defining a Nearline
Storage Address (NSA) includes a pipe.

{ start | stop | restart }

[g|m]

... In a syntax line, ellipses indicate a
repetition of the previous parameter

The following example indicates you can enter
multiple, comma-separated options:
<option>[, <option>[…]]

backslash (\) A backslash in command-line syntax or in a
command example behaves as the escape
character on Unix. It removes any special
meaning from the character immediately
following it. In HawkEye AP
documentation, a backslash nullifies the
special meaning of the newline character as
a command terminator. Without the
backslash, pressing ENTER at the end of the
line causes the Unix system to execute the
text preceding the ENTER. Without the
backslash, you must allow long commands
to wrap over multiple lines as a single line.

atquery --user=administrator \
--pass=pass:p@ss localhost:8072\
-e='SELECT * FROM system.users;'

This conven-
tion...

Indicates... Example
12 Collector Guide

http://www.hexiscyber.com/content
http://www.hexiscyber.com/content

CHAPTER 1

Introduction

This chapter contains these sections:

• “Overview of Collecting Event Data”, next

• “Processing Batched Events”, next

• “Collecting and Analyzing Network Data with the Netflow Receiver”, on page 18

OVERVIEW OF COLLECTING EVENT DATA

Before your enterprise can analyze event log data, original event-log data must be collected into your
HawkEye AP system.

Your HawkEye AP system supports batch data collection in which events are collected from log files and
other event repositories maintained by network devices and software applications. For more information on
how to collect batches of log entries, see “Processing Batched Events”, next.

Regardless of how you collect the data, collection sometimes fails. Failures can occur anywhere between the
source of the log records and the Event Data Warehouse (EDW). For example, the log source system might
be down, or one of the HawkEye AP components or processes (such as the Collector or a receiver) might not
be running, or there might be a communication failure that prevents loading of the log data. Alternatively,
there may have been an upgrade of the software on the log-source system that prevents parsing of the log
records.

If undetected, collection failures leave gaps in the historical event record stored in the EDW. A source
failure occurs when the volume of data loaded into the EDW from a particular log source varies from the
expected amount. The HawkEye AP Analyzer provides ways to track the health of specified log sources. For
more information, see the Analyzer documentation.

PROCESSING BATCHED EVENTS

As shown in Figure 1-1: the Collector polls data sources or repositories to retrieve event data, which it loads
into the EDW The EDW makes the event data available for reporting. Administration users can access EDW
data by using the command-line interface (CLI) utilities on a Linux system.
Collector Guide 13

Chapter 1: Introduction
Figure 1-1: HawkEye AP Architecture for Event Processing

About the Collector

The Collector is a component of HawkEye AP software that collects events in batches from log files. It
automates the collection and loading of event-log data into the Event Data Warehouse (EDW), either
scheduled, on-demand, or in continuous mode.

This section describes these topics:

• “Collector Highlights”, next

• “Collector Architecture”, on page 15

• “Collector Part Descriptions”, on page 15

Collector Highlights

These are the key features of the Collector:

 Retrieves logs from one or multiple sources

 Triggers backups and preprocessing on source log files

 Loads log entries into EDW tables

 Supports standard interfaces, including TCP, FTP, SFTP, SCP, LEA, SMB, RCP, HTTP (Get and Push)

 Provides status of retrieval and loading activities through the Collector activity logs
14 Collector Guide

Processing Batched Events
 If configured, sends email alarms that notify administrators of problems with the system

 Command-line interface

 Enables loading of log entries according to a specified schedule

 Runs with minimal administration

Collector Architecture

The graphic below illustrates the modules that participate in the retrieval and loading of event-log data into
the EDW.

The Collector is configured to start up one or more Retrievers. The Retriever gathers the log data from the
source, passes it through preprocessors, and places the resulting log file in one of the Log Queues. For
remote systems using HTTP Push, the collector_push script must be started to assist in the retrieval of the
log data.

The Collector is also configured to start up one or more Loaders. A Loader takes a log file from the Log
Queue, parses and transforms the log file as specified by the PTL (Parser, Transform, and Load), and loads
the log data into a specified EDW instance, namespace, and table.

While the modules work together to move the log data from the source to an EDW table, each module runs
in isolation. As a result, each module can be configured and scheduled independently.

Collector Part Descriptions

These are the different parts that the Collector manages in order to collect and load log entries from batched
log files.
Collector Guide 15

Chapter 1: Introduction
SNMP Bridge for Transport

For batch parsing and loading, HawkEye AP uses the SNMP Bridge to trap and send messages into the
syslog-ng server. The SNMP Bridge is created through the configuration of the standard Linux SNMP
Daemon (snmpd) to log SNMP Traps to a Linux named pipe; a second program, snmptrap-bridge, reads
from the named pipe, ensuring that each SNMP Trap is encoded as a single line of text. After the pipe is
read, the snmptrap-bridge program then forwards the text to the local SYSLOG (using the same
"packetizing" logic that the EDW uses if the message is too large for a single SYSLOG frame to carry).

Module Description

Collector The overall system for the gathering and loading of event-log data into an
EDW instance. Its core process is responsible for reading the configuration
file, maintaining state, starting Retrievers and Loaders, and managing Log
Queues.

Loader A process spawned by the Collector that loads data from a log file into an
EDW table after parsing and transforming the log data as specified by a PTL
file.

PTL File A file that provides the EDW with instructions for parsing a specific log file
format and for targeting the parsed fields to a specific table schema. PTL files
with international character data must be written with UTF-8 encoding.

Log Queue A user-specified directory where log files are stored while being downloaded,
while waiting to be loaded, or during loading. The log-file naming convention
used ensures consistency of state and prevents concurrency or locking issues.
By default, log files in the queue are expected to be written with UTF-8
encoding; other character encoding schemes can be specified.

Log File A file in the Collector system containing log data.

Retriever A process spawned by the Collector that retrieves log data (either directly or
by using a Sender), performs any required preprocessing, and writes the log
data to log files in specified Log Queues.

Sender A process sitting on a remote system that sends (or pushes) the log data to a
location where it can be received by a Retriever.
16 Collector Guide

Processing Batched Events
Thus, syslog-ng forwards SNMP Traps into SYSLOG. Once a message is in SYSLOG, syslog-ng retrieves
the message and treats it as any other SYSLOG message. This SNMP Bridge configuration is shown in
Figure 1-2.

Figure 1-2: SNMP Bridge Configuration

Using SNMP Traps with SYSLOG

There is no configuration required for the SNMP Bridge when using SYSLOG as a destination. To use
SNMP Traps, choose one of the following alternatives:

Perform the following steps to trap messages for parsing and loading:

1. Configure syslogn-ng to direct the SNMP Trap data (via SYSLOG) into a log file.

2. Configure the collector to load that log file into some table in the EDW.

3. Create a PTL script to parse the log file.

Enabling Another type of Trap in the SNMP Bridge

To enable another type of trap in the SNMP Bridge, configure the $BASE/etc/sysconfig/snmptrap-
bridge.options file by specifying trap type as highlighted in the TCP entry below:

#if [-e $BASE/etc/sysconfig/snmptrap-bridged.options]; then
if [-e $BASE/etc/sysconfig/snmptrap-bridge.options]; then
. $BASE/etc/sysconfig/snmptrap-bridge.options
else
#OPTIONS="-f $BASE/var/run/$PROG.fifo -l $BASE/var/lock/subsys/$PROG -p $BASE/
var/run/$PROG.pid -s user.info"
#OPTIONS="-f $BASE/var/run/$PROG.fifo -l $BASE/var/lock/subsys/$PROG -p $BASE/
Collector Guide 17

Chapter 1: Introduction
var/run/$PROG.pid -s user -d syslog:info"
#OPTIONS="-f $BASE/var/run/$PROG.fifo -l $BASE/var/lock/subsys/$PROG -p $BASE/
var/run/$PROG.pid"
OPTIONS="-f $BASE/var/run/$PROG.fifo -l $BASE/var/lock/subsys/$PROG -p $BASE/
var/run/$PROG.pid -s user -d tcp:127.0.0.1:5144"

About Log Adapter and PTL Files

The HawkEye AP System processes event logs from a variety of hardware and software applications. These
sources typically log many types of events that are stored in a variety of formats. A log adapter transforms
these diverse events and formats into useful data that can be stored in the HawkEye EDW. Data stored in the
EDW is available for analysis using HawkEye AP Analyzer. For more information, see the HawkEye AP
Analyzer Documentation.

Log adapters use PTL files to define the transformation of log data into data stored in the EDW. Hexis Cyber
Solutions provides log adapters with your HawkEye AP distribution for a variety of common information
systems and devices. For more information, see the Log Adapters References for each Log adapter,
available in the HawkEye AP documentation set. Additional log adapters are also available from Sensage
Technical Support. You can also create a log adapter using the PTL file format. For more information, see
Appendix A: PTL File Format.

COLLECTING AND ANALYZING NETWORK DATA WITH THE NETFLOW
RECEIVER

The Netflow Receiver provides Network Managers a detailed view of application flow on the Network.
Routers and Layer 3 switches act as sensors pushing data to Netflow in a form of telemetry. The routers
provide the information on network traffic flow, while micro-analytical tools that include an IDS (Intrusion
Detection System) examine packet contents. Thus Netflow provides monitoring on who talks to who, for
how long, at what intervals, on which ports and protocols, and how much data is being exchanged.

By capturing Netflow data, network traffic becomes visible, providing a defense against DoS attacks and
other forms of undesireable traffic. Wtih the information on hand, you can provide the appropriate response
to network-based threats, and gather valuable intelligence about application usage for capacity planning.

For details on Netflow Receiver, including configuration, see “Configuring Netflow Receiver for Data
Collection and Analysis”, on page 123
18 Collector Guide

CHAPTER 2

Collector Configuration

This chapter contains the following sections:

 “Root Directories Used by the Collector”, next

 “Configuring Collector Modules”, on page 20

 “Configuring Log Queues”, on page 25

 “Configuring Preprocessors”, on page 41

 “Defining Retrievers”, on page 27

 “Creating Daisy Chains”, on page 51

 “Defining Loaders”, on page 42

 “Configuring Error Reporting”, on page 54

 “Adjusting Performance Levels”, on page 54

ROOT DIRECTORIES USED BY THE COLLECTOR

This section describes special directories that the Collector uses for special purposes:

 “FileRoot”, next

 “StateRoot”, on page 20

 “StateRoot”, on page 20

 “CLIRoot”, on page 20

 “Configuring Collector Modules”, on page 20

The following topics show examples of the XML elements in the Collector configuration file that specify
these special directories. The Collector configuration file is found in this location:

<HawkEye AP Home>/etc/collector/config.xml

NOTE: If you change the value for a special directory in config.xml and the directory does not exist, the
Collector creates it the next time the Collector starts.

FileRoot

<FileRoot><collector-datadir></FileRoot>

Root directory for all volatile files used by the Collector, including temporary log files and state files. You
configured the FileRoot directory when you ran the UI Install Wizard and specified a value for the collector-
datadir flag.

IMPORTANT: FileRoot must not exist on an NFS-mounted file system.
Collector Guide 19

Chapter 2: Collector Configuration
StateRoot

<StateRoot>state</StateRoot>

Location for state files. The path is relative to FileRoot if no leading slash (/) is present; otherwise, the path
is absolute, beginning from the root of the local file system. In general, you do not change this setting; the
install and configuration process sets it automatically.

CLIRoot

<CLIRoot><HawkEye AP Home>/bin/</CLIRoot>

Location for EDW command-line tools, such as atload, which loads event-log data into EDW tables. The
path is not relative to FileRoot. In general, you do not change this setting; the HawkEye AP installation
process sets it automatically.

The installation process places all command line tools in:

<HawkEye AP Home>/bin

CONFIGURING COLLECTOR MODULES

After installing the Collector, you configured its basic properties using the Deployment Manager described
in the Installation, Configuration, and Upgrade Guide. In addition to basic properties, such as root
directories, you must configure the following Collector modules:

Configuring Collector Modules

You configure Collector modules by editing the Collector configuration file.

To edit the Collector Configuration file:

1. Log in as the specified Collector user, hexis by default.

2. Reload the Collector by running the following script:

Module Description Documentation

Log Queues Directories on the Collector host where Collector
modules store and process log files before loading the
event-log data into the EDW

“Configuring Log Queues”, on page 25

Retrievers Collector modules that retrieve source log files and put
them into log queues for loading into the EDW

“Defining Retrievers”, on page 27

Preprocessors Scripts or binaries run on source log files captured by
Retrievers before putting them into log queues

“Configuring Preprocessors”, on page 41

Loaders Collector modules that load log files from log queues
into the EDW

“Defining Loaders”, on page 42

Daisy chains Special Collector configurations that allow the output of
one Collector instance to serve as the input to another

“Creating Daisy Chains”, on page 51
20 Collector Guide

Configuring Collector Modules
/opt/hexis/hawkeye-ap/etc/init.d/sensage_collector reload

3. If you configured several Collectors in a daisy chain and did not specify all Collector hosts in the
collector-hosts property, run the following command to restart the Collector:

<HawkEye AP Home>/etc/init.d/sensage_collector restart

For more information, see “Creating Daisy Chains”, on page 51.

4. To configure error logging and email alerts, see “Configuring Error Reporting”, on page 54.

NOTE: The config.xml file contains elements for specifying the FileRoot, PTLRoot, StateRoot and
CLIRoot directories. Generally they are set automatically during the installation and configuration
processes. For more information, see "Root Directories Used by the Collector", on page 27.

Using the CollectorAdmin Tool to Manage your Configuration

The CollectorAdminTool allows you to enable and/or disable log adapters, retrievers , and loaders, and list
the current configuration settings in a specific config.xml file.

Viewing and Modifying your Configuration

When you use the CollectorAdmin tool, you can:

 List all log adapters, retrievers, and loaders with their status (enabled / disabled)

 List all enabled or disabled log adapters, retrievers, and loaders

 Enable or disable log adapters, retrievers, and loaders

 Show or truncate Collector statistics

CollectorAdmin tool Usage

To use the CollectorAdmin tool, run the following command:

<prefix>/bin/collectorAdmin <options>

The table below lists the currently available options. Note that you can submit multiple options on the
command line.

Command Line Option Description

all Show all adapters and enable/disable status.

enabled Show enabled adapters.

disabled Show disabled adapters.

find Locate definition of a loader, retriever or queue

detail Show all loaders, retrievers, and queues.

vdetails Show all loaders, retrievers, and queues with paths.

enable [adapter] Enable the named adapter

disable [adapter] Disable the named adapter.
Collector Guide 21

Chapter 2: Collector Configuration
NOTE: Optionally, you can use a manual procedure to enable and disable config.xml files for particular
adapters. For details, see “Enabling and Disabling Log Adapters Manually”, on page 24.

Examples

1. The following option lists all adapters as well as displays their enabled/disabled state:

<prefix>/bin/collectorAdmin all

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Adapter Status-
apache_access_syslogng: disabled
apache_error_syslogng: disabled
bluecoat_sgproxy_batch: enabled
catbird_vsecurity_cef_syslogng: enabled
checkpoint_opsec_lea: disabled
cisco_acs_syslogng: disabled
cisco_asa_syslogng: disabled

2. The following option displays a list of all Log Adapters that enabled:

<prefix>/bin/collectorAdmin enabled

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'

Adapter Status-
bluecoat_sgproxy_batch: enabled
catbird_vsecurity_cef_syslogng: enabled
cisco_ios_syslogng: enabled
cisco_netflow_receiver: enabled
cisco_pix_syslogng: enabled

3. The following option locates the definition of cisco_pix_syslogng:

<prefix>/bin/collectorAdmin find cisco_pix_syslogng

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Items matching: cisco_pix_syslogng

Loader l_cisco_pix_syslogng: enabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/cisco_pix_syslogng/config.xml
LogQueue q_cisco_pix_syslogng: enabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/cisco_pix_syslogng/config.xml
Retriever r_cisco_pix_syslogng: enabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/cisco_pix_syslogng/config.xml

4. The folloiwng option displays collectorAdmin details of all loaders, retrievers, and queues:

<prefix>/bin/collectorAdmin detail

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Items:

showstatus Show Collector statistics chart

clearstatus Truncate the Collector statistics file.

Command Line Option Description
22 Collector Guide

Configuring Collector Modules
Loader l_apache_access_syslogng: item disabled
Loader l_apache_error_syslogng: item disabled
LogQueue q_apache_access_syslogng: enabled
LogQueue q_apache_error_syslogng: enabled
Retriever r_apache_access_syslogng: item disabled
Retriever r_apache_error_syslogng: item disabled

5. The folloiwng option displays all loaders, retrievers, and queues and the paths of the config file(s) that
contain these definitions:

<prefix>/bin/collectorAdmin vdetail

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Items:
Loader l_apache_access_syslogng: item disabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_access_syslogng/
config.xml
Loader l_apache_error_syslogng: item disabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_error_syslogng/config.xml
LogQueue q_apache_access_syslogng: enabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_access_syslogng/
config.xml
LogQueue q_apache_error_syslogng: enabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_error_syslogng/config.xml
Retriever r_apache_access_syslogng: item disabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_access_syslogng/
config.xml
Retriever r_apache_error_syslogng: item disabled
 /opt/hexis/hawkeye-ap/etc/collector/adapters/apache_error_syslogng/config.xml

6. The following option disables the apache_access_syslogng Log Adapter:

<prefix>/bin/collectorAdmin disable apache_access_syslogng

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
disabled adapter apache_access_syslogng

7. The following option enables the apache_access_syslogng Log Adapter:

<prefix>/bin/collectorAdmin enable apache_access_syslogng

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
enabled adapter apache_access_syslogng

8. When it comes to enabling/disabling, you can perform multiple requests at once; for example, you can
enable and disable adapters in the config files. For example:

<prefix>/bin/collectorAdmin disable apache_access_syslogng enable
apache_error_syslogng detail apache_access_syslogng

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
disabled adapter apache_access_syslogng
enabled adapter apache_error_syslogng
Items:
Loader l_apache_access_syslogng: item disabled and adapter disabled
Loader l_apache_error_syslogng: enabled
LogQueue q_apache_access_syslogng: adapter disabled
Collector Guide 23

Chapter 2: Collector Configuration
LogQueue q_apache_error_syslogng: enabled
Retriever r_apache_access_syslogng: item disabled and adapter disabled
Retriever r_apache_error_syslogng: enabled

NOTE: After this tasks, you must reload the Collector for changes to take effect.

9. The following option will dump internal collector statistics:

<prefix>/bin/collectorAdmin showstats

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
showStats stateDir=/opt/hexis/hawkeye-ap/data/collector//state/statistics.dat
Retriever Statistics:
 r_bluecoat_sgproxy_batch Downloads: 1, Bytes: 9973
 r_catbird_vsecurity_cef_syslogng Downloads: 1, Bytes: 31885
 r_cisco_ios_syslogng Downloads: 1, Bytes: 36061

Loader Statistics:
 l_bluecoat_sgproxy_batch Uploads: 1, Bytes: 9505, Records: 20, MatchFailures:
0
 l_catbird_vsecurity_cef_syslogng Uploads: 1, Bytes: 31885, Records: 99,
MatchFailures: 0
 l_cisco_ios_syslogng Uploads: 1, Bytes: 36061, Records: 214, MatchFailures: 0

10. Depending on the confirmation specified, the following options will either reset internal statistics to 0 or
keep the existing statistics:

<prefix>/bin/collectorAdmin clearstats

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Warning all accumulated statistics data will be removed.
Are you sure you want to clear collector statistics?
y

collectorAdmin clearstats

Loading config files from '/opt/hexis/hawkeye-ap/etc/collector'
Warning all accumulated statistics data will be removed.
Are you sure you want to clear collector statistics?
n
Not clearing statistics

Enabling and Disabling Log Adapters Manually

As an alternative to using the Collector Admin Tool to enable and disable Log Adapters, you can also
perform a manual procedure to accomplish this task.

To enable and disable Log Adapters , you change the "enabled" setting for a given Log Adapter’s
configuration file. Note that the Collector reads all config.xml files under the <HawkEye AP Home>/
collector/adapters directory and uses the configuration from all "enabled" config.xml files.

For example, assume "unix_sudo_syslogng" Log Adapter is enabled and you want to disable it. To do this:

1. Access /opt/hexis/hawkeye-ap/etc/collector/adapters/unix_sudo_syslogng/config.xml.

2. Go to the Collector version parameter and setting and change enabled =’1’ to ’0,’ as in:
24 Collector Guide

Configuring Log Queues
<Collector version='5.0' enabled='0'> /* pre-5.0 behavior. Does not merge */

NOTE: If the enabled attribute is absent, the default is 1.

3. Run the following script reloads the Collector so that retrievers and loaders match the current
configuration:

/opt/hexis/hawkeye-ap/etc/init.d/sensage_collector reload

CONFIGURING LOG QUEUES

Log queues are directories on the Collector host where Collector modules store and process event-log files.
Configure log queues in the config.xml file using the following example syntax:

<LogQueues>
<LogQueue name="local" path="queue/local" minMBFree="32"

encoding="Shift-JIS”/>
<LogQueue name="remote" path="queue/remote" minMBFree="1024"/>

</LogQueues>

NOTE: You must configure a different log queue for each loader that you define. In other words, you
cannot share a log queue among loaders.

For more information on loaders, see “Defining Loaders”, on page 42.

Use the <LogQueue> element within the <LogQueues> list to define one or more log queues. These are the
attributes of the <LogQueue> element:

 name—(Required.) Unique name for the log queue

 path—(Required.) Location on the local file system where the log files in the log queue are stored,
relative to FileRoot.

For more information on FileRoot, see “Root Directories Used by the Collector”, on page 19.

 minMBFree—(Required.) minimum free disk space in megabytes. If the minimum free disk space is not
available, the Collector suspends the retrieval process until enough free space is available. You should
specify a number that is equal to about a day's worth of log data on your system.

 encoding—(Optional.) character encoding of log files in the queue. All log files in the queue can use any
character set supported by EDW. This includes encoding schemes that are distributed with Linux such as
'EUC-JP', 'Shift-JIS', 'UJIS', and 'UTF-16'. For a current listing, run the iconv -l. The default encoding
is UTF-8.

Life Cycle of a Log File in a Log Queue

When the Collector processes incoming event data, it writes the data to a log file that is named by
conventions established in each collection process (for example, file naming for syslog sources is defined in
the syslog-ng.conf file). As the log file is processed by the Collector, this original file’s extensions are
renamed and the file is moved to various sub-directories.
Collector Guide 25

Chapter 2: Collector Configuration
Figure 2-1 shows the following processing steps:

1. The Collector writes incoming log data into a file named with the .out extension, located in the
<LogQueue>/spool directory.

2. The Retriever renames the file’s extension from.out to .pmd and begins to calculate an MD5 checksum
for the file. The file is located in the <LogQueue>/spool directory. The retriever creates a new file with
the same name, but having the .meta extension and saves it in the <LogQueue>/spool directory. This
.meta file accompanies all versions of the log file that are moved or renamed by the next steps in the log
file’s lifecycle.

3. After the MD5 checksum is calculated, the Retriever renames the .pmd file into a file with the .org
extension, located in the <LogQueue>/spool directory.

4. If a backup directory is specified for the log queue, the Retriever copies the file to the specified backup
directory (see “BackupDir”, on page 30).

After creating any specified backup copies, the Retriever renames the file’s extension from .org to .raw.
The file is located in the <LogQueue>/spool directory.

5. If a preprocessor is defined (see “Preprocess”, on page 30), the preprocessor renames the file’s extension
from .raw file to .in and begins to process the file. The preprocessor writes its output to a file with the
.out file extension, located in the <LogQueue>/spool directory. This file grows as the output is
generated by the preprocessor.

When the preprocessor completes processing the .in file, the Retriever moves the .out file to the
<LogQueue>/directory and renames the file’s extension from .out to .log.

If the preprocessor fails, the log file’s extension is renamed to .noproc and the file is moved to the
<LogQueue>/spool directory. After debugging and correcting the failure, the HawkEye AP
administrator should:

a Rename the file with an .org extension.

b Do not move or rename the .meta file.

c Restart the Collector using the Deployment Manager.

If no preprocessor is defined, the Retriever renames the file’s extension from.raw to .log and moves it
to the <LogQueue>/ directory.

6. The Loader takes the .log file and loads the data into the EDW using instructions contained in the PTL
file. If the load succeeds, the Loader moves the .log file to the <LogQueue>/done directory.

If the load fails, the Loader writes the log file to the <LogQueue>/ directory with a .noload extension.
26 Collector Guide

Defining Retrievers
After debugging and correcting the failure, the HawkEye AP administrator should:

a Rename the file with a .log extension.

b Do not move or rename the .meta file.

Figure 2-1: Life Cycle of a Log File in a LogQueue

DEFINING RETRIEVERS

Retrievers are Collector modules that retrieve source log data and put it into files in log queues for loading
into the EDW. As an option, retrievers can be configured to preprocess log files prior to loading.

You must configure at least one retriever in the config.xml file before the Collector can perform
meaningful work. Retriever configurations are contained within <Retriever ...></Retriever> tags.

This section describes these topics:

• “Retriever Attributes”, next

• “Retriever Elements”, on page 28

• “Configuring Types of Retrievers”, on page 32

• “Using Process Groups”, on page 40

Retriever Attributes

 A <Retriever> tag has these attributes, regardless of retriever type.

 name—(Required.) Unique name for the retriever

 type—(Required.) Type of retriever. For a complete list or receiver types, see “Configuring Types of
Retrievers”, on page 32.

 enabled—(Required.) Indicates whether the retriever is enabled (1) or disabled (0)
Collector Guide 27

Chapter 2: Collector Configuration
 process—(Optional.) Name of the process group in which to run the retriever. For more information, see
“Using Process Groups”, on page 40.

TIP: Use this parameter to maintain a single version of the config.xml file on all of your HawkEye AP
hosts.

 ssl—(Optional.) Use SSL; ignores invalid certs (0 for disabled, 1 for enabled)

<Retriever name="http1" type="http-push" enabled="1" ssl="1">

EXAMPLE RETRIEVER ATTRIBUTES

The example below shows the definition of a File System retriever. Three attributes in the example are
required for all retrievers: name, type, and enabled. The other attributes are used only with File System
retrievers.

<Retriever name="myFileSystemRetriever" type="filesystem" enabled="1"
 method="hardlink" deleteOriginal="1" >

For more information on the attributes of specific types of retrievers, see “Configuring Types of Retrievers”,
on page 32.

Retriever Elements

In addition to attributes in the <Retriever> tag, a retriever configuration uses elements between the
<Retriever> and </Retriever> tags. These are the elements that you can use:

• “LogQueue”, on page 28

• “Preprocess”, on page 30

• “RunOnHost”, on page 30

• “SourceDir”, on page 30

• “BackupDir”, on page 30

• “SourceUser”, on page 31

• “SourceServer”, on page 31

• “SourceHost”, on page 31

• “SourcePasswd”, on page 31

• “SourceFile”, on page 31

• “Listen”, on page 31

• “ConfigFile”, on page 31

• “Schedule”, on page 31

• “PollInterval”, on page 32

• “Period”, on page 32

• “Plugin”, on page 32

LogQueue

(Required by all retriever types.) The value specifies the log queue to which the retriever directs its output.

<LogQueue [id="n"|{high="n"|low="n"}]>log_queue_name</LogQueue>
28 Collector Guide

Defining Retrievers
You define the log queue referenced by log_queue_name in the <LogQueues> section of the
configuration file. To learn how to define log queues, see “Configuring Log Queues”, on page 25.

You can load a log file to multiple EDW instances by configuring a single retriever with multiple log
queues.

The <LogQueue/> element has these attributes.

 id—(Optional.) The order to use the log queues.

<LogQueue id="1">local</LogQueue>
<LogQueue id="2">remote</LogQueue>

 high | low—(Optional.) Allows you to pool log files into log queue based on the number from 0-99 that
the Collector assigns them. For example, the following retriever divides all incoming web logs into 2
queues, q1 and q2. It replicates those 2 queues to q3 and q4 respectively for backup clusters. The high of
49 and low of 50 specifies that the number of incoming logs should be split in half. That is, if a log file is
assigned a value of 24, a copy will be placed in queues q1 and q3. If a subsequent log file is assigned the
value 78, a copy will be placed in queues q2 and q4.

<Retriever name="weblogs" type="filesystem" enabled="1"
 method="copy" deleteOriginal="1">
 <LogQueue high="49">q1</LogQueue>
 <LogQueue low="50">q2</LogQueue>
 <LogQueue high="49">q3</LogQueue>
 <LogQueue low="50">q4</LogQueue>
 <SourceFile>*.gz</SourceFile>
 <SourceDir>/path/to/log/files</SourceDir>
</Retriever>

 A retriever places all log files that it handles in the queue if neither high nor low is specified.

For example, if you add another queue without a high or low attribute to the example, half of the log files
retrieved will go into q1, half into q2, with backups copied to q3 and q4. All log files will also be copied
to log queue q5.

<Retriever name="weblogs" type="filesystem" enabled="1"
 method="copy" deleteOriginal="1" >
 <LogQueue low="50">q2</LogQueue>
 <LogQueue high="49">q1</LogQueue>
 <LogQueue high="49">q3</LogQueue>
 <LogQueue low="50">q4</LogQueue>
 <LogQueue>q5</LogQueue>
 <SourceFile>*.gz</SourceFile>
 <SourceDir>/path/to/log/files</SourceDir>
</Retriever>

roundRobin

(Optional for all retriever types.)

"roundRobin=’1’"

Attribute indicates that log files are to be split on a line-by-line basis between two or more queues, instead of
loaded as whole files. Use this function to distribute your data across multiple EDW clusters.

Example:
Collector Guide 29

Chapter 2: Collector Configuration
For each log file, split lines 50/50 between log queues "’a’ and ’b.’"

<Retriever name=’filesystem’ process=’files1’ enabled=’1’ deleteOriginal=’1’
type=’filesystem’ method=’hardlink’ roundRobin=’1’>
<RunOnHost>localhost</RunOnHost>
<LogQueue low="0" high="49">a</LogQueue>
<LogQueue low="50" high="99">b</LogQueue>
<SourceDir>/tmp/z</SourceDir>
<PollInterval>10 seconds</PollInterval></Retriever>

Preprocess

(Optional for all retriever types.) The values specify a program to run for preprocessing to occur.

<Preprocess [id="<n>"] type="{file|pipe}"
 [match="<regular-expression>"]>path-and-program</Preprocess>

For more information, see “Configuring Preprocessors”, on page 41.

RunOnHost

(Optional for all retriever types.) Specifies on which host to run the retriever. If not specified, the retriever
runs on the local host where the config.xml file is located.

TIP: This attribute is useful if you are running multiple Collectors, as in daisy chains, which share a single
config.xml file. The attribute specifies on which Collector host the retriever runs.

SourceDir

(Required for all retriever types, except LEA and HTTP Push retrievers.) File system directory from which
to retrieve source log files.

IMPORTANT:

 DO NOT place files that you do not want collected in this directory. This will generate errors and the file
may be deleted.

 DO NOT configure multiple retrievers to collect data from the same directory.

NOTE: If you specify a location on an NFS mount, make sure the retriever is in its own process group. For
more information, see “Using Process Groups”, on page 40.

BackupDir

(Required only for LEA and HTTP Push Retrievers.) Backup locations to save backups of downloaded
source log files.

<!-- Saves to filesystem path, in this case an NFS mount. -->
<BackupDir>file:///nfs1/backups</BackupDir>

<!-- Copies file with scp to example.com using fred's account. -->
<!-- Note: This requires public/private keypairs -->
<BackupDir>scp://fred@example.com/nfs2/backups</BackupDir>

<!-- Copies file with scp using -C for stream compression. -->
<BackupDir>scpc://fred@example.com/nfs2/backups</BackupDir>
30 Collector Guide

Defining Retrievers
SourceUser

Remote user to connect to via SSL, SFTP, FTP, or HTTP Get.

SourceServer

(Required for RDBMS retrievers only.) The database-specific portion of the DBI DSN.

SourceHost

Remote host; for example:

<SourceHost>10.0.1.230</SourceHost>

Host names can also contain a numeric range in {1-3} or ',' delimited list; for example:

<SourceHost>web{1-10}</SourceHost>

SourcePasswd

Used in FTP and HTTP Get Retrievers to specify the password for remote login from FTP and HTTP Get
clients.

HTTP Push Retrievers can also specify a source password. The password is defined in the
collector_push script using the option. For details, see “HTTP Push Retrievers”, on page 37.

SourceFile

(Required for all retriever types except RCP, SCP, and HawkEye Retriever types.)

<SourceFile>*.log</SourceFile>

The Collector translates the value of the <SourceFile> element to a regular expression. The Collector
also uses this value to tell the Plugin which files can be accepted. See “RCP and SCP Retrievers”, on page
37, for an example.

Listen

For push port or ports and hosts; for security purposes, you can use this option to specify that Collector listen
only on internal hosts.

!-- Remote Host:Port on which to listen -->
 <Listen>127.0.0.1:8001</Listen>
 <Listen>127.0.0.1:8003</Listen>

<!-- Local Port on which to Listen -->
 <Listen>8002</Listen>

ConfigFile

Specifies the absolute path of the HawkEye Retriever configuration properties file, which is named
agentless.prop.

Schedule

Schedule for when you want the retriever to run. For more information, see “Scheduling Retrievers and
Loaders”, on page 135 in the Administration Guide.
Collector Guide 31

Chapter 2: Collector Configuration
PollInterval

The <PollInterval> Interval defines how often, in seconds, the Retriever should run. See “Scheduling
Retrievers and Loaders”, on page 135 in the Administration Guide.

Period

If <PollInterval> is used to define when the retriever runs, use <Period> to determine when the
retrieving begins. See “The PollInterval and Period Elements”, on page 137 in the Administration Guide.

Plugin

Defines whether or not to retrieve a file.

You can define which files to accept and which files to ignore using regular expressions. For example:

<Plugin name="Default">
 <!-- ignore all files -->
 <File id="1" ai="ignore">.*</File>
 <!-- unless followed by a dot and at least one digit -->
 <File id="2" ai="accept">\.\d+$</File>
 </Plugin>

You can define how long source log files remain unchanged before a retriever transfers them for processing.
For example,

<Plugin name="Default">
 <!-- File must remain unchanged for this long before we download -->
 <UnchangedFor>1 hour</UnchangedFor>
</Plugin>

For more information on using the <UnchangedFor> attribute, see See “Scheduling Retrievers and
Loaders”, on page 135 in the Administration Guide.

IMPORTANT: The regular expression attempts to match the file name of files located in the
directory specified by the <SourceDir> element of the Retriever. If a Preprocessor is also defined
for the Retriever, note that the regular expression is compared against the full URL of the filename.
For more information, see “Configuring Preprocessors”, on page 41.

Configuring Types of Retrievers

This section describes how to configure these types of retrievers.

• “File System Retrievers”, next

• “HawkEye Retriever on Windows”, on page 34

• “FTP Retrievers”, on page 35

• “SFTP Retrievers”, on page 36

• “RCP and SCP Retrievers”, on page 37

• “HTTP Get Retrievers”, on page 37

• “HTTP Push Retrievers”, on page 37

• “Script Retrievers”, on page 38
32 Collector Guide

Defining Retrievers
File System Retrievers

File System retrievers gather log files from specified file system locations where logs are placed by
processes external to HawkEye AP. File system locations can be on local disks, NFS mounts, or Samba
mounts. Local disks work best for File System retrievers. Each retriever gathers one log file.

NOTE: File system retrievers read the directory specified with the SourceDir element and go through the
same process as noted under the topic “File Processing Performed by FTP Retrievers”, on page 35.

ATTRIBUTES FOR FILE SYSTEM RETRIEVERS

File System retrievers have these additional attributes in the <Retriever> tag:

 method—(required) the method of file-system access to source log files. Use one of these text values:

 copy—Collects log data by using the Unix cp command.

IMPORTANT: If used with an NFS mount, make sure the retriever belongs to its own process group. For more
information, see “Using Process Groups”, on page 40.

 hardlink—Collects log data by making a hard link to the log data.

IMPORTANT: Do not use hardlink when SourceDir is on an NFS or Samba mount.

 symlink—Collects log data by making a symbolic link to the log data so that the actual bytes do not need to be
moved. This link is then removed by the loader after loading completes. The original data is removed only if the
retriever is configured to do so.

IMPORTANT: Do not use symlink when SourceDir is on an NFS mount.

 deleteOriginal—(optional) specifies whether to delete original log files from the system after retrieval
(1) or leave them (0). Do not use deleteOriginal if the method you specify is symlink.

ELEMENTS FOR FILE SYSTEM RETRIEVERS

File System retrievers use these elements:

 “RunOnHost”, on page 30 (optional)

 “LogQueue”, on page 28 (required)

 “SourceDir”, on page 30 (required)

NOTE: If you specify a location on an NFS mount, make sure the retriever is in its own process group.
For more information, see “Using Process Groups”, on page 40.

EXAMPLE FILE SYSTEM RETRIEVER CONFIGURATION

The following examples show File System retrievers configured for different methods of file access.

File System Retriever with Copy as the Method

<Retriever name="fsbackup" type="filesystem" enabled="1"
 process="files1" method="copy" deleteOriginal="1" >
 <RunOnHost>host02.myco.com</RunOnHost>
 <LogQueue>primary</LogQueue>
 <SourceDir>/tmp/logs-fsbackup</SourceDir>
 <BackupDir>scp://joe@snoopy/local/home/joe/backups</BackupDir>
</Retriever>
Collector Guide 33

Chapter 2: Collector Configuration
File System Retriever with Hardlink as the Method

<Retriever name="fs" type="filesystem" enabled="1"
 process="files1" method="hardlink" deleteOriginal="1" >
 <RunOnHost>host01.myco.com</RunOnHost>
 <LogQueue>primary</LogQueue>
 <SourceDir>/tmp/logs-fs</SourceDir>
</Retriever>

File System Retriever with Symlink as the Method

<Retriever name="fssym" type="filesystem" enabled="1"
 process="files1" method="symlink" >
 <LogQueue>primary</LogQueue>
 <SourceDir>/tmp/logs-fssym</SourceDir>
</Retriever>

HawkEye Retriever on Windows

The HawkEye Retriever collects Windows event-log messages and application logs. It passes the collected
data for batch processing by the Collector, the HawkEye Retriever can write to a Collector log queue that
loads the data into the EDW. Figure 2-11 in the previous chapter describes and illustrates using the
HawkEye Retriever both agentless and as an agent to collect the data and forward it to the Collector. When
you configure the Retriever as an agent, you can collect Windows application data as well as event-log data
from the Windows host.

IMPORTANT: When processing batch data, you first edit the Retriever configuration file to define
properties specific to the objects that comprise the HawkEye Retriever. After you set the retriever
properties, configure the Collector config.xml file to point to the properties file. For more
information, see the following:

 configuring the retriever properties file—“Standard Configuration”, on page 61

 defining the retriever in config.xml—“Configuring the Retriever to Run Agentless”, on page 34 and
“Example of Agentless HawkEye Retriever Configuration”, on page 34

CONFIGURING THE RETRIEVER TO RUN AGENTLESS

To define the Retriever to be agentless, you must use config.xml to define the following elements:

 “LogQueue”, on page 28 (required)

 “ConfigFile”, on page 31 (required)

NOTE: If you specify a location on an NFS mount, make sure the retriever is in its own process group.
For more information, see “Using Process Groups”, on page 40.

IMPORTANT: In addition to defining the properties for your HawkEye Retriever, you must
configure authentication against a Windows server for agentless event-log retrieval. For more
information, see “Configuring Authentication”, on page 103.

EXAMPLE OF AGENTLESS HAWKEYE RETRIEVER CONFIGURATION

The following example shows configuration of an agentless HawkEye Retriever in the config.xml file.

<Retriever name="windows1" type="windows" deleteOriginal="1" enabled="1">
 <RunOnHost>host02.myco.com</RunOnHost>
 <LogQueue>win_logqueue</LogQueue>
34 Collector Guide

Defining Retrievers
<ConfigFile><HawkEye AP Home>/etc/collector/agentless.prop</ConfigFile>
</Retriever>

FTP Retrievers

FTP retrievers collect log data using the FTP protocol.

NOTE: FTP Retrievers transfer files only in ascii mode.

ATTRIBUTES FOR FTP RETRIEVERS

FTP retrievers have this additional attribute in the <Retriever> tag:

 keepAlive—(Optional.) Specifies whether to keep connections open between checks for new files (1) or
to abandon connections (0).

EXAMPLE FTP RETRIEVER CONFIGURATION

<Retriever name="ftp001" type="ftp" enabled="1" process="ftp1"
 deleteOriginal="0" keepAlive="1" >
 <LogQueue>primary</LogQueue>
 <SourceDir>/local/home/demo/logs</SourceDir>
 <SourceHost>10.0.1.174</SourceHost>
 <SourceUser>hexis</SourceUser>
 <SourcePasswd>userdemo</SourcePasswd>
</Retriever>

IMPORTANT: FTP retrievers require a clear-text password in the <SourcePasswd> element. For
security purposes, restrict access to the configuration file to root, the hexis user, and a limited
number of users who modify the Collector configuration.

FILE PROCESSING PERFORMED BY FTP RETRIEVERS

FTP, SFTP, RCP, SCP, and File System retrievers connect to remote servers and request a directory listing
of the SourceDir. The Collector keeps an internal database of filenames, modification dates, and byte sizes
for every source log file. If a retriever finds new or modified files, it transfers them to the local disk for
inspection.

The Default plugin can be used to further refine the list of files to be transferred. Configure the plugin to
ignore patterns and/or enforce a waiting period on files. A waiting period prevents a file from being
downloaded until it has stopped changing for a specified number of seconds. You could also write your own
plugin with your own logic for determining which files should be transferred and which should be ignored.
For example,

<Plugin name="Default">
 <UnchangedFor>10 minutes</UnchangedFor>
</Plugin><

For more information on using the <UnchangedFor> attribute, see “Scheduling Retrievers and Loaders”,
on page 135 in the Administration Guide.

After transferring source log files, FTP retrievers perform an MD5 sum of each file and compare that value
against known values of any file retrieved by the Collector. MD5 provides a very high level of assurance
that the file has not been loaded before. Once the file passes this check, it is cleared for loading and put into
the appropriate log queue. Its MD5 is also added to the list of MD5 s for future checks.
Collector Guide 35

Chapter 2: Collector Configuration
SFTP Retrievers

SFTP retrievers collect log data using the SFTP protocol.

NOTE: Collector does not work with Windows versions of SFTP. To ensure compatibility, use a version of
SFTP that is included in the versions of Linux that the Collector can run on.

ATTRIBUTES FOR SFTP RETRIEVERS

SFTP retrievers have this additional attribute in the <Retriever> tag:

 keepAlive—(Optional.) Specifies whether to keep connections open between checks for new files (1) or
to abandon connections (0).

ESTABLISHING ACCESS TO DESIRED DATA ON TARGET SERVER

Unlike the FTP retriever, an SFTP retriever does not have the <SourcePasswd> tag. To enable the SFTP
retriever to get data from the target server, you must set up SSH (Secure Shell) trust between the HawkEye
AP system user on the server hosting the Collector and the user on the target server, which you specify in the
<SourceUser> tag for the retriever. The user on the target server must have access to the desired data.

Set up trust by copying the contents of the HawkEye AP user’s public key file on the server hosting the
Collector into the authorized key files of the user on the target server. Follow these steps:

1. On the Collector host, change to the HawkEye AP user:

su -l hexis

2. Copy the public key file to the target user on the target host.

scp ~/.ssh/id_dsa.pub <target_user>@<target_host>:~

3. On the target host, change to the target user.

su -l <taget user>

4. Copy the contents of the HawkEye AP user’s public key file into the target user’s authorized key files.

cat ~/id_dsa.pub>> ~/.ssh/authorized_keys2

5. Delete the public key file.

rm ~/id_dsa.pub

EXAMPLE SFTP RETRIEVER CONFIGURATION

<Retriever name="sftp1" type="sftp" enabled="1" process="ftpGroup"
 deleteOriginal="0" keepAlive="1" debug="1">
 <LogQueue>remote</LogQueue>
 <SourceDir>queue</SourceDir>
 <SourceHost>localhost</SourceHost>
 <SourceUser>hexis</SourceUser>
 <BackupDir>file:///tmp/backup1</BackupDir>
 <Preprocess id="2" type="pipe" match="mail">/usr/bin/wc</Preprocess>
 <Preprocess id="1" type="file" match="apache">/bin/cp</Preprocess>
</Retriever>
36 Collector Guide

Defining Retrievers
RCP and SCP Retrievers

RCP and SCP retrievers collect log data using a list of file names and/or wildcards. For example:

<SourceFile>*.log</SourceFile>

ELEMENTS FOR RCP AND SCP RETRIEVERS

You can configure RCP and SCP retrievers to ignore files with a wildcard expression. Enclose the
expression in a <Plugin> element, as the next example shows:

<Plugin name="Default">
 <File ai="ignore">~$</File>
</Plugin>

USAGE NOTES FOR RCP AND SCP RETRIEVERS

 Hexis Cyber Solutions does not recommend the use of RCP or SCP if you are transferring large log files,
because the wildcard selection may result in repeated large file downloads.

 RCP and SCP retrievers make a connection to the remote server and download whatever source log files
are specified in the <SourceFile> elements. Files may be specified by individual filename or by
wildcard specification. The retrievers then perform MD5 sums on each file and follow the same process
as FTP retrievers for loading files. For more information, see “File Processing Performed by FTP
Retrievers”, on page 35.

HTTP Get Retrievers

HTTP Get retrievers gather log files specified by filenames and/or wildcard expressions. To avoid the
wildcard issue mentioned above (where large files could be repeatedly downloaded due to the broadness of a
wildcard match), this type checks the file size and date modified (when available) to determine whether or
not to download files.

<Retriever name="http-get" type="http-get" enabled="1" process="1" ssl="1">
 <LogQueue>local</LogQueue>
 <SourceHost>127.0.0.1:80</SourceHost>
 <SourceDir>/~demo</SourceDir>
</Retriever>

USAGE NOTES FOR HTTP GET RETRIEVERS

 The source directory must have indexing enabled, as set by your web server.

 If an entire directory is specified, and the server supports directory listings, the HTTP Get Retriever
parses the directory listing for modification date and byte size, and goes through the same process as FTP
retrievers for loading files. For more information, see “File Processing Performed by FTP Retrievers”, on
page 35.

HTTP Push Retrievers

HTTP push retrievers accept multiple, simultaneous, incoming HTTP connections under a single process.
This type requires the use of a remote sender script or program to send files. On Unix, the sender is the
collecotor_push script; on Windows the sender is the collector_push.exe program.
Collector Guide 37

Chapter 2: Collector Configuration
EXAMPLE HTTP PUSH RETRIEVER CONFIGURATION

<Retriever name="http-push" type="http-push" enabled="1" ssl="0">
 <LogQueue>local</LogQueue>
 <Listen>127.0.0.1:8001</Listen>
 <SourceUser>demo</SourceUser>
 <SourcePasswd>mypasswd</SourcePasswd>
</Retriever>

CONFIGURING THE REMOTE SENDER FOR HTTP PUSH RETRIEVERS

The collector_push script for Unix systems and the collector_push.exe for Windows run on the
log-file host. Run the script or program from the command line, or set up a recurring job on the remote host
or server.

The remote sender takes the following options:

 --source—directory to scan for files

 --dest—<host>:<port> for Collector

 --name—unique name for client (can be anything, but usually the name of the host where log's data came
from)

 --ssl—0 for enabled, 1 for disabled

 --user—authenticates to the value set in the <SourceUser> element

 --passwd—password sent to the HTTP Push retriever for authentication

 --delete—deletes files after successful load run

 --delay—can be used with --delete

For example:

collector_push --source="localdir" --dest ="collector.host.com:9999"

Script Retrievers

A script retriever allows you to collect data using a script or other program that you or another developer
creates. You can use the script to perform any type of data collection or generation. For example, you could
write a script to query an RDBMS and send the output to the Collector, or the script could execute a
command such as lastlog whose output is captured and sent to the Collector.

The script can also add additional metadata to the retrieved data prior to loading. The script produces an
output file that is picked up by the Collector and loaded using standard loading procedures.

A script or program used with the script retriever must be executable from the command line and must direct
output to a file whose name is provided by a command-line argument.

SCRIPT RETRIEVER ELEMENTS

 Retriever—This is the containing element for each retriever. To create a script retriever, set the type
attribute to "filescript". For example:

<Retriever
type="filescript"
38 Collector Guide

Defining Retrievers
...
</Retriever>

 RunOnHost—(Optional.) A designated host on which the retriever runs. Without this element, the
retriever runs on the host where the config.xml file is located. See “RunOnHost”, on page 30.

 LogQueue—See “LogQueue”, on page 28

 SourceEnv—Specify environment variables and their values that are set prior to executing the script.
Specify the variable’s name with the name attribute, and its value within the element. You can specify
multiple SourceEnv elements to define additional environment variables. For example:

<SourceEnv name="user">john</SourceEnv>
<SourceEnv name="hostname">myhost.com</SourceEnv>

 SourceCommand—Specify the command line used to run the script. The optional multiple attribute has
two possible values:

 "1"—Execution of the command is repeated until an empty output file is produced.

 "0" (or not specified)—The command executes only once for each interval specified with the PollInterval
element.

Include any command line arguments for the script or program as part of the command line within the
SourceCommand element.

Use "%F" to represent the argument to your script or program that specifies the output file name. The
script must accept at least a single input argument which represents the filename where the script writes
its output. The Script retriever supplies the filename when the command executes. For example:

<SourceCommand multiple="1">/opt/myScript %F</SourceCommand>

 PollInterval—(Recommended.) Specify how often, in seconds, the script should run. For example:

<PollInterval>3600</PollInterval>

WRITING A SCRIPT FOR USE WITH THE SCRIPT RETRIEVER

The script retriever runs the command specified with the <SourceCommand> element. The command
referenced by this element may be a script or compiled program, created by a developer, or provided by
HawkEye AP.

IMPORTANT: The script runs as the same user as the Collector and can perform many potentially
destructive actions such as deleting or re-writing files on the file system. Make sure your script
only performs the expected data collection activities. Note also that a script that generates
excessive errors can flood the Collector’s log file with error messages.

(Optional) You can also specify metadata in the script to describe the file’s source and modification time.
You add this metadata by writing instructions in the script that write a metadata file whose name is the same
as the output file but ends with ".meta". This file should contain either or both of the following two lines:

FileSource: <name of source file>

FileModTime: <number of seconds since epoch (as an integer)>
Collector Guide 39

Chapter 2: Collector Configuration
The FileSource metadata is used by the Collector instead of the actual filename when matching to a
filename specified by the expression in the match attribute in the <Preprocess>, <Postprocess> and
<PTL> elements.

NOTE: Format the lines exactly as shown above, substituting the correct values after the colon and space
characters.

SAMPLE SCRIPT RETRIEVER CONFIGURATION

<Retriever
name="filescriptExample"
type="filescript"
process="files1"
enabled="1">
<RunOnHost>localhost</RunOnHost>
<LogQueue>local</LogQueue>
<SourceEnv name="user">john</SourceEnv>
<SourceCommand multiple="1">/opt/myScript %F</SourceCommand>
<PollInterval>3600</PollInterval>

</Retriever>

SAMPLE SCRIPT

The following simplified sample script writes the date to an output file represented by the $1 parameter and
also writes metadata to a file whose name begins with the file represented by the $1 parameter and ends with
".meta". When this script is referenced by the Script retriever sample shown above, the Script retriever
generates a filename and substitutes it for the %F parameter you specify in the <SourceCommand> element.

#!/bin/bash
#myScript.sh
date>$1
echo "FileSource: myFileSource">$1.meta

STDERR, STDOUT, and Exit Status

When the script executes:

 STDERR output from the script is logged as an error in the Collector’s log.

 STDOUT is logged as verbose in the Collector’s log.

 Non-zero exit status is logged as an error in the Collector’s log and the output file is discarded.

 Zero exit status with an empty output file means that there is no data available to load.

 Zero exit status with no output file is logged as an error in the Collector’s log.

Using Process Groups

Process groups reduce the system processes required to run retrievers compared to running retrievers
individually. Specify which process group a retriever belongs to with the process attribute in the
<Retriever> tag.

Depending on their type, retrievers are blocking or non-blocking. Blocking retrievers that are scheduled to
run at the same time are queued up in a first-come, first-served basis. They run sequentially, one after the
other. Non-blocking retrievers that are scheduled to run at the same time run in parallel. File system and FTP
retrievers are blocking. All other types are non-blocking.
40 Collector Guide

Configuring Preprocessors
When you define a retriever, you can specify which process group the retriever is part of. Consider a system
with a large number of retrievers. If all of the retrievers start at one time, the system becomes overwhelmed
with processes. Group blocking retrievers, such as file system and FTP retrievers, in a process group
separate from non-blocking receivers. This ensures that non-blocking retrievers run in parallel and are not
interrupted by the sequential processing of a blocking receiver.

TIP: For improved efficiency, do not mix blocking and non-blocking retrievers in the same group.

IMPORTANT: Place file system retrievers that access NFS mounts in their own process groups. In
the following example, nfs1 is the process group. Other retrievers that access the same NFS
mount should also specify the process group nfs1.

<Retriever name="fscp" type="filesystem" process="nfs1" enabled="1"
 method="cp" >
 <LogQueue>primary</LogQueue>
 <SourceDir>/tmp/logs-fssym</SourceDir>
</Retriever>

You can also define a process group to manage retrievers that gather log files from many machines that
generate very small logs.

CONFIGURING PREPROCESSORS

Retrievers can have one or more preprocessing scripts identified to transform log data prior to writing log
files to log queues. Examples of preprocessing include concatenating multi-line log entries into single-line
entries, replicating data among lines, and stripping out unwanted characters, such as nulls.

Configure preprocessors in <Retriever/> sections of the config.xml file, using the following example
syntax:

<Retriever name="fssyslog" type="filesystem" process="files1" method="copy"
 deleteOriginal="0" enabled="0">
 <LogQueue>syslog_lq</LogQueue>
 <SourceDir>/home/sensage/logs/syslog</SourceDir>
 <Preprocess id="2" type="pipe">/usr/bin/wc</Preprocess>
 <Preprocess id="1" type="file" match="apache">/usr/bin/procsf</Preprocess>
</Retriever>

Use a <Preprocess/> element within a <Retriever> section to specify a script or binary to run on the
log files the retriever collects prior to loading.

IMPORTANT: Preproccess programs must be written to handle the character encoding of the
source log files that the retriever collects. For more information, see “Configuring Log Queues”,
on page 25.

The <Preprocess> element has the following attributes:

 id—Specifies the order in which preprocessors are applied for this retriever. Specify 1 for the
preprocessor that you want the Retriever to run first, 2 for the second, and so on.

 type—(Required.) Determines how Collector sends data to the preprocessor; specify one of the
following values:

 file—a script to which two command-line parameters are passed: the original filename, and the "save to"
filename. For example: /usr/bin/procsf/test.preproc $infile $outfile
Collector Guide 41

Chapter 2: Collector Configuration
 pipe—handles streaming data through a pipe. For example:cat $infile | /usr/bin/wc/test.preproc > $outfile

NOTE: The values ’pipe' and 'file' represent two different values that you can assign to 'type'. Collector
replaces these values.

 match—(Optional.) A regular expression that describes which matching log files will be run through this
preprocessor. In the following example, mail specifies that the preprocessor operates on log files with
“mail” in the filename.

<Preprocess id="2" type="pipe" match="mail">/usrbin/wc</Preprocess>
<Preprocess id="1" type="file" match="apache">/bin/cp</Preprocess>

NOTE: When matching file names using the match attribute of the <Preprocessor> element, note that
the regular expression is compared against the full URL of the filename, for example:

file://local/incoming/myFilename.loadme

If you also define a Plug-in for the same retriever, note that the regular expression defined in a <File>
element matches only against the file name portion of the URL, and assumes the file is located in the
directory specified by the <SourceDir> element of the retriever. For example,

myFilename.loadme

To correctly load data from multiple retrievers that also use Plug-ins, make sure to construct the regular
expressions in the <File> and <Preprocess> elements correctly. For more information, see “Plugin”,
on page 32.

DEFINING LOADERS

Loaders are Collector modules that load data into the EDW. You can define one or more loaders in a single
Collector instance within the config.xml file. In general, create a different loader for each EDW instance
into which you want to load data.

Within a loader configuration, you can specify different PTL files to handle different event-log types. For
example, one PTL file handles firewall event logs and another PTL file handles syslog event logs. PTL files
specify how log entries are parsed and loaded by the EDW into target schemas during loads.

Specify loaders within the <Loaders> section of the config.xml, using the following example:

<Loaders>
 <Loader name="fs" enabled="1" trickle="1" >
 <LogQueue>local</LogQueue>
 <PTL table="web" type="file" enabled="1">/ptls/apache_access-1BT.ptl</PTL>

<SLSInstance>slshost.myco.com:2112</SLSInstance>
 <SLSUser>administrator</SLSUser>
 <SLSPasswd>changeme</SLSPasswd>
 <ParseFailures>
 <AbortOnFailure>0</AbortOnFailure>
 <LogFile><HawkEye AP Home>/var/log/collector/apache-parsefailures.log</
LogFile>
 </ParseFailures>
 </Loader>
</Loaders>
42 Collector Guide

Defining Loaders
Loader Attributes

The <Loader> tag has these attributes:

 name—(Required.) Unique name for the loader.

 enabled—(Required.) 0 for disabled, or 1 for enabled.

 trickle—(Optional.) 0 for disabled, or 1 for enabled. The default is 0. Treats the load as a trickle feed
(either small loads or an unsorted data stream).

For example:

<Loader name="fs" enabled="1" trickle="1">

In the following example the trickle argument is added to the Collector configuration by setting the trickle
attribute to ’1’ and the table is compacted by setting the compact attribute to 1.

<Loader enabled=’1’ trickle=’1’ name=’loader 1’>
<RunOnHost>localhost</RunOnHost>
<LogQueue>local</LogQueue>
<PTLtable=’sometable’namespace=’demo’
enabled=’1’ compact=’1’>/tmp/someptl.ptl</PTL
<PollInterval>1 minute</PollInterval>
<SLSInstanceid=’1’>127.0.0.1:%SLS_PORT%</SLSInstance>
<SLSUSER>administrator</SLSUser>
<SLSSharedKey>%SECRET%<SLSSharedKey>
</Loader>

NOTE: With EDW Trickle Feed Load (TFL) support, data loaded with TFL option needs to be compacted
periodically so that the EDW data structures stay small and do not cause unnecessary delays when a manual
compact operation is invoked after large amount of data is accumulated in TFL data structures.

Therefore, Collector can enable EDW Compact operation in a timely manner so that the data loaded with
EDW Trickle Feed option is merged into EDW data leaves

Compaction parameters would be defined within a <Loader> section:

 Compaction schedule. and /or

 A threshold determined by Rows and/or Bytes and/or Load Counts

You can use more than one loader against a given table.

 Compaction threshold statistics would be stored globally (within a given collector) on a table by table
basis.

 Compaction would lock out loads to a table globally (within given collector).

The following <Compact> attributes support the above:

 loadsThreshold - Number of loads after which to trigger a compact (default – no trigger on this)

 rowsThreshold - Numbers of rows after which to trigger a compact (default – no trigger on this)

 megsThreshold - Number of mega bytes after which to trigger a compact (default – no trigger on this)
Collector Guide 43

Chapter 2: Collector Configuration
If you choose none of the above options, Collector uses these parameters for scheduling:

<!-- simple parameterized compact ->
<Compact loadsThreshold="100" rowsThreshold="100000000"
megsThreshold="1000000000"/>
<!-- one parameter only, compact only at size threshold ->
<Compact megsThreshold="1000"/>
<!-- compact only at one minute after midnight - Schedule>
<Compact> <Schedule>1 0 * * *</Schedule> </Compact>
<!-- always compact at one minute after midnight, or after 10 gigs is loaded
since last compact -->
<Compact megsThreshold="10000">

<Schedule>1 0 * * *</Schedule>

</Compact>

Loader Elements

In addition to attributes in the <Loader> tag, a loader configuration uses these elements between the
<Loader> and </Loader> tags:

 “LogQueue”, next

 “PTL”, on page 45

 “Merge”, on page 46

 “SLSInstance”, on page 48

 “SLSUser”, on page 48

 “SLSPasswd”, on page 48

 “SLSSharedKey”, on page 48

 “Schedule”, on page 49

 “Schedule”, on page 49

 “PollInterval”, on page 49

 “Period”, on page 49

 “Compact”, on page 49

 “DaisyChainHost”, on page 50

Description of the Loader Elements

LogQueue

 (Required.) The value specifies the log queue from which the loader draws its input.

<LogQueue>log_queue_name</LogQueue>
44 Collector Guide

Defining Loaders
You define the log queue referenced by log_queue_name in the <LogQueues> section of the
configuration file. To learn how to define log queues, see “Configuring Log Queues”, on page 25.

PTL

(Required.) The <PTL> section of a loader configuration has two formats:

 “Simple Format for Specifying PTL Files”, on page 45

 “Extended format for Specifying PTL Files”, on page 45

SIMPLE FORMAT FOR SPECIFYING PTL FILES

In the simple format, the PTL section is a simple element. The value specifies which PTL file to use with the
loader. The <PTL> element takes the following attributes:

 id—(Optional.) Priority; 1 is processed first, 2 next, and so on (recommended)

 namespace—(Optional.) The default is default, or whatever namespace your datastore accesses
(recommended).

 table—(Required.) Table the data will get loaded into.

 type—(Optional.) Must be file; default is file.

 match—(Optional.) Regular expression that matches incoming log file names; if not included, will look
for all available log files.

 enabled—(Required.) 0 for disabled, 1 for enabled.

 trickle—(Optional.) 0 for disabled, or 1 for enabled. The default is 0. Treats the load as a trickle feed
(either small loads or an unsorted data stream).

Note that if the <PTL...> element contains the optional ’compact’ attribute, the table is only compacted if
the attribute is set to ’1’. For example:

<PTL table =’xyzzy2’ namespace=’d’ enabled=’1’ compact=’1’>/tmp/sap.ptl</PTL>

 compact—(Optional.) 0 for disabled, or 1 for enabled. The default is 0. Compacts the specified table.

EXTENDED FORMAT FOR SPECIFYING PTL FILES

In the extended format, the PTL section takes elements, including a <Location> element that specifies the
PTL file to use with the loader. The extended format takes the same attributes as the simple format. The
extended format also takes these elements:

 Location—The <Location> element specifies the PTL file to use.

 LoadOption—The <LoadOption> section specifies command-line options to pass to the atload
command that the loader runs. One of the load options, --override, is useful to override time zones,
MD5 (checksum) values, server names, or other values that are constant for an entire load.

For additional load options that control how the atload command functions, see Loading Data into the
EDW in Chapter 3: Loading, Querying, and Managing the EDW in the Administration Guide.

 ParseFailures—The ParseFailures section specified within the PTL element overrides the default parse
failures section given for the particular loader.
Collector Guide 45

Chapter 2: Collector Configuration
EXAMPLE LOADER CONFIGURATION

If you need to specify extra atload command-line arguments, use the following syntax:

<PTL table="main" namespace="myNamespace" type="file" match="error_" trickle="1"
compact="1">
 <Location>apache_error-1BT.ptl</Location>
 <LoadOption>--override=TZ:’GMT’</LoadOption>
 <ParseFailures>
 <AbortOnFailure>1</AbortOnFailure>
 <LogFile><HawkEye AP Home>/var/log/collector/lea-parsefailures.log</
LogFile>
 </ParseFailures>
</PTL>

In the example above, the load is treated as trickle feed and the table is compacted. The <LoadOption>
element specifies a macro-override value for the expression macro time zone, which is defined in the PTL
file apache_error-1BT.ptl. The override sets the time zone to GMT. The <ParseFailures
section> specifies overrides for default parse-failure settings.

INTERNATIONAL SUPPORT IN PTL FILES

PTL files must be written with UTF-8 encoding. This lets the regular expression match international
characters in source log entries. Source log files can be written with a variety of encoding schemes, but log
entries are converted to UTF-8 encoding before evaluation by the regular expression in the PTL file.

Merge

(Optional.) The <Merge> section of a loader configuration is useful when the log queue fills with many
small files. Too many such files can cause fragmentation and can severely impact performance. The Merge
section allows you to configure postprocessing and merging and/or sorting of the incoming log files prior to
loading into the EDW.

NOTE: A loader configured with the Merge option should not also specify a PTL. The Merge loader passes
the data it merges to another loader that performs the actual loading into the EDW. The second loader
specifies the PTL. The Merge loader specifies only the log queue and the merge processing.

The <Merge> section takes the following attributes:

 loader—(Required.) Specifies the destination loader; after the merge completes, the merged file is
delivered to this loader for loading.

 enabled—(Required.) 0 for disabled, 1 for enabled.

 maxMB—(Required.) Specifies the total size of all available files before the merge occurs; in other
words, merge occurs when all available files exceed specified size.

 age—(Required.) Specifies the maximum age of the oldest available file before the merge occurs; in other
words, merge occurs when the oldest available files exceed specified age.

 minAge—(Recommended.) Specifies the minimum age of the oldest available file before the merge
occurs; in other words, merge waits until the oldest available files exceeds specified age.

 compress—(Required.) 0 for false, 1 for true. If set to true, the Collector uses the gzip compression
utility on the resulting merged file, which provides the file with a .gz extension. This attribute is useful
when running over a WAN.
46 Collector Guide

Defining Loaders
 sort—(Required.) 0 for false, 1 for true. If true, the Collector runs the Unix sort command on the
resulting merged file.

 sortOptions—(Optional.) When you enable sorting, you can specify an alternative directory for
temporary files. The /tmp directory is typically used but often has insufficient space. Specify this option
in a quoted string that begins with -T; for example: "-T /tmp/s".

The <Merge> section takes the following elements:

 Postprocess—(Required.) Specify the name of the postprocessor and, optionally, command-line
parameters.

Merge loaders can have one or more postprocessing scripts identified to transform log data prior to
passing the data to a loader that actually writes the log files to the EDW.

NOTE: Merging does not always require a postprocessing script. For example, postprocessing isn’t
necessary if the Loader is only sorting the data. In this case, you can pass the data unchanged through the
log source by including the cat command in the postprocess element. The following illustrates how you
might use this command:

<Postprocess id='1'>(cat)</Postprocess>

This element takes the following attributes:

 id—(Optional.) Specifies the order in which preprocessors are applied for this Loader. Specify 1 for the
preprocessor that you want the Loader to run first, 2 for the second, and so on.

 match—(Optional.) A regular expression that describes which matching log files will be run through this
postprocessor. In the following example, mail specifies that the postprocessor operates on log files with “mail” in
the filename.

<Postprocess id="1" match="snail">parseSnail.pl EST</Postprocess>
<Postprocess id="2" match="mail">(gunzip | parseMail.pl %F)</Postprocess>

NOTE: You can prepend a value to the postprocessed output by specifying the value after the name of
the postprocessor. For example:

 Specify the time zone:

<Postprocess id="1" match="snail">parseSnail.pl EST</Postprocess>

 Specify the special %F variable that captures the file name:

<Postprocess id="3" match="mail">(gunzip | parseMail.pl %F)</Postprocess>

The parseWin.pl Perl script above gets data from standard input and writes it to standard output.
The Collector replaces %F is with the original file name, which you can use to influence processing.
For example you can use the original file name to determine the file’s timestamp.

IMPORTANT: If the postprocessor output is to be sorted, prepend the epoch time to its output. If you prepend a
timestamp or your postprocessor makes other changes to the file, you must modify the PTL in the associated loader to
handle the changes.

 PollInterval—(Recommended.) Specify how often the data should be merged. Typically you set this
value to the same value as the age attribute. Set the value in seconds.
Collector Guide 47

Chapter 2: Collector Configuration
EXAMPLE LOADER CONFIGURATION

The example below illustrates how you can merge multiple small files before loading them into the EDW:

<LogQueue>mergeQ</LogQueue>
<Merge loader="mail" enabled="1" maxMB="1000" age="2 hours" minAge="1 hour"
compress="1" sort="1" sortOptions="-T /tmp/s">

<Postprocess id="1" match="mail">parseMail.pl %F</Postprocess>
<Postprocess id="3" match="snail">parseSnail.pl EST</Postprocess>

</Merge>
<Merge loader="syslog" enabled="1" maxMB="5000" age="3 hours" minAge="1 hour"
compress="0" sort="0">

<Postprocess id="2" match="syslog">parseSyslog.pl</Postprocess>
<Postprocess id="4">parseRemainder.pl</Postprocess>

</Merge>
<PollInterval>3600</PollInterval>

The example above illustrates two Merge elements that load data from the same log queue. Each Merge
element contains two postprocessor elements, each with its own ID attribute. The ID values specify that one
postprocessor in each Merge element is processed before the processing of the second postprocessor in each
Merge element.

The first Merge element specifies compression and sort. The second does not.

SLSInstance

 (Required.) Host name and port number of the EDW instance to load data into. For example:

<SLSInstance>slshost.myco.com:2112</SLSInstance>

Remember that you can run multiple instances of EDW on a single host, and that each instance is identified
by a different port number.

SLSUser

(Optional.) The user name to talk to the EDW. The default is administrator.

SLSPasswd

(Optional.) The password for the EDW user. The default is changeme. You can specify a shared key instead
of an SLS password.

For more information about the EDW user and password or shared keys, see the HawkEye AP Analyzer
Documentation.

SLSSharedKey

A "shared secret" password used to authenticate the loader. Use this in place of the SLSPasswd. The value
of the shared secret is contained in the following file:

<HawkEye AP Home>/etc/sls/instance/<instance-name>/shared_secret.asc

For example:

<Loader enabled='1' name='l_hp_skm_audit_batch'>
 <RunOnHost>localhost</RunOnHost>
 <LogQueue>q_hp_skm_audit_batch</LogQueue>
48 Collector Guide

Defining Loaders
 <SLSInstance>sls01.east.myco:8072</SLSInstance>
 <SLSUser>administrator</SLSUser>
 <SLSSharedKey>e45ede21c4b81a2ac0c8417ea6846551</SLSSharedKey>
 <PTL table='hp_skm_audit_batch' namespace='analytics' type='file'>
 <Location>/opt/sensage/analytics/adapters/hp_skm_audit_batch/

hp_skm_audit_batch.ptl</Location>
 <LoadOption>--override=TZ:'America/Los_Angeles'</LoadOption>
 </PTL>
 </Loader>

Schedule

Times that you want the loader to run. You can include several <Schedule> elements. For example, one
schedule specifies hours for week days and another schedule specifies hours for week-ends.

For more information on how to specify a schedule, “Scheduling Retrievers and Loaders”, on page 135 in
the Administration Guide.

PollInterval

The <PollInterval> Interval defines how often, in seconds, the Loader should run. See “The PollInterval
and Period Elements”, on page 137 in the Administration Guide.

Period

If <PollInterval> is used to define when the Loader runs, use <Period> to determine when the loading
begins. see “The PollInterval and Period Elements”, on page 137 in the Administration Guide.

Compact

(Optional.) Schedule the loader to compact data incrementally. This element can be used with the trickle
attribute. See “Loader Attributes”, on page 43.

The <Compact> element takes the following attributes:

 timeout—(Required.) Specifies the maximum amount of time for the compacting.

 archived—(Optional.) 0 for disabled, 1 for enabled. If set to true, the Collector compacts archived as
well as local data.

The <Compact> element takes the following element:

 Schedule—(Required.) Specifies the time the compacting occurs. For more information on how to
specify a schedule, “Scheduling Retrievers and Loaders”, on page 135 in the Administration Guide.

The following example configures the Collector to run a compact at midnight for up to 2 hours. It compacts
archived as well as local data.

<Loader>
...

<Compact timeout="2 hours" archived="1">
<Schedule> * 0 * * *</Schedule>

</Compact>
</Loader>
Collector Guide 49

Chapter 2: Collector Configuration
Example 2 configures the trickle attribute setting to ’1’ and the table is compacted by setting the compact
attribute to ’1’.

<Loader enabled=’1’ trickle=’1’ name=’loader 1’>
<RunOnHost>localhost</RunOnHost>
<LogQueue>local</LogQueue>
<PTLtable=’sometable’namespace=’demo’
enabled=’1’ compact=’1’>/tmp/someptl.ptl</PTL
<PollInterval>1 minute</PollInterval>
<SLSInstanceid=’1’>127.0.0.1:%SLS_PORT%</SLSInstance>
<SLSUSER>administrator</SLSUser>
<SLSSharedKey>%SECRET%<SLSSharedKey>
</Loader>

DaisyChainHost

(Optional.) Links daisy-chain loaders to daisy-chain retrievers; tars up metadata files and log files; pair with
daisy-chain preprocessor and daisy-chain retriever. For more information, see “Creating Daisy Chains”, on
page 51.

Example Loader Configurations

The following examples show several types of loaders.

Example File System Loader Configuration

<Loaders>
 <Loader name="fs" enabled="1">
 <LogQueue>local</LogQueue>
 <PTL table="web" type="file" enabled="1">/usr/apache_access-1BT.ptl</PTL>
 <SLSInstance>slshost.myco.com:2112</SLSInstance>
 <ParseFailures>
 <AbortOnFailure>0</AbortOnFailure>
 <LogFile><HawkEye AP Home>/var/log/collector/apache-
parsefailures.log</LogFile>
 </ParseFailures>
 </Loader>
</Loaders>

Example Firewall Loader Configuration

<Loaders>
 <Loader name="firewalls" enabled="1">
 <LogQueue>remote</LogQueue>
 <PTL table="main" namespace="hq" type="file”
 match="access_">apache_access-1BT.ptl</PTL>
 <SLSInstance>slshost.myco.com:2112</SLSInstance>
 <Schedule>* 0-5 * * mon-fri</Schedule>
 <Schedule>* * * * sat-sun</Schedule>
 <ParseFailures>
 <AbortOnFailure>1</AbortOnFailure>
 <LogFile><HawkEye AP Home>/var/log/collector/lea-parsefailures.log</
LogFile>
 </ParseFailures>
 </Loader>
</Loaders>
50 Collector Guide

Collector Configurations for Networking
Daisy-Chain Loader Example

<Loaders>
 <Loader name="daisychain" enabled="1">
 <LogQueue>daisychain</LogQueue>
 <DaisyChainDir>/tmp/daisychain</DaisyChainDir>
 </Loader>
</Loaders>

For more information on setting up daisy chains, see “Creating Daisy Chains”, on page 51.

COLLECTOR CONFIGURATIONS FOR NETWORKING

This section provides information when you are working with network zones that may require special
Collector configurations. The topics discussed are:

 Daisy Chaining to send event-log data to a Central Collector from a remote Collector. See “Creating
Daisy Chains”, next.

Creating Daisy Chains

Daisy chains are special Collector configurations that allow the output of one Collector instance to serve as
the input to another Collector instance. This configuration provides for scalability and can overcome
obstacles that network zones impose.

For example, you have one network zone for the San Francisco headquarters (hq.acme.com) and another
network zone for the Boston field office (boston.acme.com). The EDW for your HawkEye AP system
resides in the headquarters zone. Set up a daisy chain so that the Boston Collector can provide event-log data
to the headquarters Collector for loading into the EDW. In this example of a daisy-chain configuration, the
Boston Collector is the source, and the headquarters Collector is the target.
Collector Guide 51

Chapter 2: Collector Configuration

To configure the source Collector in the remote network zone:

1. While logged in as the hexis user, open config.xml in your editor.

For example:

vi <HawkEye AP Home>/etc/collector/config.xml

2. Define a daisy-chain log queue. For information, see “Configuring Log Queues”, on page 25.

3. Define retrievers that gather data from log hosts in this remote network zone, and specify the
daisychain log queue within their <LogQueue> elements.

For more information, “Defining Retrievers”, on page 27.

4. Define a daisy-chain loader.

Daisy-chain loaders create tar files with a log file and corresponding and meta file. They place the tar files
in the directory specified by the <DaisyChainDir> element. A daisy-chain retriever in the target
Collector of the other zone picks up the special tar files from this staging directory.
52 Collector Guide

Collector Configurations for Networking
For example:

<Loader name="daisychain" enabled="1">
 <LogQueue>daisychain</LogQueue>
 <DaisyChainDir>/tmp/daisychain</DaisyChainDir>
</Loader>

To configure the target Collector in the local network zone:

1. While logged in as the hexis user, open config.xml in your editor.

For example:

vi <HawkEye AP Home>/etc/collector/config.xml

2. Define a daisy-chain log queue. For more information, see “Configuring Log Queues”, on page 25.

3. Define the daisy-chain retriever of type SFTP.

Daisy-chain retrievers collect special tar files and use a provided preprocessor to convert the tar file back
into the .log and .meta file pair, which retrievers write to the specified log queues. The
<SourceHost> and <SourceUser> elements allow the daisy-chain retriever to connect to the remote
Collector host as a specified user. The remote host must allow SFTP for the provided user without passing
a password. The <keepAlive> attribute keeps the connection open to check for new files.

IMPORTANT: The Preprocess ID in the following example is set to 1. Daisy-chain retrievers must take
precedence over other retrievers.

<Retriever name="daisychain" type="sftp" enabled="1"
 deleteOriginal="1" keepAlive="1">
 <SourceDir>/tmp/daisychain</SourceDir>
 <SourceHost>host01.boston.myco.com</SourceHost>
 <SourceUser>hexis</SourceUser>
 <LogQueue>daisychain</LogQueue>
 <!-- Preprocessor to convert .tar files into .log and .meta files -->
 <Preprocess id="1" type="daisychain">DaisyChain</Preprocess>
 <!-- Daisy-chain Collector only collects .tar files; .wrk files are used
 in the process of .tar file creation -->
 <Plugin name="Default">
 <File id="1" ai="ignore">.*</File>
 <File id="2" ai="accept">tar$</File>
 </Plugin>
</Retriever>

TIP: Setting the deleteOriginal attribute to 1 (true) enables the Collector to maintain the daisy-chain
directory and minimize disk-space usage by only storing log files that have not been processed.

4. Define a file system loader to load the files collected by the daisy-chain retriever.

For example:

<Loaders>
 <Loader name="fs" enabled="1">
 <LogQueue>daisychain</LogQueue>
 <PTL table="web" type="file" enabled="1">/usr/apache_access-1BT.ptl</PTL>
 <SLSInstance>slshost.myco.com:2112</SLSInstance>
 </Loader>
Collector Guide 53

Chapter 2: Collector Configuration
</Loaders>

CONFIGURING ERROR REPORTING

You can configure error reporting for Activity and Error logs in <HawkEye AP Home>/etc/collector/
config.xml. Here, you can specify:

 The location of activity and error logs as noted below.

Specifying the location of activity.log and error.log

By default, these logs live in <HawkEye AP Home>/var/log/collector/. To change that location, edit
the path that appears in the following lines of the config.xml file:

<File>
 <Activity><HawkEye AP Home>/var/log/collector/activity.log</Activity>
 <Error><HawkEye AP Home>/var/log/collector/error.log</Error>
</File>

For more information on setting up Collector logging, see see “About Collector logs”, on page 130 of the
Administration Guide.

ADJUSTING PERFORMANCE LEVELS

The following elements defined in the config.xml file set the interval between Collector cycles and
flushing files to disk, as well as maximums in terms of system use and processes. You should only have to
alter these settings when responding to a performance issue. Contact Technical Support for guidance.

CycleDelay

The number of seconds to delay between cycles of the internal Collector. Controls how often the Collector
checks for changes to Retriever and Loader status, and sends alert emails. Defaults to 15 seconds if no value
is specified. If you need to increase the value to improve performance, the value should be less then the
interval specified for Loaders and Retrievers using the PollInterval, Period, Schedule elements or the
UnchangedFor attribute (“Scheduling and the Unchanged For Attribute”, on page 138 of the
Administration Guide.

<CycleDelay>15</CycleDelay>

For information about the Dashboard file, see Monitoring Logs in Chapter 6: Administering the Collector of
the Administration Guide.

Throttle

To throttle the system load level and system processes, add or edit the following line in config.xml:

<Throttle load="5" process="500"/>

In the definition above, the load attribute specifies the maximum load that your CPU can handle. The
process attribute is the maximum number of processes that the available memory on your system can
54 Collector Guide

Adjusting Performance Levels
handle. The number of processes refers to all the processes running on your system, not just those processes
that belong to the Collector.

When adjusting throttle attributes, Hexis Cyber Solutions recommends that you use the highest possible
setting. Then work down to the level that best maximizes performance for your system.

TIP: Paying attention to your network bandwidth usage is a better way to improve Collector performance
issues. In general, you shouldn't need to adjust the Throttle setting.

FlushInterval

The flush interval sets the number of cycles between flushes to disk of internal state. Flushing more often
lowers likelihood of loss of state in the event of hardware failure, but may require more CPU and I/O. To
disable flushing altogether, set the value to -1. To turn on automatic flushing, which flushes to disk after
every change in state, set the value to 0.

<FlushInterval>10</FlushInterval>
Collector Guide 55

Chapter 2: Collector Configuration
56 Collector Guide

CHAPTER 3

Configuring Retrievers and Receivers

This chapter contains these sections:

 “Configuring HawkEye Retriever on Windows for Batch Processing”, next

 “Using the NetFlow Receiver”, on page 59

CONFIGURING HAWKEYE RETRIEVER ON WINDOWS FOR BATCH PROCESSING

The HawkEye Retriever on windows can be configured in two ways for batch processing as shown in Figure
2-11:

 agentless—polls streams of event-log data from Windows systems

 as an agent—pushes streams of event-log data and application data from Windows systems

In spite of its name, the HawkEye Retriever functions as a receiver as well as a retriever. It enables your site
to pass events from Windows to the HawkEye Collector for batch processing.

Figure 3-1

You cannot forward data directly from the Retriever agent on a Windows host to the HawkEye Collector.
You must forward the data from the agent to a HawkEye Retriever that runs on a Linux machine. In this
case, you are chaining one HawkEye Retriever to another. For information on configuring this chaining, see
“Defining a TCP Event Writer”, on page 95.
Collector Guide 57

Chapter 3: Configuring Retrievers and Receivers
In a Windows LAN Configurattion, you can configure the HawkEye Retriever to pass the collected data to a
log queue for batch processing by the Collector or information on batch processing of Windows event-
log data, see “HawkEye Retriever on Windows”, on page 34.

Windows Agent and Agentless Configuration

Figure 3-2 illustrates Windows servers distributed between two data centers. However, Figure 3-2 illustrates
agentless configuration in one data center and agent configuration in the other. When you configure the
retriever as an agent, you can collect Windows application data as well as event-log data from the Windows
host.

When you configure the HawkEye Retriever as an agent on a Windows system, you must configure it to
forward its data to a HawkEye Retriever that runs on a Linux host. Figure 3-2 illustrates a retriever
configuration that defines two HawkEye Retrievers: one as an agent on Windows and the other agentless on
Linux.

Figure 3-2: Windows WAN Deployment—Streaming Collection for Agent and Agentless Model

For more information on configuring the retriever as an agent, see:

 agent configuration process -- "Configuring the Retriever to Run as an Agent", on page 97.

 chaining configuration -- "Defining a TCP Event Writer", on page 102
58 Collector Guide

Using the NetFlow Receiver
USING THE NETFLOW RECEIVER

The Netflow Receiver gives Network Managers a detailed view of Application Flow on the Network. For a
general description of the Netflow Receiver, see “Collecting and Analyzing Network Data with the Netflow
Receiver”, on page 18. For details on configuring Netflow Receiver, see “Configuring Netflow Receiver”,
on page 124.
Collector Guide 59

Chapter 3: Configuring Retrievers and Receivers
60 Collector Guide

CHAPTER 4

HawkEye Retriever Configuration

This chapter contains the following sections:

 “Standard Configuration”, next

 “Advanced Configuration”, on page 88

 “Configuring Authentication”, on page 103

 “Example of Advanced Properties File”, on page 108

 “Managing Remote Agents”, on page 111

 “Using Database Retrievers”, on page 114

NOTE: Setting up HawkEye Retriever requires you to set up the configurations described in this document
as well as those in the Log Adapter setup instructions (such as the
microsoft_windows_securityEvent_sensageRetriever Log Adapter). As an example, see Setting up the
microsoft_windows_securityEvent_sensageRetriever Log Adapter in Chapter 22,
“microsoft_windows_securityEvent_sensageRetriever,” in the Analytics Guide.

STANDARD CONFIGURATION

This section describes the following topics:

 “Introduction”, next

 “Attributes for HawkEye Retrievers”, on page 65

 “Configuring the Agentless Retriever”, on page 86

 “Configuring the Retriever to Run as an Agent”, on page 87

Introduction

The HawkEye Retriever is used to collect data from a variety of sources and then write that data to one or
more destinations. The HawkEye Retriever can either run centrally on a Collector that is pulling data from
remote hosts, or it can be deployed as an agent on the remote host collecting data locally and then
forwarding that data back to HawkEye AP

Every instance of a HawkEye Retriever (running remotely as an agent on a target system or on a collector)
must define the following:

 At least one event reader, which specifies a source of event data. See “Valid Source Data Types for Event
Readers”, on page 62 and “Defining an Event Reader”, on page 66.

 At least one event writer, which specifies a destination for event data. See “Valid Destination Types for
Event Writers”, on page 62 and “Defining an Event Writer”, on page 75.

 Pipeline settings that are specific to your data; a pipeline specifies the connection between each reader
and its writer(s) and can be optimized for specific reader types and the unique pattern types of your
environment. See “Using Pipelines”, on page 62 and “Defining a Pipeline”, on page 76.
Collector Guide 61

Chapter 4: HawkEye Retriever Configuration
Valid Source Data Types for Event Readers

You can define a reader to accept several types of source data:

 Windows Event Data (over SMB) connection

 SQL Server audit data

 SQL Server 2000 audit data (as a Remote Agent only)

 Generic SQL Server table data

 Oracle Audit Log (BETA)

 Flat files matching a search pattern or regular expression

 Data sent over a TCP socket. Used most often to daisy chain this HawkEye Retriever to another HawkEye
Retriever

The reader has a different set of properties for the different source types. For more information, see
“Defining an Event Reader”, on page 66.

Valid Destination Types for Event Writers

When you run the HawkEye Retriever on a HawkEye Collector, you can define an event writer to send the
data to a Collector log queue for batch collection.

When you run the HawkEye Retriever on Windows, you can define an event writer to send the data to one of
three destination types:

 Flat file

 syslog writer

 TCP socket for chaining to another HawkEye Retriever

The event writer has a different set of properties for each destination type. For more information, see
“Defining an Event Writer”, on page 75.

Using Pipelines

When you use the standard process to configure HawkEye Retriever with a single pipeline type, a pipeline is
automatically created between each event reader and every event writer that you define. In other words,
62 Collector Guide

Standard Configuration
there is a unique pipeline for each reader and the data from every defined data source is sent to all of your
defined destinations. Figure 4-1 illustrates this configuration.

Figure 4-1: Example Configuration with Single Pipeline Type

Although standard configuration creates a separate pipeline for each reader you define, each pipeline uses
the same configuration values. In some cases, this single set of pipeline values will not meet your collection
needs. Your site may need specific pipeline values for specific readers. For example, assume some of your
SMB readers have significantly higher traffic than others. In this case, you will want to configure two
different pipeline types, one for the high-volume and one for low-volume readers. Another case in which a
single pipeline type does not suffice, is when you have a mix of different reader types such as Windows
Event readers and SQL Service Audit Log readers. Then you will want to configure two different pipelines
to accommodate each of these readers.

You can use the standard configuration process to create different types of pipelines. In this case, you must
assign a specific pipeline type to each reader and connect that reader to one or more writers. Figure 4-2
illustrates this configuration.
Collector Guide 63

Chapter 4: HawkEye Retriever Configuration
Figure 4-2: Example Configuration with Multiple Pipeline Types

For standard configuration of a single pipeline type, there are only three pipeline properties to specify and all
three properties have a default value. Standard configuration of multiple pipeline types uses the same three
properties but also requires you to name each pipeline type and identify its writer(s).

The standard process enables you to configure and run the HawkEye Retriever easily and quickly. Hexis
Cyber Solutions recommends, however, that you analyze your data against the default pipeline values to
determine the best settings for your site. For more information, see the following:

 Standard Configuration—“Defining a Pipeline”, on page 76

 Advanced Configuration—“Pipelines”, on page 97

Retriever Definition Files

To configure the HawkEye Retriever you must define its event readers and event writer by setting the
appropriate properties for its type. You define these properties in a plain text file. HawkEye AP provides two
example files:

 agentless configuration—agentless.prop

The most common configuration is to have the Collector manage the HawkEye Retriever, regardless of
whether you define the HawkEye Retriever for batch or real-time processing. In this case, you run the
retriever agentless on a Linux host.

 agent configuration—agent.prop

Alternately, you can configure the HawkEye Retriever to run as an agent on a Windows system.

In more complex environments you may have several prop files defined. Each prop file would be referenced
by the Collector config file in a different HawkEye Retriever element, and each would define a unique
HawkEye Retriever instance.
64 Collector Guide

Standard Configuration
The following sections describe both of these configurations.

Attributes for HawkEye Retrievers

This section documents the required and optional sections of the agentless.prop and agent.prop
property files and provides examples:

 “Introduction”, next

 “Defining an Event Reader”, on page 66

 “Defining an Event Writer”, on page 75

 “Defining a Pipeline”, on page 76

 “Defining Remote Shell Access”, on page 85

 “Defining the Logging Level”, on page 85

 “Defining the State Files”, on page 86

 “Controlling Historical Data”, on page 86

Introduction

The agentless.prop and agent.prop property files facilitate the most common configurations, which
consist of one or more event readers, pipeline types, and event writers. These files simplify configuration by
providing default values for most properties. As mentioned above in “Using Pipelines”, on page 62, when
you define multiple pipeline types, you must name each pipeline type and identify its writers.

The default values are often not explicit in these standard settings. For example, if you define a flat-file
event writer, you specify only its type (file) and its path and name. By default, the HawkEye Retriever
appends log data to the file you specify. The standard syntax is:

writer=file,<file_name>

To change the default setting, you must specify the full set of advanced properties that define this type of
event writer. Advanced properties for the HawkEye Retriever and its submodules are documented in
“Advanced Configuration”, on page 88.

The example below illustrates the full syntax required to define a flat-file event writer that overwrites the
output file.

Declare the writer
event.writers=writerFile
Define the fileWriter
event.writer.writerFile.class=com.sensage.eventlog.writer.FileEventWriter
event.writer.writerFile.filename=/<full_path>/output.log
event.writer.writerFile.append=false
event.writer.writerFile.serializer.class=com.sensage.eventlog.serializer.Delimit
edSerializer

NOTE: There are two ways to use the standard configuration:

 Define a single pipeline type—called “pipelines“.
Collector Guide 65

Chapter 4: HawkEye Retriever Configuration
Use this configuration when all readers use the same pipeline values and all readers write to all writers.

 Define multiple pipeline types, each with its own values.

Use this configuration when one set of readers uses one pipeline type and another set of readers uses a
different pipeline type. In this case, all readers may not write events to all available writers. In other
words, a writer can be used by multiple pipeline types but a reader always uses a single pipeline type.

WINDOWS AUTO-ARCHIVE

NOTE: The HawkEye Windows Retriever is NOT supported to work when Windows Event Viewer is
configured to automatically archive the event log when full. Implementing Windows Event View saves the
Windows Events into a separate file that cannot be retrieved automatically. Instead, configure the Windows
Event Viewer to "Overwrite events as needed (oldest events first)" and configure a maximum log size
sufficiently large that, when combined with the configured frequency of HawkEye Windows Retriever,
there will be minimal if any chances that events are missed.

Windows 2008R2 and NTLMv2

Windows 2008R2 deprecated several security paradigms from earlier Windows releases. If your
Windows2008R2 servers require the use of NTLMv2 authentication, you need to add a new flag to your
prop file:

event.readers.usentlmssp=true

This flag can be added anywhere in the file and instructs the HawkEye Retriever to use the newer
NTLMSSP security provider when making an NTLMv2 authentication to the Windows server. After you
make the change, your NTLMv2 Windows hosts should begin to pull data correctly.

Defining an Event Reader

Every HawkEye Retriever must have at least one event reader. Each event reader specifies the source of
event data. The table below documents the available reader types and their syntax.
66 Collector Guide

Standard Configuration
Event Source Syntax

Windows SMB
connections

reader<suffix>=windows,<host>,<username>,<password>[,<log_type>[:
<log_type>[...]][,<pipeline_name>]
where <log_type> can be any of the following:

• sec — Security, sys — System, app — Application, dns — DNS Server,
frs — File Replication Service, dir — Directory Service

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=windows or with text that includes optional underscores as in reader_HOSTA=windows

• hostname - IP address or WINS name of the Windows host from which to connect using SMB

• username - the user name for SMB authentication

• password - the password for SMB authentication

• pipeline_name - only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

NOTE:
• If you specify more than one log type, use a colon separator; for example, to cause the HawkEye Retriever

to read only Security and Application events, specify sec:app.

• You can specify multiple log types in any order.

• If you do not specify log type(s), the retriever reads all log types.

Oracle Audit Log
Data (BETA)

Note: The Oracle
Audit Log Reader
can be used to
read data from
any Oracle table
by using a named
SQL string that
references the
tables that you
want to query.

reader<suffix>=oracleauditlog,<hostname>,<username>,<password>,<se
rvicename>,<port>,<sql string name>,[<event type>],<password
manager>,<daysprevious>,[,<timestamp column
name>][,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=oracleauditlog or with text that includes optional underscores as in
reader_HOSTA=oracleauditlog

• hostname - the IP address or FQDN of the Oracle host

• username - The Oracle account used to access the table (must have Select permissions to that table)

• password - the password supplied for this user (after the collector starts this string is replaced with a set of
*'s and the password is stored in a separate keystore file)

• servicename - the Oracle service name you wish to collect data from

• port - the port used to contact the Oracle host

• sql string name - references a string in the sqlstringmap to use to query the server.

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• password manager - if not left blank, this value should be the name of a defined password manager that
will be used for this reader.

• daysprevious - a number (0 or higher) that indicates how many days in the past to start pulling data the first
time this reader is used. 0 would indicate that you want to only pull new data, a 5 would indicate you want
data as far back as 5 days ago

• timestamp column name - this optional flag specifies the column name of a column that has a timestamp
the retriever can use to track data it has already read. The default is the extended_timestamp field of the
oracle audit logs

• pipeline_name - only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.
Collector Guide 67

Chapter 4: HawkEye Retriever Configuration
SQL Server
Generic Table
Data

reader<suffix>=sqlservertable,<hostname>,<username>,<password>,
<port>,<dbname>, <sql string name>,<ts column>,[<event
type>],[,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=sqlservertable or with text that includes optional underscores as in
reader_HOSTA=sqlservertable

• hostname - the IP address or FQDN of the SQL Server host

• username - The SQL Server account used to access trace files (must have READ permissions on trace
files)

• password - the password supplied for this user (after the collector starts this string is replaced with a set of
*'s and the password is stored in a separate keystore file

• port - the port used to contact the SQL Server host

• databasename - A database on SQL Server.

• sql string name - references a string in the sqlstringmap to use to query the server.

• trx column - Specifies the name of a column that is of type extended timestamp that the EDW will use to
query and order the data. To define an alias column as <tx column> wrap the alias expression around {{}}.
For example:

•
SELECT [id], [desc], {{convert(datetime,([startdate] + ' ' +
[statetime]))}} as start_date FROM [dbo].[Test] where
[EXTENDEDTSCOL]
Note: start_date can be used for the <ts column>.

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• pipeline_name - pipeline_name - only used when different readers require different pipeline types.
See“Defining a Pipeline”, on page 76.

Note: By default logs collected from a generic SQL Server table and sent to a collector type
writer will have the log prefix of 'unknown', for these readers it would be useful to create a
custom log type so that the files created are prefixed with something relevant to the data being
queried.

Event Source Syntax
68 Collector Guide

Standard Configuration
SQL Server Audit
Traces

reader<suffix>=sqlserverauditlog,<hostname>,<username>,<password>,
<port>,{<metaDataFunctionName>],[<max records per poll>],[<event
type>],[<tscolumn>],<trace definition file>,[,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=sqlserverauditlog or with text that includes optional underscores as in
reader_HOSTA=sqlserverauditlog

• hostname - the IP address or FQDN of the SQL Server host

• username - The SQL Server account used to access trace files (must have READ permissions on trace
files)

• password - the password supplied for this user (after the collector starts this string is replaced with a set of
*'s and the password is stored in a separate keystore file

• port - the port used to contact the SQL Server host

• metaDataFunctionName - the name of a function on the server that returns meta data about the .trc files. It
must exist on the SQL Server host. If it does not exist, then the trace is read according to the default, which
can have performance implications. See Note 1 below for more details. Also refer to the following section
“Defining a Metadata Function”, on page 117, for performance-related details.

• max records per poll - the maximum number of records that can be brought back in a single polling
interval. Defaults to 25000. See Note 2 below for more details.

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• ts column - an optional column name for the column in the trace that has a valid timestamp. Normally not
set.

• trace definition file - last entry unless a pipeline name is added. This is a file name that points to a file
containing a trace definiton. See Note 3 below or details.

• pipeline _name - only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

NOTE1:
• The metaDataFunctionName must have a signature, as In:

ALTER FUNCTION [dbo].[getTraceFiles](@folder
nvarchar(260),@tracefilename nvarchar(260))

RETURNS @TraceFileMetaData TABLE
(

[fileName] VARCHAR(260),
[size] BIGINT,
[LastModified] DATETIME,
[error] VARCHAR(500)

• When the metaDataFunctionName is called, it must return a list of file names, sizes, and last modified
dates for all .trc files in the directory, specified in the "folder" having the base name specified in
tracefilename.

• Hexis Cyber Solutions provides a sample function for metaDataFunctionName that covers most customer
use. Because there are alternative ways to modify this function that have security implications, keep in
mind when choosing to modify the function that you choose a solution that best addresses security
impacts. Refer to the following section “Defining a Metadata Function”, on page 117, for performance-
related details.

Event Source Syntax
Collector Guide 69

Chapter 4: HawkEye Retriever Configuration
NOTE 2:
• When setting max records per poll the goal is efficiency in querying the .trc files. If you are polling less

often and trace files are large (that is 100MB or larger) you may want to increase the default setting of
25000. For details on tuning non-SMB readers see “Tuning Non-SMB Readers”, on page 84.

• Increasing the max records per poll setting may require that you provide more memory to the Java
application; however, the trade off is less load on the SQL Server.

• If the max records per poll is too large, you can easily use up all available memory on the retriever
instance. This probably means you have the value set too high, but you can increase the amount of memory
available to SQL server by modifying the <sensage_prefix>/bin/windowsretriever file.

A call that invokes the WindowRetriever jar is in the last line as noted below:

"$SENSAGE_JAVA_HOME/bin/java"\
-cp ${CLASSPATH}\
"$@"\
com.sensage.eventlog.retriever.EventRetriever

Insert a line so that it looks like this:

"$SENSAGE_JAVA_HOME/bin/java"\
-Xms1024m -Xmx1024m\
-cp ${CLASSPATH}\
"$@"\
com.sensage.eventlog.retriever.EventRetriever

See the Java documentation for more details on the affects and
concerns when using the Xms and Xmx directives.

NOTE 3:
• Regardless of how the trace file location is created, the name of the trace file is specified once using this

tag:
DECLARE @TRACE_BASEFILENAME NVARCHAR (245)
SET@TRACE_BASEFILENAME = ’nameofthetrace’

• The trace name can be assigned to different drive letters or paths, as long as the SET @TRACE= only
occurs once, as in:

DECLARE @TRACE_BASEFILENAME = ’sqlauditfile’
IF <some condition>
 SET @traceFileLocation = ’c:\trace\’ + @TRACE_BASEFILENAME
ELSE
SET @traceFileLocation = ’u:\trace\’ + @TRACE_BASEFILENAME

• A SQL Server trace definition is a collection of n number of files, each n megabytes in size.

• Based on the file meta data from the .metaDataFunctionName function, the size of each .trc file (obtained
from SQL Server),the last timestamp that was read, and the max records per poll, the retriever will create a
query that spans a minimum number of files to complete the query.

• For example, if the max records per poll is 25,000 and each log file is 100MB, then the query will be
restricted to at most two of the .trc files.

• Smaller values from the max records mean faster queries, but for a busy server they will also mean less
efficient use of the system since the server will need to pull all data from the two .trc files into memory
during each poll, even if only a fraction of the records are retrieved.

Event Source Syntax
70 Collector Guide

Standard Configuration
SQL Server 2000
Audit Traces

reader<suffix>=sqlserver2000auditlog,<hostname>,<username>,<passwo
rd>,<port>,[<event_type>],<trace definition
file>,[,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=sqlserver2000auditlog or with text that includes optional underscores as in
reader_HOSTA=sqlserver2000auditlog

• hostname - the IP address or FQDN of the SQL Server host

• username - The SQL Server account used to access trace files (must have READ permissions on trace
files)

• password - the password supplied for this user (after the collector starts this string is replaced with a set of
*'s and the password is stored in a separate keystore file

• port - the port used to contact the SQL Server host

• trace file - path to a file that defines the sql server trace

• ts column - Specfies the name of a column that is of type extended timestamp that the EDW will use to
query and order the data.

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• pipeline _name- only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

Flat files reader<suffix>=file,<file_name>,[<event type>] [,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=file or with text that includes optional underscores as in reader_HOSTA=file

• File_name - Can be any of the following:

• an OS-appropriate path to a single file name (for example: C:\temp\log.out)

• A string that represents a set of possible paths and/or directories using a ? (question mark) to indicate a
single character and a * (asterisk) to indicate multiple characters (for example: /tmp/dir?/logifle*.log)

• A valid expression that specifies a group of files and/or directories to scan (for example: /var/log/myapp/
day??/[Ll]ogF(l|ile).*\.log)

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• pipeline _name- only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

NOTE:
1. Path names should be specified using the appropriate path separator for that operating system.
For example on windows you should specify a drive letter and use the backslash, 'c:\temp\file',
and on Linux you would use the forward slash, '/tmp/logfile.out'
2. For more advanced features you must use the file reader syntax outlined in the “Advanced
Configuration”, on page 88.

Event Source Syntax
Collector Guide 71

Chapter 4: HawkEye Retriever Configuration
IMPORTANT:

 Specify a <pipeline_name> only when different readers require different pipeline types. When you
specify different pipeline types, you must delete the line in the property configuration file that defines the
default pipelines. For more information, see “Defining a Pipeline”, on page 76.

 You can set a flag that causes all new SMB readers to pull over only new records and not large volumes
of historical data. This flag can also help prevent pulling duplicate data in the event you migrate readers
across collectors or have lost the state database.

event.reader.startallreadersfromlatest=true;

 All three sqlserver related readers gather all data on the devices unless the startallreadersfromlatest or
startnewreadersfromlatest properties are set. This means:

 With neither property set: all data is pulled, which pulls older data.

 With startnewreaderfromlatest set to true: All data is pulled starting from "now" for a new reader.This is the
most common scenario.

 With startallreadersfromlatest: All data is pulled starting from "now" every time the collector is accessed. This
scenario is best when you need to guarantee that only new data is pulled.

Multiple flat files reader<suffix>=multifile,<search_string>,[<event_type>[,<pipeline
_name>]]

• reader - the valid reader name in which reader is appended with a <suffix> that includes text as in
reader1=multifile or with text that includes optional underscores as in reader_HOSTA=multifile

• search_string - a string that represents a set of possible paths and/or directories. By default, the string
assumes every character is literal, except you can use a ? (question mark) to indicate a single character and
a * (asterisk) to indicate multiple characters (for example: /tmp/dir?/logifle*.log)

• event type - see the section “Setting an Event Type”, on page 74 for more information.

• pipeline _name- only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

NOTE:
1. Path names should be specified using the appropriate path separator for that operating system.
For example on windows you should specify a drive letter and use the backslash, 'c:\temp\file',
and on Linux you would use the forward slash, '/tmp/logfile.out'
2. You can optionally use a regex to define the search. Refer to the “Advanced Configuration”,
on page 88 for details.
3. The MultiFile reader will scan, in parallel, files from multiple matching directories. For more
advanced features you must use the multifile reader syntax outlined in the “Advanced
Configuration”, on page 88.

TCP sockets reader<suffix>=tcp,<port>[,<pipeline_name>]

• reader - the valid reader name in which reader is appended with a <suffix> that ncludes text as in
reader1=tcp or with text that includes optional underscores as in reader_HOSTA=tcp

• port - the contact port. for the TCP socket.

• pipeline _name- only used when different readers require different pipeline types. See“Defining a
Pipeline”, on page 76.

Event Source Syntax
72 Collector Guide

Standard Configuration
 For standard configuration, all reader names must be unique and the first letters of a reader name must be
"reader"; in other words, the name readerSMB is valid but SMBreader and ReaderSMB are invalid.
Other examples of valid reader names are: reader_smbhost1, readerMyHostA and reader1.

 WARNING: As a best practice avoid routinely reusing reader names. If you do reuse them the retriever's
state information may contain a previously named reader, which causes confusion in interpreting the
actual name. Note that defining a reader with the name reader1= is perfectly valid, but only if this name
has not been previously used.

Examples of each type of event reader:

 Windows SMB connections

readerSMB=windows,10.0.1.15,bob,bobpassword

 Oracle Audit Logs (BETA)

readerOracle=oracleauditlog,10.0.1.15,bob,bobpassword,xe,1521,dbacommonsql,ora
cleevents,,4,oracle_pipeline
sqlstringmap.dbacommonsql=select STATEMENT_TYPE,DB_USER,EXTENDED_TIMESTAMP,
COMMENT_TEXT from dba_common_audit_trail where [EXTENDEDTSCOL]

 SQL Server Generic Table Data

readersqltbla=sqlservertable,10.0.1.15,bob,bobpassword,1433,sqlserverdatabase,
tableAsql,mytscolumn,tableA,sqlserver_pipeline
sqlstringmap.tableAsql=select * from tableA where [EXTENDEDTSCOL] and userid =
'sally'

 SQL Server Audit Trace

readerSQLServerhostA=sqlserverauditlog,10.0.1.15,bob,bobpassword,1433,getTrace
Files,30000,sqlserver_events,,/tmp/mytrace.sql,pipeline_sqlserver

 SQL Server 2000 Audit Trace (this must be run as a remote agent)

readerSQLServer2KhostB=sqlserver2000auditlog,10.0.1.15,bob,bobpassword,1433,25
000,sqlserver2000,,/tmp/mytrace.sql,pipeline_sqlserver

 Flat files

 Single pipeline-type configuration:

readerFile=file,/<full_path>/sample.log
readerFile=file,/var/log/sample*.log

 Multiple pipeline-type configuration:

readerFileLow=file,/<full_path>/sample.log,pipeline_lowvolume
readerFileHigh=file,/<full_path>/sample.log,pipeline_highvolume
readerFileLow=file,/var/log/sample*.log.pipeline_lowvolume
readerFileHigh=file,/var/log/sample*.log.pipeline_highvolume

 TCP sockets

readerTCP=tcp,9999
Collector Guide 73

Chapter 4: HawkEye Retriever Configuration
IMPORTANT: Both property files provide examples and a commented line for one reader. You
must remove the # symbol to enable the line and then provide a value for this property.

NOTE: If you have multiple readers of the same type, each must be uniquely named. For example:

readerSMB_SecSys=windows,10.0.1.15,bob,bobpassword,sec:sys:app
readerSMB_All=windows,10.0.1.16,alice,alicepassword

SETTING AN EVENT TYPE

An Event Type is a string (no special characters, that is, 0-9a-zA-Z) that helps identify a source of data. Each
writer will then use or ignore the Event Type as appropriate. There are five built-in types for Windows data:

 sec (for Security)

 app (for Application)

 sys (for System)

 dns (for DNS Server)

 frs (for File Replication Service)

 dir (for Directory Service)

Readers allow you to also define a custom Event Type; for example, SQL Server Audit Log Readers
(defined as sqlserverauditlog) could use the Event Type sqlserver and a File Reader that is reading
Microsoft IIS logs might use the Event Type iis.

Note that different writers use Event Type differently:

 Collector Writers use the Event Type to name output files (which allows the Collector to determine which
PTLS to apply to which files).

 TCP and Syslog Writers optionally prepend the Event Type to each record, so that downstream readers of
the data can use the Event Type to determine the source.
74 Collector Guide

Standard Configuration
Defining an Event Writer

Every HawkEye Retriever must have at least one event writer. Each event writer specifies the destination of
event data that the readers supply. The table below documents the available event-writer types and their
syntax.

IMPORTANT: For standard configuration, the first letters of a writer name must be writer. For
example, the name writerCollector is valid but CollectorWriter and WriterCollector are invalid.
Note that if more than one writer is declared, each <writer-name> must be unique and must begin
with the word writer.

Examples of each type of event writer:

 Collector log queue

 Single pipeline-type configuration—Specifies 60 minutes and 50,000,000-byte file size limit:

writerCollector=collector,60,50000000

 Multiple pipeline-type configuration—Specifies one writer for a group of Windows 2000/2003 hosts and another
writer for a group of Windows 2008 hosts:

writerCollector_win2k=collector,60,50000000
writerCollector_win2k8=collector,60,50000000,win2k8

Event Destination Syntax

Collector log queue for batch collection <writer>=collector,<rolloverThresholdMinutes>,
<rolloverThresholdBytes>[,<output_prefix>]
where

• <rolloverThresholdMinutes> specifies the length of time that
the retriever waits before giving the data to the Collector

• <rolloverThresholdBytes> specifies the size of the log file
before the retriever gives the data to the Collector

HawkEye Retriever turns the data over to the Collector whenever the first
of these values is reached. For example, if
<rolloverThresholdMinutes> is set to 5 and
<rolloverThresholdBytes> is set to 50000000, the retriever
watches the file until either it is 5 minutes old or 50,000 Mb in size. At this
point, the retriever renames the file with a .out extension and is done
processing the file.
NOTE: Declare an <output_prefix> to prepend the specified string
to the name of each output file that HawkEye Retriever creates. This option
is useful to differentiate files that the Collector should process differently.
For example, specify win2k as an output prefix for a writer assigned to a
group of readers whose host is Windows 2000/2003, and specify win2k8
for another writer assigned to a group of readers whose host is Windows
2008.

TCP socket for chaining to another
HawkEye Retriever or for sending
event to the real time system

<writer>=tcp,<host>,<port>

Flat file <writer>=file,<file_name>
NOTE: You must specify the full path to the file.

Syslog Writer <writer>=syslog,<host>,<port>
Collector Guide 75

Chapter 4: HawkEye Retriever Configuration
NOTE: Setting the optional prefix string enables HawkEye AP to use different PTLs when processing
the different output files.

 TCP socket

writerTCP=tcp,127.0.0.1,8099

 Flat file

writerFile=file,/<full_path>/output.log

 Syslog Writer

writerSyslog=syslog,127.0.0.1,514

IMPORTANT: Both property files provide examples and a commented line for the event writer.
You must remove the # symbol to enable the line and then provide a value for this property.

Defining a Pipeline

Event pipelines specify the connection between event readers and event writers. As described above in
“Using Pipelines”, on page 62, you can use the standard configuration to define a single pipeline type that is
used by all readers, or multiple pipeline types with different values that are assigned to specific reader(s).

DEFINING A SINGLE PIPELINE TYPE

When you use the standard process to configure the HawkEye Retriever for a single pipeline type, every
pipeline has a unique reader and shares all defined writers.

For example, if you define one SMB reader that reads only Security and System events and another that
reads all Windows log types, and you define two event writers (one that writes to a Collector log queue and
the other to the Real Time system), each of your readers writes to both writers.

Because the actual source and destination is specified in the reader and writer respectively, the pipeline only
needs to know the name of its reader and writer(s). The standard configuration process for a single pipeline
type identifies these names automatically. When you define multiple pipeline types, however, you must
specify all writers; and when you use the advanced configuration process, you must specify the reader and
its writers.

The syntax for standard configuration of a single type of event pipeline is:

pipelines=<delay>,<requestcount>,<zerocounter>

All arguments are required. They define the following behaviors:

 delay—specified in milliseconds, represents the amount of time that the HawkEye Retriever waits before
polling each reader for additional event records; use this argument to limit the load on the reader. Defaults
to 1000. For more information, see “Defining Delay and Request Count”, on page 77.

 requestcount—specified as an integer, represents the maximum number of times the HawkEye Retriever
polls each reader before the delay period begins; regardless of the number of records in the reader’s
buffer, each poll request returns a maximum of 100 event records. Defaults to 1. For more information,
see “Defining Delay and Request Count”, on page 77.

NOTE: The requestcount is required when defining a pipeline, but it only affects windows SMB readers,
for non-SMB readers it has no effect.
76 Collector Guide

Standard Configuration
 zerocounter—specified as an integer, represents the maximum number of times a reader can return zero
(0) records before the HawkEye Retriever logs a warning in the log file indicating that the retriever might
have fallen behind in gathering records. Defaults to 60.

NOTE: In the case of database readers (SQL Server), a warning is logged in the log file and an attempt is
made to restart the trace as it is assumed the trace has stopped.

For more information, see “Defining the Zero Counter”, on page 79.

NOTE: Both property files provide the following defaults for this property:

pipelines=1000,1,60

DEFINING MULTIPLE PIPELINE TYPES

When you use the standard process to configure the HawkEye Retriever for multiple pipeline types, you
must manually assign a specific pipeline to each reader. Additionally, because custom pipelines do not
automatically send data to all writers, you must configure each pipeline type to identify each writer to which
it sends the data.

For example, if you define three SMB readers that have high traffic and three that have low traffic, you will
want to configure different pipeline types for the high-volume and low-volume readers.

In this case, because the different types of readers can write to a different subset of writers, you must specify
the writer(s) in the configuration of each pipeline type. And because you are defining more than one
pipeline, you must name each pipeline uniquely.

The syntax for standard configuration of multiple types of event pipelines is:

pipeline<suffix>=<delay>,<requestcount>,<zerocounter>,<writer>[,<writer>[...]]

All arguments are required. Three are identical to those specified for a single pipeline type. The arguments
unique to a retriever that has multiple pipeline types are:

 suffix—uniquely identifies the pipeline, whose name must begin with “pipeline“. The following are all
valid: pipeline1 and pipeline2 or pipeline_highvolume and pipeline_lowvolume. There is
no default for this value.

 writer—identifies every writer to which the pipeline sends data. There is no default for this value.

IMPORTANT: .Do not define values for both the pipelines option and named pipelines in the
same property-configuration file or the Retriever logs an error and fails to start.

For examples of creating and using multiple pipeline types, see “Example of Creating and Using Multiple
Pipeline Types”, on page 80.

DEFINING DELAY AND REQUEST COUNT

A pipeline is automatically created for each event reader; it uses the event writer as the common destination.
You configure the HawkEye Retriever pipeline according to the number of events you receive regularly.
You tune the retriever to poll for events only when needed so as not to waste network traffic or CPU
processing but often enough to catch all events within a given time period.

IMPORTANT: If you define multiple readers and several of them have significantly higher traffic
than the others, you should configure separate pipelines for the high-volume and low-volume
readers. To configure multiple pipelines, you must use the advanced configuration process
Collector Guide 77

Chapter 4: HawkEye Retriever Configuration
documented in “Advanced Configuration”, on page 88. In other words, when you use the standard
configuration process, you cannot configure a pipeline separately for each reader, but once for all
readers.

NOTE:
(1) If you choose to configure multiple pipeline types, read the conceptual material in this section first; then
see “Pipelines”, on page 97, for information on creating multiple pipeline types. When you use advanced
configuration to specify the pipeline types or any other Retriever submodule, you must use the advanced
configuration process to specify attributes for all Retriever submodules.
(2). For file, TCP, and the database readers the only pipeline variable that matters is the polling interval. For
more information on tuning the Database Retrievers see the section on “Using Database Retrievers”, on
page 114.

When you configure the retriever pipeline, you specify how often the retriever should poll each reader for
events before it initiates the delay. Because a reader cannot return more than 100 event records in a single
poll request, you must ensure that you poll enough times to retrieve all events before the delay. However,
you do not want to poll so frequently that the reader can do nothing but respond to poll requests.

By default, the pipeline waits 1000 milliseconds before it polls each reader for event records. For example,
assume a reader receives approximately 100 events in 10 milliseconds. This frequency indicates that the
retriever could receive more than 10000 event records in a second. Because the reader can return only 100
records in each poll request, you might configure the pipeline to poll the reader 100 times before the
retriever pauses.

Assume further that the reader receives events inconsistently so that some seconds receive far fewer than
10000 records. You could extend the delay to 30000 milliseconds (30 seconds) to take advantage of the
inconsistent flow. In other words, if you extend the delay so that the retriever stops polling for 30 seconds,
you provide more time for it to average the records received over multiple seconds: those seconds with few
records with those with the greatest number of records.

Extending the delay causes the retriever to pause longer between polls. Because it stops polling when a
request returns zero (0) records, the retriever does not waste server time with unnecessary polls if the reader
machine returns many records during each polling period. However, if the reader machine returns few
records during each polling period, you should reduce the request count and increase the delay period.

There is a delicate balance between extending the delay period and increasing the request count:

 If your retriever is processing events from multiple readers and you are not using multiple processors, you
must ensure that the delay is long enough to allow each reader sufficient time to read and return records.
As a rule of thumb, assume you can set the delay period too short to allow all readers to process their
records, but you cannot set it too long. It is important that all readers have idle time.

 If you increase the request count more than is necessary, you waste network and CPU time. As a rule of
thumb, if a reader machine receives fewer than 100 records each minute, do not increase the default
request count of 1.

For example, if you keep request count set to 1 and your readers typically return 30 or fewer records each
polling period, the minimum record count ensures you receive all records in each poll. If you increase
record count to 2, the second poll will always return 0 records. In this second case, you have wasted
machine and network time. You should poll the reader machines as infrequently as possible when they
return 100 or fewer records in each polling period.

NOTE: As a general rule, do not reduce delay below 500 milliseconds. Instead, increase the request count.
78 Collector Guide

Standard Configuration
The delay remains consistent regardless of the number of records received during each poll request. Figure
4-3 illustrates how delay behaves.

Figure 4-3: Illustrating a Delay of 30 Seconds

In the example above, the first poll returns 15 event records in 5 seconds, the second poll returns 45 event
records in 18 seconds, and the third poll returns 23 event records in 11 seconds. Because the retriever waits
30 seconds after receiving data from the reader, the second poll begins 35 seconds after the first poll (5 + 30)
at 12:00:35 and the third poll begins 18 seconds after the second poll (18 + 30) at 12:01:23.

IMPORTANT: You must test the value of these two arguments against your data to determine the
best settings. The default values are only defaults and will probably not meet your needs. For more
information, see:

 testing your values—“Testing Your Values”, on page 82

 setting delay and request count— “Tuning SMB Event Retrieval”, on page 83.

DEFINING THE ZERO COUNTER

On occasion, the retriever might receive no records over multiple consecutive poll requests. To ensure that
the retriever does not erroneously miss data because of incorrect tuning, you must set a third pipeline
argument: <zero_counter>. The value of this argument, specified as an integer, represents the maximum
number of times a reader can return zero (0) records before the HawkEye Retriever logs a warning in the log
file indicating that the retriever might have fallen behind in gathering records. The default is 60. For more
information, see “Defining the Logging Level”, on page 85.

NOTE: In the case of SQL Retriever, a warning is logged in the log file and an attempt is made to restart the
trace on SQL Server as it is assumed the trace has stopped; be sure to keep the zerocounter value small so
that the trace will start immediately in the event the trace has stopped. For example, assume you have set the
zero counter to 10. Assume also that you have four readers, as illustrated in the table below.

As shown above, reader1 and reader2 return records in each poll request. Because reader3 returns no records
in the second poll request, the retriever decrements the value of the zero counter for this reader to 9. At the
next poll, when reader3 returns three events, the retriever resets the value of its zero counter to 10.

reader1 reader2 reader3 reader4

events received in
each poll request

poll request #1 10 10 10 0

poll request #2 10 3 0 0

poll request #3 10 5 3 0

poll request #N 0

poll request #10 10 8 5 0
Collector Guide 79

Chapter 4: HawkEye Retriever Configuration
However reader4 never returns any records. At each poll, its zero counter decrements until it reaches zero.
At this time, the retriever checks whether it has fallen behind in gathering event records. If it has, it logs a
warning in the log file that is has fallen behind, skips ahead to the next available incoming event record, and
triggers a system alert.

IMPORTANT: Because the traffic may differ widely among different reader machines, you may
require separate pipelines for high-volume and low-volume machines to allow different settings
for the zero counter. For example, if low-volume machines return fewer than 100 records each
minute, they might return zero records in several consecutive polling periods. If you set the zero
counter to the same value for these machines as for high-volume machines, you might erroneously
trigger warnings in the log file.

EXAMPLE OF CREATING AND USING MULTIPLE PIPELINE TYPES

This section presents three different cases for multiple pipeline types.

Case 1: High and Low Traffic

This case assumes that your site has a collection of high volume servers (configured for readers 1-3) and
lower volume servers (configured for readers 4-6) and that you want to use the standard configuration to poll
the two groups of servers at different rates.

The configurations below illustrate how to configure the readers, the writer, and two pipelines, as well as
three options.

#define your readers
readerSMB1=windows,10.0.0.1,Administrator,password,sec:sys,pipeline_highvol
readerSMB2=windows,10.0.0.2,Administrator,password,sec:sys,pipeline_highvol
readerSMB3=windows,10.0.0.3,Administrator,password,sec:sys,pipeline_highvol
readerSMB4=windows,10.0.0.4,Administrator,password,sec:sys,pipeline_lowvol
readerSMB5=windows,10.0.0.5,Administrator,password,sec:sys,pipeline_lowvol
readerSMB6=windows,10.0.0.6,Administrator,password,sec:sys,pipeline_lowvol

#define your writer
writerCollector=collector,50,500000

#define the two pipelines
pipeline_highvol=5000,10,60,CollectorWriter
pipeline_lowvol=30000,1,60,CollectorWriter

remote access
remoteshell=9999,localhostOnly
#logging level
logging=INFO,../logs/winretriever.log

Case 2: Windows 2003 and Windows 2008 Servers

This case assumes that your site has a collection of Windows 2003 servers (configured for readers 1-2) and
Windows 2008 servers (configured for readers 3-4). Each has roughly the same volume, but you want
Windows 2008 events written to a file prefixed with the string 'win2k8' so that it can be processed by a
specific PTL.

The configurations below illustrate how to define the readers, the writer, and two pipelines, as well as two
options.

#define your readers
readerSMB1=windows,10.0.0.1,Administrator,password,sec:sys,pipeline_win2k
readerSMB2=windows,10.0.0.2,Administrator,password,sec:sys,pipeline_win2k
80 Collector Guide

Standard Configuration
readerSMB3=windows,10.0.0.3,Administrator,password,sec:sys,pipeline_win2008
readerSMB4=windows,10.0.0.4,Administrator,password,sec:sys,pipeline_win2008

#define two writers, one for 2008 and one for windows 2003/2000
writerCollector1=collector,50,500000
writerCollector2=collector,50,500000,win2k8

#define the two pipelines
pipeline_win2k=5000,10,60,writerCollector1
pipeline_win2008=30000,1,60,writerCollector2

remote access
remoteshell=9999,localhostOnly
#logging level
logging=INFO,../logs/winretriever.log

Case 3: Windows 2003 and Windows 2008 Servers with Mixed Traffic

This case assumes that your site has the following servers:

 Three Windows 2000/2003 with standard volume—win2k_1, win2k_2, win2k_3

NOTE: These servers send data to a Real Time Parse as well as to the Collector.

 Three Windows 2000/2003 with low volume—windesktop_1, windesktop_2, windesktop_3

 Three Windows 2008—win2k8_1, win2k8_2, win2k8_3

The excerpt below from the agentless.prop file provides an example of how to define and set the
readers, writers, and pipelines for this environment.

#define your readers
readerSMB1=windows,10.0.0.1,Administrator,password,sec:sys,pipeline_win2k
readerSMB2=windows,10.0.0.2,Administrator,password,sec:sys,pipeline_win2k
readerSMB3=windows,10.0.0.3,Administrator,password,sec:sys,pipeline_win2k
readerSMB4=windows,10.0.0.4,Administrator,password,sec:sys,pipeline_win2k_LOW
readerSMB5=windows,10.0.0.5,Administrator,password,sec:sys,pipeline_win2k_LOW
readerSMB6=windows,10.0.0.6,Administrator,password,sec:sys,pipeline_win2k_LOW
readerSMB7=windows,10.0.0.7,Administrator,password,sec:sys,pipeline_win2008
readerSMB8=windows,10.0.0.8,Administrator,password,sec:sys,pipeline_win2008
readerSMB9=windows,10.0.0.9,Administrator,password,sec:sys,pipeline_win2008
#
#define your writers
writerCollector1=collector,5,50000000000
writerCollector2=collector,5,50000000000,win2008
#
#define your pipelines
pipeline_win2k=1000,1,60,writerCollector1,writerRT
pipeline_win2k_LOW=30000,20,60,writerCollector1
pipeline_win2008=1000,1,60,writerCollector2

If you run a HawkEye Retriever with the above configuration, it outputs files like the following in the
Collector’s <LogQueue>/spool directory:

sec-2009‐02‐01T08:02:07.000000Z.tmp
sys-2009‐02‐01T08:17:05.000000Z.tmp
win2008_sec-2009‐02‐01T08:32:22.000000Z.tmp
win2008_sys-2009‐02‐01T09:17:12.000000Z.tmp
Collector Guide 81

Chapter 4: HawkEye Retriever Configuration
NOTE: The lower volume win2k data is in the same file as the high volume win2k data.

Given these settings, you would edit the HawkEye Collector config.xml file to map the PTLs as shown
below:

<PTL table="sensage_win_sec_event" enabled="1" match="sec\-[^/]+$"
namespace="customer.windows">
<PTL table="sensage_win_sec_event_2008" enabled="1" match="win2008_sec\-[^/]+$"
namespace="customer.windows">

Case 4: Windows Event Data and SQL Server Audit Logs

This case assumes that your site has a collection of Windows 2003 and 2008 servers (with the 2008 servers
generating far less event data) as well as a number of SQL Server databases and that you want to use the
standard configuration to poll the two groups of servers and different applications at different rates.

The configurations below illustrate how to configure the readers, the writer, and two pipelines, as well as
three options.

#define your readers
readerWin2003_1=windows,10.0.0.1,Administrator,password,sec:sys,pipeline_2003
readerWin2003_2=windows,10.0.0.2,Administrator,password,sec:sys,pipeline_2003
readerWin2k8_1=windows,10.0.0.3,Administrator,password,sec:sys,pipeline_2008
readerWin2k8_2=windows,10.0.0.4,Administrator,password,sec:sys,pipeline_2008
readerSQLServerhostA=sqlserverauditlog,10.0.1.15,bob,bobpassword,1433,getTraceFi
les,30000,sqlserver_events,,/tmp/mytrace.sql,pipeline_sqlserver
readerSQLServerhostA=sqlserverauditlog,10.0.1.15,bob,bobpassword,1433,getTraceFi
les,30000,sqlserver_events,,/tmp/mytrace.sql,pipeline_sqlserver

#define your writers
writerCollector=collector,50,500000
writerCollector2=collector,5,50000000000,win2008
writerCollector3=collector,5,50000000000,sqlserver

#define the three pipelines
pipeline_2003=5000,10,60,CollectorWriter
pipeline_2008=30000,1,60,CollectorWriter2
pipeline_sqlserver=10000,1,60,CollectorWriter3

remote access
remoteshell=9999,localhostOnly
#logging level
logging=INFO,../logs/winretriever.log

TESTING YOUR VALUES

To test your data to determine the most effective settings for pipeline arguments, you should:

1. Determine how many events of each event type each reader machine typically receives each hour; use this
information to determine the initial configuration settings. For more information, see “Before
Configuring the Pipeline”, next.

2. Determine whether your initial configuration settings enable the retriever to fetch all records without
polling too frequently or resting for too short a delay period. For more information, see “Checking Your
Initial Configuration”, on page 83.
82 Collector Guide

Standard Configuration
Before Configuring the Pipeline

Before you configure the pipeline for the first time, you should determine how many events of each type
each reader machine typically receives each hour. To make this determination, check the Windows Event
Viewer on each machine.

To use Event Viewer to determine event frequency

1. On each machine, open the Event Viewer from the Windows start menu:

start > Control Panel > Administrative Tools > Event Viewer

2. In the left pane, which displays all security event types, double click each event type to display the history
for that event type in the right pane. For example, double click Application.

3. In the right pane, examine and count the number of events that occur each hour.

4. Average the number of hourly events for each event type over two or three days.

5. Set the delay and request count variables accordingly.

For example, assume a reader machine receives 1000 records each hour. To determine the number
received each minute, divide 1000 by 60, which evaluates to 16+ events each minute. Round this value up
to 20 to accommodate those periods when the machine receives more than 1000 records each hour.
Because each poll request can return up to 100 records, you could set delay to 5 minutes (300000
milliseconds) to guarantee that you collect all records and allow idle time on each machine.

NOTE: Repeat the above procedure on every reader machine.

Checking Your Initial Configuration

After you configure the pipeline for the first time, run the retriever for one or two days to determine whether
your configuration settings enable the retriever to fetch all records without polling too frequently or resting
for too short a delay period. To make this determination, query the EDW for the period of time you have
been running the retriever.

To query the EDW to verify configuration settings

1. Query the EDW to return the average number of events returned by each reader machine for each hour
since you began running the retriever.

2. Depending on the volume of data returned by each machine, divide the average events per hour by 60 or
3600 for each machine to determine the average number of events returned each minute or second,
respectively.

3. Use the calculated value to determine your request count for high-volume and low-volume machines.

Tuning SMB Event Retrieval

A well-tuned set of pipeline values is one that prevents the reader from excessive polling and yet allows the
reader enough polling frequency to keep up with logging. The choice for setting values is affected by three
criteria:

 The polling interval and the number of records that are polled at each interval.

 The size of the event log on the Windows host itself.
Collector Guide 83

Chapter 4: HawkEye Retriever Configuration
 The pattern of generation on the Windows host.

In the case of those Windows hosts that generate a steady stream of events, make sure the reader polls often
enough so that the reader does not over time fall behind in logging.

It is also possible for Windows hosts to have a workload in which a small trickle of events occur throughout
the day, but a large number of events get generated in a short period. For example, a server may generate 20-
30 events per second throughout the day, but generate several hundred thousand events during a small ten-
minute window.

Tuning then requires looking at the reader’s polling interval and the size of the log on the Windows host. In
this case, set the polling interval so that over time the reader can keep up with the total number of events
generated per day. In addition, the Windows System Administrator should ensure that the Windows event
log has the capacity to hold all the events from that busy ten-minute window and that the time setting is
adequate for the HawkEye Retriever to catch up.

The best way to determine the load of a Windows host over time is to measure it. You can check the data
returned from pingbox; by issuing multiple calls to pingbox at regular intervals, you can collect data that
shows the load (data) that is being generated over time. Based on the load measurement, you can refine your
pipeline settings as appropriate.

TUNING NON-SMB READERS

To tune non-SMB readers, modify the polling interval with a setting large enough to accommodate the
polling of systems that are not generating data, but also small enough to prevent any poll from pulling
millions of event or records. In this case, the correct value is dependent on the type of reader you are using,
which determines the amount of data generated. Unlike SMB readers, non-SMB readers do not normally
lose data when they fall behind, but you will still want to make sure the reader polls often enough to not fall
behind over time.

TUNING SQL SERVER READERS

The following query provides a rough estimate of how many events per second the server is polling over a
somewhat narrow time range:

select count(startTime) as recordCount, max(startTime) as maxTime,
min(startTime) as minTime from FROM
sys.fn_trace_gettable('c:\trace\mytrace.trc',1) where startTime is not null;

You can sample a couple of different .trc files if you know how many .trc files there are supposed to be and
get the current .trc file from this query:

SELECT traceid, property, value FROM ::fn_trace_getinfo(null);

For example, if the current .trc file is c:\trace\mytrace_100.trc, re-run the initial query above for a
couple other samples:

select count(startTime) as recordCount, max(startTime) as maxTime,
min(startTime) as minTime FROM
sys.fn_trace_gettable('c:\trace\mytrace_98.trc',1) where startTime is not
null;
select count(startTime) as recordCount, max(startTime) as maxTime,
min(startTime) as minTime FROM
sys.fn_trace_gettable('c:\trace\mytrace_88.trc',1) where startTime is not
null;
84 Collector Guide

Standard Configuration
Defining Remote Shell Access

HawkEye AP provides a remote shell interface to manage the HawkEye Retriever. The remote shell accepts
connections from any host through a separate shell process. It connects to the running HawkEye Retriever
process over a TCP socket.

 You can run the remote shell from a different host from the one on which the HawkEye Retriever runs,
which provides remote administration capabilities.

Because the remote shell runs in a different process space (and possibly on a different host), it can
connect to a HawkEye Retriever that is running as a background process.

 Alternately, you can configure the retriever to allow connections only from the local host.

The syntax for the remote shell is:

remoteshell=<port>[,localhostOnly]

NOTE: For security purposes, both property files provide the following default for this property:

remoteshell=9999,localhostOnly

For documentation of all shell commands, see “Shell Commands”, on page 100.

Defining the Logging Level

For each HawkEye Retriever, you can specify the logging level and log file. The default logging level is
INFO.

The syntax for a logging level is:

logging={TRACE|DEBUG|INFO|WARN|ERROR|FATAL},<log_file>

The syntax lists the logging levels in the order from most verbose to least verbose.

NOTE: The agentless.prop file provides the following default for this property:

logging=INFO,<HawkEye AP Home>/var/log/collector/winretriever.log

NOTE: The agent.prop file provides the following default for this property:

logging=INFO,../logs/winretriever.log

NOTE: You can use the HawkEye Retriever shell to change the log level at run time. For example, you can
increase the log level to a more verbose setting if the log begins to contain errors. For more information, see
“Shells”, on page 98.

Defining Non-Standard Log Types

In addition to the five basic log types - Security, Application, System, DSN Server, FIle Replication Service
and Directory Service - a Windows host may have other application-specific logs you wish to collect and
analyze. On the Windows host these would show up as a unique type in the event server.
Collector Guide 85

Chapter 4: HawkEye Retriever Configuration
To collect these logs you must define a custom log type. In agentless prop, you add a line for each custom
log type, mapping it to an abbreviated name. To specify abbreviates for Transform and Windows Powershell
logs, you would add the following lines:

logmap.transform=Transform
logmap.powershell=Windows Powershell

The general specification for the logmap entry is:

logmap.<abbreviated name>=Full Log Name

NOTE: The abbreviated name can contain only characters and the full name should not be placed in double
quotes.

Once you have defined the custom log may entry you can use it just like the other log types in a reader
definition. For example, to use the transform log type specified above you could create a reader definition
like:

readerhost1=windows,1.2.3.4,Administrator,password,sec:transform

This would create a reader that will collect both security (sec) and transform data.

Defining the State Files

The agent.prop file contains a section on defining the state files. Do not change this setting.

Controlling Historical Data

By default, when a Pipeline is first created, or any time it needs to be reset due to an issue on the Windows
host, the Retriever starts pulling the oldest data on the server and loading it. In some cases, this causes a
large amount of unwanted historical data to be loaded into the EDW. To prevent this loading, you can
specify the following flags in the agentless.prop file to control the flow of historical data:

 event.reader.startnewreadersfromlatest=true

Specifies that when a retriever creates a pipeline for the first time, it should not retrieve historical data,
but instead start retrieving data from the most recent event on the Windows server. This flag only impacts
the pipeline when it is first created. After that time, the pipeline defaults to normal behavior and retrieves
data from wherever it left off. Setting this flag prevents a new installation from retrieving a large amount
of possibly irrelevant historical data.

 event.reader.startallreadersfromlatest=true

Specifies that when a retriever creates a pipeline, or when the Pipeline is restarted (either due to a
Collector restart, a windowsretrievershell command to reset the pipeline, or when the retriever must
restart the pipeline due to an error) it ignores historical data and starts retrieving data from the most recent
event.

This flag affects Pipelines in an ongoing fashion (and therefore could cause data to be lost) and should be
used with caution.

Configuring the Agentless Retriever

The procedure below documents how to configure the agentless version of the HawkEye Retriever.
86 Collector Guide

Standard Configuration
To configure an agentless retriever

1. Change to the directory that contains the agentless.prop file.

This file is in the same directory as the Collector config.xml file. The default location is:

<HawkEye AP Home>/etc/collector/

2. Edit the agentless.prop file, as described above in “Attributes for HawkEye Retrievers”, on page 65.

3. Edit the config.xml file to name and define the retriever and point to its properties file.

For information on defining the retriever in the Collector configuration file, see “HawkEye Retriever on
Windows”, on page 34.

4. Configure authentication against a Windows system for agentless event-log retrieval that uses IPC.

For information, see “Configuring Authentication”, on page 103.

Configuring the Retriever to Run as an Agent

The agent version of the HawkEye Retriever has its own archive file: WindowsRetriever.zip.

To install and run the agent version of the retriever, you must download t he file from the Hexis Cyber
Solutions Technical Support web site:

http://www.hexiscyber.com/content/

IMPORTANT: Before you start the agent version of the HawkEye Retriever for the first time:

 Configure its properties; for more information, see “Attributes for HawkEye Retrievers”, on page 65
above.

 Check the Release Notes or PAM for the specific version of Java used in this release of HawkEye AP and
add its bin directory to your path. To download the JRE:

http://java.sun.com/javase/downloads/index.jsp

To install, configure, run, and test on Windows

1. Download and unzip WindowsRetriever.zip.

Unzipping the file creates a new folder named WindowsRetriever. This folder is directly below the
folder from which you unzipped the file. This folder contains subfolders that include bin and conf.

2. Change to the WindowsRetriever\conf folder and edit the agent.prop file, as documented above in
“Attributes for HawkEye Retrievers”, on page 65.

3. Install the agent as a service:

a Change to the WindowsRetriever\bin folder.

b Run:

InstallWinRetriever.bat
Collector Guide 87

Chapter 4: HawkEye Retriever Configuration
4. Verify that the service was installed correctly by opening:

Control Panel > Administrative Tools > Services

There should be an installed service named HawkEye AP Windows Event Retriever. This service
starts automatically the next time Windows is started. However, you can start it at any time by right-
clicking the service and selecting Start.

5. Verify the installation by running the following command from the WindowsRetriever\bin\ folder:

windowsretrievershell.exe localhost 9999

NOTE: After you have invoked the shell, you can run help to list all available commands. For a complete
list of shell commands, see “Shell Commands”, on page 100.

ADVANCED CONFIGURATION

Generally you configure the HawkEye Retriever and its submodules by editing the standard properties in the
agentless.prop or agent.prop file. However, you may need to define a HawkEye Retriever with more
than the basic functionality enabled by the default standard configuration. HawkEye AP provides a full set
of options that allow more flexibility when you configure a HawkEye Retriever. For example, you can use
the advanced options to:

 chain one HawkEye Retriever to another

 automatically discover Windows hosts from a directory service

 run an interactive shell for debugging purposes

 specify a non-default format and string separator for timestamps; the default is: yyyy-MM-dd HH:mm:ss

 specify retry value for the TCP event writer

To enable any of the above advanced options, you must replace the standard syntax for that option in the
agentless.prop or agent.prop file with the full set of advanced properties that define the desired
submodule. Additionally, you must specify the full set of advanced properties that define all other
submodules. In other words, to take advantage of any advanced option, you must copy the full set of
advanced properties from this chapter and paste them into the agentless.prop or agent.prop file.

Examples:

 For an example of how you would modify the property file to configure a flat-file event writer to overwrite rather
than append to the output file, see “Introduction”, on page 65.

 For an example of an advanced agentless.prop file, see “Example of Advanced Properties File”, on page 108.

The sections below document the full set of options for the HawkEye Retriever.

• “Event Readers”, on page 89

• “Event Writers”, on page 94

• “Serializers”, on page 97

• “Pipelines”, on page 97

• “Shells”, on page 98

• “Discoverers”, on page 101
88 Collector Guide

Advanced Configuration
• “Logging”, on page 102

Event Readers

Every HawkEye Retriever must have at least one event reader. Each event reader specifies the source of
event data, which can be any of the following:

 Windows SMB connections

 Oracle Audit or generic table data (BETA)

 SQL Server generic table data

 SQL Server Audit Trace data

 SQL Server 2000 Audit Trace data

 Flat files

 Multiple flat files

 TCP sockets

Each event reader maps to exactly one source of Windows event data. Hexis Cyber Solutions recommends
that you name each reader to indicate the type of data the reader collects; for example: smbReader,
flatFileReader, and tcpReader. Names are case sensitive. Unlike a standard-configuration reader,
there is no restriction on how you name the reader. For example, readerSMB, ReaderSMB, and SMBreader
are all valid.

This property is required.

If you do not want newly created readers to pull historical data, you can set a flag that affects all new
readers. Set this flag to cause a new reader to start pulling over new records, but not large volumes of
historical data. This flag can also help prevent pulling duplicate data in the event you migrate readers across
collectors or have lost the state database.

event.reader.startfromlatest=true;

To define an event reader

1. Declare the readers in the event.readers property; for example:

event.readers=smbReader,smbReaderLow,smbReaderHigh,flatFileReader,tcpReader

2. Specify the class in the event.reader.<reader_name>.class property. Acceptable values are:

 com.sensage.eventlog.reader.SMBEventReader

 com.sensage.eventlog.reader.FileEventReader

 com.sensage.eventlog.reader.TCPEventReader

The specified class determines the remaining properties to set.

Defining an SMB Event Reader

Properties unique to this reader are:
Collector Guide 89

Chapter 4: HawkEye Retriever Configuration
 host—Specify the IP address or WINS name of the Windows host from which to connect using SMB.

 username—Specify the user name for SMB authentication.

 password—Specify the password for SMB authentication.

 eventtypes —See the section “Setting an Event Type”, on page 74 for more information.

NOTE: The SMB event reader reads event-log records from a remote SMB session that uses DCE/RPC.

Defining an Oracle Audit or Generic Table Reader (BETA)

Properties unique to this reader are:

 hostname—The IP address or FQDN of the Oracle host

 username—The Oracle account used to access the table (must have Select permissions to that table)

 password—The password supplied for this user.

 port—The port used to contact the Oracle host.

 servicename—Specify the Oracle service name.

 namedsqlstring—References a string in the sqlstringmap to use to query the server.

 eventtype—See the section “Setting an Event Type”, on page 74 for more information.

 passwordmanager—The name of a defined password manager that will be used for this reader.

 daysprevious—A number (0 or higher) that indicates how many days in the past to start pulling data the
first time this reader is used.

 tscol—The column name of a column that has a timestamp the retriever can use to track data it has
already read.

 timestampformat—A String that specifies a non-standard timestamp format, the default is "yyyy-mm-dd
hh24:mi:ss.ff"

NOTE: There are two additional properties that affect all Oracle readers in the instance:
event.reader.oraclejdbcclass defaults to com.ddtek.jdbc.oracle.OracleDriver but could be modified to use
other JDBC drivers in some instances event.reader.oraclejdbcur defaults to
jdbc:datadirect:oracle://HOSTNAME:PORT;ServiceName=SERVICENAME but could be modified
to support other connection URLs.

Defining a SQL Server Generic Table Reader

Properties unique to this reader are:

 hostname—The IP address or FQDN of the SQL Server host.

 username—The SQL Server account used to access the (must have Select permissions to that table)

 password—The password supplied for this user.

 port—The port used to contact the SQL Server host.

 databasename—The database on SQL Server that you are accessing.
90 Collector Guide

Advanced Configuration
 eventtype—See the section “Setting an Event Type”, on page 74 for more information.

 tscol—The column name of a column that has a timestamp the retriever can use to track data it has
already read.

 namedsqlstring—References a string in the sqlstringmap to use to query the server.

Defining a SQL Server Audit Trace Reader

Properties unique to this reader are:

 hostname—The IP address or FQDN of the SQL Server host.

 username—The SQL Server account used to access the (must have Select permissions to that table)

 password—The password supplied for this user.

 port—The port used to contact the SQL Server host.

 trace definition file—A file name that points to a file containing a trace definition.

 metaDataFunctionName—The name of a function on the server that returns metadata about the .trc
files.

 max records per poll—The most records that can be brought back in a single polling interval. The
default is 25000.

 eventtype—See the section “Setting an Event Type”, on page 74 for more information.

 tscol—An optional column name for the column in the trace that has a valid timestamp. This is normally
not set.

Defining a SQL 2000 Server Audit Trace Reader

NOTE: This is for remote agents on a SQL Server host).

Properties unique to this reader are:

 hostname—The IP address or FQDN of the SQL Server host.

 username—The SQL Server account used to access the (must have Select permissions to that table)

 password—The password supplied for this user.

 port—The port used to contact the SQL Server host.

 tracefile—Path to a file that defines the SQL Server Trace.

 max records per poll—The most records that can be brought back in a a single polling interval. The
default is 25000.

 eventtype—See the section “Setting an Event Type”, on page 74 for more information.

 tscol—The column name of a column that has a timestamp the retriever can use to track data it has
already read.
Collector Guide 91

Chapter 4: HawkEye Retriever Configuration
Defining a File Event Reader

Required properties unique to this reader are:

 filename—The flat file from which to read records.

 blocksize—The number of records to read in each pass.

 hashsize—The number of bytes used to generate a unique hash on the file; allow for enough bytes for
each file to generate a unique set of bits. The default is 2048.

 maximum-noreads—How many times the retriever can read no new lines from a file before it attempts
to look for log rolls.

 hashsize—How many bytes are used from the beginning of a file to determine if a log has rolled.

 eventype—A string that is prepended to every record.

 prepend—A value of true or false to indicate that the filename should be prepended to every record.

Defining a Multifile Event Reader

Required properties unique to this reader are:

 searchString—The directories and files from which to read records.

Optional properties unique to this reader are:

 blocksize—The number of records to read in each pass.

 minutesbetweenrefresh—The number of minutes the multifile reader waits before it looks for new
matching directories.

 hashsize—The number of bytes used to generate a unique hash on the file; allow for enough bytes for
each file to generate a unique set of bits. The default is 2048.

 maximum_noreads—The number of times the reader can read 0 new bytes before checking to see if a
file has rolled or new matching files have arrived.

Define this type of event reader when you want to define a single reader to scan multiple files in different
directories in parallel (Microsoft IIS is a good example). Assume, for instance, that you have websites that
log a unique log file per website in a directory hierarchy as in:

/var/log/websites/<web server name>/logs/<server name>.log

and those log files roll out to something like:

/var/log/websites/<web server name>/logs/<server name>.log.yyyy.mm.dd

then you would specify a multifile reader as in:

reader_myMultiReader=multifile,/var/log/websites//logs/.log*

This creates a reader that will, in parallel, monitor any directory matching the search expression and read log
files as they are written. The multifile reader can detect (inside any matching directory) if a log file was
renamed so that it will not collect the data twice.
92 Collector Guide

Advanced Configuration
By default the string assumes every character is literal except you can use a ? (question mark) to indicate a
single character and an * (asterisk) to indicate multiple characters (for example: /tmp/dir?/logifle*.log)

Specify pathnames using the appropriate path separator for that operating system. For example on windows
specify a drive letter and use the backslash, c:\\tempfile, and on Linux you use the forward slash, /tmp/
logfile.out

Optionally, you can use a regex to define your search string. To do this you must first set this global variable
to true:

event.readers.useregexforfilesearch=true

Then your search string can be specified using a valid java regex for example:

/var/log/myapp/day??/[Ll]ogF(l|ile).*\.log)

The only rule is that the regex must include a path separator between the directories to scan and which files
to scan for. The retriever will use that path separator to determine which directories to scan versus which
files to scan.

Performance Details and Recommendations for Configuration

For Multifile Retriever, recommendations were based on a test using the following values:

 Maximum file size tested: 2 MB

 Maximum number of files tested: 1500 files

 The "avg" file size tested for "n" files retrieved in time "t" was performed on different file size log files:
<1MB, 1MB, 2MB

Multiile Retriever has been tested on 1500 files and up to 7-nested directory levels.

Defining a TCP Event Reader

Properties unique to this reader are:

 port—Specify the TCP port on which to listen for incoming connections from TCP Event Writers.

Define this type of event reader to chain one HawkEye Retriever to another. For example, when you run the
HawkEye Retriever as an agent on Windows, you must configure it to forward its data either to a HawkEye
Retriever that runs on a Linux system or to a HawkEye AP Syslog Writer that runs on a Linux host. You
must define a TCP event reader to forward the retriever agent on Windows to the agentless retriever on
Linux.

Example: Defining Event Readers

The example below illustrates configuration of a retriever that collects event data from all three of the
possible data sources. The first section of the file declares all three readers.

Declare the set of readers
event.readers=smbReader,flatFileReader,tcpReader,tcpReaderLow,tcpReaderHigh
Define the smbReader
event.reader.smbReader.class=com.sensage.eventlog.reader.SMBEventReader
event.reader.smbReader.eventtypes=Security,Application,System,DNS Server,File
Replication Service,Directory Service
event.reader.smbReader.host=127.0.0.1
Collector Guide 93

Chapter 4: HawkEye Retriever Configuration
event.reader.smbReader.username=administrator
event.reader.smbReader.password=mypass
Define the flatFileReader
event.reader.myflatFileReader.class=com.sensage.eventlog.reader.FileEventReader
event.reader.myflatFileReader.filename=/<full_path>/sample.log
event.reader.myflatFileReader.requestcount=1000
event.reader.myflatFileReader.maximum_noreads=5
event.reader.myflatFileReader.hashsize=2048
event.reader.myflatFileReader.eventype=sample
event.reader.myflatFileReader.prepend=true
Define the tcpReaders
event.reader.tcpReader.class=com.sensage.eventlog.reader.TCPEventReader
event.reader.tcpReader.port=8099
event.reader.tcpReaderLow.class=com.sensage.eventlog.reader.TCPEventReader
event.reader.tcpReaderLow.port=8099
event.reader.tcpReaderHigh.class=com.sensage.eventlog.reader.TCPEventReader
event.reader.tcpReaderHigh.port=8099

Event Writers

When you use advanced configuration options, ensure that each HawkEye Retriever has at least one event
writer. Each event writer specifies the destination of event data.

When you run the HawkEye Retriever on Windows, you can define a event writer to send the data to one of
three destination types:

 Flat file

 TCP socket for chaining to another HawkEye Retriever

 syslog writer

The event writer has a different set of properties for the different destination types.

When you run the HawkEye Retriever on Linux, you can define a event writer to send the data to the
Collector log queue for batch collection

Each event writer maps to exactly one destination for Windows event data and uses an event serializer to
format each event record to a string. For more information, see “Serializers”, on page 97.

To define an event writer

1. Declare the event writer in the event.writers property; for example:

event.writers=collectorWriter

NOTE: Unlike a standard-configuration writer, there is no restriction on how you name the writer. For
example, collectorWriter, CollectorWriter, and writerCollector are all valid

2. Specify its class in the event.writer.<writer_name>.class property. Acceptable values are:

 com.sensage.eventlog.writer.CollectorEventWriter

 com.sensage.eventlog.writer.RTEventWriter

 com.sensage.eventlog.writer.TCPEventWriter
94 Collector Guide

Advanced Configuration
 com.sensage.eventlog.writer.FileEventWriter

 com.sensage.eventlog.writer.SyslogEventWriter

 com.sensage.eventlog.writer.TCPSyslogEventWriter

The specified class determines the remaining properties to set.

Defining a Collector Event Writer

Properties unique to this event writer are:

 threshold.filesize —Specify the maximum size of the log queue file in bytes before it is renamed and
collected.

 threshold.minutes —Specify the maximum age of the log queue file in minutes before it is renamed and
collected.

 filename.prefix —Specify a prefix to be added at the beginning of the name of the output files for this
writer, and configure the Collector to look for files with this name.

This event writer writes event-log records to Collector files in a log queue. It is used only when retrieving
batched data. The example below configures a retriever that forwards event data to the Collector log queue
for batch processing.

Declare the writer
event.writers=collectorWriter
Define the collectorWriter
event.writer.collectorWriter.class=com.sensage.eventlog.writer.CollectorEventWri
ter
event.writer.collectorWriter.threshold.filesize=50000000
event.writer.collectorWriter.threshold.minutes=60
event.writer.collectorWriter.serializer.class=com.sensage.eventlog.serializer.De
limitedSerializer
event.writer.collectorWriter.serializer.delimiter=|
event.writer.collectorWriter.serializer.date.format=yyyy-MM-dd HH:mm:ss
event.writer.collectorWriter.filename.prefix=win2k8

Defining a TCP Event Writer

Properties unique to this event writer are:

 host— IP address or resolveable hostname where there is a listening TCP event reader.

 port—Port number used by the listening TCP event reader.

 retry—Milliseconds to wait before retrying to open the TCP connection if the connection is lost.

NOTE:
(1) This configuration is useful for chaining one HawkEye Retriever to another. For an illustration of
chaining two HawkEye Retriever see “HawkEye Retriever on Windows”, on page 34.
(2) This writer is also used to send data to the Real-Time system. In this case you would specify the
hostname and IP address of the real time parser.

The example below configures a retriever that forwards event data to a TCP socket for chaining to another
HawkEye Retriever.

Declare the writer
Collector Guide 95

Chapter 4: HawkEye Retriever Configuration
event.writers=tcpWriter
Define the tcpWriter
event.writer.tcpWriter.class=com.sensage.eventlog.writer.TCPEventWriter
event.writer.tcpWriter.host=127.0.0.1
event.writer.tcpWriter.port=8099
event.writer.tcpWriter.retry=2000
event.writer.tcpWriter.serializer.class=com.sensage.eventlog.serializer.Delimite
dSerializer

Defining a File Event Writer

Properties unique to this event writer are:

 filename —Name of the output file.

 append—Set to true to append to this file; set to false to overwrite this file.

The example below configures a retriever that forwards event data to a flat file.

Declare the writer
event.writers=fileWriter
Define the fileWriter
event.writer.fileWriter.class=com.sensage.eventlog.writer.FileEventWriter
event.writer.fileWriter.filename=/<full_path>/output.log
event.writer.fileWriter.append=true
event.writer.fileWriter.serializer.class=com.sensage.eventlog.serializer.Delimit
edSerializer

Defining a UDP Syslog Event Writer

Properties unique to this event writer are:

 host—IP address or resolveable host name of the listening syslog daemon.

 port— Port of the listening syslog daemon.

The example below configures a retriever that forwards event data to the HawkEye AP Syslog Writer over
UDP.

Declare the writer
event.writers=syslogUDPWriter
Define the syslogUDPWriter
event.writer.syslogUDPWriter.class=com.sensage.eventlog.writer.SyslogEventWriter
event.writer.syslogUDPWriter.host=127.0.0.1
event.writer.syslogUDPWriter.port=514
event.writer.syslogUDPWriter.serializer.class=com.sensage.eventlog.serializer.De
limitedSerializer

Defining a TCP Syslog Event Writer

Properties unique to this event writer are:

 host—IP address or resolveable host name of the listening syslog daemon.

 port— Port of the listening syslog daemon.

The example below configures a retriever that forwards event data to the HawkEye AP Syslog Writer over
TCP.
96 Collector Guide

Advanced Configuration
Declare the writer
event.writers=syslogTCPWriter
Define the syslogTCPWriter
event.writer.syslogTCPWriter.class=com.sensage.eventlog.writer.TCPSyslogEventWri
ter
event.writer.syslogTCPWriter.host=127.0.0.1
event.writer.syslogTCPWriter.port=514
event.writer.syslogTCPWriter.serializer.class=com.sensage.eventlog.serializer.De
limitedSerializer

Serializers

Serializers control the formatting of an event record into a string to be written. Event writers use the
serializer every time they write an event record to its destination as a string. The standard serializer is the
Delimited Serializer, which writes event records as a string of delimited fields.

Properties unique to the DelimitedSerializer serializer are:

 class—Full Java class of the serializer implementation

This property is required to tell the event writer which serializer to use.

 delimiter—String representing the delimiter to add between each field.

 date.format—Date formatting string that controls the normalizing of timestamps

For more information, see:

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

Example: Using a Serializer

The example below illustrates configuration of a Collector event writer that specifies a pipe (|) as the
serializer delimiter and formats the timestamp to begin with year.

Define the collectorWriter
event.writer.collectorWriter.class=com.sensage.eventlog.writer.CollectorEventWri
ter
event.writer.collectorWriter.threshold.filesize=50000000
event.writer.collectorWriter.threshold.minutes=60
event.writer.collectorWriter.serializer.class=com.sensage.eventlog.serializer.De
limitedSerializer
event.writer.collectorWriter.serializer.delimiter=|
event.writer.collectorWriter.serializer.date.format=yyyy-MM-dd HH:mm:ss

Pipelines

Although the standard configuration for a single pipeline type automatically identifies each pipeline’s reader
and writer(s), you must specify the writer(s) and the pipeline name when you use standard configuration to
define multiple pipeline types. Then you must configure each reader to use a specific pipeline type. Event
pipelines are documented in detail in “Defining a Pipeline”, on page 76.

Although you can use standard configuration to create pipelines with different values, you must use
advanced configuration to create pipelines that filter the records separately for each reader before they are
written.
Collector Guide 97

Chapter 4: HawkEye Retriever Configuration
Advanced pipeline properties are:

 reader—named event reader that is unique to the pipeline

 writer—named event writer that can be shared among pipelines

 delay—specified in milliseconds, represents the amount of time that the retriever waits before polling
each reader for additional event records; use this argument to limit the load on the each reader. Defaults to
1000. For more information, see “Defining Delay and Request Count”, on page 77.

 requestcount—specified as an integer, represents the maximum number of times the retriever polls each
reader before the delay period begins; regardless of the number of records in the reader’s buffer, each poll
request returns a maximum of 100 event records. Defaults to 1.

 zerocounter—specified as an integer, represents the maximum number of times a reader can return zero
(0) records before the HawkEye Retriever logs a warning in the log file indicating that the retriever might
have fallen behind in gathering records. Defaults to 60.

NOTE: The zero counter is used by the database retriever (SQL Retriever) to check the trace status on the
SQL Server and to attempt to start the trace if it has stopped. For more information, see “Defining the
Zero Counter”, on page 79.

Example: Defining 2 Pipelines

The example below illustrates the advanced configuration properties to define two pipelines. Each pipeline
connects an SMB event reader with a writer: the Collector. One pipeline is configured for readers that
regularly receive a significant number of events. The other pipeline is configured for readers that do not
receive a significant number of events.

Declare 2 pipelines
event.pipelines=HighVolumePipeline,LowVolumePipeline
Define the high-volume pipeline
Defines pipeline for an SMB reader that reads only Security & Application logs
event.pipeline.HighVolumePipeline.reader=smbReaderSecAppLogs
event.pipeline.HighVolumePipeline.writer=collectorWriter
Sets the pipeline to delay every second
event.pipeline.HighVolumePipeline.delay=1000
Sets the pipeline to receive no more than 1000 records each polling period
event.pipeline.HighVolumePipeline.requestcount=10
Sets the pipeline to check for zero records no more than once a minute
event.pipeline.HighVolumePipeline.zerocounter=60
Define the low-volume pipeline
Defines pipeline for an SMB reader that reads all log types
event.pipeline.LowVolumePipeline.reader=smbReaderAllLogs
event.pipeline.LowVolumePipeline.writer=collectorWriter
Sets the pipeline to delay every 5 minutes
event.pipeline.LowVolumePipeline.delay=300000
Sets the pipeline to receive no more than 100 records each polling period
event.pipeline.LowVolumePipeline.requestcount=1
Sets the pipeline to check for zero records every 20 minutes
event.pipeline.LowVolumePipeline.zerocounter=4

Shells

HawkEye AP provides a command-line shell interface to manage the HawkEye Retriever There are two
different ways to access the shell interface of a running HawkEye Retriever.
98 Collector Guide

Advanced Configuration
 interactive shell—runs as part of the retriever process and accepts input from the standard input directly

This mode is mostly for debugging because you must run the HawkEye Retriever as a foreground
process.

 remote shell—accepts connections from any host through a separate shell process; connects to the
running HawkEye Retrieverprocess over a TCP socket.

 You can run the remote shell from a different host from the one on which the HawkEye Retriever runs, which
provides remote administration capabilities.

 You can run the remote shell on the same host on which the HawkEye Retriever runs, which allows you to monitor
the retriever when it runs as a background process.

Shell properties are:

 interactive.shell.enabled—Specify true for interactive mode or false for daemon mode.

 remote.shell.enabled—Specify true to allow connecting when in daemon mode from any host.

 remote.shell.listen.port—Specify the port on which to listen for remote connections.

 remote.shell.localhost.only—Specify true to allow only connections from this host or false to allow
connections from any host.

Invoking the Interactive Shell

Before you invoke the interactive shell, you must set the interactive.shell.enabled configuration
property to true:

interactive.shell.enabled=true

NOTE: To invoke the interactive shell, you must run the HawkEye Retriever as a foreground process.

Invoking the Remote Shell

Before you invoke the remote shell, you must set the following configuration properties:

Enable remote shell sessions.
remote.shell.enabled=true
Set port on which the Windows Event Retriever listens for
incoming remote-shell sessions.
remote.shell.listen.port=9999
Set Localhost Only property: true allows only connections from this host;
false allows connections from any host.
remote.shell.localhost.only=false

To connect to the Windows Event Retriever from a remote shell

Run the following command:

/<full_path>/windowsretrievershell <host> <port>

For example:

bin/windowsretrievershell localhost 9999
Collector Guide 99

Chapter 4: HawkEye Retriever Configuration
The command above opens a remote shell on the local host on port 9999.

Example: Defining a Shell

The example below illustrates defining an interactive shell and a remote shell:

Disable the interactive shell interface for daemon mode
interactive.shell.enabled=false
Configure the remote shell interface to enable remote connections
remote.shell.enabled=true
remote.shell.listen.port=9999
remote.shell.localhost.only=false

Shell Commands

After you have invoked the shell, you can run help to list all available commands.

Available commands are:

Command Description

config [<property_key>] Displays the configuration property, or all properties if
none specified.

getloglevel Returns the current log level.

help Displays all commands

pingbox <logtype> <ipaddress> <username>
<password>

Tests connectivity to the host specified by IP address
by using the specified username and password to read
records from the specified log type. You can use this
command to test machines not currently in
agentless.prop.

pingbox <logtype> <readername> [BATCH] Tests connectivity to the host specified by readername
by reading records from the specified log type. The
optional BATCH flag returns only PASS/FAIL as
opposed to detailed information.

pingbox <logtype> [BATCH] Tests connectivity to all hosts in the
agentless.prop file. For each host, it attemps to
read a single record from the host to ensure complete
connectivity. The optional BATCH flag returns only a
PASS/FAIL as opposed to detailed information for
each reader for easy parsing.
Note: The command does not produce output until all
readers have responded and thus may take a while to
run.

setloglevel
[VERBOSE|DEBUG|INFO|WARN|ERROR]

Changes the log level to the specified value until
HawkEye Retrieveris restarted.

shutdown Stops all pipelines that are currently running and stops
the retriever process.

start <pipeline> Starts the specified pipeline.

startall Starts all pipelines that are currently stopped.

state <pipeline> Shows the state information for the handles of the
specified pipeline.
100 Collector Guide

Advanced Configuration
EXAMPLES

Display all available remote shell commands:

help

Display the status of the single pipeline:

status

Display the detailed status of a specific event reader or the event writer:

status SMBreader

status CollectorWriter

Exit the shell:

quit

Discoverers

Discoverers allow you to automatically configure readers and pipelines at runtime. All discoverer types can
find Windows hosts for SMB connections.

status [<pipeline>|<reader>|<writer>] Shows the status of the specified pipeline, event
reader, or event writer. Shows all pipelines if none
specified.

stop <pipeline> Stops the specified pipeline.

stopall Stops all pipelines that are currently running.

reloadpropfile CONFIRM Reexamines the agentless.prop file to determine
whether readers have been removed or added. If so:
Shuts down the corresponding pipelines for removed
readers
Creates new pipelines for new readers and starts them

reset <pipeline> Resets the state of the pipeline, which causes the
pipeline's handle(s) to start reading from the oldest
available record number(s).
WARNING: This command could adversely affect
log retrieval.

resetall Resets the state of all pipelines.

resetreader <readername> CONFIRM Resets the specified reader's oldest record value and
current record value for all log types. It effectively
ignores the internal state and asks the Windows host
for the information. You can use this command to
recover from some failure cases.

quit | q Quits this shell.

Command Description
Collector Guide 101

Chapter 4: HawkEye Retriever Configuration
Using discoverers simplifies the configuration file because you do not need to specify any event readers or
pipelines. You need to define only a single event writer, which will be used by the pipelines that are
automatically generated for each discovered reader.

The default discoverer is LDAPDiscoverer, which finds hosts by running an LDAP query. This object is
useful to read from many Windows hosts that are specified as members of a group in an LDAP-compliant
directory service, such as Active Directory.

Example: Defining a Discoverer

The example below illustrates a discoverer configuration that queries LDAP to locate host names that are
members of a group DN:

Configure auto-discovery
config.discovery.class=com.sensage.eventlog.util.LDAPDiscoverer
config.discovery.username=administrator
config.discovery.password=changeme
config.discovery.eventtypes=Security,Application,System,DNS Server,File
Replication Service,Directory Service
config.discovery.pollinginterval=5000
config.discovery.blocksize=1
config.discovery.ldap.host=10.0.2.143
config.discovery.ldap.port=389
config.discovery.ldap.version=3
config.discovery.ldap.loginDN=ss_enumerator@sensage.local
config.discovery.ldap.password=changeme
config.discovery.ldap.groupDN=cn=adservers,ou=sensage,dc=sensage,dc=local
event.writers=testWriter
event.writer.testWriter.class=com.sensage.eventlog.writer.FileEventWriter
event.writer.testWriter.filename=logs/test.log
event.writer.testWriter.append=true
event.writer.testWriter.serializer.class=com.sensage.eventlog.serializer.Default
Serializer

The above example creates all readers as SMBEventReaders that get their properties (username,
password, eventtypes, delay, requestcount) from the config.discovery settings. The LDAP
connection settings and query are set by the config.discovery.ldap properties. This query searches for
all members of the groupDN and assumes they are valid Windows system names that can be connected to
through SMB for event records. All pipelines created share the same event writer.

Logging

The HawkEye Retriever uses Log4j as the logging subsystem. The logging properties you define are passed
directly to the Log4j API.

Example: Rolling Over the HawkEye Retriever Log File

The example below illustrates how to pass in a single log4j parameter so that the windows retriever log file
is rolled over every month:

log4j.appender.LOGFILE.DatePattern=’.’yyyy-MM
102 Collector Guide

Configuring Authentication
Example: Defining Logging

The example below illustrates a standard configuration that logs to a file with an INFO threshold:

log4j.rootCategory=INFO, LOGFILE
log4j.appender.LOGFILE=org.apache.log4j.FileAppender
log4j.appender.LOGFILE.File=logs/retriever.log
log4j.appender.LOGFILE.Append=true
log4j.appender.LOGFILE.Threshold=INFO
log4j.appender.LOGFILE.layout=org.apache.log4j.PatternLayout
log4j.appender.LOGFILE.layout.ConversionPattern=%p %d{ISO8601}: %m%n

CONFIGURING AUTHENTICATION

NOTE: The Configuring Authentication Section applies to Windows SMB readers only.

In addition to defining the properties for your HawkEye Retriever, you must configure authentication
against a Windows server for event-log retrieval. You can configure authentication using either
Administrator or non-Administrator access. There are some general configuration settings that are common
to either type of access, discussed next, and there are specific instructions for each type.

 “General Authentication Configuration”, next

 “Administrator Access”, on page 103

 “Non-Administrator Access”, on page 104

 “Forwarded Events Log in Windows 2008”, on page 106

General Authentication Configuration

Configure the following in addition to configuring Administrator or non-Administrator access:

 The account used to authenticate must be granted the "Access this computer from the network" user right.
This may be accomplished explicitly or inherently if the Users or Domain user group is granted this right.

 The host running the HawkEye Retriever must be able to open the IPC$ share on the remote Windows
server.

 The Windows device and remote Windows server must be able to communicate over SMB port 445.

 The event log service must be on.

 In Windows 2008, the firewall must allow File and Print sharing.

 There are additional Log Adapter setup instructions for the
microsoft_windows_securityEvent_sensageRetriever Log Adapter.
See Setting up the microsoft_windows_securityEvent_sensageRetriever Log Adapter in Chapter 22,
“microsoft_windows_securityEvent_sensageRetriever,” in the Analytics Guide.

Administrator Access

Create a user that is a member of Administrators or Domain Administrators. This approach is the
easiest to implement and is a common approach for agentless Windows event-log collection.
Collector Guide 103

Chapter 4: HawkEye Retriever Configuration
IMPORTANT: (Windows 2008 only) This user must be assigned to the Event Log Readers
group.

Non-Administrator Access

NOTE: These instructions assume you have a domain user with non-administrator access. If such a user
does not exist, create it.

There are three high-level steps to granting non-administrator access:

1. Get the Security ID (SID) of the domain user.

2. Set the Group Policy Editor (gpedit.msc) to display log-policy security options.

NOTE: You need to perform this step once on any host in the domain.

IMPORTANT: If you need to run gpedit.msc on a Windows 2008 Server, create a registry key.
See “Delegating access to an event log using the registry”, on page 106.

3. Edit the security descriptor for each event-log that you want to monitor.

NOTE: You edit the security descriptor only on the machine whose Group Policy Editor you are using or
modifying in Step 2.. You do not edit the descriptor on every host in your domain; the changes are
automatically pushed to all domain hosts.

IMPORTANT: Contact Hexis Cyber Solutions Technical Support before you perform this
procedure.

To get the SID of the domain user

1. From a command prompt, run:

wmic

2. Type:

useraccount where name='<user name>' get sid

The SID displays.

NOTE: An alternate way to get the SID is to run getsid.exe.

To set the Group Policy Editor to display event-log security options

1. Use a text editor such as Notepad to open Sceregvl.inf in the %Windir%\Inf folder.

2. Add the lines below to the [Register Registry Values] section.

IMPORTANT: Each of the six lines below begins with the word "MACHINE". All text that wraps to a new line
must be entered on the same line that begins with "MACHINE". The last three lines wrap at a space. You must enter a
104 Collector Guide

Configuring Authentication
space in these folder names: "Directory Service", "DNS Server", and
"File Replication Service".

MACHINE\System\CurrentControlSet\Services\Eventlog\Application\CustomSD,1,%App
CustomSD%,2
MACHINE\System\CurrentControlSet\Services\Eventlog\Security\CustomSD,1,%SecCus
tomSD%,2
MACHINE\System\CurrentControlSet\Services\Eventlog\System\CustomSD,1,%SysCusto
mSD%,2
MACHINE\System\CurrentControlSet\Services\Eventlog\Directory
Service\CustomSD,1,%DSCustomSD%,2
MACHINE\System\CurrentControlSet\Services\Eventlog\DNS
Server\CustomSD,1,%DNSCustomSD%,2
MACHINE\System\CurrentControlSet\Services\Eventlog\File Replication
Service\CustomSD,1,%FRSCustomSD%,2

3. Add the lines below to the [Strings] section.

IMPORTANT: Enter the following six lines; do not enter wrapped text on a separate line.

AppCustomSD="Eventlog: Security descriptor for Application event log"
SecCustomSD="Eventlog: Security descriptor for Security event log"
SysCustomSD="Eventlog: Security descriptor for System event log"
DSCustomSD="Eventlog: Security descriptor for Directory Service event log"
DNSCustomSD="Eventlog: Security descriptor for DNS Server event log"
FRSCustomSD="Eventlog: Security descriptor for File Replication Service event
log"

4. Save your changes.

5. Run the following command:

regsvr32 scecli.dll

To edit the security descriptor for an event log

1. Run gpedit.msc.

2. Expand the following:

Local Computer Policy > Computer Configuration > Windows Settings > Security
Settings > Local Policies > Security Options

You should see the security descriptors that you defined in Step 3. of “To set the Group Policy Editor to
display event-log security options”, on page 104.

3. Add the following to the end of each event-log security descriptor that you want to monitor:

O:BAG:SYD:(A;;0x1;;;<SID>)

where <SID> is the Security ID of the specific user.

The above setting tells each event log to accept (A) requests from the specified user(<SID>) to read
(0x1) from the event log.
Collector Guide 105

Chapter 4: HawkEye Retriever Configuration
Delegating access to an event log using the registry

Use the procedure below if you need to run gpedit.msc on a Windows 2008 Server, in which case you need
to create a registry key for it.

IMPORTANT: In case of incorrect edits, back up any valued data on the computer before making
changes to the registry.

NOTE: The procedure actually changes the SDDL (Security Descriptor Definition Language) and unlike
XP/Win2003, does not make visible a string in the REG_SZ value called "CustomSD" . After this
procedure, you will need to take the registry key changes, export them, and import them to the machines or
use GPO (Group Policy Object) to deploy the registry changes.

This procedure is from the following site: http://technet.microsoft.com/en-us/library/cc722385(WS.10).aspx

1. Open Registry Editor.

2. Navigate to the following registry path:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\EventLog

You will see that there are keys available for each event log. Select the event log for which you want to
delegate read-only access.

3. Add a new key with the name CustomSD to the event log you selected.

4. Add a new String value to the CustomSD key. The of this string is not required, but it represents the
access control list for the event log in the Security Descriptor Definition Language (SDDL) syntax. In this
procedure this value will be refreed to as SDDLACL.

5. Set the value of SDDLACL to the following:

O:BAG:SYD:(D;;0xf0007;;;AN)(D;;0xf0007;;;BG)(A;;0xf0007;;;SY)(A;;0x7;;;BA)(A;;0x
5;;;SO)(A;;0x1;;;IU)(A;;0x1;;;SU) (A;;0x1;;;S-1-5-3)(A;;0x2;;;LS)(A;;0x2;;;NS)

After yu edit this value and restart the computer, the new setting will take effect.

Forwarded Events Log in Windows 2008

Windows 2008 introduced a new log type called the Fowarded Events Log. This log is used by Windows
2008 to collect logs from a remote host onto one centralized windows server. To collect and load the
Forwarded Events Log, perform these steps:

1. Add a new log type in your properties file. For example:

logmap.fwd=ForwardedEvents

2. Provide the new log type in your reader definitions. For example:

reader1=windows, 1.2.3.4,Administrator,password,sec:fwd

NOTE: The above example is used to gather both the Security log and the Forwarded Events Log.

3. On the new windows server itself, perform the following steps:
106 Collector Guide

http://technet.microsoft.com/en-us/library/cc7222385(WS.10).aspx

Configuring Authentication
a Run the Registry Editor.

b If the key name does not already exist, add Forwarded Events under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog.

IMPORTANT: Be sure to separate the two words of the key name Forwarded Events with a
space.

c Add the key name DisplayNameFile under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog\Forwarded
Events of type REG_EXPAND_SZ. The value of this key should match the value in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog\Application\Di
splayNameFile.

d Add the key name File under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog\Forwarded
Events of type REG_EXPAND_SZ. The value of this key should be
%systemroot%\system32\winevt\Logs\ForwardedEvents.evtx.

The above allows remote log managers (including HawkEye Retriever) to be able to access the evtx
file via the DCE/RPC mechanism in Windows.
Collector Guide 107

Chapter 4: HawkEye Retriever Configuration
EXAMPLE OF ADVANCED PROPERTIES FILE

###
Sensage Windows Event Retriever Agentless Properties
###

Using the Simplified Syntax to configure the Windows Retriever:
There are two ways to use the simplified syntax.
If you wish to specify a single set of pipeline values that apply to all readers follow the
example in the SINGLE_PIPELINE_TYPE section
If you wish to specify multiple types of pipelines so that different sets of readers can use
different pipeline
values and write to different writers, then follow the example in the MULTIPLE_PIPELINE_TYPES
section
The information in the COMMON section applies to all configurations using the Simplified Syntax

###
SINGLE_PIPELINE_TYPE <Begin>
###
Specify at least one reader.
Multiple readers should be numbered (i.e. reader1, reader2, reader3, etc.)
Reader definitions can be of the following form:
reader1=windows,<hostIPaddr>,<user>,<password>[,<sec:sys:app:dns:frs:dir>]
The last argument is optional and specifies the log types to read.
sec=Security, sys=System, app=Application, dns=DNS Server, frs=File Replication Service,
dir=Directory Service
If omitted, all log types are read. One or more may be specified in any combination
separated by colons. E.g. "sec:app" will read Security and Application events.
<user> can be of the form:
username
username@domain
domain\\username
NOTE:If the password is hashed and has been removed and replaced with ***** then any
modifications
to the reader will require erasing the ***** and replacing that with the appropriate password
reader2=file,<filename>
reader3=tcp,<listenPort>

#reader1=

Specify exactly one or more writers.
Writer definition can be one of the following forms:
writer=collector,<rolloverThresholdMinutes>,<rolloverThresholdBytes>
writer=tcp,<hostIPaddr>,<port>
writer=syslog,<syslogHost>,<syslogPort>
writer=file,<filename>
#writer=

Pipeline settings: <delay in milliseconds>, <requestcount>, <zerocounter>
Example:
Every second
Read one buffer worth of data
If after 60 reads there is no data, check to see if the server was reset
pipelines=1000,1,60

###
SINGLE_PIPELINE_TYPE <End>
###

###
MULTIPLE_PIPELINE_TYPES <Begin>
###
Specify at least one reader.
108 Collector Guide

Example of Advanced Properties File
Multiple readers should be numbered (i.e. reader1, reader2, reader3, etc.)
Reader definitions can be of the following form:
reader1=windows,<hostIPaddr>,<user>,<password>[,<sec:sys:app:dns:frs:dir>],<pipeline_name>
The second to last argument is optional and specifies the log types to read.
sec=Security, sys=System, app=Application, dns=DNS Server, frs=File Replication Service,
dir=Directory Service
If omitted, all log types are read. One or more may be specified in any combination
separated by colons. E.g. "sec:app" will read Security and Application events.
<user> can be of the form:
username
username@domain
domain\\username
If the password is hashed and has been removed and replaced with ***** then any modifications
to the reader will require erasing the ***** and replacing that with the appropriate
password
reader1=file,<filename>,<pipeline_name>
reader1=tcp,<listenPort>,<pipeline_name>
NOTE: <pipeline_name> should be one of the named pipeline types defined below
Example: Three readers, two servicing high volume servers and one servicing a low volume server
reader1=windows,1.2.3.4,Administrator,password,sec:sys,pipeline_highvolume
reader2=windows,1.2.3.5,Administrator,password,sec:sys,pipeline_highvolume
reader3=windows,1.2.3.6,Administrator,password,sec:sys,pipeline_lowvolume

Specify one or more writers
Multiple writers should be numbered (i.e. writer1, writer2, writer3, etc.)
Writer definition can be one of the following forms:
writer=collector,<rolloverThresholdMinutes>,<rolloverThresholdBytes>[,filename_prefix]
filename_prefix is a string that will be prepended to the filenames created by this writer
writer1=tcp,<hostIPaddr>,<port>
writer1=syslog,<syslogHost>,<syslogPort>
writer1=file,<filename>
Example: Three writers, one tcp writer and two collector writers where one is creating
files that begin with 'win2k8'
#writer1=tcp,10.0.0.1,1025
#writer2=collector,60,50000000
#writer3=collector,60,50000000,win2k8

pipelines types: you must define one of more pipeline types.
each pipeline should be named pipeline<unique_name> where <unique_name> can be a number or
identifying string (for example pipeline_highvolume, pipeline_lowvolume, pipeline_windows2008,
etc)
Pipeline settings: <delay in milliseconds>, <requestcount>, <zerocounter>,<first
writer>[,<second writer>]
Example:
two pipelines, one for high volume data and one for low volume servers
Every second, Read one buffer worth of data, if after 60 reads there is no data, check to see
if the server was reset
#pipeline_highvolume=1000,1,60,writer1,writer3
#pipeline_lowvolume=1000,1,60,writer2
###
MULTIPLE_PIPELINE_TYPES <End>
###

###
COMMON <Begin>
###

#
Remote Shell setting: <listenPort>, [localhostOnly]
The second argument "localhostOnly" is optional and
specifies that only connections made from the localHost will be accepted.
remoteshell=9999,localhostOnly

Log level and output file.
Valid log levels are: TRACE, DEBUG, INFO, WARN, ERROR, FATAL
Collector Guide 109

Chapter 4: HawkEye Retriever Configuration
logging=INFO,sample log name/windowsretriever.log

Global State Database
(Note incorrect use of this option can cause serious problems for the windows retriever
it should only be used in cases where you are defining a second retriever instance with a unique
agenltess.prop file)
Sets the name (you can also specify a unique path, otherwise it defaults to
the path of the collector state files) of the state database.
for example global.state.db.file=winret_2008
global.state.db.file=

Start From Latest
uncommenting this option will cause new pipelines to start reading from the most recent record,
instead of the oldest record. This feature is useful if you are adding new readers and do not
a slow connection to get flooded with old data or if you lost your state file info and don't want
to reload a lot of historical data
#event.reader.startfromlatest=true;

###
COMMON <End>
###
FOR EXAMPLE OF CONFIGURING DISCOVERS or using the Advanced Syntax, SEE THE DOCUMENTATION
110 Collector Guide

Managing Remote Agents
MANAGING REMOTE AGENTS

The HawkEye Retriever provides for the central configuration and management of multiple remote agents.
When an agent is remotely managed it only requires a small amount of generic configuration information;
once initialized, the agent can be run from a centralized host. Normally remote management is used in cases
where a large number of remote agents exist that have similar configurations (for example, a collection of
hosts that all need agents to read the same IIS log files), or in cases where there is no easy access to manage
remote agents.

Configuring the Remote Agent

To associate the remote agent with a remote manager, the remote agent must be configured with the
following properties in the .prop file:

1. Specify whether the remote agent (host) is to attempt contact with a remote manager; set the value to
"true" as shown below:

event.remoteagent.enabled=true

2. Provide a comma-separated list of host names that are remote managers possessing configuration data for
this remote agent (host).

event.remoteagent.hosts=<host list>

3. Specify the port that will be used to contact the remote manager:

event.remoteagent.port=<port-number>

Each remote agent is installed with a simple properties (.prop) file used only to establish connection
configuration to obtain its own configuration from the remote manager:

 When the remote agent is started (either manually or when it is started as a service), the remote agent uses
the configuration information in the properties file to contact the central host (remote manager) which in
turn provides the remote agent with the actual configuration setting it requires.

 After that connection is established, the remote agent listens for management requests from the central
host (remote manager) and optionally, provides path information required to ship its logs to the remote
manager.

 The data the remote agent is permitted to read and where that data is written is controlled by the
configuration the remote agent receives. A remote agent could get a configuration, for example, from
hostA that specifies it writes data using a tcp writer to hostB.

Configuring the Central Remote Manager

You can designate one or more HawkEye Retriever instances to act as remote managers. A designated
HawkEye Retriever instance that is a remote manager also has the capability to run, optionally, on the
collector. (Note that if this arrangement is used, it has no affect on the HawkEye Retriever instance’s role as
remote manager of other remote agents). Furthermore, a HawkEye Retriever instance can still be used to
define normal readers and writers since remote management does not typically require extra overhead.
Collector Guide 111

Chapter 4: HawkEye Retriever Configuration
To configure the remote manager to start managing remote agents, provide the following values in its
properties (.prop) file:

1. Specify the port that this remote manager will listen on for management requests:

event.remotemanager.port=<port-number>

2. Specify whether the remote manager (host) is to attempt contact with other remote agents; set the value to
"true" as shown below:

event.remotemanager.enabled=true

3. Specify the path where logs shipped from remote agents will be written to the remote manager. The path
should be different then the path of the log file specified for the remote manager itself.

event.remotemanager.logdest=<fully-qualified log file name>

Defining a Remote Configuration

In addition, the remote manager defines one or more remote configurations. A remote configuration might
apply to a single host or multiple hosts. The goal is to keep the number of configurations as small as possible
while still addressing the varying needs of your remote agents.

Here are the properties used to define a remote configuration in the remote manager’s .prop file:

1. Provide a comma-separated list of one or more hosts that this remote configuration applies to. (If not
supplied then any host (remote agent) requesting this configuration name will be allowed to retrieve the
configuration data):

event.remotemanager.configs.<configuration name>.hostnames=<string>

2. Provide a reference to a string in the commonconfigmap.Typically, your commonconfigmap entry will
have configuration data that is common to a large number of remote configurations:

event.remotemanager.configs.<configuration name>.commonconfig=<named common
config>

3. Provide a string of text that represents the properties that will be sent to the remote agent (combined with
anything specified in the commonconfigmap entry). Separate lines by a \n character.

event.remotemanager.configs.<configuration name>.config=<string>

4. If remote logging is specified, provide the port number that the remote agent will use to ship logs to this
remote manager.

NOTE: You specify remote logging by using the keyword REMOTE instead of a path name in your
logging specification.

event.remotemanager.configs.<configuration name>.logport=<port-number for
logging>

AN EXAMPLE OF A REMOTE MANAGER AGENTLESS.PROP FILE

In this example, the following agentless.prop file includes two remote configurations:
112 Collector Guide

Managing Remote Agents with Windows Retriever
 hosts that collect the following: iis log data and windows event data (shipping it back to the centralized
collector on port 5755)

 remote configuration for hosts that read the SQL Server 2000 audit log data (shipping it back to this
remote manager on port 5756.)

Both hosts use the same block of commonconfig data that specifies REMOTE in the logging setting
(implying that these remotes will ship all logs back to this remote manager).

event.remotemanager.port=9800
event.remotemanager.enabled=true
event.remotemanager.logdest=/opt/sensage/var/log/collector/remoteagents.log
event.remotemanager.configs.iisremotes.hostnames=hosta,hostb

event.remotemanager.configs.iisremotes.commonconfig=basicremoteconfig
event.remotemanager.configs.iisremotes.config=”reader1=file,c:\\iislogs\\iis*.lo
g\nreader2=windows,localhost,Administrator,password,sec\n
writer1=tcp,collector1,5755”

event.remotemanager.configs.iisremotes.logport=9900
event.remotemanager.configs. sqlserver2000remotes.hostnames=hostc,hostd
event.remotemanager.configs.sqlserver2000remotes.commonconfig=basicremoteconfig

event.remotemanager.configs.
sqlserver2000remotes.config=”reader1=sqlserver2000auditlogreader,localohst,admin
,password,1433,c:\\sensage\\SqlServerFull.trace,,,2\n
writer1=tcp,collector1,5756”

event.remotemanager.configs. sqlserver2000remotes.logport=9900
commonconfigmap.basicremoteconfig="pipelines=1000,1,60\nlogging=ERROR,REMOTE\nre
moteshell=9900,localhostOnly"

MANAGING REMOTE AGENTS WITH WINDOWS RETRIEVER

The windowsretrievershell allows you to remotely manage any agents being managed by an instance of the
HawkEye Retriever. The command is:

windowsretreivershell localhost <port-number> manageremotes <hostname|remote
configuration name|ALLREMOTES> <command> <command options>

The first parameter to the manageremotes command is one of the following:

 hostname—sends the command only to that host.

 remote configuration—sends the command to any hosts currently being managed with that
configuration.

 ALLREMOTES— sends the command to any hosts currently being managed by this host.

After specifying the first parameter you then supply whatever shell command you want to execute (plus any
parameters that it requires).

Example 1:

To get stateall output from a remotely managed host named hostA, run the following:

windowsretreivershell localhost 9999 manageremotes hostA stateall
Collector Guide 113

Chapter 4: HawkEye Retriever Configuration
NOTE: Port 9999 is the remote management port on the host you are running from,; it is NOT the remote
management port of the host you are trying to access.

Example 2:

To stop the pipelines on all hosts associated with a remote configuration named myremoteconfig, run

windowsretreivershell localhost 9999 manageremotes myremoteconfig stopall

Example 3:

To tell every host (remote agent) that is managed by this remote manager to reload its properties file (which
would force the remote agent to pick up any changes you have made to the configurations), run:

windowsretreivershell localhost 9999 manageremotes ALLREMOTES reloadpropfile CONFIRM

USING DATABASE RETRIEVERS

Using the retriever to collect data from various databases will require some considerations beyond basic
retriever setup. There are some general configuration settings that are common to either type of database
access, discussed next, and there are specific instructions for each type.

• “Using Database Retrievers”, next

• “Oracle Database Retrievers (BETA)”, on page 115

• “Password Managers for Oracle Retrievers (BETA)”, on page 115

• “SQL Server Database Retrievers”, on page 116

• “Defining a Metadata Function”, on page 117

• “Performance Considerations for SQL Server Audit Data”, on page 120

• “Maximizing SQL Server Audit Log Reader Performance (sqlserverauditlogreader)”, on page 121

General DB Retriever Considerations

All database retrievers follow the same basic mode of operation once the pipeline is established:

 Every X seconds (as defined by the pipeline polling rate for that reader) a JDBC connection is reused to
make a SQL query against the database.

 The data returned must include some extended timestamp column which the EDW can use to load the
data and to track the last record read for subsequent reads.

Database retrievers will in most cases pull all records that satisfy a given query, as such the polling interval
is best defined so that each SQL query to the database returns a reasonable amount of data. For example a
short polling interval on a quiet system would result in lots of reads of zero records, while too long a polling
interval on a very busy server could result in the retriever falling behind.

Data from the record set is sent to the writer or writers for that reader. At this point the data is just delimited
lines of text that the Collector or other writers will process appropriately.

NOTE: The zero counter in the pipelines settings is used by database retriever (SQL Retriever) to check the
trace status on the SQL Server and if the trace has stopped, an attempt is made to start it.
114 Collector Guide

Using Database Retrievers
The Oracle Database Retriever and the generic SQL Server table reader both use the SQL String Map. The
map allows you to create named pieces of SQL that can then be used in one or more readers.

You create SQL String Map Entries like this:

 sqlstringmap.<uniquename>="select <columns> from <table> where
[EXTENDEDTSCOL];"

You can create as complex a SQL query as you desire as long as the where clause includes
[EXTENDEDTSCOL]. This marker is used by the EDW to know where to insert SQL to restrict the record set.
For example the map entry:

sqlstringmap.oracle10i="select * from dba_audit_trail where [EXTENDEDTSCOL] AND
username='Scott';"

would further restrict the recordset to rows where the username was equal to the string 'Scott'

Like all readers, database reads must still define a valid writer and pipeline type. For example a minimum
agentles.prop to read SQL Server data from a table called tableA would look like this:

readersqltbla=sqlservertable,10.0.1.15,bob,bobpassword,1433,tableAsql,mytscolumn
,tableA,2,sqlserver_pipeline
sqlstringmap.tableAsql=select * from tableA where userid = 'sally'
writer=collector,50,50000000
pipelines=10000,1,60
remoteshell=9999,localhostOnly
logging=INFO,../logs/winretriever.log

This would again represent a minimal configuration. More complex environments might include other
readers, multiple pipeline types, multiple sqlstringmap entries, password managers, etc.

Oracle Database Retrievers (BETA)

Oracle Audit Logs are just Oracle tables so the same reader can be used to read either kind of data. The
important element in defining an Oracle reader is the sqlstringmap property. This value references a named
SQL String in the SQL String Map. Multiple readers can reference the same SQL String, but a configuration
might include several named SQL strings for different kinds of auditing. As an example you might define a
SQL String Map entry for reading regular Oracle audit logs on some hosts, and Fine Grained Audit Logs on
other hosts.

As with any data source you must make sure that the data you pull back from an Oracle server matches the
expected format defined in the PTL. Also bringing back fewer columns (by including more columns in your
SELECT) or fewer rows (by restricting data in your where clause) that would otherwise not pass the PTL
will greatly increase the performance and the impact of the retriever on the database.

Password Managers for Oracle Retrievers (BETA)

For Oracle Retrievers you can optionally define a password manager. The purpose of a password manager is
to periodically reset the password for the Oracle user and then track that new password in the secure
keystore on the retriever. You define a password manager with the following properties:

 maxage—An integer that indicates how old (in days) a password can be before it should be changed.

 depth—An integer specifying how many historical passwords to retain to prevent using the same
password.
Collector Guide 115

Chapter 4: HawkEye Retriever Configuration
 minpasswordlength—The minimum length of a generated password.

 maxpasswordlength—The maximum length of a generated password.

 allowablecharacters—A string that can contain any characters allowable for use in a password on that
host. Otherwise only A-Z, a-z and 0-9 are used.

For Example here is the definition of the password manager called mypm:

event.passwordmanager.mypm.maxage=30
event.passwordmanager.mypm.depth=5
event.passwordmanager.mypm.minpasswordlength=8
event.passwordmanager.mypm.maxpasswordlength=10
event.passwordmanager.mypm.allowablecharacters=$%&

This would create a password manager that tries every 30 days to generate a password between 8 and 10
characters. The password can include the $, %, and & characters in addition to any combination of letters
and numbers. The retriever will remember the last 5 passwords it created to prevent duplicates.

There is one extra property that affects all password managers:

event.passwordmanager.pollinginterval=<number of days>

This pollinginterval specifies how often the password manager should wake up to check passwords. The less
frequently the password manager runs the less system impact it will have.

SQL Server Database Retrievers

There are three types of SQL Server retrievers:

 The sqlservertable reader is used to read non-trace data contained in a table. If you are pulling non-trace
data then you must have a PTL that will properly load whatever data you are querying. You can specify a
namedsqlstring that is as complex as possible in the limits of TSQL which could pull back data from
multiple tables, views, etc. The only restriction is that the query must be able to query time ordered data
such that subsequent queries don't keep pulling back duplicate records.

 The sqlserverauditlog reader is used to collect data generated by a trace. In defining the reader you must
supply a file local to the retriever that contains a stored procedure to create the trace.

Every time the pipeline starts (or when an error has occurred reading from the pipeline) the retriever will
check if there is a running trace whose output file matches that defined in your locally defined trace file.

If the trace is not currently running, the retriever will attempt to start it, but if that fails it will attempt to
execute the stored procedure defined in your trace file and start the trace from scratch

Once the trace is running the retriever will, at every polling cycle as defined by the pipeline, connect to
the SQL Server and query back any new records in the virtual table that SQL Server provides for a
running trace.

 The sqlserver2000auditlogreader is used to collect data generated by a trace. In defining the reader you
must supply a file local to the retriever that contains a stored procedure to create the trace. To function
correctly this reader must be run on the SQL Server host as part of an HawkEye Retriever agent
installations.

Every time the pipeline starts (or when an error has occurred reading from the pipeline) the retriever will
check if there is a running trace whose output file matches that defined in your locally defined trace file.
116 Collector Guide

Using Database Retrievers
If the trace is not currently running, the retriever will attempt to start it, but if that fails it will attempt to
execute the stored procedure defined in your trace file and start the trace from scratch

Once the trace is running the retriever will, at every polling cycle as defined by the pipeline, connect to
the SQL Server and query back any new records in the virtual table that SQL Server provides for a
running trace.

At an interval specified in the agentless.prop file the retriever will stop the trace, attempt to remove
extra trace files, and then restart the trace. There are two agentless.prop entries related to this
functionality:

 A setting to control how many .trc files should be kept on the system. SQL Server numbers .trc files starting from
tracename.trc to tracename_1.trc to tracename_2.trc, etc.:

event.reader.ss2kfilemax=<number of files to keep>

 A setting to control how often (in seconds) the retriever should scan for old files (the more often you scan for files
the less efficient the process will be since it involves stopping and starting the trace):

event.reader.scrubfilesinterval=<number of seconds>

The trace file you define should follow one of the included examples, SQLServer2000.trace or
SQLServerFull.trace. The important points are:

The SET @traceFileLocation line must reference a location on the SQL Server host that is writable by
SQL Server. In the case of SQL Server 2000 the account that is used to run the HawkEye Retriever agent
must also have write access to that directory since the retriever will need to be able to remove .trc files as
needed (again only for SQL Server 2000) .

The @tracefilelocation can often be determined programmatically (depending on domain name, etc.) but
any trace definition must compute the @tracefilelocation from a fixed variable that must be declared as
@TRACE_BASEFILENAME. For example, regardless of how you compute @tracefilelocation, you
must at minimum declare it like this:

DECLARE @traceFileLocation NVARCHAR(245)
DECLARE @TRACE_BASEFILENAME NVARCHAR(245)
SET @TRACE_BASEFILENAME = ’sqlauditfile’
SET @traceFileLocation = ’c:\trace\’ + @TRACE_BASEFILENAME

Use the value of @TRACE_BASEFILENAME to ensure the correct trace is being analyzed.

NOTE: @TRACE_BASEFILENAME should be a name that is unique from other traces on the system.

SetEvent calls that are used to turn on polling for specific events and columns must match the PTL used to
collect the data..

For Sql Server 2000 trace files the sp_trace_create call should NOT include the @filecount variable.
SqlServer 2000 does not have the ability to automatically clean up older .trc files (which is why the
sqlserver2000auditlogreader must reside on the windows host itself to do the cleanup), subsequent versions
will clean out older .trc files based on the @filecount option passed to sp_trace_create.

Defining a Metadata Function

In order to maximize SQL Server reader performance for very large traces, the reader needs to know
information about the trace files that exist in the trace. To provide the reader with this information, you must
define a metadata function on the server (which you then reference in the reader definition). Refer to the
example function and reader definition below.
Collector Guide 117

Chapter 4: HawkEye Retriever Configuration
<code formatting.>
/*

This is an example of the function used to track trace file metadata for a SQL
Server Audit Log reader.

If you specify a function name in your reader definition then a function must
exist on the server similar to this example.

The function takes two argument:

The path to where the trace file reside
The name of the trace.

The function must return a table with 4 columns: fileName, size, lastModified,
and error

Each row should have either a non-null error value or a filename, file size in
bytes, and a date the trace file was last modified.

This information allows SQL Server to make sure it is only querying relevant
trace files and prevents the reader from consuming too much data on very large
traces.

*/
USE [master]
GO
/****** Object: UserDefinedFunction [dbo].[getTraceFiles] Script Date: 12/30/
2013 3:04:59 PM ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE FUNCTION [dbo].[getTraceFiles](@folder nvarchar(260),@tracefilename
nvarchar(260))
RETURNS @TraceFileMetaData TABLE
(
[fileName] VARCHAR(260),
[size] BIGINT,
[lastModified] DATETIME,
[error] VARCHAR(500)
) AS
BEGIN
DECLARE @handler INT, @objApp INT, @objError INT,@strErrorMessage NVARCHAR(500),
@Command VARCHAR(1000),@objFolder INT,@objFolderItems INT,@moddate datetime,
@fileCount INT,
@fileName VARCHAR(260), @filePath VARCHAR(260), @fileSize bigint, @objItem INT

SELECT @strErrorMessage = 'Opening Shell.Application'
EXECUTE @handler = sp_OACreate 'Shell.Application', @objApp OUT
IF @handler = 0
SELECT @objError = @objApp, @strErrorMessage = 'Opening NameSpace Object',
@command = 'NameSpace("+@folder+")'
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objApp, @command,
@objFolder OUT
IF @objFolder IS NULL
BEGIN
SELECT @strErrorMessage = 'ERROR ' + @strErrorMessage
INSERT INTO @TraceFileMetaData(error) SELECT @strErrorMessage
118 Collector Guide

Using Database Retrievers
END
ELSE
BEGIN
SELECT @objError = @objFolder,
@strErrorMessage = 'Getting count of matching files"',
@command = 'Items.Count'
END
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objfolder, @command,
@fileCount OUT
IF @handler = 0
SELECT @objError = @objFolder,
@strErrorMessage = 'Getting list of matching files',
@command='items()'
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objFolder,
@command, @objFolderItems OUTPUT
SELECT @fileCount = @fileCount - 1
WHILE @handler = 0 AND @fileCount >= 0
BEGIN
IF @handler = 0
SELECT @objError = @objFolderItems,
@strErrorMessage = ' getting file object',
@command='item(' + CAST(@fileCount AS VARCHAR(32))+')'
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objFolderItems,
@command, @objItem OUTPUT
IF @handler = 0
SELECT @objError = @objItem,
@strErrorMessage = ' getting file properties'
IF @handler = 0
BEGIN
EXECUTE @handler = sp_OAMethod @objItem,
'path', @filePath OUTPUT
END
IF @handler = 0
BEGIN
EXECUTE @handler = sp_OAMethod @objItem,
'name', @fileName OUTPUT
IF LEFT(@fileName,LEN(@tracefilename)) != @tracefilename
BEGIN
SELECT @fileCount = @fileCount - 1
CONTINUE
END
END
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objItem,
'ModifyDate', @moddate OUTPUT
IF @handler = 0
EXECUTE @handler = sp_OAMethod @objItem,
'Size', @fileSize OUTPUT
INSERT INTO @TraceFileMetaData ([fileName], size, lastModified)
SELECT @filePAth, @fileSize, @moddate
IF @handler = 0 EXECUTE sp_OADestroy @objItem
SELECT @fileCount = @fileCount - 1
END
IF @handler <> 0
BEGIN
INSERT INTO @TraceFileMetaData(error) SELECT @strErrorMessage
Collector Guide 119

Chapter 4: HawkEye Retriever Configuration
END
EXECUTE sp_OADestroy @objFolder
EXECUTE sp_OADestroy @objApp
RETURN
END
<end of code formatting>

NOTE: Among several ways, the example above provides just one way to implement the MetaData
function in SQL Server. As long as the data is returned with the correct number of rows based on the inputs,
you can implement this function in line with your security practices.

Performance Considerations for SQL Server Audit Data

SQL Server traces comprise X number of files that are each Y megabytes in size, where X and Y are
determined by the settings in your trace definition. For example, assume these settings are in the supplied
trace:

SET @maxfilesize = 10
SET @filecount = 10

These settings mean that the trace will, when full, span 10 files of 10MB each. For higher volume servers
you might need upwards of 30-50GB of trace data or more kept on the system. These trace files are written
sequentially so in the above example a fully-filled trace might have 10 files each of 10MB in size. Unless
you have specified a Metadata function, as explained in the previous section, then each query to the system
will attempt to pull the entire trace into memory on the SQL Server host even if your query only needs the
most recently generated records. Because of this design, here are some general guidelines to keep your
system performing with minimal impact to your SQL Server instances:

IF YOU USE A METADATA FUNCTION:

The default polling interval of 1000ms is much too fast. Depending on volume and your requirements in
getting into the retriever, you will want to poll as infrequently as possible while still meeting your goals.

A simple query to determine (roughly) how fast data is coming in would be:

select count(startTime) as recordCount, max(startTime) as maxTime,
min(startTime) as minTime from FROM
sys.fn_trace_gettable('c:\trace\mytrace.trc',1) where startTime is not null;

(where 'c:\trace\mytrace.trc' is the appropriate file location on your system)

Comparing the record count with the delta between minTime and maxTime provides a rough idea of how
many events per second were being generated. The size of the event will vary depending on the trace
definition, but if there are > 1 .trc files in your trace directory, you can safely divide the size of the first file
by the number of records in recordCount to get an average event size.

Once you have a sense of how fast data is coming in, simply adjust the maxRecordPerPoll value and the
polling interval to make sure you are capturing data faster than SQL Server is generating it. For example, if
you are generating 10K events per second, then you might want to poll for 50K records every 3000ms. For
lower volume servers this exercise is less important than on higher volume boxes.

Be sure to strike a balance between @maxfilesize and @filecount; you do not want either value to be very
large compared to the other. For example, setting @filecount to 10K with @maxfilesize of 1MB will create
so many trace files that Windows will have trouble managing them. Conversely, setting the @filecount to 3
with a @maxfilesize of 30GB will still cause the reader to make memory intensive queries because
querying a single .trc file will require SQL Server to pull 30GB of data into memory.
120 Collector Guide

Using Database Retrievers
A good rule of thumb (once you have determined how much trace data you need to keep on the machine) is
to divide the values between maxfilesize and filecount up evenly until you reach maxfilesizes of ~100MB, at
which point just start increasing only the filecount to reach your target trace size.

IF YOU CANNOT USE/DEFINE A METADATA FUNCTION:

Without metadata information any query to the trace is required to pull the whole trace into memory. This
means that each query will have a significant performance impact on servers with large traces. To reduce
impact:

 Make your polling interval as long as possible since this will reduce the amount of overhead to SQL
Server

 Consider reducing the values for @maxfilesize and @filecount so that the trace is of a more manageable
size.

NOTE: Gaps in SQL Server traces:

For various reasons SQL Server can experience a 'gap' (usually in response to system problems) in the trace
files. For example, there might be a sqlauditfile_10.trc and a sqlauditfile_12.trc but sqlauditfile _11.trc
appears to be missing. The reader will attempt to skip over any gaps it encounters but this is an error
condition that should be fixed by SQL Server Administrators. The following is the normal route to fixing
this error condition:

1. Stop the trace.

2. Delete all the .trc files for that trace name.

3. Restart the trace.

Maximizing SQL Server Audit Log Reader Performance (sqlserverauditlogreader)

By default, sqlserverauditogreader has no knowledge of how the trace is actually stored on disk. This can
cause performance issues as the trace grows larger (over 10GB) because each query must in effect do a table
scan over the entire trace even though the most recent data is most likely the one of interest.

To prevent this performance impact there is an optional flag in the reader definition referred to as
SQLServer_traceFileMetaDataFunctionName.sql. This value should match the name of a function on
SQL Server instances that take two inputs (a string that is the directory where trace files are stored and a
string that is the name of the trace) and returns a table with the following four columns:

 fileName (a String that is the full path to a trace file)

 size (a bigint that is the trace file’s size in bytes)

 last Modified (a timestamp that is the last time the trace file was written to)

 error (normally a string set to null, but if errors occur it can pass back an error string to aid analysis)

SQLServer_traceFileMetaDataFunctionName.sql is included as an example of how the function could be
written. The function can be called like this:

SELECT * FROM [(dbo].[getTraceFiles] (’c\trace’,’sqlauditfile") order by
lastmodified;

The following list of rows is returned for each .trc file that the trace has created:
Collector Guide 121

Chapter 4: HawkEye Retriever Configuration
This function ensures that only relevant .trc files are searched, greatly reducing the impact of the reader.

Performance Details and Recommendations for Configuration

For SQL Server Audit Log Reader the following calculation was used to determine performance for "max"
file size, for "n" files (n max and n avg) retrieved in time "t":

 Maximum file size tested: 100 MB

 Maximum number of files tested: 300 files

 The "avg" file size tested for "n" files retrieved in time "t" was performed on different file size trace files:
1MB, 10MB, 30MB & 100MB

The retriever pulling rate should be larger than the SQL Server audit log arrival rate .Otherwise retriever will
fall behind and there is chance to miss trace data that gets deleted by SQL Server when files are rolled over
as time passes. You can derive the recommended configuration by answering the following questions.

 How many records in a 100MB size log trace file?

 How long does it take to fill a 100MB log trace file?

For example, if there are 60,000 records in a 100MB size log trace file which gets filled in 3 minutes that
means that there are 333 log events created per second on the SQL Server. So the retriever should be
configured to fetch more than 333 records per polling cycle. For example, if the retriever polling cycle is 10
seconds then number of records to pull would be 3330.

fileName Size lastModified Error

C:\trace\sqlauditfile_2.trc 104857600 2013-11-12 14:23:34.000 NULL

C:\trace\sqlauditfile_3.trc 104857600 2013-11-12 14:23:08.000 NULL

C:\trace\sqlauditfile_4.trc 104857600 2013-11-12 14:29:34.000 NULL

C:\trace\sqlauditfile_5.trc 104857600 2013-11-12 15:41:12.000 NULL
122 Collector Guide

CHAPTER 5

Configuring Netflow Receiver for Data Collection and
Analysis

The Netflow Receiver refers to the HawkEye AP process of collecting and analyzing network data, based on
Netflow processing tools such as nfcapd and nfdump. These programs are part of the NFDUMP flow-tools
set that processes data in Netflow’s flow-record format (supported versions include: v1, v5, v7, v9, and
IPFIX), as well as a limited set of sflow. The NFDUMP fllow-tools are IPv6 compatible. Included also is
support for CISCO ASA (NSEL) and CISCO NAT (NEL) devices, which export event logging records as v9
flows.

This chapter contains these sections:

 “How Netflow Receiver Works”, next

 “Netflow Receiver Security Requirements”, on page 124

 “Configuring Netflow Receiver”, on page 124

 “Filtering Netflow Data for Display and Analysis”, on page 131

 “Converting Flow-Tools Netflow Data”, on page 134

 “Cleaning up old Netflow Data (nfclean.pl)”, on page 134

 “Investigating Netflow Receiver Failures”, on page 134

HOW NETFLOW RECEIVER WORKS

Netflow provides Network Managers a detailed view of IP traffic flows on the network. Routers and Layer3
switches act as sensors pushing netflow data, with each router representing network traffic flow based on
source and destination IP address, source and destination port, Layer 3 protocol type, and type of service.

Network Receiver requires one nfcapd process to capture data for each netflow stream in your
configuration. The Netflow client uses nfcapd to capture data from Netflow sources and forwards that data
on to the Netflow Receiver (Netflow server processes) running on the Collector System.

Each router that will store Netflow data must be configured to export that data. The nfcapd program
performs a 60-second file rotation, preventing excessive system load and offering reliability in the event of a
network outage or a DDOS attack overload.

A Central processing node runs modified nfdump program(s) that pick up the incoming (new) files through
a daemon process that establishes an ssh connection (shared key) to the central processing node. The new
data is processed into streamed output through a program similar to the SNMP preprocessor. This program
forwards the network data to the parser and also bundles that data into large files for Collector consumption.
Collector Guide 123

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
If the connection fails, the daemon process retries until the connection is reestablished. Data remains in files
and is not lost. To prevent data loss, the remote connection confirms each incoming chunk of data. The ssh
program is used to transmit data in an encrypted and authenticated manner.

Figure 5-1: Netflow Receiver Configuration

When nfdump runs periodic queries against recently loaded data. and aggregates the result data, storing it in
the EDW, the TrickleFeed Load can be enabled so that the data can be ingested faster. For details, see the --
trickle option in Chapter 3: Loading, Querying, and Managing the EDW of the Administration Guide.

The streaming environment allows for real-time alerts on the data and insertion into the Collector either
through sylogng or a variant of the HawkEye AP preprocess program. Data is transmitted to the TCP Port
configured in the Config file.

The captured files will be stored in the directory specified in the config.file and the files can be printed with
the NFDump flow-tools set.

NETFLOW RECEIVER SECURITY REQUIREMENTS

The tools comprising the Netflow Receiver do not require root privileges, unless you are using the following
port: <1024. No access control mechanism exists in nfcapd. It is assumed that the Network Administrator
has established host level security to filter the proper IP addresses.

CONFIGURING NETFLOW RECEIVER

To configure each data source in your Netflow Receiver configuration or specify options for data display
output, you use the client and server .prop files, which are described in this section.

This section contains the following topics:

 “Configuring Network Sources to Export Netflow Data”, next

 “Specifying Netflow Receiver Output Formats”, on page 126
124 Collector Guide

Configuring Netflow Receiver
 “Printing IPv6 Records”, on page 129

 “Capturing Netflow Data (nfcapd)”, on page 129

 “Configuring Netflow Data Display and Analysis (nfdump)”, on page 130

 “Reading and Converting Flow-Tools Data (ft2nfdump)”, on page 130

 “Aggregating Flows”, on page 130

 “Specifying and Displaying Top N Statistics”, on page 133

 “Anonymizing Flows”, on page 133

Configuring Network Sources to Export Netflow Data

Configure each network data router to export Netflow data. For details, see the relevant documentation for
your model and the devices that your are configuring.

Sample Configuration

The following is a commonly-used generic CISCO sample with global configuration commands to enable
Netflow on an interface:

interface fastethernet 0/0
ip route-cache flow

In this example, the following global configuration commands are issued to tell the router to send (export)
the netflow data:

ip flow-export
ip flow-export version 5

Note that the version of Netflow you are using must be specified.

Specify at what interval in minutes between 1-60 that you want to divide the long-lived flows. Typically,
you will specify long-lived flows be broken into 5-minute segments, as in:

ip flow-cache timeout active 5

Note that the number of minutes chosen should be equal or less than the file rotation period, which is
typically 5 minutes. The file rotation period refers to when Netflow Receiver creates a new file for incoming
netflow data storage. For details, refer to “Capturing Netflow Data (nfcapd)”, on page 129.

On Catalyst 6500/7600 routers, you must make sure to enable NDE (Netflow Data Export) in addition to the
normal Netflow export. NDE is the hardware variant of Netflow export on these routers. Here is a
configuration example:

mls flow ip interface-full
mls flow ipv6 interface-full

mls nde sender version 5

Note that IPv6 NDE isn’t implemented yet, but it can still be useful to be able to look at the "live" flows with
"show mls netflow ipv6".
Collector Guide 125

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
CONFIGURATION SETTING CONSIDERATIONS

Consider the following when determining your Netflow Receiver configuration settings:

1 On a busy router, consider aggressively timing out small flows as reflected in these settings:

mls aging fast time 4 threshold 2
mls aging normal 32
mls aging long 900

In the example, you still provide the "traditional" Netflow configuration noted at the beginning of this
section, which includes "ip flow ingress" or "ip route-cache flow" on every interface. This allows you to
view "software-switched" flows such as those that go to the router itself. It is assumed that this is the only
traffic that you are viewing.

2 Netflow versions v5 and v7 have 32-bit counter values. The number of packets or bytes may overflow this
value, within the flow-cache timeout on busier routers. To prevent overflow, you may consider reducing
the flow-cache timeout to lower values. All Nfdump flow-tools use 64-bit counters internally, which
means all aggregated values are correctly reported.

Figure 5-2: Netflow Receiver Filtering

For more details on Netflow Receiver commands, refer to the Netflow website for a full description of each
command.

Specifying Netflow Receiver Output Formats

The NFDump flow-tools has four fixed output formats: raw, line (default), long, and extended. The default
format is line. You may, however, specify any desired output format using the custom format fmt.

The following is a description of each format type.
126 Collector Guide

Configuring Netflow Receiver
RAW FORMAT

The raw format displays each record in multiple lines and prints any available information in the record. The
record printed is netflow version independent, but may contain different additional fields depending on the
source.

This format is rarely used, but it contains all information available for the record.

Here is an example of the Flow Record in Raw format:

Flags = 0x00000000

 size = 52
 mark = 0
 srcaddr = 36.249.80.226
 dstaddr = 92.98.219.116
 First = 1125377992 [2005-08-30 06:59:52]
 Last = 1125377992 [2005-08-30 06:59:52]
 msec_first = 338
 msec_last = 338
 dir = 0
 tcp_flags = 0
 prot = 17
 tos = 0
 input = 5
 output = 3
 srcas = 1299
 dstas = 0
 srcport = 3040
 dstport = 1434
 dPkts = 1
 dOctets = 404

LINE FORMAT

To display one line at a time, use this command:

-o line

Following is the default format with one netflow record per line specified:

Date flow start Duration ProtoSec IP Addr:Port Dat IP Addr:Port PacketsBytes Flows
2005-08-30 06:59:52.338 0.001 UDP 36.249.80.226:3040 -> 92.98.219.116:1434 1 404 1

The date and duration of the flow are provided in millisecond resolution.The number of flows is always 1
unless flows are aggregated. For details on Aggregation, see “Aggregating Flows”, on page 130.

LONG FORMAT

The long format displays additional information such as TCP flags, Type of Service (Tos), etc.

To display the long format on each line, use this command:

-o long
Collector Guide 127

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
Following is a long format example with the additional information displayed:

Date flow start Duration Proto Sec IP Addr:Port Dat IP Addr:Port Packets Bytes Flows
2005-08-30 06:59:52.338 0.001 UDP 36.249.80.226:3040 -> 92.98.219.116:1434 .AP.SF 1 404 1

EXTENDED FORMAT

The extended format contains format in addition to the long format which includes the following
information: pps (packet per second), bps (bits per second), and bps (bytes per packets). This additional
information is calculated and displayed for each record.This format provides the most information on each
line.

To display the extended format, use this command:

-o extended

Following is an extended format example with the additional information displayed and a time window of
Aug 30 2005 06:53:53 - Aug 30 2005 06:54:56.

ADD THIS IN

CUSTOM OUTPUT FORMAT

The custom output format is the most flexible format since it specifies how the output looks. The output
format is defined using element tags as well as plain ASCII text. The following is a table of predefined
element tags:

For example, to customize the -o long format you can enter the following predefined elements on the
command line:

-o "fmt:%ts %td %pr %sap -> %dap %pkt %byt %fl"

Tag Description Tag Description

%ts Start time - first seen %in Input Interface num

%te End time - last seen %out Output Interface num

%td Duration %pkt Packets

%pr Protocol %byt Bytes

%sa Source Address %fl Flows

%da Destination Address %pkt Packets

%sap Source Address:Port %flg TCP Flags

%dap Destination Address:Port %tos Tos

%sp Source Port %bps bps - bits per second

%dp Destination Port %pps pps - packets per second

%sas Source AS %bpp bps - bytes per package

%das Destination AS
128 Collector Guide

Configuring Netflow Receiver
Printing IPv6 Records

IPv6 addresses require more space for printing than IPv4 addresses. In order to keep the output clearly
arranged, IPv6 addresses are compacted in normal output as shown below:

Data flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets
2006-03-09 11:55:03.900 0.000 ICMP6 2005:62..2c:9c10.0-> 2005:620:0:c000::d.0 1

Bytes Flows
104 1

The middle part of each IPv6 address will be truncated, but should allow enough of the address to identify
the record. If the full length of the IPv6 address is required, add the digit "6" to the output format. Examples
are:

-o line6
-o long6
-o extended6

or you may add the option -6 as in:

-o extended -6

Here is the output with the full address displayed:

Data flow start Duration ProtoSrc IP Addr:Port Dst IP Addr:Port Packets
2006-03-09 11:55:03.900 0.000 ICMP62005:620:0:8:203:baff:fe2c:9c10.0-> 2005:620:0:c000::d.0 1

(Continued)
Bytes Flows
104 1

Capturing Netflow Data (nfcapd)

To enable Netflow Receiver to capture netflow data, set up nfcapd (netflow capture daemon) to read
netflow data from the network and store the data into files. Specify the ports that nfcapd listens on to
capture the netflow data:

nfcapd stores all data to disk allowing for a storage process that is separate from analysis The data is
organized in a time-based manner. Every n minutes (typically set for 5 minutes), nfcapd rotates and renames
the output file with the following timestamp interval format: nfcapd.YYYYMMddhhmm; for example, the
timestamp value nfcapd.200407110845 contains data from July 11, 2004 at 08.45 onward. Based on a 5-
minute interval, this results in 288 files per day.

You can specify analysis for this data on a single file, or by concatenating several files for a single run. The
output is either ASCII text or binary data, which when saved into a file, is ready again for processing with
the NFDump flow-tools set.

In addition, several netflow data sources are specified from locations such as router1, router2 and so on as
in the following sample organizational format:

/flow_base_dir/router1
/flow_base_dir/router2

In the above example, router1 and router 2 are sub-directories of the flow_base_dir.
Collector Guide 129

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
For each of the netflow sources, you start an nfcapd process as in the examples below:

/nfcapd -w -D -l/flow_base_dir/router1 -p 23456
/nfcapd -w -D -l/flow_base_dir/router2 -p 23457

Configuring Netflow Data Display and Analysis (nfdump)

Nfdump (Netflow dump), part of the NFDump flow-tools set, provides the display and analysis of netflow
data. It reads the data for display from files stored by nfcapd and creates lots of top N statistics of flows, IP
address, ports, etc., all in the order that you specify. For details on specifying the order, see “Specifying and
Displaying Top N Statistics”, on page 133.

Both nfdump and nfcapd work in conjunction with ft2nfdump, described below, to allow for storage and
analysis of netflow data.

Reading and Converting Flow-Tools Data (ft2nfdump)

The ft2nfdump program is a flow-tools converter for reading, converting and storing netflow data, created
with the flow-tools package. It works either as a pipe filter or reads flow-tools data format directly from a
specified file or from stdin in a chain of flow-tools commands, converting the data into nfdump format for
NFDump flow-tools processing.

The ft2nfdump program lets you analyze netflow data from the past as well as to track specified traffic
patterns continuously. You can analyze netflow data back to a specified length of time in the past, limited
only by the disk space that holds your data. The tools, which are optimized for efficient filtering speed, use
syntax with filter rules that are pcap-like (similar to the widely-used tcpdump).

Aggregating Flows

You can aggregate flows by specifying the -a option on the command line. By default, flows that have an
identical protocol, source, and destination IP address as well as identical source an destination ports are
aggregated. You can change the default behavior by specifying a different aggregation scheme using the
following syntax:

[-A <scheme>]

where scheme can be any combination of scrip (source IP address), dstip (destination IP address), srcport
(source port), dstport (destination port) in a comma-separated list.

Examples:

The following shows a sample of the default report in which 10 flows have been aggregated as indicated in
the last column of the output.

Data flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets
2005-03-30 06:59:54.324 250.498.TCP 63.183.112.97.9050-> 146.69.72.180:51899 12

(Continued)
Bytes Flows
2198 10

The following example aggregates flows with the same source IP address and destination address using the -
A option:
130 Collector Guide

Filtering Netflow Data for Display and Analysis
-a -A scrip,dstport

The output shows flows aggregated by source IP address and destination. The number of flows that were
aggregated for a given source IP address and destination are indicated in the last column of the output.

Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes pps
2005-08-30 06:59:25.137 213.697 TCP 32.249.32.48:0 -> 0.0.0.0:135 0 23 1104 0
2005-08-30 06:59:24.563 330.110 TCP 49.112.228.156:0 -> 0.0.0.0:1433 0 47943 2.2M 145
2005-08-30 06:59:54.322 201.857 TCP 148.190.164.126:0 -> 0.0.0.0:36129 0 10 460 0
2005-08-30 06:59:54.257 48.768 TCP 92.90.57.46:0 -> 0.0.0.0:59501 0 5 230 0

(continued)
bps Bpp Flows
4‘ 48 13
55769 48 27864
18 46 6
37 46 2

NOTE: All other elements, not aggregated, are set to 0.

Aggregating Flows on a Subnet Level

You can also aggregate flows on a subnet level. To create appropriate masks for aggregation, you must
specify the protocol version with the address field, as in:

-a -A scrip4/24, dstport

The above example aggregates flows on a /24 IPv4 base and destination port.

FILTERING NETFLOW DATA FOR DISPLAY AND ANALYSIS

The NFDump flows-tools set contains a powerful and fast filter engine. All flows are filtered before they are
processed through a program known as nfprofile. This program reads the netflow data from the files stored
by nfcapd and filters the Netflow data according to the filter sets (profiles) you specify. nfprofile stores the
filtered data into files for later use. If no filter is provided, all flows are processed.

A filter is specified as the last argument enclosed in single quotes (’)or in a specified file using the -r
option.

Any line in the file starting with a pound sign (#) is treated as a comment; filter syntax is similar to the
widely-used tcpdump syntax.

As shown in this template sample file, any filter consists of one or more expression (expr) and you can link
any number of expr together:

expr and expr, expr or expr, not expr, (expr).
 expr can be one of the following filter primitives:
 protocol version
 inet or ipv4 for IPv4 and inet6 or ipv6 for IPv6 flows only
 protocol
 TCP, UDP, ICMP, GRE, ESP, AH, RSVP or PROTO <num> where num is the
protocol number.
 IP address
 [SourceDestination] IP a.b.c.d or
 [SourceDestination] HOST a.b.c.d with a.b.c.d as any valid IP address.
SourceDestination may be omitted.
 SourceDestination
 defines the IP address to be selected and can be SRC, DST or any
combination of SRC and|or DST. Omitting SourceDestination is equivalent
Collector Guide 131

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
 to SRC or DST.
 network
 [SourceDestination] NET a.b.c.d m.n.r.s
 [SourceDestination] NET a.b.c.d / num with a.b.c.d as network number,
m.n.r.s as netmask or num as maskbits respectively. The network
 may be given as a.b, a.b.c, where a B or C-class equivalent netmask is
assumed.
 Port
 [SourceDestination] PORT [comp] num with num as a valid port number.
If comp is omitted, '=' is assumed.
 Interface
 [inout] IF num with num as an interface number.
 inout
 defines the interface to be selected and can be IN or OUT.
 Flags
 flags tcpflags with tcpflags as a combination of:
 A ACK.

S SYN.
 F FIN.

R Reset.
P Push.
U Urgent.
X All flags on.

Note that the ordering of the flags is not relevant. Flags not mentioned are ignored. In this continuation of
the sample filter template the syntax to retrieve flows with only the tcpflag SYN (flag option S) is noted
below:

flag set, use the syntax 'flags S and not flags AFRPU'.
 TOS Type of service: tos value with value 0..255.
 Packets
 packets [comp] num [scale] to specify the packet count in the netflow record.
 Bytes
 bytes [comp] num [scale] to specify the byte count in the netflow record.
 Packets per second: Calculated value.
 pps [comp] num [scale] to specify the pps of the flow.
 Duration: Calculated value
 duration [comp] num to specify the duration in milliseconds of the flow.
 Bits per second: Calculated value.
 bps [comp] num [scale] to specify the bps of the flow.
 Bytes per packet: Calculated value.
 bpp [comp] num [scale] to specify the bpp of the flow.
 AS [SourceDestination] AS num with num as a valid AS number.
 scale Scaling factor. Maybe k m g. Factor is 1024
 comp The following comparators are supported:

=, ==, >, <, EQ, LT, GT . If comp is omitted, '=' is assumed.
132 Collector Guide

Filtering Netflow Data for Display and Analysis
Examples:

The following are filter syntax examples:

nfdump -r /and/dir/nfcapd.200407110845 -c 100 ’tcp and (src ip 172.16.17.18 or dst ip 172.16.17.19) ’
nfdump -r /and/dir/nfcapd.200407110845 -A srcip,dstport ’in if 5 and net 10.0.0.0/24 and not host
10.0.0.1 and bps > 10k and duration <100 and dst port 1433’

Specifying and Displaying Top N Statistics

The nfdump programs provides a number of statistics, which you can request by supplying one or more -s
arguments in the following syntax:

[-n <num>] -s type[/orderby <order>]

whrere:

num is the number of lines displayed in the output. Top N defaults to 10 unless -n <num> is specified. -n
0 means an unlimited number, unless the -s record is specified as <type>, which limits <num> to 1000.

type can be one or more of the following for the same run:

<order> specifies the order that the statistics is displayed, which can be by flows, packets, bytes, pps, bps,
or bpp. You may specify more than one orderby, which results in the same statistic, but ordered differently.
If you do not specify orderby (which is optional), statistics by default are ordered by flows.

Anonymizing Flows

You can make IP addresses in flows anonymous by specifying the following option:

-K <key>

Valid Types Description

record Statistic about aggregated netflow records
Note: This type can be formatted according to the available output formats
specified with the -o option. For details, see ????

srcip Statistic about source IP addresses

dstip Statistic about destination IP addresses

ip Statistic about any (source or destination) IP addresses

srcport Statistic about source ports

dstport Statistic about destination ports

port Statistic about any (source or destination) ports

srcas Statistic about source AS numbers

dstas Statistic about destination AS numbers

as Statistic about any (source or destination) AS numbers

inif Statistic about input interface numbers

outif Statistic about output interface numbers

if Statistic about any (input or output) interface numbers

proto Statistic about protocol numbers
Collector Guide 133

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
where:

<key> is either a 32-character string or a 64-digit hexidecimal string starting with 0x.

IP addresses are anonymized before they are printed or saved to file. This means that the filter applies to the
original IP address.

NOTE: nfdump uses the Crypto-PAn module to anonymize IP addresses. For more details on Crypto-PAn,
refer to the following website: http://www.cc.gatech.edu/computing/Telecomm/cryptopan

CONVERTING FLOW-TOOLS NETFLOW DATA

The Flow-tools Converter reads flow-tools data either from stdin or from a given file specified with the -r
option. It converts the data into nfdump format and writes nfdump format to stdout. Use the following
syntax to convert a file:

ft2nfdump -r<flow-tools-file> | nfdump -w <nfdump-file>

You can supply any other nfdump command line switches to directly process flow-tools data with nfdump.

CLEANING UP OLD NETFLOW DATA (NFCLEAN.PL)

A sample script is available to clean up old Netflow data. You may specify that this script run every hour or
so.

INVESTIGATING NETFLOW RECEIVER FAILURES

If you need to troubleshoot a Netflow Receiver failure, you may instead want to specify logging at a high
verbosity level to track down issues. You will then see log errors such as: permission denied while accessing
files, error output from ssh and the like, and details of files received and transferred.

mkdir /tmp/mylogs

Edit the .prop file and set:

logging.path=/tmp/mylogs
logging.level=DEBUG

Restart the client or server; detailed logging is generated to help track down any issues.

SAMPLE NETFLOW RECEIVER CONFIGURATION FILES

This section contains sample configuration files for the Netflow client and server. Refer to “Configuring
Netflow Receiver”, on page 124.

Sample netflow_client.prop Configuration File

Logging directory, if specified log files are rotated once per day, with
#'today.log' containing current log data.
Otherwise file logging is disabled:
#logging.path=/tmp/netflow_client_logs
134 Collector Guide

Sample Netflow Receiver Configuration Files
logging.path=

What is the least priority message we log?
DEBUG
INFO
WARNING
ERROR
logging.level=INFO

1 - enable logging to syslog, 0 - disable:
logging.syslog=1

our pid/lock file
run.pid=/tmp/netflow_client.pid

IMPORTANT!
This value must be unique for each netflow client!
this is appended to file names to prevent collisions. It must also
be a simple legal file name component. If this is not unique data
loss will result.
netflow.clientId=example1

This value is the econds between file rotation. For real time use you probably
want to leave this at 1 or a low number of seconds
This will be the nfcapd -t option
If your nfcapd is unpatched, this will be automatically adjusted to 60 seconds
minimum.
netflow.rotate=1

netflow spool directory
This will be the nfcapd -l option
netflow.spool=/tmp/netflow_client_spool

nfcapd listen port number
This will be the nfcapd -p option
netflow.port=8888

IMPORTANT NOTE:
Netflow data is often sent via UDP which is lossy, especially over
WAN connections. It is strongly recommended that the netflow_client
software reside at the same facility as the netflow source(s) feeding it.
UDP packet loss over a WAN will result in substantial loss of flow
information.
This will be especially true during bursts of activity such as a DDOS attack, #
or network scan.

If the client is running on a different machine from netflow_server,
use the ssh command to connect to the netflow server machine and run the
netflow receiver program, -C (compression) is recommended for WAN use.
-- CHANGE 127.0.0.1 TO YOUR REAL COLLECTOR MACHINE --
netflow.ssh=ssh -C 127.0.0.1 /opt/sensage/bin/netflow_receiver /opt/sensage/etc/
netflow/netflow_server.prop

-- OR --

If the client is running on the same machine as the netflow_server,
move files directly from the client spool to the server spool when ready.
Both client and server directories must reside on the same file system.
This must match the 'netflow.spool' entry in the netflow_server
Collector Guide 135

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
configuration file.
netflow.serverSpool=/tmp/netflow_server_spool

Based on the nfcapd command line, netflow_client will add the -l -t and -p
options depending on our options
netflow.nfcapd=/opt/sensage/bin/nfcapd

Sample netflow_server.prop Configuration File

Logging directory, if specified log files are rotated once
per day, with 'today.log' containing current log data.
Otherwise file logging is disabled:
#logging.path=/tmp/netflow_server_logs
logging.path=

What is the least priority message we log?
DEBUG
INFO
WARNING
ERROR
logging.level=INFO

1 - enable logging to syslog, 0 - disable:
logging.syslog=1

our pid/lock file
run.pid=/tmp/netflow_server.pid

incoming netflow queue directory
netflow.spool=/tmp/netflow_server_spool

path and any additional arguments for nfdump
we will add a -r with a directory of files for each call we make
netflow.nfdump=/opt/sensage/bin/nfdump -o "fmt:%ts %te %td %pr %sap -> %dap %sas
%das %in %out %flg %tos %bps %pps %bpp %pkt %byt %fl" -q

File destination example 'myfile'

File name for output file if dest.type is 'file'.
Several replacement options are available:
%S if present is replaced by the current epoch second
%L if present is replaced by the local YYYYMMDDhhmmss
%G if present is replaced by GMT YYYYMMDDhhmmss
Files while being written have a .wrk extension added to the end
they are renamed to the path name when done.
dest.myfile.path=/tmp/netflow_collector_logs/netflow%L.log

seconds between file rotations
dest.myfile.rotate=600

type file
dest.myfile.type=file

TCP destination example 'myparser'

address
dest.myparser.address=127.0.0.1:5014

type
136 Collector Guide

Sample Netflow Receiver Configuration Files
dest.myparser.type=tcp

output queue size in bytes, should be large to prevent data loss during
a transient network outage or burst.
dest.myparser.queue=10000000
Collector Guide 137

Chapter 5: Configuring Netflow Receiver for Data Collection and Analysis
138 Collector Guide

CHAPTER 6

Configuring Common Event Format (CEF) Forwarder

The HawkEye AP CEF Forwarder provides the means to convert HawkEye AP event data to the CEF format
and forward this data to ArcSight for real-time processing. The Forwarder is installed with a standard
HawkEye AP product installation. Note that the sensageCef init script is installed in the same location as
other HawkEye AP product init scripts, in the etc/init.d directory.

After configuring CEF, the service must be manually configured to start when the system boots. The sample
configuration file is located in [installation-prefix]/etc/cef/example.prop and should be copied to [installation-
prefix]/etc/sysconfig/sensageCef.prop.. For set up instructions, refer to “Setting Up HawkEye AP CEF
Forwarder”, on page 142.

The Forwarder program retrieves data from the EDW and converts it to the CEF format, forwarding the data
to the CEF Forwarder via TCP (as shown in Figure 6-1).

Figure 6-1HawkEye AP CEF Forwarder

The CEF Forwarder employs a high-performance C-based query library created for HawkEye Open Access
Extension (OAE) to achieve rapid data downloading. Prior to starting an EDW download, the Converter
verifies its connection to the CEF Forwarder. The Forwarder logs EDW query SQL strings before a query is
run to ensure that in the case a query does not complete (due to system failure), data is retrieved.

If the socket connection to the CEF Forwarder is lost, the Forwarder attempts to complete the data transfer,
logging successful batch transfers to syslog as well as any data retrieval or data transfer errors. After logging
each query, the Forwarder grabs the Upload IDs, followed by the actual new row data as in the following
sample output:

2013-07-18T21:40:15.504368Z NOTICE Starting retrieving upload ids from the SLS
2013-07-18T21:40:15.504447Z NOTICE starting SLS query: SELECT uploadid, max_ts,
min_ts, load_count FROM system.upload_info WHERE successful AND load_count > 0
AND
_timediff(max_ts, now()) < 86400000000 AND original_tablename in
Collector Guide 139

Chapter 6: Configuring Common Event Format (CEF) Forwarder
@_list('analytics.bluecoat_sgproxy_batch') DURING ALL;
2013-07-18T21:40:17.179185Z NOTICE finished SLS query, got 21 rows, in 2 seconds
Query for New rows:
2013-07-18T21:40:17.179755Z NOTICE starting SLS query: SELECT ts, uploadid,
cef_version,

When stopped by a user or error, the Fowarder logs its state information and exits. State information
includes:

Record counts, a list of data upload IDs that fall within the current upload window and show:

 the number of rows present in an uploadID

 the number of rows that are queued for transfer

 the number of rows that were transferred*

* In error conditions the row count may not be completely accurate due to TCP/IP buffering. Because there
is no remote application level acknowledgement of records transferred, rows successfully sent to the TCP/IP
stack are considered to be successfully transferred.

 Normal messages for start and end of transfer, and if applicable, messages that indicate no new Upload
IDs are ready--so there is nothing to transfer.

 Debug messages include DNS lookups and IP address and note severity.

 Timestamps include logging for transfer start, stop and durations and service start, stop and execution
durations. For each Upload ID, the Converter provides an ISO microsecond timestamp (UTC) for the last
successfully processed data.

For a complete sample listing, see “HawkEye AP CEF Forwarder Sample Log Output”, on page 152.

HAWKEYE AP CEF FORWARDER MULTI-DAEMON ENVIRONMENT

Multiple sensageCef daemon services are needed when you want to keep track of more than one EDW table
separately. In a sensageCef multi-daemon environment, each daemon requires separate configuration files
and init script files. The <configuration_file> that a customer sets up must have the identical filename as the
properties file and the init script file. The state.pid property must also be correctly set in the referenced
property file.

For example, a configuration named "Archive" requires the following two files:

/opt/sensage/etc/init.d/sensageCef-Archive
/opt/sensage/etc/sysconfig/sensageCef-Archive.prop

The sensageCef-Archive.prop property file must have the state.pid value, which is set to:

state.pid=/opt/sensage/var/run/sensageCef-Archive

For details on adding a new configured daemon to operate with the provided init scripts, see “Adding a
sensageCef Daemon to your Configuration”, on page 146.
140 Collector Guide

Specifying HawkEye AP CEF Forwarder Options
SPECIFYING HAWKEYE AP CEF FORWARDER OPTIONS

This section contains options for using the HawkEye AP CEF Forwarder. For details on setting up the
Converter, see “Setting Up HawkEye AP CEF Forwarder”, on page 142.

Synopsis

The following is the sensageCef command line syntax:

sensageCef [<options>] {configuration_file}

Description

The Converter supports several command options (listed below) for debugging or stopping a process. In
normal operations, no options are specified and only the configuration file is executed as in:

sensageCef configuration_file

Options

You can view an option listing by specifying the --help | --h command line option.

Example

In this example, the sensageCef command is executed with the -H.

Enter at the command line:

> /opt/sensage/bin/sensageCef -H

Enter the password to be hidden. The password is not displayed while it is entered. Use the printed, obscured
password value in the correct password field of the CEF configuration file.

F68871A4F8C33707234B

Option Description

-t Test mode that tests EDW retrieval and outputs CEF messages to stdout; state is not
updated.

-v Records internal operations on stdout.

-c Runs program as normal in the foreground (no daemonizing) and logs to the console.

-s Stops current process gracefully.

-S Forces (kills) the current process to stop.

-H Converts clear text password to an obfuscated code.
Note: When a user enters a clear text password, letters will not be diisplayed.
Collector Guide 141

Chapter 6: Configuring Common Event Format (CEF) Forwarder
SETTING UP HAWKEYE AP CEF FORWARDER

Setting up the HawkEye AP CEF Forwarder requires the following steps:

1. Create the "cef" Postgres User with a random password. For details, see “Creating the Postgres User and
Schema for CEF Forwarder”, next.

2. Create the appropriate table in a postgres instance to track uploads. For details, see “Creating the Postgres
Table for Uploads”, on page 142.

3. Modify the Collector to track uploads. For details, see “Modifying the Collector”, on page 143.

4. Create a configuration file that contains property settings for the Converter. For details, see “Creating
Your Configurations File”, on page 143.

5. Create a properties file for column mappings. For details, see “Creating Your Column Mappings File”, on
page 145.

6. When adding a new configured daemon to operate with the provided init scripts, create and execute the
init script. For details, see “Adding a sensageCef Daemon to your Configuration”, on page 146.

Creating the Postgres User and Schema for CEF Forwarder

Perform the following steps to create the Postgres User (with random password) and schema:

1. Run the following script with the hexis user to create a "cef"postgres user with a random password:

/opt/hexis/hawkeye-ap/bin/CEFSetupPostgres.sh

2. Run the sensageCef command (as shown below) to create the hidden password; copy and paste the
password displayed in the output of the commands in Step 1 (above).

/opt/hexis/hawkeye-ap/bin/sensageCef -H

3. Run the sensageCef command (as shown below) to create a schema in Postgres; use the password
displayed in the output of Step 2 (above).

/opt/hexis/hawkeye-ap/bin/sensageCef -p "host=<postgres host>
dbname=controller user=cef password<>"

Creating the Postgres Table for Uploads

In the following situations, you will need to create the appropriate table in postgres so the Collector can
track successful uploads:

 Your default postgres instance does not have the proper table definition.

 For other reasons, you want to track uploads in another postgres instance.

To create the table for the situations noted above, you can use the sensageCef executable with the –p option.
This option takes a connection string and creates the proper table in postgres; for example:

./sensageCef –p “host=myhost.com dbname=controller user=controller
password=D4C69546EE84DFD69229E134A69439B1DDB5ABB93698”
142 Collector Guide

Setting Up HawkEye AP CEF Forwarder
To obtain a hidden password you run sensageCef with the –H option; for example:

./sensageCef –H

After supplying your database password you will get back the obfuscated version which you can then use in
your connection string.

Modifying the Collector

NOTE: Please refer to this guide for greater details on overall Collector setup.

After the table in postgres has been created, you need to add a new element to every loader in your
config.xml file that you will want as a source for the converter. The element, TrackUploads, has a single
attribute, which is the connection string used to communicate with postgres. So for example if you have a
loader that you want to track and use as a source in the converter, you would modify the TrackUploads
element to look something like this:

(bold indicates what you need to add to the loader definition)

<Loader name="windowsloader" enabled="1">

<TrackUploads connectionstring="host=myhost.sensage.com dbname=controller
user=controller password=D4C69546EE84DFD69229E134A69439B1DDB5ABB93698"/>
<LogQueue>win_logqueue</LogQueue>
<PTL table="winevt" namespace="addamark.woodshed" type="file">
<Location>/opt/sensage/etc/collector/agent.ptl</Location>
</PTL>
<RunOnHost>localhost</RunOnHost>
<SLSInstance>newts04.sensage.com:8072</SLSInstance>
<SLSUser>administrator</SLSUser>
<SLSPasswd>changeme</SLSPasswd>

</Loader>

Now when you restart the collector, all successful loads will get tracked in the postgres database you
specified.

Creating Your Configurations File

When you run the converter you supply a configuration file. This file includes several properties that define
the behavior of the Converter’s forwarding operation. See Appendix A for a sample configuration file,
example.prop, provided with the Converter program file.

IMPORTANT: If you are using a multi-service environment, make sure to provide each service its
own init script and associated configuration file in the sysconfig directory. For example, if you
have three scripts, you are required to provide a separate configuration file for each script in the
directory.

 The sensageCef script requires sensageCef.prop in the sysconfig directory.

 The sensageCef-optionalConfig script requires sensageCef-optionalConfig.prop in the sysconfig
directory.

 The sensageCef-extra script requires sensageCef-extra.prop in the sysconfig directory
Collector Guide 143

Chapter 6: Configuring Common Event Format (CEF) Forwarder
For details, see “Adding a sensageCef Daemon to your Configuration”, on page 146

Attribute Name Purpose

logging.path Path where the Converter stores its own log messages.

logging.syslog Set to 1 to enable logging to syslog; otherwise set to 0 to disable.

state.pid A fully-qualified pathname to the pid file to store the running process ID of the sensageCEF
daemon service.

gen.maxTempFailure
s

This is the number of consecutive transfer errors to allow before permanently aborting
operations. This integer value sets the number of times a transfer failure can occur before
CEF exits with a failure status (in which 0 means keep trying). In summary:
0 = disabled (default)
1..n - abort after this many failures.
For example:
genmaxTempFailures={0..n}
genmaxTempFailure=2

Note: Transfer failures are considered to be TCP/IP socket errors. They are a failure to
connect, failure to transfer data, and encounter of remote application timeout The transfer
will restart after a transfer failure until the error count has been reached. A successful
transfer will reset the error count to 0 (zero).

schedule.interval Specifies how often to run the Converter. You can qualify your number with the following
letters:
s - seconds
m - minutes
h - hours
d- days
For example: Specify 4d to run every 4 days.

postgres.connectstrin
g

A string (in double quotes) that specifies from where to get upload information; for example:

"host=myhost dbname=controller user=controller
password=D4C69546EE84DFD69229E134A69439B1DDB5ABB93698"

EDW Settings

sls.max_age This is a cutoff. The Converter does not process uploads older than this date. For example,
the Converter will only use uploads that have occurred in the last two day when you specify:
sls.max_age=2d

sls.max_upload_rang
e

This is a cutoff. The converter does not process any upload that spans a range of time greater
than this range of time. This feature is used to improve EDW performance. For example, the
Converter will only use uploads whose min and max timestamps are no farther than two
days apart when you specify:
sls.max_upload_range=2d

sls.user The user name used to communicate with the EDW.

sls.pass The obfuscated password used to connect to the EDW (created with the sensageCef -H
option).

sls.nodes A list of EDW hosts (in hostname:port syntax) to communicate with. For example:
sls.nodes=localhost:8072

sls.table The fully-qualified name of the table or view used to pull records from.

sls.sourcetables This is one or more tables that contain the actual data you want to send. For example,
assume sls.table specifies a view that is a union over tableA and tableB; then you specify:
sls.sourcetables=tableA,tableB
144 Collector Guide

Setting Up HawkEye AP CEF Forwarder
Creating Your Column Mappings File

The column mappings file is used to change how columns are mapped from the EDW source table to the
Common Event Format. Appendix B provides an example mappings file. You map the columns in your
EDW table to the names you want to use in the Common Event Format output. In addition to mapping those
columns there are a handful of special column designations that are in the table that follows.

IMPORTANT: When forwarding event data to CEF receiver, the CEF forwarder ignores the
columns that have the below mentioned values, which effectively indicate "null" value.

 ""

 "-"

 "-1"

sls.max_rows The maximum number of rows to forward on any given iteration. (This is useful to prevent
too much data going to ArcSight at one time.)

sls.max_ids The maximum number of upload IDs to process at any given time.

sls.where This is an optional field that can be used to augment the EDW query and narrow the number
of records forwarded to ArcSight.

Destination Settings You can specify multiple destinations for the data by creating multiple groups of:

dest.{NAME}.{KEY}={VALUE} pairs

dest.mynet.term Row termination character:
• none - no termination, useful in general only UDP.

• null - \0 termination, commonly used in syslog over TCP.

• If - line feed termination, commonly used readable text output.

dest.mynet.type Type of destination:
• TCP - send over a TCP socket. Use dest.{NAME}.address to specify a hostname:port and the

timeout.

• UDP - send as UDP packets. Use dest.{NAME}.address to specify a hostname and the timeout.

• file - write to file(s); use dest.{NAME}.path to specify a pathname.

For example:
dest.mynet.type=file
dest.mynet.path=/tmp/output%LX%GX%S.log file

dest.<type>.timeout This is an integer value in seconds specifying how long the TCP/IP socket connection will
remain open without successfully transferring any data. This can be tuned to the expected
response times of the destination application. If no data is transferred for at least the amount
of time specified, the connection will be terminated and a failure will be logged. To disable
the timeout and never detect a non-responsive destination application set this value to 0
(zero). In summary:
0 = disabled (default)
1..n - enabled.
For example:
dest.mynet.timeout=30

output.format Output formatter information:
cef - Common Event Format
cef.columnsFile - The column mappings file (See Appendix B for more details.)

Attribute Name Purpose
Collector Guide 145

Chapter 6: Configuring Common Event Format (CEF) Forwarder
Adding a sensageCef Daemon to your Configuration

To create a new configured daemon that operates with the provided init scripts:

1. Create symlinks for the init scripts in /etc/init.d/ folder as below:

lrwxrwxrwx 1 root root 44 Nov 19 05:52 sensageCef-<configuration> -> /opt/
sensage/etc/init.d/sensageCef

2. Execute following command to add the new init script to services:

chkconfig --add sensageCef-<configuration>

3. Create the property file. The property file must be named:

/opt/sensage/etc/sysconfig/sensageCef-<configuration>.prop

4. Configure the .prop (property) file. The init script uses the installation location.

a Provide a fully-qualified pathname to the lock file. For init script compatibility, set it to:

state.pid=/opt/sensage/var/run/sensageCef-<configuration>

5. Manage the HawkEye AP Common Event Format Forwarder for the new configuration using the
following service commands:

service sensageCef-<configuration> start|stop|status|restart

Attribute Name Purpose

cef.prefix The output prefix that is attached when rows are formatted.

special.count specifies how many special pipe-delimited columns should appear at the beginning of
the event.

special.{number} Used to specify speical.{number} values up to the count in speical.count. For
example:
• special.1=device_vendor

• special.2=device_product

• special.3=device_version

• special.4=signature_id

• special.5=name

• special.6=severity

special.uploadid The name of the _uploaded column in the table or view.

special.ts The name of the ts column in the table or view.
146 Collector Guide

Sample Configuration File
SAMPLE CONFIGURATION FILE

You can define parameters for Forwarder operations in a configuration file. The following is a sample
configuration file, example.prop, provided with the Forwarder program file:

Logging directory, if specified log files are rotated once
per day, with ’today.log’ containing current log data.
Otherwise file logging is disabled:
logging.path=/tmp

1 - enable logging to syslog, 0 - disable:
logging.syslog=1

Number of consecutive transfer errors to allow before permanently
aborting operations.
0 = disabled (default)
1..n = abort after this many failures
gen.maxTempFailures={0..n}
gen.maxTempFailures=0

How long do we wait between polling?
N{s,m,h,d}
s - seconds
m - minutes
h - hours
d - days
schedule.interval=10m

connection string used to get upload information from postgres.
the password should be the obfuscated version which you can create using the -
H flag to sensageCef
example:
postgres.connectstring="host=localhost dbname=controller user=controller
password=D4C69546EE84DFD69229E134A69439B1DDB5ABB93698"

postgres.connectstring="host=localhost dbname=controller user=controller
password=9280D45CDFB53690E13468B5128709DA"

How many hours old must SLS data be before we ignore it?
N{s,m,h,d}
sls.max_age=5d

sls.max_upload_range is optional, if set it determines the max difference
between
any uploads ids min_ts and max_ts (to prevent using uploads that cover a huge
time range)
N{{s,m,h,d}
for example: sls.max_upload_range=7d specfieis that any uploadid with a time
range > 7 days will be ignored. This can
prevent performance problems for trying to scan large ranges of time

The sls login information:
sls.user=administrator
Obscured password generated using -H option
sls.pass=128EF6395F66BBB2E137D5C729FA30A2815E
SLS Node(s)
sls.nodes=localhost:8072
Collector Guide 147

Chapter 6: Configuring Common Event Format (CEF) Forwarder
The fully qualified table or view to retrieve from:
sls.table=analytics.microsoft_windows2008_securityEvent_sensageRetriever

sls.table can refer to a view, so you must also specify the source tables to
use when scanning for new upload ids
sls.sourcetables=analytics.microsoft_windows2008_securityEvent_sensageRetriever

Maximum rows to retrieve from the SLS per query:
sls.max_rows=100

Maximum upload ids per query:
sls.max_ids=10

Optional additional where conditions for the SLS query:
For example you might want to restrict records to only those
matching a particular criteria.
sls.where=bytesIn + bytesOut > 1024*1024
sls.where=

Multiple destinations of assorted types may be specified of the form:
dest.{NAME}.{KEY}={VALUE}
Where NAME is an arbitrary user assigned destination name

Network example ’mynet’

Row termination character:
none - no termination, useful in general only with udp
null - \0 termination, commonly used in syslog over tcp
lf - line feed termination, commonly used readable text output
dest.mynet.term=lf

Type of destination:
tcp - send over a tcp socket
udp - send as udp packets
file - write to file(s)
dest.mynet.type=tcp

Destination IP address and port for dest.type ’udp’ or ’tcp’:
For type ’tcp’ more than one ip:port may be specified. If a
connection to the first fails, the next will be tried.
dest.mynet.address=localhost:1113
Timeout for non-responsive sockets with dest.type ’tcp’:
value is in seconds:
0 = disabled
1..n = enabled
dest.mynet.timeout=30

File example ’myfile’

File name for output file if dest.type is ’file’.
Several replacement options are available:
%S if present is replaced by the current epoch second
%L if present is replaced by the local YYYYMMDDhhmmss
%G if present is replaced by GMT YYYYMMDDhhmmss
Files while being written have a .wrk extension added to the end
they are renamed to the path name when done.
dest.myfile.path=/tmp/test%LX%GX%S.log

type file
148 Collector Guide

Sample Configuration File
dest.myfile.type=file

line feed terminator
dest.myfile.term=lf

PID file specification. If used with the provided init script this
must be set to:
state.pid=/opt/sensage/var/run/sensageCef-<configuration>
where <configuration> is the trailing part of the init script
filename. E.g. for a configuration named "Archive" the following
two files would be necessary:
/opt/sensage/etc/init.d/sensageCef-Archive
/opt/sensage/etc/sysconfig/sensageCef-Archive.prop
and the state.pid value in the prop file must be set to:
state.pid=/opt/sensage/var/run/sensageCef-Archive
#
state.pid=/opt/sensage/var/run/sensageCef-win

Output formatter information:
cef - Common Event Format
output.format=cef

Properties file describing the desired sls->cef column mapping
application to output.format ’cef’ only. This can be an absolute
path, or a path relative to this config file.
cef.columnsFile=/opt/sensage/etc/cef/wincefColumns.prop
Collector Guide 149

Chapter 6: Configuring Common Event Format (CEF) Forwarder
HAWKEYE EDW TO ARCSIGHT CEF COLUMN NAME MAPPINGS

The following is a listing of all HawkEye EDW column names, mapped to the corresponding ArcSight CEF
column names. Columns can be added or changed without recompiling the binary code. This listing is
contained in the cefColumns.prop file provided with the Converter software.

The output prefix we attach when formatting rows:
cef.prefix=SenSageCEF_Forwarder:

The special initial pipe delimited columns and the SLS column name
associated with them:
special.count=7
special.0=cef_version
special.1=device_vendor
special.2=device_product
special.3=device_version
special.4=signature_id
special.5=name
special.6=severity

The name of the _uploaded column and ts in our table or view:
special.uploadid=uploadid
special.ts=ts

List of SLS column names with an optional alternative name for # CEF
name/value pair output:
column.ApplicationProtocol=app
column.baseEventCount=cnt
column.bytesIn=in
column.bytesOut=out
column.destinationAddress=dst
column.destinationHostName=dhost
column.destinationMacAddress=dmac
column.destinationNtDomain=dntdom
column.destinationPort=dpt
column.destinationProcessName=dproc
column.destinationUserId=duid
column.destinationUserName=duser
column.destinationUserPrivileges=dpriv
column.deviceAction=act
column.deviceAddress=dvc
column.deviceCustomNumber1=cn1
column.deviceCustomNumber1Label=cn1Label
column.deviceCustomNumber2=cn2
column.deviceCustomNumber2Label=cn2Label
column.deviceCustomNumber3=cn3
column.deviceCustomNumber3Label=cn3Label
column.deviceCustomNumber4=cn4
column.deviceCustomNumber4Label=cn4Label
column.deviceCustomNumber5=cn5
column.deviceCustomNumber5Label=cn5Label
column.deviceCustomNumber6=cn6
column.deviceCustomNumber6Label=cn6Label
column.deviceCustomString1=cs1
column.deviceCustomString1Label=cs1Label
column.deviceCustomString2=cs2
150 Collector Guide

HawkEye EDW to ArcSight CEF Column Name Mappings
column.deviceCustomString2Label=cs2Label
column.deviceCustomString3=cs3
column.deviceCustomString3Label=cs3Label
column.deviceCustomString4=cs4
column.deviceCustomString4Label=cs4Label
column.deviceCustomString5=cs5
column.deviceCustomString5Label=cs5Label
column.deviceCustomString6=cs6
column.deviceCustomString6Label=cs6Label
column.deviceEventCategory=cat
column.deviceHostName=dvchost
column.endTime=end
column.fileName=fname
column.fileSize=fsize
column.message=msg
column.receiptTime=rt
column.requestURL=request
column.SourceAddress=src
column.sourceHostName=shost
column.sourceMacAddress=smac
column.sourceNtDomain=sntdom
column.sourcePort=spt
column.sourceUserId=suid
column.sourceUserName=suser
column.sourceUserPrivileges=spriv
column.startTime=start
column.transportProtocol=proto
Collector Guide 151

Chapter 6: Configuring Common Event Format (CEF) Forwarder
HAWKEYE AP CEF FORWARDER SAMPLE LOG OUTPUT

2013-06-21T00:08:41.844121Z NOTICE Starting retrieving upload ids from the
SLS
2013-06-21T00:08:41.844170Z NOTICE starting SLS query: SELECT uploadid,
max_ts, min_ts, load_count FROM system.upload_info WHERE successful AND
load_count > 0 AND _timediff(max_ts, now()) < 864000000000000 AND
original_tablename in @_list('analytics.bluecoat_sgproxy_batch') DURING
ALL;
2013-06-21T00:08:43.083386Z NOTICE finished SLS query, got 9 rows, in 2
seconds
2013-06-21T00:08:43.083425Z INFO Reading state data
2013-06-21T00:08:43.083499Z NOTICE Finished retrieving upload ids from the
SLS
2013-06-21T00:08:43.083951Z NOTICE starting SLS query: SELECT ts, uploadid,
cef_version, device_vendor, device_product, device_version, signature_id,
name, severity, ApplicationProtocol, SourceAddress, baseEventCount, bytesIn,
bytesOut, destinationAddress, destinationDnsDomain, destinationHostName,
destinationMacAddress, destinationNtDomain, destinationPort,
destinationProcessName, destinationServiceName,
destinationTranslatedAddress, destinationTranslatedPort, destinationUserId,
destinationUserName, destinationUserPrivileges, deviceAction,
deviceAddress, deviceCustomDate1, deviceCustomDate1Label, deviceCustomDate2,
deviceCustomDate2Label, deviceCustomNumber1, deviceCustomNumber1Label,
deviceCustomNumber2, deviceCustomNumber2Label, deviceCustomNumber3,
deviceCustomNumber3Label, deviceCustomNumber4, deviceCustomNumber4Label,
deviceCustomNumber5, deviceCustomNumber5Label, deviceCustomNumber6,
deviceCustomNumber6Label, deviceCustomString1, deviceCustomString1Label,
deviceCustomString2, deviceCustomString2Label, deviceCustomString3,
deviceCustomString3Label, deviceCustomString4, deviceCustomString4Label,
deviceCustomString5, deviceCustomString5Label, deviceCustomString6,
deviceCustomString6Label, deviceDirection, deviceDnsDomain,
deviceEventCategory, deviceExternalId, deviceFacility, deviceHostName,
deviceInboundInterface, deviceMacAddress, deviceNtDomain,
deviceOutboundInterface, deviceProcessName, deviceTranslatedAddress,
endTime, externalId, fileCreateTime, fileHash, fileId, fileModificationTime,
fileName, filePath, filePermission, fileSize, fileType, message,
oldFilename, oldfileCreateTime, oldfileHash, oldfileId,
oldfileModificationTime, oldfilePath, oldfilePermission, oldfileType,
oldfsize, receiptTime, requestClientApplication, requestCookies,
requestMethod, requestURL, sourceDnsDomain, sourceHostName,
sourceMacAddress, sourceNtDomain, sourcePort, sourceServiceName,
sourceTranslatedAddress, sourceTranslatedPort, sourceUserId, sourceUserName,
sourceUserPrivileges, startTime, transportProtocol FROM
analytics.intellischema.arcsight_cef WHERE uploadid IN
@_list('599311E4C14ADABDC6E87AFF535EAFB1', 'X') DURING
time('2011-05-13T11:02:12.000000Z'), time('2011-05-13T11:06:13.000000Z');
2013-06-21T00:08:43.107804Z DEBUG parseAddress("e31.sensage.com:1111
<http://e31.sensage.com:1111> ")
2013-06-21T00:08:45.251654Z NOTICE finished SLS query, got 101 rows, in 2
seconds
2013-06-21T00:08:45.252035Z INFO Saving state data
152 Collector Guide

APPENDIX A

PTL FILE FORMAT

• “Synopsis”, next

• “Description”, on page 153

• “Prerequisites”, on page 154

• “Overview of a PTL File”, on page 154

• “Creating the PTL”, on page 161

• “Using Macros”, on page 166

• “Storing Raw Log Entries”, on page 168

• “Table Columns for Raw Log Entries”, on page 169

• “Troubleshooting”, on page 171

SYNOPSIS

optional comments, e.g. example lines
^<regular_expression>|(.*)$
<field_name>:<data_type>[,<field_name>:<data_type>[...]]
-- SQL statement follows from here
SELECT <expression> as ts, -- first target must be a timestamp named ’ts’

<expression> [as <column>] -- any number of target columns may follow
FROM stdin

;

DESCRIPTION

PTL files define how to parse source log entries into fields of information, transform the fields if necessary,
and load them into tables in the EDW. The acronym PTL stands for “parse, transform, and load.” Loading
operations break log files into single-line log entries, parse the lines into fields, and load the parsed fields
into target columns of a table.

Fields to be captured from source log entries are delimited by parentheses in the regular expression on the
first line of the PTL file. The fields are named and their data types are declared on the second line. The
remaining lines of the PTL file contain a HawkEye AP SQL SELECT statement, which defines the target
schema of tables loaded using the PTL file.

PTL files recognize two styles of comment lines. The comment style to use depends on the section of the
PTL file.

 The first style uses a number sign (#) at the beginning of comment lines. Use the first style for all
comments lines before Line 1, the line with the regular expression.

 The second style uses two dashes (--) at the beginning of comments. Use the second style for all
comment lines in the SQL section after Line 2, the line with field declarations.

NOTE: Comment lines are not allowed between Line 1 and Line 2 or after the terminating semi-colon of the
SELECT statement.
Collector Guide 153

Appendix A: PTL File Format
PREREQUISITES

To most effectively use this tutorial, you should have the prerequisite skills, have access to a regular
expression editor, and have access to a running HawkEye AP system.

The skills you need to develop PTL files include:

 Writing and debugging regular expressions

 Programming with Perl

 Use of some command-line tools for working with the HawkEye EDW

 Use of HawkEye AP SQL

In addition, you should be familiar with the log sources for which you are developing PTL files.

OVERVIEW OF A PTL FILE

This section covers the following topics:

• “Synopsis of a PTL File”, next

• “The Sections of a PTL File”, on page 155

• “Regular Expression”, on page 156

Synopsis of a PTL File

The following syntax diagram illustrates the anatomy of a PTL file:

The syntax for <field_list> in Line 2 is the following:

<field_name>:<datatype>[,<field_name>:<datatype>[...]]

The values allowed for <datatype> are:

Data Type Description

BOOL A logical value indicating true (1) or false (0) stored as 1 byte

FLOAT A 64-bit floating point value [-1.797693e+308 to 1.797693e+308]

INT32 A signed 32-bit integer value [-2147483647 to 2147483648]

INT64 A signed 64-bit integer value [-9223372036854775808 to 9223372036854775807]
154 Collector Guide

Overview of a PTL File
The Sections of a PTL File

A PTL file comprises three functional sections, which occur in this order:

1 A regular expression, which describes how to parse fields from source log entries

2 A set of field names and data types for the fields that are parsed by the regular expression

3 A SELECT statement with target columns that are the columns of tables to be loaded

Consider the following example:

*([^]+) +([^]+) +([^]+) +\[([0-9]+/[a-z]+/[0-9]+):([0-9]+:[0-9]+:[0-9]+) +([^
]+) +([^]+) +([^]+) +([^]+) +([^]+) +([^]+)$
ClientIP:VARCHAR,UserAgent:VARCHAR,UserName:VARCHAR,Date:VARCHAR,Time:VARCHAR,
Method:VARCHAR,Url:VARCHAR,HttpVers:VAR,RespCode:INT32,RespSize:INT32
SELECT _timeparse(_strcat(Date, " ", Time), "%Y-%m-%d %H:%M:%S") as ts,

ClientIP, UserAgent, UserName, Method, Url, HttpVers, RespCode, RespSize
FROM stdin

;

THE FIRST LINE

The first line contains an entire regular expression, with parentheses that define capture groups:

*([^]+) +([^]+) +([^]+) +\[([0-9]+/[a-z]+/[0-9]+):([0-9]+:[0-9]+:[0-9]+)
+([^]+) +([^]+) +([^]+) +([^]+) +([^]+) +([^]+)$

A capture group is a portion of a regular expression enclosed within parentheses. It isolates the portion of the
regular expression that describes the matching pattern for a specific field of information within source log
entries. When a portion of a log entry matches the pattern in a capture group, that portion of the log entry is
captured in memory for later use. Captured portions are stored in fields that you declare on the second line of
the PTL file.

THE SECOND LINE

The second line contains field declarations, which give names to capture groups and specify their data types:

ClientIP:VARCHAR,UserAgent:VARCHAR,UserName:VARCHAR,Date:VARCHAR,Time:VARCHAR,
Method:VARCHAR,Url:VARCHAR,HttpVers:VAR,RespCode:INT32,RespSize:INT32

The field declarations on the second line correspond in number and order to the capture groups in the regular
expression.

TIMESTAMP A scaled 64-bit floating point value for the integral number of microseconds since 1/1/
1970 GMT

VARCHAR A string with the maximum length of 2147483646 bytes, which is two bytes less than two
gigabytes.

INET A 2, 6, or 18-byte value that represents an IP address for a host or network.The textual
representaton of inet includes the subnet sizes, for example 10.56.127.4/24 or 2002::a509:4482/
64. If the inet is a host only, then the subnet (netmask) is 32 (IPv4) or 128 (IPv6), representing a
single host.

Data Type Description
Collector Guide 155

Appendix A: PTL File Format
THE REMAINING LINES

The remaining lines of a PTL file contain a HawkEye AP SELECT statement:

SELECT _timeparse(_strcat(Date, " ", Time), "%Y-%m-%d %H:%M:%S") as ts,
ClientIP, UserAgent, UserName, Method, Url, HttpVers, RespCode, RespSize

FROM stdin
;

PTL files end with the terminating semi-colon (;) of the SELECT statement. If you include any text, such as
comment lines, following the semi-colon, your PTL file will fail to load log entries successfully.

Regular Expression

The regular expression on the first line of a PTL file parses similarly structured log entries into the fields of
information declared on the second line.

As an example, let's look at the head of the syslog_log source data file. HawkEye AP provides this sample
file in example_logs/syslog. To list the sample log file, run the following command:

gunzip -c syslog_log.gz | head -20

The output is:

Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.
Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.
Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.
Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.
Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.
Sep 23 05:00:12 a05-a sshd[31380]: Connection closed by 10.0.1.111
Sep 23 06:00:12 a05-a sshd[31398]: Connection closed by 10.0.1.111
Sep 23 07:00:11 a05-a sshd[31416]: Connection closed by 10.0.1.111
Sep 23 08:00:11 a05-a sshd[31434]: Connection closed by 10.0.1.111
Sep 23 09:00:11 a05-a sshd[31452]: Connection closed by 10.0.1.111

Analyzing Source Log Entries

Before you write the regular expression, carefully analyze the source log entries to determine what
information they contain and how the information is formatted. A single log entry from the example source
log file looks like the following:

Sep 23 04:02:00 a05-a syslogd 1.4-0: restart.

The entry contains six items of information:

 Month—Sep

 Day—23

 Time—04:02

 Host Name—a05-a

 Program—syslogd 1.4-0

 Message—restart.
156 Collector Guide

Overview of a PTL File
Notice that the year in which the log entry was written is not recorded. Log entries require a timestamp that
includes the year in order to be loaded successfully. In this case, we have to implement a PTL file that lets
someone specify the year for timestamps during loading operations.

Notice also that some entries have spaces within the program field, while others do not:

syslogd 1.4-0
sshd[31380]

Our regular expression must address the issue of embedded spaces within a field.

Identifying Capture Groups and Fields

After you analyze source log entries, you can identify the capture groups you want in the regular expression
and their corresponding field declarations on Line 2. To parse log entries from our sample source log file,
the regular expression will specify five capture groups for these fields:

(timestamp) (host) (program) (process ID) (message)

CAPTURING THE TIMESTAMP

For the (timestamp) field, we create a capture group in the regular expression that matches the first three
characters, then a space, then the next two digits, and then the next eight characters. For flexibility, we write
the capture group to match any number of month characters. It accepts S, Se, Sep, Sept, or September.
Some source log entries might separate the month and day with more than one space, so the regular
expression accepts multiple, consecutive spaces. Also, it accepts the day as 011, or 11, or eleven.

A more flexible way to write the capture group for (timestamp) is to say: “Add each consecutive character to
the captured field until you come across a space; then after one or more consecutive spaces, add one space to
the captured field; then add each consecutive character until you find a sequence of spaces and add one
space to the captured field; then add each consecutive character until you find a space; then end the field.”

In a regular expression, a capture group that corresponds to the statement above looks like this:

(\S+\s+\S+\s+\S+)

where:

Regular Expres-
sion Patterns

Meaning

(Start a capture group

\S Match any character other than a space or a tab

+ Repeat the prior pattern, \S, as long as it matches at least once

\s Match the space character

+ Repeat the prior pattern, \s, as long as it matches at least once

\S Match any character other than a space

+ Repeat the prior pattern, \S, as long as it matches at least once

\s Match the space character

+ Repeat the prior pattern, \s, as long as it matches at least once

\S Match any character other than the space character

+ Repeat the prior pattern, \S, as long as it matches at least once
Collector Guide 157

Appendix A: PTL File Format
Next we need to match the spaces that delimit the (timestamp) field from the (host) field, but we do not put
them within the parentheses of a capture group:

\s+

Delimiting spaces in the source log entry are skipped over and not included in the fields used in the SELECT
statement.

CAPTURING THE HOST

For the (host) field we need to match all characters other than spaces. In a regular expression, such a capture
group look like this:

(\S+)

We follow the capture group for (host) with a match for one or more delimiting spaces to skip:

\s+

CAPTURING THE PROGRAM

Capturing the (program) field and the (process id) field is tricky. We cannot use spaces as the delimiter at the
end of the (program) field, because program names can include spaces. We cannot use another, single
character as the delimiter, either. The (program) field ends with a left square bracket ([) when there is a
process ID, like this: ’sshd[31434]:’, but the fields ends with a colon (:) when the (process id) field is
missing, like this: ’syslogd 1.4-0:’.

To handle these issues, we first create the (program) capture group with a character class that defines the
characters to match. A character class is defined between square brackets. To capture the (program) field,
our character class says, “Match any characters except a left square bracket ([) or a colon (:).” A left square
bracket delimits the end of the (program) field when a process ID is present; a colon (:) delimits the end
when the process ID is missing.

Our capture group looks like this:

([^[:]+)

where:

) End the capture group

Regular Expres-
sion Patterns

Meaning

(Start a capture group

[Start a character class

^ Match any characters except those in this character class

[Matching ends if a left square bracket in encountered

NOTE: Generally, you must escape the special meaning of left
square brackets in order to match them, but you do not need to
escape them within a character class.

Regular Expres-
sion Patterns

Meaning
158 Collector Guide

Overview of a PTL File
After reaching the end of the (program) field, we look for a left square bracket ([), which indicates the
presence of an optional process ID. Outside a character class, left square brackets are metacharacters, so we
must escape their special meaning with a preceding backslash, like this: '\['. Because the process ID and
its left bracket might not be present, we follow the bracket with a question mark (?), which indicates that the
delimiter is optional. Because it is a delimiter that we want to skip over, we do not enclose it in the
parentheses of a capture group.

The optional delimiter between (program) and (process ID) looks like this:

\[?

CAPTURING THE OPTIONAL PROCESS ID

Next we need a capture group for the (process ID) field, if present. Because process IDs are numbers, we can
use the special character class for digits, \d. This character class matches any of the arabic numerals 0
through 9.

We follow the digits class with an asterisk (*) to repeat the pattern if there is at least one character that
matches. Unlike the plus sign (+), which also indicates to repeat a pattern, an asterisk is an optional match;
with a plus sign, the pattern must match at least one character. We use an asterisk in this case, because there
are no digits when the process ID is missing.

Because the entire capture group for the (process ID) field is optional, we use a question mark immediately
after the capture group to indicate that the numeric sequence is optional. The complete capture group for
(process ID) looks like this:

(\d*)?

Next we match the optional right square bracket that delimits the end of the (process ID) field, if one is
present. We must escape the regular meaning of right brackets with a preceding backslash (\) in order to
match them. We follow the right bracket with a question mark to indicate that the match is optional:

\]?

Next we match the colon (:) that delimits the end of the (program) and optional (process ID) fields.
Although the sample log entries indicate that a colon is always present, we use a question mark to indicate it
is optional, in case some log entries to do not include it:

:?

CAPTURING THE MESSAGE

Next we look for spaces that delimit the (message) field from the earlier parts of the log entry. We use an
asterisk (*) in cases where there are no spaces preceding the message or the log entry has no message:

\s*

: Matching ends if a colon is encountered

] End the character class

+ Repeat the prior pattern, [^[:], as long as it matches at least once

) End the capture group

Regular Expres-
sion Patterns

Meaning
Collector Guide 159

Appendix A: PTL File Format
Finally, we match any characters for the (message) field. Because it may not be present, we use a dot (.) to
match any non-null character. We follow it with an asterisk to indicate zero or more occurrences:

(.*)

IMPORTANT: Only use the “dot star” (.*) pattern at the end of a regular expression. When “dot
star” occurs earlier in an expression, performance issues occur due to excessive backtracking by
the regular expression engine.

Completing the Entire Regular Expression

Putting this all together, we have the following regular expression, with five capture groups:

(\S+\s+\S+\s+\S+)\s+(\S+)\s+([^[:]+)\[?(\d*)?\]?:?\s*(.*)

Because we want to start matching at the beginning of each log entry, we enclose the regular expression in
parenthesis, add a caret (^) at the start, and a dollar sign ($) at the end. These indicate that the regular
expression runs from the start of the log entry all the way to the end:

^((\S+\s+\S+\s+\S+)\s+(\S+)\s+([^[:]+)\[?(\d*)?\]?:?\s*(.*))$

Because we want to load all log entries, even when the match fails, we add an alternative expression that
matches any non-null characters:

^((\S+\s+\S+\s+\S+)\s+(\S+)\s+([^[:]+)\[?(\d*)?\]?:?\s*(.*))$|(.*)

Ellipses as a Parsing Shorthand

The HawkEye AP Perl interpreter, atperl, has a proprietary extension that gives special meaning to three
successive periods, or ellipses. Generally, a period in a regular expression matches any character. You can
place several periods in sequence to indicate how many characters of any kind you want to match.

With HawkEye AP Perl, three periods in a sequence means, “match any number of any characters up to the
character or character class that follows.” Also, three periods in a sequence implicitly define a capture
group; enclosing parentheses are not required. The following example matches any characters until a comma
(,) is encountered:

...,

The ellipses extension is useful for very simple log entries that have a fixed number of fields that are
separated by delimiting characters. For example, the following log entry is generated by a hypothetical log
source:

2006-06-28T12:15:32+8 elena host-a1 login

All log entries from this log source have the same format, which includes the fields (timestamp), (user),
(host), and (action). The fields are separated by single spaces. With the ellipses extension, you could write
the following regular expression:

^(...)$|(.*)

Without the extension, you would write the following, equivalent, standard regular expression:

^(([^]*) ([^]*) ([^]*) ([^]*))$|(.*)
160 Collector Guide

Creating the PTL
NOTE: In the preceding example of a standard regular expression, we use a custom character class, [^] in
place of the special character class for non-white space characters, \S. The character class \S excludes
white-space characters in addition to spaces, such as tabs. The [^] custom character class excludes only
spaces.

Additional Resources

For full details on creating regular expressions, see:

 Mastering Regular Expressions by Jeffrey Friedl, published by O’Reilly and Associates.

http://www.oreilly.com/catalog/regex/

 The regex(7) man page

CREATING THE PTL

This section includes the following topics:

• “Declaring the Regular Expression”, next

• “Field Declarations”, on page 162

• “SELECT Statement”, on page 163

• “Table Names”, on page 166

• “The FROM Clause”, on page 166

• “Where Clauses”, on page 166

Declaring the Regular Expression

The first functional line in a PTL file, Line 1, is a regular expression. A basic regular expression in a PTL
file has the following syntax:

^(<regular_expression>)$

The caret symbol (ˆ) anchors the evaluation at the beginning of the log entry. The dollar sign ($) anchors the
evaluation at the tail end of entry. The parentheses instruct the evaluation to put values that match
<expression> in the corresponding field on Line 2.

The basic syntax for the regular expression has a problem. It allows parse failures. A fool-proof regular
expression that matches any line is:

.*

You should include this “catch-all” regular expression in PTL files you want to certify. A refined basic
syntax for the regular expression has this form:

(^<regular_expression>$)|(.*)

The OR operator (|) combines two regular expressions. Evaluation begins with the first expression. If the log
entry matches the expression, the entire, unaltered source log entry is placed in the first field on Line 2.
Otherwise, evaluation proceeds with the second expression. The second expression,(.*), matches any line.
If the main expression fails, the catch-all expression captures the log entry and puts it in the second field on
Line 2.
Collector Guide 161

http://www.oreilly.com/catalog/regex/

Appendix A: PTL File Format
Field Declarations

The field declarations on the second line of a PTL file assign names and data types to the capture groups in
the regular expression. Data types can be bool, float, int32, int64, inet, timestamp, varchar, or lvarchar. Use
the names you declare on Line 2 in the SELECT statement that follows it.

For more information on SQL data types, see Data Types in Chapter 3: HawkEye AP SQL in the Event Data
Warehouse Guide.

NOTE: Some data type assignments can cause a loss of information; for example, assigning an int64 to an
int32 can cause a loss of precision. Other examples include assigning an int32 or int64 data type to a number
with a decimal value, assigning a numeric data type to a varchar, etc.

The second functional line in a PTL file, Line 2, is a field list. Fields in the list correspond to memorized
matches defined in the regular expression. Fields on Line 2 are similar to the $1, $2, etc, variables used in
Perl script to access memorized matches. The fields in Line 2 capture memorized matching values found
between successive pairs of parentheses.

For example, the basic syntax for the regular expression on Line 1 defines two memorized matches. The
field list on Line 2 should have two corresponding match fields, as the following example shows:

You define additional memory matches as you refine your version of <regular_expression>. Your
objective is to parse information out of source log entries. For each memory match you add to your regular
expression, you add a corresponding field to the list.

A match field has the following syntax:

<field_name>:{VARCHAR|TIMESTAMP|INET|INT64|INT32|BOOL|FLOAT}

Generally, define match fields as VARCHAR types on Line 2, and typecast them later when you load their
values into the table.

For more information on the different field types, see “Synopsis of a PTL File”, on page 154.

The specification for the field list on Line 2 has the following syntax:

s_rawmsg:VARCHAR[,<match_field>[,<match_field>[...]]],f_rawmsg:VARCHAR

All certified PTL files have the match fields s_rawmsg and f_rawmsg. These fields correspond to
recommended minimum for Line 1. The first regular expression puts matching log entries in s_rawmsg.
Failing a match, the second regular expression, the “catch-all,” puts unrecognized log entries in f_rawmsg.
Regardless the success or failure of the PTL file to recognize a log entry, the source log entry is available for
loading into the table.
162 Collector Guide

Creating the PTL
SELECT Statement

The SELECT statement transforms the parsed fields into a list of target columns. The target columns
describe the schema for tables loaded with the PTL file.

The SELECT statement in a PTL file has the following syntax:

For more details on SELECT statements, see “Overview of AP SQL SELECT Statements”, on page 41 in
the Event Data Warehouse Guide.

In a PTL SELECT statement, the column list is called the target schema. The columns in the list are the
columns in the table to be loaded. Target schemas define the names of columns, their types, and the values to
load.

The target schema in the PTL must match the schema of the target table, or the load operation will fail.
Column names and column data types must be the same. If you omit table columns from the target schema,
or the target schema includes columns not in the target table, the schemas do not match and the load
operation fails.

A column specification in the target schema has the following syntax:

<expression> AS <column_name>

An <expression> is anything that evaluates to a scalar value.

A <column_name> is the name of a column in the target table. Compose the name with alphanumeric
characters and underscores (_).

Specifying Column Names

In the standard SELECT statement, column names are case-insensitive. The same is true of SELECT
statements in PTL files, provided the file is used to load an existing table. For example, if the column name
is USER_ID in the target table and you specify user_id in the target schema, the columns are considered to
match.

Case-sensitivity becomes an issue when PTL files create tables that do not exist. If a PTL file specifies
USER_ID as a column name as in the target schema, the created table has a column named USER_ID. If
the PTL file specifies user_id, the created table has a column named user_id.
Collector Guide 163

Appendix A: PTL File Format
If you query a table with * in the FROM clause, column headings in the query results have the same case as
column names in the table. The case of physical column is also visible when you query system tables for
lists of columns.

A general recommendation is to define the names of columns that contain values parsed from log entries in
lower case. Define the names of columns that contain values not found directly in log entries in upper case.

Specifying Column Types

In a standard SELECT statement, there is no way to declare the data types of columns in the column list. The
data types are defined in the target tables themselves, so there is no need to. Likewise, the SELECT
statement in a PTL does not have a way to declare data types for columns in its target schema.

This is not a problem when a PTL file loads an existing table. The column types are defined in the target
table. If the expression in a column specification evaluates to different scalar type than the column in the
target table, automatic type conversion occurs. For example, the target schema has the following column
definition

'5' AS login_failure_count

The existing table defines login_failure_count as type INT64. The expression '5' evaluates to a
VARCHAR type. The system converts '5' to an INT64 and loads the number into the column.

The problem occurs when a PTL file creates the table it is loading. The data types of columns in created
tables are inferred from the scalar types of the evaluated expressions. In the example above, the expression
has VARCHAR as its type. Therefore, login_failure_count in the created table will also have
VARCHAR as its data type.

You can enforce column types in created tables if you typecast the complete expression. The typecast
becomes the type of a column when tables are created. The following example shows how to ensure that
login_failure_count is created as INT64.

_INT64('5') AS login_failure_count

This example is trivial. Generally, you would not use a literal value in a column specification. A literal was
used purely to illustrate the issue of type declaration in PTL files.

Always typecast the expressions in column specifications to the type you want in tables created while
loading. In the example above, typecast the expression to ensure that the column is created with INT64 as its
type.

To avoid certification failure, PTL files have these column specifications in their target schemas:

SELECT
<expression> AS ts,
<expression> AS AUDIT_PARSE_SUCCESS,
<expression> AS unparsed_message,
-- These columns reserved for internal use
_BOOL(0) AS _internal_bool,
_FLOAT(0) AS _internal_float,
_INT32(0) AS _internal_int32,
_INT64(0) AS _internal_int64,
_TIMESTAMP(0) AS _internal_timestamp,
_VARCHAR(“) AS _internal_varchar,
_INET (0) AS _internal_inet,
From stdin;
164 Collector Guide

Creating the PTL
The topic “Storing Raw Log Entries” later in this chapter explains how to handle the expressions for the
AUDIT_PARSE_SUCCESS and unparsed_message columns.

Including the TS Column in Target Schemas

Tables in the EDW are optimized for storing and querying log entries. Part of the optimization requires that
log entry tables have timestamp columns named ts, with TIMESTAMP as the type. Source log entries have
timestamps embedded somewhere, otherwise they are not log entries.

The minimal target schema in a PTL file has the following syntax:

WITH <expression> AS ts

Without a column specification for the ts column, PTL files cannot successfully load or create tables.
Generally, <expression> resolves to the timestamp parsed from the source log entry. The next chapter,
“Parsing,” explains how to handle timestamps found in log entries and how to create expressions that
successfully load them into ts.

PTL files fail certification if they do not store raw log entries in a column named unparsed_message.
They fail certification if they do not include a column named AUDIT_PARSE_SUCCESS that indicates
whether the raw log entry was successfully recognized and parsed. Finally, HawkEye AP requires that PTL
files declare some special columns reserved for internal use.

Functions in PTL Select Statements

As with standard HawkEye AP SELECT statements, PTL files can include built-in functions and user-
defined subroutines.

To learn about built-in HawkEye AP SQL functions, see “Overview of AP SQL SELECT Statements”, on
page 41 in the Event Data Warehouse Guide.To learn about user-defined functions, see “User-Defined
Subroutines”, on page 79 and “Perl Subroutines”, on page 217 in the Event Data Warehouse Guide.

Unsupported Keywords in PTL Select Statements

In PTL files, SELECT statements cannot include UNION, GROUP BY, ORDER BY, or DURING clauses,
nor can they include subqueries. The EXPLODE keyword is supported; it creates multiple EDW rows for
each source log entry.

Timestamps in PTL Select Statements

In PTL files, the first target column must be a timestamp named ts. The EDW requires it. Timestamps are
stored internally as a number of microseconds since January 1, 1970, GMT. Generally, source log entries
contain a field that records when the entry was written.

The recommendation for parsing and loading timestamps is to declare the capture field on line 2 as a varchar
data type. Use _timeparse() to create the timestamp from formatted strings or _timestamp() to convert
numeric values to timestamps. Often you apply the _timeparse() function in the target column, as the
next example shows:

...
ts:VARCHAR,...
...
SELECT _timeparse(ts, "%Y-%m-%d %H:%M:%S") as ts,
...
Collector Guide 165

Appendix A: PTL File Format
For more information on conversion to timestamps, see “Conversion Expressions”, on page 72 in the Event
Data Warehouse Guide.

Schema Changes in PTL Select Statements

IMPORTANT: In preparing for schema changes in the PTL SELECT statement, the practice of
creating dummy columns, one for each data type, in PTL scripts is now deprecated. The dummy
columns were only required to facilitate the operations of the CLCHGSCHEMASCRIPT, which is also
now deprecated beginning with Release 6.0.

In Release 6.0, the ALTER TABLE statement subsumes the operations that used to be performed by the
CLCHGSCHEMA script . For details on the ALTER TABLE statement see “Modifying Table Schema -
altertbl”, on page 119 in the Administration Guide.

Table Names

Table names are handled externally from the statement. The atload command manages the loading
operation, and it takes the name of the target table from its command line. The following example shows
how:

atload "host01:1680,host02:1680,host03:1680" my_space.my_table my_ptl_file.ptl \
my_log.log

The FROM Clause

In standard SQL, the FROM clause identifies the source tables. In a PTL file, the FROM clause identifies
the source is a single line of text from a log file. The FROM clause has this syntax:

FROM stdin;

Where Clauses

PTL files can include WHERE clauses to filter out log entries that match the regular expression but which
you do not want to load. In general, you should load all log entries. Use WHERE clauses only to skip over
empty lines in source log files.

To skip blank log lines, use a conditional expression on one of the parsed fields that you know always
contains a value and compare it to an empty string. For example, you might use the timestamp field from
line 2, as the next example WHERE clause shows.

WHERE timestamp = ’’

Skipping over blank lines in source log files avoids parse failures and bad loads.

USING MACROS

The preamble of the SELECT statement lets you declare macros. A macro defines a value or expression for
use later in the preamble and in the SELECT statement. Before compiling the SELECT statement, a
preprocessor expands macros, replacing them with their full specification.

NOTE: The preamble also lets you declare custom Perl subroutines.
166 Collector Guide

Using Macros
Synopsis of Macros

A macro declaration in a PTL file has the following syntax:

WITH $<macro_name> AS {'<literal_value>'|<expression>}

A <macro_name> can have alphanumeric characters and underscores (_). You can declare scalar macros in
a PTL file but not list or star macros. Include the dollar sign ($) in references to macros.

A '<literal_value>' specifies a scalar value. Enclose the value in quotes. For example:

WITH $TZ AS 'GMT'

An <expression> specifies a piece of HawkEye AP SQL code. Do not enclose the expression in quotes.
For example:

WITH $YEAR AS _timeformat("%Y",_now(),$TZ)

The expression can span text lines. It ends when the next SQL keyword is encountered.

Overriding Macro Values

Generally you treat macros as programming constants. Their literal values do not change later within the
SQL code block. However, the values of macros defined with literals can be overridden before a load
operation begins.

For example, the following macro in a PTL file is designed to be overridden:

WITH $TZ AS 'GMT'

When a PTL file loads log entries, their timestamps must be converted from local time to GMT time. Often
log entries have timestamps that lack a designated time zone. However, the time zone can be deduced from
the location where a log file was generated.

For example, log files generated in San Francisco have ‘US/Pacific’ as their time zone, and log files
generated in Paris have ‘Europe/Paris’ as their time zone. The $TZ macro can be overridden with correct
local time zones for log files generated in San Francisco and in Paris. The following command modifies the
example in “Table Names”, on page 166 to override the time zone so that it refers to 'US/Pacific':

atload --override=TZ:'US/Pacific' "host01:1680,host02:1680,host03:1680" \
my_space.my_table my_ptl_file.ptl my_log.log

Using Mandatory Macros

Generally, you use macros to simplify the expressions you code in the SELECT statement.

PTL files fail certification if they do not declare and use the following macros:

WITH $TZ AS 'GMT'
WITH $YEAR AS _timeformat("%Y",_now(),$TZ)
WITH $STORE_RAW_PARSE_SUCCESS AS 'Y'
WITH $STORE_RAW_PARSE_FAILURE AS 'Y'
WITH $ADAPTER_VER AS '1.0'
Collector Guide 167

Appendix A: PTL File Format
WITH $APP_VENDOR AS '???'
WITH $APP_NAME AS '???'
WITH $APP_VERSION AS '???'

The macros have the following meanings.

STORING RAW LOG ENTRIES

Previously in this chapter you learned the basic anatomy of a PTL file, how to declare the regular
expression, the field list, and the SQL code block. You also learned how to use macros. Now you can apply
that knowledge to write a basic PTL file that loads raw log entries without parse failures.

Macro Name Meaning Intended for
Override

$TZ Specifies the local time zone for
log-entry timestamps that do not
carry the time zone.

YES

$YEAR Code that calculates the current
year for log entry timestamps that
do not carry the year.

YES

$STORE_RAW_PARSE_SUCCESS Processing flag that controls
whether raw log entries are
loaded if they were recognized
and parsed successfully.
Allowed values are 'Y' and 'N'.
The value must by 'Y'.

YES

$STORE_RAW_PARSE_FAILURE Processing flag that controls
whether raw log entries are loaded
if they were not recognized
and could not be parsed
successfully. Allowed values are
'Y' and 'N'. The value must by 'Y'.

YES

$ADAPTER_VER Specifies the version number of
the PTL file. The value here
should match the value for version
number in the initial comment
block.

NO

$APP_VENDOR Name of the vendor of the logging
application that produces log
entries that the PTL file is
designed to parse and load.

NO

$APP_NAME Name of the logging application
that produces log entries that the
PTL file is designed to parse and
load.

NO

$APP_VERSION Version number of the logging
application that produces log
entries that the PTL file is
designed to parse and load.

NO
168 Collector Guide

Table Columns for Raw Log Entries
Remember that storing raw log entries is important to establishing the chain of custody, and that PTL files
fail certification if they do not store all raw log entries. The keys to storing raw log entries are the use of the
catch-all regular expression (*.) and the s_rawmsg or f_rawmsg match fields.

The Catch-All Regular Expression

The regular expression must have the catch-all regular expression. It is an alternate to the main expression
you write to recognize log entries and parse information from them successfully. Your first line looks like
the following example:

You can type in <regular_expression> as your regular expression for now. It is a valid regular
expression. However, it will only find a match with log entries that have "<regular_expression>" as
the entire line of text.

Match Fields for Raw Log Entries

Line 1 of your PTL file defines two memory matches. Therefore Line 2 declares two corresponding match
fields: s_rawmsg and f_rawmsg. Putting Lines 1 and 2 together yields the beginning of a basic PTL file
that looks like the following:

(^<regular_expression>$)|(.*)
s_rawmsg:VARCHAR,f_rawmsg:VARCHAR

The entire raw log line is either in s_rawmsg or f_rawmsg after the regular expression evaluates it for
matches.

TABLE COLUMNS FOR RAW LOG ENTRIES

The mandatory columns AUDIT_PARSE_SUCCESS and unparsed_message in the target schema are
related to raw message parsing.

Column for Parse Success or Failure

The type for AUDIT_PARSE_SUCCESS is INT64. Two values have meaning in this column. The value 1
means that the main expression matched the raw log entry. The value -1 means that the main expression did
not match the log entry and was caught by the catch-all expression.

The following code demonstrates how to set the correct value:

CASE
-- a value in f_rawmsg means that main parsing failed
WHEN f_rawmsg <> “” THEN _int64(-1)
ELSE _int64(1)

END AS AUDIT_PARSE_SUCCESS,

One of the match fields has the raw unparsed log entry, and the other one has an empty string. The statement
uses f_rawmsg in the conditional expression to determine which value to load in the
AUDIT_PARSE_SUCCESS column.
Collector Guide 169

Appendix A: PTL File Format
Column for the Unparsed Log Entry

The type for unparsed_message is VARCHAR. The unparsed log entry is in one or the other match
field. The macros $STORE_RAW_PARSE_SUCCESS and $STORE_RAW_PARSE_FAILURE complicate the
logic.

The following code demonstrates how to store the unparsed log entry:

CASE
-- store a successfully parsed raw log entry
WHEN s_rawmsg <> "" AND $STORE_RAW_PARSE_SUCCESS=="Y"
THEN _varchar(s_rawmsg)
-- store an unparsed raw message raw log entry
WHEN f_rawmsg <> "" AND $STORE_RAW_PARSE_FAILURE=="Y"
THEN _varchar(f_rawmsg)
-- store the empty string if storing the raw message is overridden
ELSE _varchar("")

END AS unparsed_message,

The unparsed log entry in s_rawmsg or f_rawmsg, but the macros may be overridden with 'N' to prevent
either successful or failed log entries from being loaded. The ELSE clause ensures that the
unparsed_message column is populated with a VARCHAR value regardless of overrides.

Varchar to Inet Conversion Failure

Two special values arise from converting varchar strings to the inet datatype. Assuming, that you are not
executing these functions in ANSI mode, the following values are supplied:

 When no inet value exists, (meaning an empty value was provided) the column value is populated with
the value none.

 When an inet value is not an IP address, the column value is populated with the value invalid.

NOTE: In the case of using an ANSI mode setting (when issuing an API or a HawkEye AP command that
supports it such as atquery), when the above inet values, none or invalid are stored in a table, they are
mapped to "0.0.0.0/0" when the column is read from the table.

Timestamps for Unmatched Log Entries

The timestamp in a log entry is not available if the main expression fails to match the entry. Yet a timestamp
value is required for the ts column. The following code demonstrates how to supply the timestamp for log
entries that did not parse successfully:

CASE
WHEN f_rawmsg <> '' THEN _timestamp(now())

The now() function obtains the current time from the local system. The _timestamp() functions casts the
value returned from now() as a TIMESTAMP.

For log entries that parse successfully, you have match fields with part or all of the log-entry timestamp.
Generally, you code the ELSE clause with an expression that combines parts of the timestamp with the $TZ
and $YEAR macros. The following code demonstrates the complete CASE statement for setting the value in
the ts column:

CASE
170 Collector Guide

Troubleshooting
WHEN f_rawmsg <> "" THEN _timestamp(now()) -- failed timestamps
ELSE _timestamp(now() -- successful timestamps

END AS ts,

TROUBLESHOOTING

These are some common problems encountered with PTL files:

• “Match Failures”, next

• “Field Miscounts”, on page 171

• “Incorrectly Parsed Timestamps”, on page 171

• “Missing Time Zones”, on page 172

• “Missing Timestamps”, on page 172

• “Old Data Does Not Load”, on page 172

Match Failures

The loading operation rejects source log entries when the regular expression fails to match them or when the
data types specified for matching fields do not match the parsed data. For example, when a capture group
matches the characters “abc”, the value cannot be parsed into a numeric field.

Most log files have some malformed data that cannot be parsed. If the parse failure rate exceeds 1%, the
problem is more likely an insufficiently flexible regular expression than it is malformed data in the source
log file. To investigate the problem further, turn on the --matchfailures option for atload, and capture
the rejects in a file for either retrying or debugging. If you're getting many rejects of what look like valid log
entries, try testing you PTL file with fewer log entries and fewer parsed columns until you can isolate the
problem.

For more information on the --matchfailures option, see Chapter 3: Loading, Querying, and Managing
the EDW in the Administration Guide.

NOTE: If you include the alternative match in regular expressions, as shown under “Completing the Entire
Regular Expression”, on page 160, you avoid match failures completely.

Field Miscounts

For performance, the loading operation checks quickly that the number of capture groups in the regular
expression matches the number of fields declared in the second line of the PTL file. Enclosing a series of
capture groups within an outer set of grouping parentheses results in an extra capture group, which requires
a corresponding field on the second line to avoid a miscount error. You can write your PTL file to ignore this
extra field at load time by omitting it from the list of target columns in the SELECT statement.

Incorrectly Parsed Timestamps

It is important to double-check your parsed timestamp values to ensure that the regular expression is
capturing them as you expected. Two simple techniques are:

 Run "atview ... tables" on your table after loading to get the earliest and latest timestamps, and
ensure that they are reasonable.
Collector Guide 171

Appendix A: PTL File Format
 Create a histogram of records for each hourly time frame. For example:

SELECT _timeformat('%D %H:00', ts) as hour, count(*)
FROM mytable
GROUP BY 1
DURING ALL

;

Missing Time Zones

One common issue is that the timestamp field records the local time, without an explicit time-zone indicator.
The log source assumes that the time zone of the system that generates the log file can be inferred. For
correlation to work properly, the actual time zone must be included in the timestamp when it is loaded into
the EDW. The EDW stores timestamps as GMT when the time zone is missing.

One solution is to declare WITH TIMEZONE at the top of the SQL statement, as the next example shows:

...
WITH TIMEZONE 'US/Pacific'
SELECT _timeparse(ts, "%Y-%m-%d %H:%M:%S", $TIMEZONE) as ts,

field1
FROM stdin

;

Missing Timestamps

Some log entries lack timestamps completely. In such cases, populate the ts column with the current system
timestamp, as the next example shows:

...
SELECT now() as ts, ...
...

Old Data Does Not Load

Sometimes a log entry fails to load because its timestamp is earlier than the default minimum, which is Jan 1
00:00:00 2000 GMT (represented in the system as 2000-01-01T00:00:00Z). In this case, the error
message from atload looks like the following:

ts 946684799000000 not in [946684800000000,2147483647000000] for record starting
with: 2000-01-01 08:59:59,10,Kumar,Vijay,MyCo,03-5908-8194,14187,Successful

The loader rejects the log line on the assumption that a timestamp earlier than the default minimum indicates
a user error. If your data is earlier than the default minimum, you must change the minimum value. You can
make this change in one of two ways:

 Edit the athttpd.conf file to include the mintimestamp variable and set the variable to an appropriate
value.

The athttpd.conf file is located in:

<Sensage_Home>/etc/sls/instance/<instance_name>
172 Collector Guide

Troubleshooting
At the bottom of this file, add the following lines:

minimum timestamp -- This value defaults to 2000-01-01T00:00:00Z
mintimestamp=<acceptable_value_in_format_yyyy-mm-ddTHH:MM:SSZ>

OR

 Include the following WITH statement in the SELECT statement of your PTL:

WITH mintimestamp <acceptable_value_in_format_yyyy-mm-ddTHH:MM:SSZ>

IMPORTANT: The earliest timestamp that HawkEye AP accepts is 1970-01-01T00:00:00Z.
When a PTL fails to parse the timestamp field, the loader converts the timestamp of the log line to
this earliest value. Unless your data has timestamps that date to the first minute of January, 1970,
you should set mintimestamp to a more recent value.

NOTE: The maxtimestamp setting does not have a default value.
Collector Guide 173

Appendix A: PTL File Format
174 Collector Guide

Collector Guide

INDEX
A

AbortOnFailure 42
activity.log 54
agent

HawkEye Retriever 87
agentless authentication 102
Aggregating flows

subnet level 131
atload 42

changing schema 166
atmanage

changing schema 166
atvieww 171
AUDIT_FILE_CHECKSUM macro 42
authenticating

agentless HawkEye Retriever 102
Automatic load macros 42

B

backslash
syntax usage explained 12

BackupDir 30
BadIdDir 42

C

CLIRoot 20
Collector 14

root directories 19
collector

collector_push script 27
configuration

CycleDelay 54
Dasiy Chains 51
FlushInterval 55
Throttle 54

configuring log queues 25
edit configuration file 20
FileRoot 19

Collector Event Writer 95
collector-datadir 19
commands

atload 166
atmanage 166

atview 171
Compact 49
ConfigFile 31
configuring

collector 20
error reporting 54
HawkEye Retriever 61, 65
HawkEye Retriever on Windowsr

configuring 57
log queues 20, 25
preprocessors 20, 41
source health monitor 124

Custom Output Format
Netflow Receiver 128

CycleDelay 54

D

Daisy Chain loader 42
daisy chains 20, 51
DaisyChainHost 42, 50
Discovers, HawkEye Retriever 101
documentation 10

E

Email notifications
reporting 54

Error messages
errors.log 54

errors
configuring log locations for 54

Event Readers 66, 89
Example configuration 93
SMB 89
TCP 93

Event Writers 75, 94
Collector 95
File 96
Syslog 96
TCP 95
TCP Syslog 96

Events log
forwarded in Windows 2008 106

exporting Netflow data 125
Extended format

Netflow Receiver 128
Collector Guide 175

Index — F
Extended format for specifying Log Adapters 42

F

File Event Writer 96
Filesystem loader 42
Firewall loader 42
FlushInterval 54
ft2nfdump

described 130
FTP

retriever 35

H

HaawkEye Retriever
Pipelines 97

HawkEye 34
HawkEye Retriever

agent configuration 87
agentless authentication 102
agentless configuration 34
configuring agentless retriever 86
Discovers 101
Event Reader 66, 89
Event Writer 75, 94
Logging 102
logging levels 85
Pipelines 76
Remote Shell 85
Serializers 97
Shells 98
stand-alone configuration 87
standard configuration 61
state files 86

HawkEye Retriever configuring 65
historic analysis

source health monitor 123
HTTP Get Retrievers 37
HTTP Push Retrievers 37

I

interactive shells 99
IPv6 records

printing 129

L

line format

Netflow Receiver 127
Listen 31
Loader examples 42
loaders 20, 42

attributes 43
loading

PTL file format 153
log adapters

and PTL files 18
optional PTL tag extended format 42

log queues 20, 25
configuring 25

LOG_FILENAME macro 42
logging, HawkEye Retriever 85, 102
LogQueue 28, 44
logs

configuring error log locations 54
Long format

Netflow Receiver 127

M

Macros
AUDIT_FILE_CHECKSUM 42
LOG_FILENAME 42
syntax 42

match 27
match failures 171
Merge 46

N

Netflow data
filtering for display and analysis 131

Netflow Receiver
aggregating flows 130
aggregating flows on a subnet level 131
capturing Netflow data (nfcapd) 129
cleaning up old Netflow data 134
configuration setting considerations 126
Configuring 124
configuring for catalyst 6500/7800 nrouters 125
configuring for data display and analysis (nfdump) 130
Configuring network sources to export Netflow data 125
converting Flows-Tools Netflow data 134
Custom Output Format 128
data collection and analysis 123
described 18
Extended format 128
filter syntax examples 133
filter template example 131
filtering 131
filtering diagram 126
flags for filtering 132
176 Collector Guide

S — Index
ft2nfdump 130
how it works 123
IPM6 NDE (Netflow Data Export) 125
line format 127
Long format 127
netflow_client.prop Configuration File 134
netflow_client.server Configuration File 136
nfcapd 129
NFClean.P 134
nfdump 133
nfprofile 131
printing IPv6 records 129
raw format 127
reading and converting Flow-Tools data 130
sample configuration 125
sample Configuration files 134
Security 124
specifying Netflow Receiver output 126
Top N statistics 133

Netflow Receiver Failures
investigating 134

netflow_client.prop (configuration files)
sample 134

netflow_server.prop (configuration files)
sample 136

nfcapd
described 129, 131

nfdump
configuring for Netflow data display and analysis 130
described 133

nfprofile
described 131

Notifications
configuring to mail errors 54

P

ParseFailures 49
performance levels 54
period 42
Pipelines 76, 97
Plugin 32
PollInterval 42
Preprocess 30
Preprocessors 41
printing

IPv6 records 129
Process Groups 40
PTL files 18, 45
PTLs

extended format 42

R

raw format
Netflow Receiver 127

RCP retriever 37
RDBMS 27
RDBMS Retrievers 38
regular expressions

ellipses 160
in PTL files 156
three dots 160

remote shells 85, 99
retriever

FTP 35
HawkEye Retriever on Windows 34
RCP 37
SCP 37

retrievers
defining 27
Elements 28
file system 33
HTTP Get 37
HTTP Push 37
RDBMS 38
SFTP 36
types 32

root directory
collector 19

RunOnHost 30

S

Schedule 31, 49
SCP retriever 37
Serializers, HawkEye Retriever 97
SFTP

retrievers 36
Shells

commands 100
HawkEye Retriever 98
interactive 99
remote 85, 99

SLSInstance 48
SLSPasswd 48
SLSUser 48
SMB Event Reader 89
source health monitor

configuring 124
configuring tables & log sources 129
elements and attributes 130
historic analysis 123
how it works 123
system alerts 123

SourceDir 30
SourceFile 31
SourceHost 31
Collector Guide 177

Index — T
SourcePasswd 31
SourceServer 27, 31
SourceUser 31
ssl 27
state files

HawkEye Retriever 86
StateRoot 20
streaming data

agent/agentless colleccion 58
_strptime() 165
Syslog Event Writer 96
system alerts

source health monitor 123

T

targets
used for schema changes 166

TCP Event Reader 93
TCP Event Writer 95
TCP Syslog Event Writer 96
three dots 160
Throttle 54

time zone 172
_timeformat() 171
_timestamp() 165
timestamps

parsing failures 171
Top N Statistics

Netflow Receiver 133

V

var/log/sensage/collector 27, 42, 54

W

Windows 2008
Forwarded Events Long 106

Windows LAN
agent/agentless collection 58

WITH clause
TIMEZONE 172
178 Collector Guide

	Collector Guide
	Table of Contents
	Preface
	Audience for this Book
	Event Collection Guide Organization
	Road Map to HawkEye AP Documentation
	Conventions Used in HawkEye AP Documentation
	Contacting Technical Support

	Introduction
	Overview of Collecting Event Data
	Processing Batched Events
	About the Collector
	Collector Highlights
	Collector Architecture
	Collector Part Descriptions

	SNMP Bridge for Transport
	Using SNMP Traps with SYSLOG
	Enabling Another type of Trap in the SNMP Bridge

	About Log Adapter and PTL Files

	Collecting and Analyzing Network Data with the Netflow Receiver

	Collector Configuration
	Root Directories Used by the Collector
	FileRoot
	StateRoot
	CLIRoot

	Configuring Collector Modules
	Configuring Collector Modules
	Using the CollectorAdmin Tool to Manage your Configuration
	Viewing and Modifying your Configuration

	CollectorAdmin tool Usage
	Examples

	Enabling and Disabling Log Adapters Manually

	Configuring Log Queues
	Life Cycle of a Log File in a Log Queue

	Defining Retrievers
	Retriever Attributes
	Retriever Elements
	LogQueue
	roundRobin
	Preprocess
	RunOnHost
	SourceDir
	BackupDir
	SourceUser
	SourceServer
	SourceHost
	SourcePasswd
	SourceFile
	Listen
	ConfigFile
	Schedule
	PollInterval
	Period
	Plugin

	Configuring Types of Retrievers
	File System Retrievers
	HawkEye Retriever on Windows
	FTP Retrievers
	SFTP Retrievers
	RCP and SCP Retrievers
	HTTP Get Retrievers
	HTTP Push Retrievers
	Script Retrievers

	Using Process Groups

	Configuring Preprocessors
	Defining Loaders
	Loader Attributes
	Loader Elements
	Description of the Loader Elements
	LogQueue
	PTL
	Merge
	SLSInstance
	SLSUser
	SLSPasswd
	SLSSharedKey
	Schedule
	PollInterval
	Period
	Compact
	DaisyChainHost

	Example Loader Configurations
	Example File System Loader Configuration
	Example Firewall Loader Configuration
	Daisy-Chain Loader Example

	Collector Configurations for Networking
	Creating Daisy Chains

	Configuring Error Reporting
	Specifying the location of activity.log and error.log

	Adjusting Performance Levels
	CycleDelay
	Throttle
	FlushInterval

	Configuring Retrievers and Receivers
	Configuring HawkEye Retriever on Windows for Batch Processing
	Windows Agent and Agentless Configuration

	Using the NetFlow Receiver

	HawkEye Retriever Configuration
	Standard Configuration
	Introduction
	Valid Source Data Types for Event Readers
	Valid Destination Types for Event Writers
	Using Pipelines
	Retriever Definition Files

	Attributes for HawkEye Retrievers
	Introduction
	Windows 2008R2 and NTLMv2
	Defining an Event Reader
	Defining an Event Writer
	Defining a Pipeline
	Tuning SMB Event Retrieval
	Defining Remote Shell Access
	Defining the Logging Level
	Defining Non-Standard Log Types
	Defining the State Files
	Controlling Historical Data

	Configuring the Agentless Retriever
	Configuring the Retriever to Run as an Agent

	Advanced Configuration
	Event Readers
	Defining an SMB Event Reader
	Defining an Oracle Audit or Generic Table Reader (BETA)
	Defining a SQL Server Generic Table Reader
	Defining a SQL Server Audit Trace Reader
	Defining a SQL 2000 Server Audit Trace Reader
	Defining a File Event Reader
	Defining a Multifile Event Reader
	Performance Details and Recommendations for Configuration
	Defining a TCP Event Reader
	Example: Defining Event Readers

	Event Writers
	Defining a Collector Event Writer
	Defining a TCP Event Writer
	Defining a File Event Writer
	Defining a UDP Syslog Event Writer
	Defining a TCP Syslog Event Writer

	Serializers
	Example: Using a Serializer

	Pipelines
	Example: Defining 2 Pipelines

	Shells
	Invoking the Interactive Shell
	Invoking the Remote Shell
	Example: Defining a Shell
	Shell Commands

	Discoverers
	Example: Defining a Discoverer

	Logging
	Example: Rolling Over the HawkEye Retriever Log File
	Example: Defining Logging

	Configuring Authentication
	General Authentication Configuration
	Administrator Access
	Non-Administrator Access
	Delegating access to an event log using the registry
	Forwarded Events Log in Windows 2008

	Example of Advanced Properties File
	Managing Remote Agents
	Configuring the Remote Agent
	Configuring the Central Remote Manager
	Defining a Remote Configuration

	An Example of a Remote Manager agentless.prop file
	Managing Remote Agents with Windows Retriever
	Example 1:
	Example 2:
	Example 3:

	Using Database Retrievers
	General DB Retriever Considerations
	Oracle Database Retrievers (BETA)
	Password Managers for Oracle Retrievers (BETA)

	SQL Server Database Retrievers
	Defining a Metadata Function
	Performance Considerations for SQL Server Audit Data
	Maximizing SQL Server Audit Log Reader Performance (sqlserverauditlogreader)
	Performance Details and Recommendations for Configuration

	Configuring Netflow Receiver for Data Collection and Analysis
	How Netflow Receiver Works
	Netflow Receiver Security Requirements
	Configuring Netflow Receiver
	Configuring Network Sources to Export Netflow Data
	Sample Configuration

	Specifying Netflow Receiver Output Formats
	Printing IPv6 Records
	Capturing Netflow Data (nfcapd)
	Configuring Netflow Data Display and Analysis (nfdump)
	Reading and Converting Flow-Tools Data (ft2nfdump)
	Aggregating Flows
	Aggregating Flows on a Subnet Level

	Filtering Netflow Data for Display and Analysis
	Specifying and Displaying Top N Statistics
	Anonymizing Flows

	Converting Flow-Tools Netflow Data
	Cleaning up old Netflow Data (nfclean.pl)
	Investigating Netflow Receiver Failures
	Sample Netflow Receiver Configuration Files
	Sample netflow_client.prop Configuration File
	Sample netflow_server.prop Configuration File

	Configuring Common Event Format (CEF) Forwarder
	HawkEye AP CEF Forwarder Multi-Daemon Environment
	Specifying HawkEye AP CEF Forwarder Options
	Synopsis
	Description
	Options

	Example

	Setting Up HawkEye AP CEF Forwarder
	Creating the Postgres User and Schema for CEF Forwarder
	Creating the Postgres Table for Uploads
	Modifying the Collector
	Creating Your Configurations File
	Creating Your Column Mappings File
	Adding a sensageCef Daemon to your Configuration

	Sample Configuration File
	HawkEye EDW to ArcSight CEF Column Name Mappings
	HawkEye AP CEF Forwarder Sample Log Output

	PTL File Format
	Synopsis
	Description
	Prerequisites
	Overview of a PTL File
	Synopsis of a PTL File
	The Sections of a PTL File
	Regular Expression
	Analyzing Source Log Entries
	Identifying Capture Groups and Fields
	Completing the Entire Regular Expression
	Ellipses as a Parsing Shorthand
	Additional Resources

	Creating the PTL
	Declaring the Regular Expression
	Field Declarations
	SELECT Statement
	Specifying Column Names
	Specifying Column Types
	Including the TS Column in Target Schemas
	Functions in PTL Select Statements
	Unsupported Keywords in PTL Select Statements
	Timestamps in PTL Select Statements
	Schema Changes in PTL Select Statements

	Table Names
	The FROM Clause
	Where Clauses

	Using Macros
	Synopsis of Macros
	Overriding Macro Values
	Using Mandatory Macros

	Storing Raw Log Entries
	The Catch-All Regular Expression
	Match Fields for Raw Log Entries

	Table Columns for Raw Log Entries
	Column for Parse Success or Failure
	Column for the Unparsed Log Entry
	Varchar to Inet Conversion Failure
	Timestamps for Unmatched Log Entries

	Troubleshooting
	Match Failures
	Field Miscounts
	Incorrectly Parsed Timestamps
	Missing Time Zones
	Missing Timestamps
	Old Data Does Not Load

	Index

